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Smectic phase in a system of hard ellipsoids with isotropic attractive interactions
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The smectic phase is studied for a thermotropic fluid model consisting of aligned hard ellipsoids with
superimposed square-well attractive interactions of variable range. The system is analyzed using a density
functional theory in which the hard-core contributions to the free-energy functional are treated within a
nonlocal weighted density approximation and the attractive contributions are considered at a mean-field level.
In the absence of attractions the model reduces, under appropriate scaling, to a fluid of hard spheres and
therefore does not exhibit smectic ordering. It is shown that above a certain value of the square-well range,
smectic ordering is stable relative to the nematic state at densities well inside the fluid region. The nematic—
smecticA transition is found to be continuous at high temperatures and first order at low temperatures, these
two regimes being separated by a tricritical point at an intermediate temperature. These predictions have been
confirmed by computer simulation of the model fluid. The results highlight that smectic ordering can be
stabilized by coupling anisotropic short-range repulsions with the isotropic contribution of the soft attractive
interactions. By increasing the pressure, the range of stability of the smectic phase is seen to decrease. At
sufficiently high pressure, the smectic phase is suppressed, and the solid phase dominates. Our calculations
show that smectic ordering is no longer stable if the range of the attractions is made too long ranged.
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I. INTRODUCTION [4]. One of the earliest molecular theories for smectics was
) o developed by McMillan5] and Kobayashj6]. This mean-
The main goal of any molecular theory of liquid crystals field theory can be regarded as an extension of Maier-
is the prediction of phase behavior and phase transitiongaupe’s approach of nematics to include the possibility of
from the interactions at a molecular leyél. These interac- translational order. Depending on the model parameters and
tions, however, are either not known exactly or expected taemperature, smectic ordering is stabilized through the soft
be quite complicated, due to the complexity of the moleculamnisotropic attractive interactions, the steric effects playing a
structure of typical liquid crystal forming moleculg2]. In- negligible role in stabilizing the phase. The McMillan-
teractions in simple liquids, though still complex, can beKobayashi(MK) theory has been further refing@d-11] (see
understood in terms of short-range repulsions and longedlso Ref[1] for a review on the subjektbut the basic struc-
ranged dispersion attractions. Modeling the repulsive interture of the theory remains the saitsee, however, Ref11]).
actions by hard spheres and considering the attractions asRespite its relative success, the MK theory suffers from a
perturbation treated at a mean-field level is at the heart ofumber of limitations, the most severe being that excluded-
van der Waals—like theories of simplisotropid fluids [3]. volume interactions arising at short_dlstances due to steric
Whether this approach also applies to the description of meeffects_, are fully.neglected. Considering _that the nematic-to-
sophases is far from being trivial, but it provides a reasonSMectic transition can be loosely viewed as a one-

able starting point and, certainly, has guided many moleculafimensional crystallization, it is difficult to think of the
theories of liquid crystals. short-range packing interactions of the hard molecular cores

Here, we will be concerned with the description of the as a side effect in bringing about smectic orderiag).

. i . ; This issue is at the heart of theories which relirectly or
thermotropic smectié phase, focusing on the importance of indirectly) on Onsager's ideakl3] that (nemati¢ orienta-
the coupling between the anisotropic short-range repulsionﬁ

dth # attractive int : . bilizi " onal ordering can be understood as a result of the aniso-
and the soft attractive Interactions in stabilizing Smectic Or.,yic excluded-volume interactions without having to in-
dering in a particular molecular model.

In th oA oh h lecul ; il voke to attractive interactions. The fact that purely repulsive
_In the smecticA phase, the molecules are preterentially o 4ctions can stabilize smectic order has been widely dem-
aligned along one directiofas in a nematic liquid crystal

) " i o P2 onstrated by computer simulations on a number of hard-
and in addition form layers perpendicular to this d'reCt'onparticle system§l4—18. Simulation has also highlighted the
importance of the anisotropy associated to the molecular
shape: a system of hard spherocylinders, for instance, can
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typical molecular elongations in liquid crystdl$9]. in a system of hard spherocylinders could only be stabilized

Although attempts have been made to incorporate higheiby the attractive interactions; the fact that no smectic phase
order terms in the virial expansion of the free end@9,21  could be stabilized in the abscence of attractive interactions
a more promising route for the description of hard-core efig prohably related to the drastic low-density Onsager ap-

fects in sfmecr;cicsf Is providedzb)?/) de_rljrs]ity furﬁctio.nal apprt‘:x"proximation used to account for the hard core effects. Naka-
mations for the free energi22-31. These theories can be gawa and Akahand41l] considered a similar molecular

formulated in a variety of waygsee Refl1] for a review. A model (hard spherocylinder plus attractive jaflut now in-

widely used approach relies on the theory of the inhomoge . ;
neou)s/ hard—sgjhpere flui®2] to account forythe nonuniformg cluding an extra angular-dependent term with the same sym-

