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The smectic phase is studied for a thermotropic fluid model consisting of aligned hard ellipsoids with
superimposed square-well attractive interactions of variable range. The system is analyzed using a density
functional theory in which the hard-core contributions to the free-energy functional are treated within a
nonlocal weighted density approximation and the attractive contributions are considered at a mean-field level.
In the absence of attractions the model reduces, under appropriate scaling, to a fluid of hard spheres and
therefore does not exhibit smectic ordering. It is shown that above a certain value of the square-well range,
smectic ordering is stable relative to the nematic state at densities well inside the fluid region. The nematic–
smectic-A transition is found to be continuous at high temperatures and first order at low temperatures, these
two regimes being separated by a tricritical point at an intermediate temperature. These predictions have been
confirmed by computer simulation of the model fluid. The results highlight that smectic ordering can be
stabilized by coupling anisotropic short-range repulsions with the isotropic contribution of the soft attractive
interactions. By increasing the pressure, the range of stability of the smectic phase is seen to decrease. At
sufficiently high pressure, the smectic phase is suppressed, and the solid phase dominates. Our calculations
show that smectic ordering is no longer stable if the range of the attractions is made too long ranged.
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I. INTRODUCTION

The main goal of any molecular theory of liquid crystals
is the prediction of phase behavior and phase transitions
from the interactions at a molecular levelf1g. These interac-
tions, however, are either not known exactly or expected to
be quite complicated, due to the complexity of the molecular
structure of typical liquid crystal forming moleculesf2g. In-
teractions in simple liquids, though still complex, can be
understood in terms of short-range repulsions and longer
ranged dispersion attractions. Modeling the repulsive inter-
actions by hard spheres and considering the attractions as a
perturbation treated at a mean-field level is at the heart of
van der Waals–like theories of simplesisotropicd fluids f3g.
Whether this approach also applies to the description of me-
sophases is far from being trivial, but it provides a reason-
able starting point and, certainly, has guided many molecular
theories of liquid crystals.

Here, we will be concerned with the description of the
thermotropic smectic-A phase, focusing on the importance of
the coupling between the anisotropic short-range repulsions
and the soft attractive interactions in stabilizing smectic or-
dering in a particular molecular model.

In the smectic-A phase, the molecules are preferentially
aligned along one directionsas in a nematic liquid crystald
and in addition form layers perpendicular to this direction

f4g. One of the earliest molecular theories for smectics was
developed by McMillanf5g and Kobayashif6g. This mean-
field theory can be regarded as an extension of Maier-
Saupe’s approach of nematics to include the possibility of
translational order. Depending on the model parameters and
temperature, smectic ordering is stabilized through the soft
anisotropic attractive interactions, the steric effects playing a
negligible role in stabilizing the phase. The McMillan-
KobayashisMK d theory has been further refinedf7–11g ssee
also Ref.f1g for a review on the subjectd, but the basic struc-
ture of the theory remains the samessee, however, Ref.f11gd.
Despite its relative success, the MK theory suffers from a
number of limitations, the most severe being that excluded-
volume interactions arising at short distances due to steric
effects are fully neglected. Considering that the nematic-to-
smectic transition can be loosely viewed as a one-
dimensional crystallization, it is difficult to think of the
short-range packing interactions of the hard molecular cores
as a side effect in bringing about smectic orderingf12g.

This issue is at the heart of theories which relysdirectly or
indirectlyd on Onsager’s ideasf13g that snematicd orienta-
tional ordering can be understood as a result of the aniso-
tropic excluded-volume interactions without having to in-
voke to attractive interactions. The fact that purely repulsive
interactions can stabilize smectic order has been widely dem-
onstrated by computer simulations on a number of hard-
particle systemsf14–18g. Simulation has also highlighted the
importance of the anisotropy associated to the molecular
shape: a system of hard spherocylinders, for instance, can
develop smectic order, whereas a system of hard ellipsoids
does not seem likely to stabilize the smectic phase. The ap-
plication of Onsager’s theory to the description of smectic
ordering is severely limited: at densities at which the smectic
phase is expected, the validity of the truncation of the virial
series at the level of the second virial coefficient is question-
able in the case of very long rods and unreliable for most
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typical molecular elongations in liquid crystalsf19g.
Although attempts have been made to incorporate higher-