density distribution of the smectic phase. The nonlocal strucM€ty as that used by McMillan. The repulsive contribution
ture of the smectic phase is described in terms of a coarsé® again treated under the Onsager approximation and the
grained density, which is obtained from a weighting pro-2attractive contribution at a mean-field level. The attractions,
cedure. The latter is not unique and different scheme§owever, are averaged over a spherically symmetric region
(weighted-density[11,23-27, smoothed-density[28—-30,  (using a cutoff that depends on the molecular jsiZéhis
modified weighted-density31] approximations have been certainly simplifies the calculations but neglects the aniso-
devised. The theoretical predictions are, in most cases, itiopic shape of the molecule. A related approach, although
gualitative agreement with results from computer simulationnot based on a well-defined molecular model, has been given
[17]. One may conclude that the density functional formal-by Mederos and SullivafiLl]. Hard-core effects are modeled
ism provides a consistent approach to understand the role dfy parallel hard ellipsoids and the attractive interaction in-
the short-range hard-core effects in forming the smecticludes an additional term coupling the intermolecular vector
phase. and the molecular orientations. The main innovation intro-
A proper treatment of smectic order in thermotropic liquid duced by Mederos and Sullivan is that the contribution to the
crystals, however, must go beyond hard-body models anttee energy arising from the short-range repulsions is consis-
include explicitly both repulsive and attractive interactions.tently described by using a nonlocal density functional for
A suitable framework is provided by a generalization of vanthe free energy. Smectic ordering appears as a consequence
der Waals—like theories to systems of nonspherical particlesf the (anisotropi¢ attractive interactions, although the hard-
This approach was first developed by Gelbart and B&88h  core interactions turn out to be crucial in determining the
and has been used with reasonable success to study the nesmectic wavelength, which is calculated in a self-consistent
atic phas¢34—39. According to Gelbart and Bard83], the  way. The approach of Mederos and Sullijdd], as well as
pair interaction energy can be written as the sum of a repulthat of Nakagawa and Akahah4l], can be regarded as gen-
sive term(arising from the anisotropic hard cojesnd an eralized versions of the McMillan-Kobayashi theory but with
attractive term. The latter is given by a truncated expansiomxplicit consideration of steric effects. Anisotropic correla-
in spherical harmonics with distance-dependent coefficientgions originated from the hard core are neglected and the
In the spirit of van der Waals theories the free energy of theanisotropic attractive interactions are the driving force for
system consists of two contributions: one arising from thesmectic ordering.
hard cores, and a second one that includes the attractive in- Here, we consider a slightly different approach and inves-
teractions at a mean-field level. As the mean-field average isgate the importance of the anisotropy induced by the hard
restricted to those configurations allowed by ttimpen-  cores into the attractive pair potential as an effective mecha-
etrable cores, these two terms are highly correlated. As anism for the onset of smectic ordering. In order to clarify this
consequence, the hard-rod repulsions build in anisotropipoint, the molecular model has been intentionally chosen so
correlations in the attractive contribution even if the attrac-that the hard-core interactions by themselves do not stabilize
tive interactions have spherical symmetry. Moreover, it hasmectic order. The attractive interactions containemplicit
been noticed34,37] that for nematics, the main contribution anisotropic, angular-dependent contribution. An additional
to the attractive term in the free energy comes from thepurpose of this work is to provide an insight on the role of
lowest-order(isotropig term of the attractive interactions the range of the attractive interactions in bringing about
(modulated by the anisotropic hard cpend not from the smectic ordering.
higher-order(angular dependenterms. The paper has been organized as follows. A brief account
The primary purpose of our current work is to show thatof the molecular model used in the present work is given in
smectic ordering can be stabilized by the coupling betweeisec. Il. Section Il treats the nonlocal density functional
the anisotropic short-range repulsions andifidropiccon-  theory used throughout this work. Our treatment of the re-
tribution of the attractive interactions. We assume a specifipulsive contributions to the free energy functional rests
molecular model in which the hard core is represented by &eavily in that first introduced by Mederos and Sulliad];
hard ellipsoid and the soft attractive interactions are given bylifferences are to be found, however, in the way the attrac-
an spherically symmetric square well. We further simplify tive contributions are considered. Details are also given on
the molecular model by neglecting orientational fluctuationsthe bifurcation analysis used to the study of the stability of
A related study was performed by Kloczkowski andthe smectic phase relative to the nematic and on the calcula-
Stecki[40] for a system of hard spherocylinders interactingtion of the tricritical point. Section IV includes the results for
with an isotropicr~® attractive energy. The results, however, a fixed molecular elongation and a number of values of the
have to be taken with some care as it was conclu@ea- range of the attractive interactions. We summarize our main
neously, as was later pointed du#]) that smectic ordering conclusions in Sec. V.
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Il. MOLECULAR MODEL density of particles at position. The structure and thermo-
We consider a fluid system o axially symmetric par- dynamics of the system at eqyilibriur_n follow from minimi-
. . ) ; ) . zation of the free-energy functional with respecpto). The
ticles. Orientational fluctuations are disallowed by constraln—free_ener functional can be expressed as a sum of two
ing the molecular long axis to remain parallel to a common, ay P

direction, here taken as theaxis. The interaction energy '

between a pair of molecules is expressed as

U(r) = Urep(r) + Uge(r), 1)
whereu,e, and u,, represent the repulsive and attractive in- (4)

teraction energy, respectively, andis the intermolecular \yheref, . includes the contributions to the free energy com-
vector. The molecules are assumed to consist of a hard cofgy from the repulsive interactions. The last term in &4).

with ellipsoidal shape determined by its lofig) and short icjydes the contribution from the attractive interactions and
(D) principal axes. A measure of the molecular anisotropy iSs treated here at a mean-field level.

given byK: L/D. The repulsive interaction is then given by The repu|sive term can be expressed as

Flp(r)]=Fredp(r)] + % f dr dr'p(t)p(r Yugdr =r']),

o if r < o(f),
Uregll) = { 0 if r> o), @ Fredp(n)]=keT f dr p(r{In[A®p(r)] = 1} + AF g fp(r)],

whereo(f) is the distance of closest approach between two (5)
arallel hard ellipsoidgPHE). Here,r is the distance be- . .
b b 1PHB wherekg is Boltzmann's constant and is the thermal de

tween the molecular centers of mass, d&md /r is a unit Broall lenath. In the ab ion. the first t .
vector along the intermolecular vector. As regards the attrac- roglie wavelengtn. in tn€ above expression, the first term 1s

tions, these are typically incorporated through a truncate(Shetcor;]t_r |k;]ut|0nt fTOm t”htehldeal ?%S’t_am:ffep IS ttf;]e ﬁxcgss
expansion of the attractive potential in spherical harmonic®ar: Which contains ail the contrioutions from the hard-core
with r-dependent coefficients. The resulting anisotropic po_lntergcuqns. Theilatter term is treated within a nonlocal ap-
tential is then fully defined by a judicious choice of the dis- proximation[32], i.e.,

tance dependence of the expansion coefficients. Instead, the

soft attractions will be modeled here by a square-well inter- AF e fp(r)] :f dr p(r)Agppelp(r)), (6)
action:
—e if of)<r <\ where Aype is the (excess free energy per particle of a
Uge(r) = ) ’ 3) homogeneous system of parallel hard ellipsdigBlE). Ex-
0 ifr=x, pression6) has a form resembling the local-density approxi-

where \ is the range anc the strength of the attractive Mation(see, for instance, Reff32]) although the free energy

interactions. According to E43), the attractive pair interac- 1S evaluated at a coarse-grained denpitat takes into ac-

tion outside the hard corés spherically symmetric and con- count the npnIcEa}l structure of the fluid. There is no unique

tains no explicit anisotropic terms. way to definep in terms of p(r). Here we follow the
Evanset al.[42] introduced a similar model consisting of Weighted-density approximatiaiWDA) developed by Tara-

an arbitrary hard nonspherical core embedded in a sphericgPna[32] for the inhomogeneous hard-sphekS) system,

square well. The model, without the constraint of perfectlywhich assumes that the smoothed density is given by an

molecular alignment, has been applied to the study of nen@verage ofpus(r) weighted by a suitable functiow that

atic liquid crystals with the hard core taken to be either ardepends omys:

ellipsoid or a spherocylindef43-51. In most casegsee,

however, Ref[51]) the range\ of the attractive interactions — - f / ’ Y P

was taken to ba/D = « (note thatx=L/D for ellipsoids and prsl1) = | dr’pus(rIW(r =1l pns(r). 0

x=L/D+1 for spherocylindeps For highly anisotropic mol-

ecules, this choice may give rise to an overestimation of th

range of the attractions. In this work, different choices\of

will be considered with the restriction/D < «.

ghe explicit expression of the weight function can be found
élsewhere(see, for instance, Refl11]). The corresponding

smoothedp for a system of PHE molecules can be simply
obtained from that of the HS system by considering the an-
isotropic transformation that maps ellipsoids into spheres

ll. THEORY [52]:
A. Free energy
_ — 1
We consider a fluid system dfl molecules interacting perell) = p(r) = ;pHS(A °r). (8
through the pair potential defined in Eq$)—(3). The system
is enclosed in a volum¥ at a temperatur@. Here,A is the diagonal tensdwith components 1, 1(«)™!]

In keeping with the density-functional formalism for non- that defines the transformation of the PHE system into a
uniform fluids, the system is characterized by the onesystem of HS of diametdd. Recall that«=L/D. Using (7)
particle distribution functionp(r), which gives the local and(8) one arrives af11]
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F(r)=Jdr’p(r +A7 Y (9)

Finally, we use the Carnahan-Starling approximation for,

Appein Eq. (6):

4y-37°
1-9?%"

where 7=puv, is the packing fractionp,=(7/6)xD® being
the volume of the ellipsoidal molecule. Equatiof®—(10)

Ao n) =keT——% (10)

completely determine the contribution of the repulsive inter-

actions to the free energy.

In the following, the one-particle distribution function

will be only permitted to vary along, i.e., p(r)=p(z) thereby

only allowing for the description of the nematic and smectic-
A phases. With this restriction, the free-energy functional
cannot account for smectic phases with in-plane order or the

solid phase.