order terms in the virial expansion of the free energyf20,21g
a more promising route for the description of hard-core ef-
fects in smectics is provided by density functional approxi-
mations for the free energyf22–31g. These theories can be
formulated in a variety of waysssee Ref.f1g for a reviewd. A
widely used approach relies on the theory of the inhomoge-
neous hard-sphere fluidf32g to account for the nonuniform
density distribution of the smectic phase. The nonlocal struc-
ture of the smectic phase is described in terms of a coarse-
grained density, which is obtained from a weighting pro-
cedure. The latter is not unique and different schemes
sweighted-density f11,23–27g, smoothed-densityf28–30g,
modified weighted-densityf31g approximationsd have been
devised. The theoretical predictions are, in most cases, in
qualitative agreement with results from computer simulation
f17g. One may conclude that the density functional formal-
ism provides a consistent approach to understand the role of
the short-range hard-core effects in forming the smectic
phase.

A proper treatment of smectic order in thermotropic liquid
crystals, however, must go beyond hard-body models and
include explicitly both repulsive and attractive interactions.
A suitable framework is provided by a generalization of van
der Waals–like theories to systems of nonspherical particles.
This approach was first developed by Gelbart and Baronf33g
and has been used with reasonable success to study the nem-
atic phasef34–39g. According to Gelbart and Baronf33g, the
pair interaction energy can be written as the sum of a repul-
sive termsarising from the anisotropic hard coresd and an
attractive term. The latter is given by a truncated expansion
in spherical harmonics with distance-dependent coefficients.
In the spirit of van der Waals theories the free energy of the
system consists of two contributions: one arising from the
hard cores, and a second one that includes the attractive in-
teractions at a mean-field level. As the mean-field average is
restricted to those configurations allowed by thesimpen-
etrabled cores, these two terms are highly correlated. As a
consequence, the hard-rod repulsions build in anisotropic
correlations in the attractive contribution even if the attrac-
tive interactions have spherical symmetry. Moreover, it has
been noticedf34,37g that for nematics, the main contribution
to the attractive term in the free energy comes from the
lowest-ordersisotropicd term of the attractive interactions
smodulated by the anisotropic hard cored and not from the
higher-ordersangular dependentd terms.

The primary purpose of our current work is to show that
smectic ordering can be stabilized by the coupling between
the anisotropic short-range repulsions and theisotropic con-
tribution of the attractive interactions. We assume a specific
molecular model in which the hard core is represented by a
hard ellipsoid and the soft attractive interactions are given by
an spherically symmetric square well. We further simplify
the molecular model by neglecting orientational fluctuations.

A related study was performed by Kloczkowski and
Stecki f40g for a system of hard spherocylinders interacting
with an isotropicr−6 attractive energy. The results, however,
have to be taken with some care as it was concludedserro-
neously, as was later pointed outf14gd that smectic ordering

in a system of hard spherocylinders could only be stabilized
by the attractive interactions; the fact that no smectic phase
could be stabilized in the abscence of attractive interactions
is probably related to the drastic low-density Onsager ap-
proximation used to account for the hard core effects. Naka-
gawa and Akahanef41g considered a similar molecular
model shard spherocylinder plus attractive taild but now in-
cluding an extra angular-dependent term with the same sym-
metry as that used by McMillan. The repulsive contribution
is again treated under the Onsager approximation and the
attractive contribution at a mean-field level. The attractions,
however, are averaged over a spherically symmetric region
susing a cutoff that depends on the molecular sized. This
certainly simplifies the calculations but neglects the aniso-
tropic shape of the molecule. A related approach, although
not based on a well-defined molecular model, has been given
by Mederos and Sullivanf11g. Hard-core effects are modeled
by parallel hard ellipsoids and the attractive interaction in-
cludes an additional term coupling the intermolecular vector
and the molecular orientations. The main innovation intro-
duced by Mederos and Sullivan is that the contribution to the
free energy arising from the short-range repulsions is consis-
tently described by using a nonlocal density functional for
the free energy. Smectic ordering appears as a consequence
of the sanisotropicd attractive interactions, although the hard-
core interactions turn out to be crucial in determining the
smectic wavelength, which is calculated in a self-consistent
way. The approach of Mederos and Sullivanf11g, as well as
that of Nakagawa and Akahanef41g, can be regarded as gen-
eralized versions of the McMillan-Kobayashi theory but with
explicit consideration of steric effects. Anisotropic correla-
tions originated from the hard core are neglected and the
anisotropic attractive interactions are the driving force for
smectic ordering.