We now turn to the attractive term of the free energy

[second term in Eqd)]. After integration in thex-y plane,
the attractive free energy per unit volurfig can be written
in terms of an effective attractive potential; as

11 _
Bfan=§Baf de(Z)de’p(Z’)uan(IZ-Z’l)- (13)
0
Here, B=(kgT)™%, d is the smectic period, and

Tallz-2) = f RugRlz-z), (12

where we have used the notatiorr’'=(R,z-2') for the
intermolecular vector. Inserting,; from Eg. (3) into Eq.
(12) and performing the integration, yields fag;

o) = {u0+ U2 if |2 < Zmax 13

0 if |2 > Zpaw
where
(14)

UO: - 677(}\2_ DZ), UZZ €7T(K2— 1)/K2,

and Zy.= (—Uo/Uy) Y. Recall that we are limiting ourselves

to the casdD <\ <L. We finally arrive at the following ex-
pression for the free-energy functior(@er unit volume:

1 (¢ -
Bflp(2)]= d JO de(Z){In[A%(Z)] =1+ BA¢ppp(2)

1 _
+2B f dz'p<z'>uan<|z—z'|)}. (15
By functional minimization of the free energit5), one
obtains the equilibrium density(z) at each input value of
the temperaturd and average number density For nu-

PHYSICAL REVIEW E71, 051710(2005

p(2) =p[1+2 Pn COS(nCIZ)], (16)

n=1

'where the Fourier coefficients, with n=1, ... m define a
set of (dimensionlesstranslational order parameteqsis the
wavevector along, andd=2w/q is the wavelength of the
density modulation. The nematic phase corresponds tg,all
equal to zero. Whep(z) from Eq. (16) is inserted into Eq.
(15), the free energy becomes a function of the wave vector
and the order parameters, i.é5f(T,p;q,p,). In practice,
the equilibrium distributiorp(z) is obtained by minimizing
with respect to the variational parametersand the order
parameterg,, using Powell’s metho@53] at given input val-
ues of the average densityand temperatur@.

B. Nematic-smectic transition

By construction, the free-energy functior(db) can only
account for nematic and smect#icphases. The relative sta-
bility of both phases has been proved by using a bifucartion
analysis[20]. For a given value of the temperature, this
amounts to finding théaverage density at which the nem-
atic phase becomes unstable relative to a phase with a den-
sity modulation along. If the nematic—smectiéx transition

is continuous, the bifurcation densipy fixes the location of

the transition, i.e.,p\a=p . However, as first shown by
Meyer and Lubensky54], the transition may also be first
order (even for systems with saturated nematic ordkre to

the coupling between the translational order parameters. In
this case, the bifurcation point lies on the spinodal line and
the actual transition densitigg, and p, bracket the bifurca-
tion density, i.e.py<p <pa.

We start by expanding the free energy in powers of the
order parameters around the nematic phase0 (n
=1,...,m). To determine the bifurcation point and the order
of the transition, it is sufficient to expand the free energy to
fourth order inp; and p,, which yields[54]

(92f &Zf
1 2

+1< 7 )2 (a“f)
2 ﬁplﬁpz p1p2 41 P1

(a“f) 1( Pf
Pt
4' &Pz 4 é’Plé’P

where fy is the free energy of the nematic phase and the
derivatives have been evaluatedpgt p,=0. The above ex-
pansion includes all tern{sip to the fourth ordgrcompatible

with the requirement that the free energy be independent of
an arbitrary uniform translation @f(z) [54]. At fixed average
density and temperature, the free energy must be a minimum
with respect to variations in the order parameters. Solving
the stationary conditioidf/ dp,)=0 allows expressing, in
terms of the leading order paramepgr Considering thap;

)Plpzv (17

merical convenience, we consider the following truncateds small in the neighborhood of the transitign, is given, to

Fourier expansion of the one-particle density:

lowest order inp,, by
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_ = (Hapiopy)
P2= o PHapd T

Substitutingp, from (18) into the expansion of the free en-
ergy given in Eq(17), one obtains up to fourth order j:

(18)

1 1 =
(Tpiapn) =fo(Tp) + Saopl+ jrawpi+ . (19 £
K
The line of bifurcation points follows from the conditions 40
[20]
Y gy . .
a(Tp;q)=—=0, —(T,p;q)=0, 20
2o(T.p ) Py &q(pq) (20
whered” =27/q" is the layer spacing at the bifurcation point. 2.3 3.0 4.0
z/

Determination of the order of the transition requires calcu-
lating the coefficienta, in the expansion(19). This coeffi-

- L FIG. 1. Effective attractive pair potential, as a function of the
cient is given by

intermolecular distance/D for different values of the range of the
attractive interactiona /D (labeled on the plgt The effective po-

(a“f) ( 7 )/<a2f> ctiy stiona /D (labe
ayTpa)={—|-3 —— —|. (21)  tential is normalized byuo| defined by Eq(14).
Ip1 Ip20p1 p3

Typically, the conditiore,(T, p;q)=0, along with(20), fixes  equation, probably due to a typographical error. It is straight-
the location of the tricritical point, provided the next-order forward to check that Eq22) is dimensionally correc}.
coefficient(ag) in the expansior{19) be positive[54,55. If

this is the case, then the transition is continuousdpr 0

and first order fora,<0. However, we have found condi- IV. RESULTS

tions at which the transition was clearly first order even

thougha, > 0. We have noticed that a similar claim has been FOr given input values of the average dengitgnd tem-
given by Poniewerski and Sluckif80]. Our procedure to peratureT, the free energyl5) was minimized with respect

locate the tricritical point is similar to that used by Poniew- 1© the wavevectoq and the set of translational parametgys

erski and Sluckif30], and is based upon the analysis of theWith N=1,....m. In our calculations we useth=10 in the
equation of stat®="P(p,T), whereP is the pressure, in the Fourier expansion of the density distributip(z) in Eq. (16).

neighborhood of the bifurcation point. Consider a temperaOnce the set of variational parameters that minimizds
ture T at which the nematic—smectiransition is continy- ound. the pressure?) and chemical potential can be readily
ous. In this case, the slope of the equation of state on thgdlculated from the free energy. The homogeneous nematic
high-density(smectig side of the transition must be positive Phase is characterized lo=0 andp,=0. In this case, both
(as a result of the condition of mechanical stabjlity any ~ P(2) @ndp(2) reduces to the average number dengitjn all
arbitrarily small neighborhood of the bifurcation point. On calculations reported here, the molecular elongation was
the other hand, if the transition happens to be first order, thgiven a valueL/D=5. The temperature will be always re-
smectic equation of state branches off from the bifurcatiorPorted in units ofe/ks. _
point with a negative slope. It can be shown that the slope of As & check of the consistency of our approach, we first
the smectic branch of the equation of state at the bifurcatiofonsidered the case/D=1. For this choicezys [see Eq.

point can be written as (13)] turns out to be zero. Therefore, the effective attractive
. . . interaction vanishes and the free energy in @¢) contains

(f) — (f) -3 « (925l dp) 2 22) only the contributions from the hard cores. In this case, Eq.

ap A_ ap /N P az ' (20) was found to have no solution at typical fluid densities.

. . Hence, smectic ordering is not promoted in this model in the
where the subscripté and N refer to the smectiex and  gpsence of attractiofd1]. This is consistent with the fact
nematic phase, respectively, and the asterisk indicates evalyja; ynder these circumstances, no smectic phase is to be
ation at the bifurcation point. The tricritical point then fol- expected52].

lows from the condition The effective attractive potential is shown in Fig. 1 for a
P\ few values of the range parameterFigure 1 illustrates how
((9—) =0, (23 averaging the spherically symmetric square-well interactions
P/a outside the ellipsoidal core gives rise to an anisotropy in the

along with(20). Poniewerski and Sluckif80] give a similar  attractive potential. According to Fig. 1, the main effect is to
condition but involving the isothermal compressibilist. ~ emphasize the attractions in the equatorial regi0). As a
Both expressions are obviously related after noticing thatesult, this is expected to stabilize configurations in which
K}lzp(aP/&p). [Note that Eq(22) reduces to Eq. 4.4 in Ref. molecular pairs are side by side. Although the attractive in-
[30] except for an extra density factor appearing in the latteteractions seem to promote a layered configuration, the latter
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MD

FIG. 3. Bifurcation curves showing the limit of stability of the
nematic phase with respect to a smectic density modulation for a
system of parallel hard ellipsoids of anisotropyD=5 and differ-
ent values of the range/D of the attractive welllabeled on the
plot) in the pressure-temperatu(®-T) plane. The smectic phase
corresponds in each case to the low-temperature, high-pressure re-
gion. The filled circles indicate the location of the tricritical point

may correspond to a smectic or a solid structure. X _
The model fluid was found to exhibit phase separation anr each value ofn. The dashed curve represents the fluid-solid
oundary line for the cask/D=1. The temperature is given in

;[r?trz P:crt?(;lslrsesa?:IZ\),(vpﬁc(i:tligl(;Erilcrjtr;a%irlaé%sl/\;h%I[]hgtzgcmlee units of e/kg and the pressure is in units efvg, with vy being the
. L S ._molecular volume.

equivalent of the usual vapor-liquid equilibria, although in

the present cas@vhere the isotropic phase is ruled pthe

phase equilibria involves a low-density and a high-densit

nematic phase. Increasing the valuaedias the trivial effect

of promoting the nematic-nematic separation to higher tem

peratures. The dependenceT@fupon variations in is de-

picted in Fig. 2.

FIG. 2. Nematic-nematic critical temperatufg (dashed curve
and ftricritical temperaturd. (continuous curvefor a system of
parallel hard ellipsoids of anisotrody/D=5 as a function of the
range\/D of the attractive well. The temperature is given in units
of e/kg.

y’75:0'545' respectively. These values would apply here for
the case./D=1. The melting line and fluid-solid coexistence
region forA/D=1 have been included in Figs. 3 and 4. Ex-
plicit consideration of the attractive interactiofis/D > 1)

will be expected to give rise to a shift of the melting line to

Next we proceeded to investigate whether smectic ordelOWer pressuregor higher temperaturggnd to a shift of the

ing is promoted by attractive interactions wikiD > 1. At fluid-solid coexistence region to onver densities. These shifts
any given temperature, EGRO) may be solved for the den- &€ expected to bg quantltauvely important at low tempera-
sity at the bifurcation point. It was found that for any arbi- turé, but progressively small with increasing temperature