Here, we consider a slightly different approach and inves-
tigate the importance of the anisotropy induced by the hard
cores into the attractive pair potential as an effective mecha-
nism for the onset of smectic ordering. In order to clarify this
point, the molecular model has been intentionally chosen so
that the hard-core interactions by themselves do not stabilize
smectic order. The attractive interactions contain noexplicit
anisotropic, angular-dependent contribution. An additional
purpose of this work is to provide an insight on the role of
the range of the attractive interactions in bringing about
smectic ordering.

The paper has been organized as follows. A brief account
of the molecular model used in the present work is given in
Sec. II. Section III treats the nonlocal density functional
theory used throughout this work. Our treatment of the re-
pulsive contributions to the free energy functional rests
heavily in that first introduced by Mederos and Sullivanf11g;
differences are to be found, however, in the way the attrac-
tive contributions are considered. Details are also given on
the bifurcation analysis used to the study of the stability of
the smectic phase relative to the nematic and on the calcula-
tion of the tricritical point. Section IV includes the results for
a fixed molecular elongation and a number of values of the
range of the attractive interactions. We summarize our main
conclusions in Sec. V.
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II. MOLECULAR MODEL

We consider a fluid system ofN axially symmetric par-
ticles. Orientational fluctuations are disallowed by constrain-
ing the molecular long axis to remain parallel to a common
direction, here taken as thez axis. The interaction energy
between a pair of molecules is expressed as

usr d = urepsr d + uattsr d, s1d

whereurep anduatt represent the repulsive and attractive in-
teraction energy, respectively, andr is the intermolecular
vector. The molecules are assumed to consist of a hard core
with ellipsoidal shape determined by its longsLd and short
sDd principal axes. A measure of the molecular anisotropy is
given byk=L /D. The repulsive interaction is then given by

urepsr d = H` if r ø ssr̂ d,

0 if r . ssr̂ d,
J s2d

wheressr̂ d is the distance of closest approach between two
parallel hard ellipsoidssPHEd. Here, r is the distance be-
tween the molecular centers of mass, andr̂ =r / r is a unit
vector along the intermolecular vector. As regards the attrac-
tions, these are typically incorporated through a truncated
expansion of the attractive potential in spherical harmonics
with r-dependent coefficients. The resulting anisotropic po-
tential is then fully defined by a judicious choice of the dis-
tance dependence of the expansion coefficients. Instead, the
soft attractions will be modeled here by a square-well inter-
action:

uattsr d = H− e if ssr̂ d , r , l,

0 if r ù l,
J s3d

where l is the range ande the strength of the attractive
interactions. According to Eq.s3d, the attractive pair interac-
tion outside the hard coreis spherically symmetric and con-
tains no explicit anisotropic terms.

Evanset al. f42g introduced a similar model consisting of
an arbitrary hard nonspherical core embedded in a spherical
square well. The model, without the constraint of perfectly
molecular alignment, has been applied to the study of nem-
atic liquid crystals with the hard core taken to be either an
ellipsoid or a spherocylinderf43–51g. In most casesssee,
however, Ref.f51gd the rangel of the attractive interactions
was taken to bel /Dùk snote thatk=L /D for ellipsoids and
k=L /D+1 for spherocylindersd. For highly anisotropic mol-
ecules, this choice may give rise to an overestimation of the
range of the attractions. In this work, different choices ofl
will be considered with the restrictionl /D,k.

III. THEORY

A. Free energy

We consider a fluid system ofN molecules interacting
through the pair potential defined in Eqs.s1d–s3d. The system
is enclosed in a volumeV at a temperatureT.

In keeping with the density-functional formalism for non-
uniform fluids, the system is characterized by the one-
particle distribution functionrsr d, which gives the local

density of particles at positionr . The structure and thermo-
dynamics of the system at equilibrium follow from minimi-
zation of the free-energy functional with respect torsr d. The
free-energy functional can be expressed as a sum of two
terms,

Ffrsr dg = Frepfrsr dg +
1

2
E dr dr 8rsr drsr 8duattsur − r 8ud,

s4d

whereFrep includes the contributions to the free energy com-
ing from the repulsive interactions. The last term in Eq.s4d
includes the contribution from the attractive interactions and
is treated here at a mean-field level.