trarily small value of\ the nematic phase is destabilized at
some density, favoring the onset of smecticlike fluctuations.
The limit of stability of the nematic phase with respect to a
smectic density modulation is plotted in Figs. 3 and 4 in the
pressure-temperature and temperature-density plane, respe 5 |
tively, for several values of the range parameter between
1.0<A/D<2.0. In Fig. 3, the smectié- phase corresponds,
for each value of\, to the low-temperature, high-pressure
region. In Fig. 4, the Sn# phase occupies the high-density =2
region. As stated in Sec. Ill, our approach does not give
account of the solid phase and, consequently, yields no in-
formation on the stability of the smectic phase relative to the
solid phase. Nonetheless, a useful guide is provided by the
fluid (F)-to-solid (S) transition in a system of hard spheres.
Recall that in the absence of attractive interactions, the prop-
erties of our system can be exactly related to those of a ©
system of hard spheres under appropriate anisotropic scaling
Using the values of th&-S transition for hard spheres from
Hoover and Re¢56], the solid phase is thermodynamically ~ FIG. 4. As in Fig. 3 but shown in the temperature-density
stable at pressures aboiRvo/kgT)es=6.12. The densities of (T-7) plane. The smectic phase corresponds for each valigdf
the coexisting fluid and solid phases §&®] 7-=0.494 and to the high-density regiony is the packing fraction.
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when attractions turn negligible. It follows that the fluid-to- 29
solid transition lines foh /D=1 provide upper limits for the
stability of the fluid phase relative to the solid when
A/D>1. 5l
For the smallest values of, stabilization of the smectic
phase was seen to occur either at very low temperature:
(where our perturbativelike approach is not expected to be
very reliablé or at densities at which the formation of the = ™07
solid phase is more likely to occur. Therefore, we claim that
very short range attractive interactions will not give rise to
smectic ordering. From Figs. 3 and 4 we tentatively estimate o5 |
the above conclusion to hold for \/D<1.3. Above
N/ D=1.3, the smectic phase becomes stable at densitie
(and temperatur¢swell before crystallization might take o . . .
place. According to Figs. 3 and 4, the bifurcation lines move  "0.20 0.25 0.30 0.35 0.40
to higher temperatures and lower densities with increasing n
Thus increasing the range of the attractive interactions has ) )
the effect of increasing the range of stability of the smectic "'C- 5- Equation of state in the pressure-den€ty) plane for

phase relative to the nematic phase. Interestingly, this effe@ SyStem of paraliel hard ellipsoids of anisotropyD=5 with
is seen to be reversed at some intermediate VAN® N/D=1.5 for various temperaturds From top to bottom the values

of the temperature ar€=1.0, 0.847, and 0.6 in units @f k. The

~2.9). For higher values, the region over which the nematlctricritical temperature i§,,=0.847. The dashed curve represents the

phase is Stable_becomes Wider' For Iarger. values of the rangfe of bifurcation densities. The smec#cphase corresponds to
paramete(/D=4.1) the bifurcation equation was found to tne high-density region. The closed circles show the location of the
have no physical solution at any thermodynamic conditionsirst-order nematic—smectié-transition atT=0.6. The pressure is

Thus we conclude that smectic ordering is no longer progiven in units ofe/uvg, with vg being the molecular volumey is the
moted when the attractive interactions are made too longacking fraction.

ranged.

We next considered the caz¢D=1.5 and concentrated tion line. For temperaturéB< T, the transition is first order
on the behavior of the system in the supercritical region. Thend the corresponding transition densities were calculated by
nematic-nematic critical point was found at a valueTef  equating the pressure and chemical potential in both phases.
=0.108. The loci of the bifurcation densities is shown in theAs can be observed in Fig. 6, the nematic—smeAticansi-
pressure-density plane in Fig. 5. We also include in the figurdion takes place at increasingly higher densities as the tem-
the equation of statB=P(#,T) for selected temperatures. In perature increases. From our previous remarks, the nematic—
all cases, the low-density branch of the isotherms corre- 150 . '
sponds to the nematic phase. At each temperature, the nen /
atic phase is expected to be unstable against smectic fluctue /
tions at the corresponding bifurcation packing fractigh /
This is compatible with the observed change in slope of the =° T /
equations of state af". According to Fig. 5, the smectic S
phase branches off from the bifurcation point with a positive y
slope at high temperatures. This corresponds to a continuou,_ 1 | /
nematic—smectié transition. At lower temperatures, on the
other hand, the slope of the smectic branch was found to be
negative(mechanically unstablein some neighborhood of 0.75 r
the bifurcation point and positivémechanically stableat
slightly higher densities. This indicates that the nematic
phase undergoes a first-order transition to the smectic phas o050 +
at these temperatures. The tricritical point separating thest
two regimes was calculated according to E2B). The varia- 0.1
tion of the tricritical temperatur@. with A has been in-
Cl_uqed in Fig. 2. According to the figurd, exhibits a non- FIG. 6. Phase diagram for a system of hard ellipsoids of aniso-
F”V'al pattern at low yalues ofh followed by a steady tropy L/D=5 and attractive ranggd/D=1.5 in the temperature-
Increase as the attractions are made longer ranged. No tr'f‘]'ensi'[y(T-r;) plane showing the regions of stability of the nematic
ritical point was found for values/D = 3.85. o (N) and smectic-ASm-A) phases. The dashed curve represents the

The phase diagram for the castD=1.5 is shown in Fig. jine of bifurcation points. Above the tricritical poirfilled circle),
6 in the temperature-density plane. The tricritical point isthe N-SmA transition is continuous. The solid curves correspond
located atT,;=0.847, with7,=0.304, andPvo/€);c=0.937.  to first-order N-SmA transitions. Nematic-nematic separation takes
For temperature$ > T,, the nematic—smectié-transition is  place forT<0.108 and is not visible in the scale of the plot. The
continuous and the coexistence line is given by the bifurcatemperature is given in units ef kg, and 7 is the packing fraction.

Sm-A

0.4
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FIG. 7. Variation of the smectic spacimijL with packing frac- ) . ) "
tion % at different values of the temperatuFe(labeled on the plot ~ FIG. 8. Detail of the smectié—solid (SmA-S) transition re-
for a system of parallel hard ellipsoids of anisotrdpyD=5. The ~ 9ion for a system of hard ellipsoids of anisotropyD=5 and at-
range of the attractive interactions¢D=1.5. tractive rangex/D=1.5. Data have been obtained from Monte

Carlo simulations in theNPT ensemble along two isotherns
smecticA transition is expected to be preempted by the=1.0(circles andT=0.6 (triangles. The open symbols are for re-
formation of the solid phase at sufficiently high temperaturesults obtained expanding a solid configuration. The closed symbols

We show in Fig. 7 the variation of the smectic layer spac-are for results obtained after compressing from a fluid configura-
ing d with density along a number of selected isothermstion. The curves are included as a guide to the eye. The temperature
when\/D=1.5. In all casesq is seen to decrease smoothly is in units of e/kg, the pressure is in units af/vo, and 7 is the
with increasing density or temperature. The valualafas ~ Packing fraction.
always found to be of the order of the molecular lenbth

We emphasize again that our approach is able to descriltkis temperature, the smectic-solid transition takes place at
the stability of the smectic phase relative to the nematic buslightly lower densities and pressure, as expected. When the
yields no information as regards the relative stability withsystem is expanded to densities below those shown in Fig. 8,
respect to the solid phase. Bearing this in mind, one may stillhe smectic phase undergoes a transition to a nematic fluid.
wonder whether or not the solid phase preempts the formarhe results from simulation in this region are shown in Fig.
tion of the smectic phase, thereby leaving the latter merely a8. At T=1.0 the nematic—smecti-transition seems to pro-
metastable. A fully consistent theoretical description of theceed in a continuous way at a densijy,~0.27, the value
solid phase involves considerable numerical complicatiorof the pressure beinBv,/e~0.60. The theoretical calcula-
and it was not considered here. Instead, the relative stabilitsions yield a continuous transition at this temperature with
of the solid and smectic phases was assessed by using comg,=0.335, Pvy/e=1.47. At temperature T=0.6 the
puter simulation. nematic—smectié transition was observed to be clearly first

Simulation results are given in Fig. 8 for the model usedorder. As shown in Fig. 9, results froldVT Monte Carlo
here with molecular anisotroply/D=5 and attractive range simulations give evidence of a van der Waals—like loop at
N/D=1.5. Most simulations were performed in tN®Ten-  this temperaturéthese simulations were perfomed at con-
semble using standard Monte Carlo techniques. Details wilstant volume but allowing for changes in the box shape
be given elsewher7]. Figure 8 includes part of the results From the simulation results we can infer that the transition
obtained by expanding a solid configuration at high densitiesakes place aPv,/e~=~0.088, the transition densities being
and pressureghigher than those shown in the figir@long  7y=0.18 and#,~=0.25. The theorysee Fig. § predicts a
two constant-temperature paths. At 1.0, the solid is seen first-order nematic—smectis-transition at this temperature
to melt into a smectié phase atPuvy/e~1.45 with 55  with 5y=0.239,79,=0.257, andPv,/€=0.135.
~0.39 andzns=~0.43. When compressing the system from As noted before, the region of stability of the smedic-
low densities, the smecti-phase was seen to crystallize at phase must be bounded at high temperatarel pressune
a slightly larger pressuréPuvo/e~2.0). As expected, the Several exploratory runs were performed by expanding a
smectic-solid transition is first order and exhibits hysteresissolid configuration along different constant-temperature
Therefore, the quoted values of the pressure represent tipaths. ForN/D=1.5, our results indicated that the solid
limits of mechanical stability of the solid and smectic phasegphase melts directly into the nematic phase with no interme-
upon expansion and compression of the system. The transiiate smectic phase for temperatures abbwe3.25[57].
tion pressure, as well as the densities of the coexisting From the simulation results we infer that there are ther-
phases, will be somewhere in between. The smectic phaseodynamic conditions at which the smectic phase is stable
was also seen to be stable relative to the solid’aD.6.  not only relative to the nematic phase, but also relative to the
Simulation results along this isotherm are shown in Fig. 8. Atsolid phase. Although the simulations have been restricted to
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1.0

with an attractive square well of rangéD > 1 with spheri-

cal symmetry outside the hard core. In a way, the model can
be considered as the natural extension of the square-well
model for simple fluids to systems of nonspherical particles.

The model is certainly a crude representation of the molecu-
lar interactions, but still contains the simplest microscopic

features which are thought to be responsible for stabilizing

the smectic phase in thermotropic liquid crystals.