The repulsive term can be expressed as

Frepfrsr dg = kBTE dr rsr dhlnfL3rsr dg − 1j + DFrepfrsr dg,

s5d

wherekB is Boltzmann’s constant andL is the thermal de
Broglie wavelength. In the above expression, the first term is
the contribution from the ideal gas, andDFrep is the excess
part, which contains all the contributions from the hard-core
interactions. The latter term is treated within a nonlocal ap-
proximationf32g, i.e.,

DFrepfrsr dg =E dr rsr dDcPHE„r̄sr d…, s6d

where DcPHE is the sexcessd free energy per particle of a
homogeneous system of parallel hard ellipsoidssPHEd. Ex-
pressions6d has a form resembling the local-density approxi-
mationssee, for instance, Ref.f32gd although the free energy
is evaluated at a coarse-grained densityr̄ that takes into ac-
count the nonlocal structure of the fluid. There is no unique
way to define r̄ in terms of rsr d. Here we follow the
weighted-density approximationsWDAd developed by Tara-
zonaf32g for the inhomogeneous hard-spheresHSd system,
which assumes that the smoothed density is given by an
average ofrHSsr d weighted by a suitable functionw that
depends onr̄HS:

r̄HSsr d =E dr 8rHSsr 8dw„ur − r 8u; r̄HSsr d…. s7d

The explicit expression of the weight function can be found
elsewheressee, for instance, Ref.f11gd. The corresponding
smoothedr̄ for a system of PHE molecules can be simply
obtained from that of the HS system by considering the an-
isotropic transformation that maps ellipsoids into spheres
f52g:

r̄PHEsr d ; r̄sr d =
1

k
r̄HSsA · r d. s8d

Here,A is the diagonal tensorfwith components 1, 1,skd−1g
that defines the transformation of the PHE system into a
system of HS of diameterD. Recall thatk=L /D. Using s7d
and s8d one arrives atf11g
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r̄sr d =E dr 8rsr + A−1r 8dw„ur 8u;kr̄sr d…. s9d

Finally, we use the Carnahan-Starling approximation for
DcPHE in Eq. s6d:

DcPHEshd = kBT
4h − 3h2

s1 − hd2 , s10d

where h=rv0 is the packing fraction;v0=sp /6dkD3 being
the volume of the ellipsoidal molecule. Equationss5d–s10d
completely determine the contribution of the repulsive inter-
actions to the free energy.

In the following, the one-particle distribution function
will be only permitted to vary alongz, i.e.,rsr d=rszd thereby
only allowing for the description of the nematic and smectic-
A phases. With this restriction, the free-energy functional
cannot account for smectic phases with in-plane order or the
solid phase.

We now turn to the attractive term of the free energy
fsecond term in Eq.s4dg. After integration in thex-y plane,
the attractive free energy per unit volumefatt can be written
in terms of an effective attractive potentialūatt as

bfatt =
1

2
b

1

d
E

0

d

dzrszd E dz8rsz8dūattsuz− z8ud. s11d

Here,b=skBTd−1, d is the smectic period, and

ūattsuz− z8ud =E dRuattsR,uz− z8ud, s12d

where we have used the notationr −r 8=sR ,z−z8d for the
intermolecular vector. Insertinguatt from Eq. s3d into Eq.
s12d and performing the integration, yields forūatt:

ūattszd = Hū0 + ū2z
2 if uzu , zmax,

0 if uzu . zmax,
J s13d

where

ū0 = − epsl2 − D2d, ū2 = epsk2 − 1d/k2, s14d

and zmax=s−ū0/ ū2d1/2. Recall that we are limiting ourselves
to the caseDøløL. We finally arrive at the following ex-
pression for the free-energy functionalsper unit volumed:

bffrszdg =
1

d
E

0

d

dzrszdHlnfL3rszdg − 1 +bDcPHE„r̄szd…

+
1

2
bE dz8rsz8dūattsuz− z8udJ . s15d

By functional minimization of the free energys15d, one
obtains the equilibrium densityrszd at each input value of
the temperatureT and average number densityr. For nu-
merical convenience, we consider the following truncated
Fourier expansion of the one-particle density:

rszd = rF1 + o
n=1

m

rn cossnqzdG , s16d

where the Fourier coefficientsrn with n=1, . . . ,m define a
set ofsdimensionlessd translational order parameters,q is the
wavevector alongz, and d=2p /q is the wavelength of the
density modulation. The nematic phase corresponds to allrn
equal to zero. Whenrszd from Eq. s16d is inserted into Eq.
s15d, the free energy becomes a function of the wave vector
and the order parameters, i.e.,f = fsT,r ;q,rnd. In practice,
the equilibrium distributionrszd is obtained by minimizingf
with respect to the variational parametersd and the order
parametersrn using Powell’s methodf53g at given input val-
ues of the average densityr and temperatureT.

B. Nematic-smectic transition

By construction, the free-energy functionals15d can only
account for nematic and smectic-A phases. The relative sta-
bility of both phases has been proved by using a bifucartion
analysis f20g. For a given value of the temperature, this
amounts to finding thesaveraged density at which the nem-
atic phase becomes unstable relative to a phase with a den-
sity modulation alongz. If the nematic–smectic-A transition
is continuous, the bifurcation densityr* fixes the location of
the transition, i.e.,rNA =r* . However, as first shown by
Meyer and Lubenskyf54g, the transition may also be first
orderseven for systems with saturated nematic orderd due to
the coupling between the translational order parameters. In
this case, the bifurcation point lies on the spinodal line and
the actual transition densitiesrN andrA bracket the bifurca-
tion density, i.e.,rN,r* ,rA.

We start by expanding the free energy in powers of the
order parameters around the nematic phasern=0 sn
=1, . . . ,md. To determine the bifurcation point and the order
of the transition, it is sufficient to expand the free energy to
fourth order inr1 andr2, which yieldsf54g

fsT,r;q,r1,r2d = f0sT,rd +
1

2
S ]2f

]r1
2Dr1

2 +
1

2
S ]2f

]r2
2Dr2

2

+
1

2
S ]3f

]r1
2]r2

Dr1
2r2 +

1

4!
S ]4f

]r1
4Dr1

4

+
1

4!
S ]4f

]r2
4Dr2

4 +
1

4
S ]4f

]r1
2]r2

2Dr1
2r2

2, s17d

where f0 is the free energy of the nematic phase and the
derivatives have been evaluated atr1=r2=0. The above ex-
pansion includes all termssup to the fourth orderd compatible
with the requirement that the free energy be independent of
an arbitrary uniform translation ofrszd f54g. At fixed average
density and temperature, the free energy must be a minimum
with respect to variations in the order parameters. Solving
the stationary conditions]f /]r2d=0 allows expressingr2 in
terms of the leading order parameterr1. Considering thatr1
is small in the neighborhood of the transition,r2 is given, to
lowest order inr1, by
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r2 =
− s]3f/]r1

2]r2d
2s]2f/]r2

2d
r1

2. s18d

Substitutingr2 from s18d into the expansion of the free en-
ergy given in Eq.s17d, one obtains up to fourth order inr1:

fsT,r;q,rnd = f0sT,rd +
1

2
a2r1

2 +
1

4!
a4r1

4 + ¯ . s19d

The line of bifurcation points follows from the conditions
f20g

a2sT,r* ;q*d ;
]2f

]r1
2 = 0,

]a2

]q
sT,r* ;q*d = 0, s20d

whered* =2p /q* is the layer spacing at the bifurcation point.
Determination of the order of the transition requires calcu-
lating the coefficienta4 in the expansions19d. This coeffi-
cient is given by

a4sT,r;qd = S ]4f

]r1
4D − 3S ]3f

]r2]r1
2DYS ]2f

]r2
2D . s21d

Typically, the conditiona4sT,r ;qd=0, along withs20d, fixes
the location of the tricritical point, provided the next-order
coefficientsa6d in the expansions19d be positivef54,55g. If
this is the case, then the transition is continuous fora4.0
and first order fora4,0. However, we have found condi-
tions at which the transition was clearly first order even
thougha4.0. We have noticed that a similar claim has been
given by Poniewerski and Sluckinf30g. Our procedure to
locate the tricritical point is similar to that used by Poniew-
erski and Sluckinf30g, and is based upon the analysis of the
equation of stateP=Psr ,Td, whereP is the pressure, in the
neighborhood of the bifurcation point. Consider a tempera-
ture T at which the nematic–smectic-A transition is continu-
ous. In this case, the slope of the equation of state on the
high-densityssmecticd side of the transition must be positive
sas a result of the condition of mechanical stabilityd in any
arbitrarily small neighborhood of the bifurcation point. On
the other hand, if the transition happens to be first order, the
smectic equation of state branches off from the bifurcation
point with a negative slope. It can be shown that the slope of
the smectic branch of the equation of state at the bifurcation
point can be written as