As regards the theoretical approach, we have used a
density-functional theory based upon an extension of the
weighted-density approximation to systems with anisotropic
02 | | interactions. This is known to provide a fairly accurate and
consistent description of the contributions arising from the
—0-CRO-I0000—0—0——5——0—D hard cores. The attractive contributions are treated at a mean-
0.0 . s field level. The shortcomings of mean-field treatments are

01 02 03 04 well known, and obviously our approach suffers from the

n same limitations. The theory has been applied to systems of
perfectly aligned molecules, although it can also be extended
to the general case where molecules are free to rotate. The
region in which the smectic phase turns out to be stable

obtained from Monte Carlo simulations at constant preséilted relative to the nematic has been investigated using a bifurca-

symbol3 and constant volumépen symbols The inset shows the 110N analysis, and a full phase stability calculation.
first-order N-SmA transition at temperaturg=0.6 on a magnified From our calculations, the effects on phase behavior due
scale. The curves are included as a guide to the eye. The temperi Variations on\ are as follows. For very small values bf
ture is in units ofe/kg, the pressure is in units @fvo, andyis the  (approximately,\/D<1.3) thermodynamic conditions are
packing fraction. found at which nematic order becomes unstable against a
smectic modulation. However, these conditions are such that
a single value of, the conclusions are expected to be ap_the solid phase is more likely to dominate. For this range of
propriate for other values of. The simulation data are also value§ ofA, the_ attractions are Very shor@ ranggd and _the
consistent with the prediction of a temperature-induced tricEffective attractions are not sufficiently anisotropic to bring
out smectic ordering. The phase behavior corresponds, es-

ritical point, and the disappearance of the smectic phase . ;
high temperatures. The agreement between theoretical pré€ntially, to that expected for a system of parallel hard ellip-
ids, i.e., nematic phase and a solid phase at high density.

dictions and simulation results can be considered satisfactorSJP . . he induced ani i | h
at a qualitative level. Not surprisingly, there are quantitative pon increasing,, the induced anisotropy Is large enough so

discrepancies. This can certainly be ascribed to the use of tl”fﬁs to stabilize smectic ordering. At very low temperatures,

mean-field approximation, which is known to underestimateN€ SmECt_iC phase i?’ again e_xpected to be metz_is'_[able re!ative
to the solid, but at intermediate temperatures it is certainly

the contributions from molecular correlations at short dis- o L
tances. stable at densities well before crystallization, as demon-
strated by computer simulation. The nematic—sme&tican-
sition is seen to be continuous at high temperature and first
order at low temperature, both regimes being separated by a
tricritical point. By construction, our approach does not al-
The motivation of this work is to gain an understanding oflow for a description of the solid phase. The stability of the
the behavior of thermotropic smectic liquid crystals. A num-smectic phase relative to the solid phase has nonetheless
ber of molecular theories neglect the effect of hard cores antdeen proved by computer simulation. Although no calcula-
point at the anisotropic attractive interactions as responsiblgon of the smectic-solid phase boundaries can be performed
for smectic ordering in thermotropics, whereas simulationsvithin our theoretical treatment, some hint is given from
(as well as microscopic theorjesf systems of hard particles knowledge of the fluid-solid phase boundaries of the model
have stressed the importance of the anisotropic excludedvith A\/D=1. Note that the latter provide an upper limit for
volume interactions in driving smectic formation. Here wethe smectic-(or nematic} solid phase boundaries when
have focused on two specific points; first, whether smectia/D>1. Interestingly, our calculations show that the
ordering may be brought about by the coupling between th@ematic—smectié: bifurcation line must intersect the fluid-
anisotropic short-range repulsions and the isotropic contribusolid line at sufficiently high temperatures. It follows that the
tion of the soft, long-range attractions; and second, what ismectic phase in the present model does not extend to arbi-
the role(if any) of the range of the soft attractions in stabi- trarily high pressures or temperatures. This has been con-
lizing the smectic phase. In our approach this requires a suifirmed by our computer simulation results. A similar conclu-
able molecular model and an appropriate theory for describsion holds for the Gay-Berne moddb8,59, and is
ing the inhomogeneous smectic phase. consistent with the fact that under these conditions the attrac-
As regards the molecular model, we have considered &ve interactions become less important and the hard ellipsoi-
system of hard ellipsoids to mimic excluded volume effectsdal cores are not able to stabilize smectic ordering. We recall

08 | 0.09

0.07
0.6 0.1

04

FIG. 9. Nematic—smecti& (N-Sm-A) transition region for a
system of hard ellipsoids of anisotropyD =5 and attractive range
N/D=1.5 at temperatureb=1.0 (diamond$ andT=0.6 (circles as

V. SUMMARY AND CONCLUSIONS
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that it is not infrequent to observe a decrease in the range dfere can be extended to accommodate hard disk-shaped el-
the smectic phase under the application of hydrostatic predipsoids. In such a case, the anisotropic interactions are ex-
sure, or the suppression of the smectic phase beyond a cgyected to stabilize the columnar phase between the solid and
tain value of the pressufé&0]. nematic phasel$1]. Finally, we are also considering a more
Upon further increase of, the system stabilizes smectic general treatment in which the constraint of perfect align-

ordering at increasingly higher temperatures. The anisotropigent is removed. We hope to present the results of this in-
interactions are such that the typical side-by-side moleculayestigation in a future publication.

configurations of the smectic phase are largely promoted.

When \ is further increased, the minimum of the effective

interactions abouz=0 (see Fig. 1 becomes increasingly ACKNOWLEDGMENTS
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