S ]P

]r
D

A

*

= S ]P

]r
D

N

*

− 3r* s]a2/]rd*2

a4
* , s22d

where the subscriptsA and N refer to the smectic-A and
nematic phase, respectively, and the asterisk indicates evalu-
ation at the bifurcation point. The tricritical point then fol-
lows from the condition

S ]P

]r
D

A

*

= 0, s23d

along withs20d. Poniewerski and Sluckinf30g give a similar
condition but involving the isothermal compressibilitykT.
Both expressions are obviously related after noticing that
kT

−1=rs]P/]rd. fNote that Eq.s22d reduces to Eq. 4.4 in Ref.
f30g except for an extra density factor appearing in the latter

equation, probably due to a typographical error. It is straight-
forward to check that Eq.s22d is dimensionally correct.g

IV. RESULTS

For given input values of the average densityr and tem-
peratureT, the free energys15d was minimized with respect
to the wavevectorq and the set of translational parametersrn
with n=1, . . . ,m. In our calculations we usedm=10 in the
Fourier expansion of the density distributionrszd in Eq. s16d.
Once the set of variational parameters that minimizesf is
found, the pressuresPd and chemical potential can be readily
calculated from the free energy. The homogeneous nematic
phase is characterized byq=0 andrn=0. In this case, both
rszd andr̄szd reduces to the average number densityr. In all
calculations reported here, the molecular elongation was
given a valueL /D=5. The temperature will be always re-
ported in units ofe /kB.

As a check of the consistency of our approach, we first
considered the casel /D=1. For this choice,zmax fsee Eq.
s13dg turns out to be zero. Therefore, the effective attractive
interaction vanishes and the free energy in Eq.s15d contains
only the contributions from the hard cores. In this case, Eq.
s20d was found to have no solution at typical fluid densities.
Hence, smectic ordering is not promoted in this model in the
absence of attractionsf11g. This is consistent with the fact
that, under these circumstances, no smectic phase is to be
expectedf52g.

The effective attractive potential is shown in Fig. 1 for a
few values of the range parameterl. Figure 1 illustrates how
averaging the spherically symmetric square-well interactions
outside the ellipsoidal core gives rise to an anisotropy in the
attractive potential. According to Fig. 1, the main effect is to
emphasize the attractions in the equatorial regionsz=0d. As a
result, this is expected to stabilize configurations in which
molecular pairs are side by side. Although the attractive in-
teractions seem to promote a layered configuration, the latter

FIG. 1. Effective attractive pair potentialūatt as a function of the
intermolecular distancez/D for different values of the range of the
attractive interactionsl /D slabeled on the plotd. The effective po-
tential is normalized byuū0u defined by Eq.s14d.
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may correspond to a smectic or a solid structure.
The model fluid was found to exhibit phase separation at

temperatures below a critical temperatureTc when attractive
interactions are explicitly includedsl /D.1d. This is the
equivalent of the usual vapor-liquid equilibria, although in
the present caseswhere the isotropic phase is ruled outd the
phase equilibria involves a low-density and a high-density
nematic phase. Increasing the value ofl has the trivial effect
of promoting the nematic-nematic separation to higher tem-
peratures. The dependence ofTc upon variations inl is de-
picted in Fig. 2.

Next we proceeded to investigate whether smectic order-
ing is promoted by attractive interactions withl /D.1. At
any given temperature, Eq.s20d may be solved for the den-
sity at the bifurcation point. It was found that for any arbi-
trarily small value ofl the nematic phase is destabilized at
some density, favoring the onset of smecticlike fluctuations.
The limit of stability of the nematic phase with respect to a
smectic density modulation is plotted in Figs. 3 and 4 in the
pressure-temperature and temperature-density plane, respec-
tively, for several values of the range parameter between
1.0,l /D,2.0. In Fig. 3, the smectic-A phase corresponds,
for each value ofl, to the low-temperature, high-pressure
region. In Fig. 4, the Sm-A phase occupies the high-density
region. As stated in Sec. III, our approach does not give
account of the solid phase and, consequently, yields no in-
formation on the stability of the smectic phase relative to the
solid phase. Nonetheless, a useful guide is provided by the
fluid sFd-to-solid sSd transition in a system of hard spheres.
Recall that in the absence of attractive interactions, the prop-
erties of our system can be exactly related to those of a
system of hard spheres under appropriate anisotropic scaling.
Using the values of theF-S transition for hard spheres from
Hoover and Reef56g, the solid phase is thermodynamically
stable at pressures abovesPv0/kBTdFS=6.12. The densities of
the coexisting fluid and solid phases aref56g hF=0.494 and

hS=0.545, respectively. These values would apply here for
the casel /D=1. The melting line and fluid-solid coexistence
region forl /D=1 have been included in Figs. 3 and 4. Ex-
plicit consideration of the attractive interactionssl /D.1d
will be expected to give rise to a shift of the melting line to
lower pressuressor higher temperaturesd and to a shift of the
fluid-solid coexistence region to lower densities. These shifts
are expected to be quantitatively important at low tempera-
ture, but progressively small with increasing temperature

FIG. 2. Nematic-nematic critical temperatureTc sdashed curved
and tricritical temperatureTtc scontinuous curved for a system of
parallel hard ellipsoids of anisotropyL /D=5 as a function of the
rangel /D of the attractive well. The temperature is given in units
of e /kB.

FIG. 3. Bifurcation curves showing the limit of stability of the
nematic phase with respect to a smectic density modulation for a
system of parallel hard ellipsoids of anisotropyL /D=5 and differ-
ent values of the rangel /D of the attractive wellslabeled on the
plotd in the pressure-temperaturesP-Td plane. The smectic phase
corresponds in each case to the low-temperature, high-pressure re-
gion. The filled circles indicate the location of the tricritical point
for each value ofl. The dashed curve represents the fluid-solid
boundary line for the casel /D=1. The temperature is given in
units of e /kB and the pressure is in units ofe /v0, with v0 being the
molecular volume.

FIG. 4. As in Fig. 3 but shown in the temperature-density
sT-hd plane. The smectic phase corresponds for each value ofl /D
to the high-density region.h is the packing fraction.
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when attractions turn negligible. It follows that the fluid-to-
solid transition lines forl /D=1 provide upper limits for the
stability of the fluid phase relative to the solid when
l /D.1.

For the smallest values ofl, stabilization of the smectic
phase was seen to occur either at very low temperatures
swhere our perturbativelike approach is not expected to be
very reliabled or at densities at which the formation of the
solid phase is more likely to occur. Therefore, we claim that
very short range attractive interactions will not give rise to
smectic ordering. From Figs. 3 and 4 we tentatively estimate
the above conclusion to hold for 1.0,l /D,1.3. Above
l /D<1.3, the smectic phase becomes stable at densities
sand temperaturesd well before crystallization might take
place. According to Figs. 3 and 4, the bifurcation lines move
to higher temperatures and lower densities with increasingl.
Thus increasing the range of the attractive interactions has
the effect of increasing the range of stability of the smectic
phase relative to the nematic phase. Interestingly, this effect
is seen to be reversed at some intermediate valuesl /D
<2.5d. For higher values, the region over which the nematic
phase is stable becomes wider. For larger values of the range
parametersl /D=4.1d the bifurcation equation was found to
have no physical solution at any thermodynamic condition.
Thus we conclude that smectic ordering is no longer pro-
moted when the attractive interactions are made too long
ranged.

We next considered the casel /D=1.5 and concentrated
on the behavior of the system in the supercritical region. The
nematic-nematic critical point was found at a value ofTc
=0.108. The loci of the bifurcation densities is shown in the
pressure-density plane in Fig. 5. We also include in the figure
the equation of stateP=Psh ,Td for selected temperatures. In
all cases, the low-density branch of the isotherms corre-
sponds to the nematic phase. At each temperature, the nem-
atic phase is expected to be unstable against smectic fluctua-
tions at the corresponding bifurcation packing fractionh* .
This is compatible with the observed change in slope of the
equations of state ath* . According to Fig. 5, the smectic
phase branches off from the bifurcation point with a positive
slope at high temperatures. This corresponds to a continuous
nematic–smectic-A transition. At lower temperatures, on the
other hand, the slope of the smectic branch was found to be
negativesmechanically unstabled in some neighborhood of
the bifurcation point and positivesmechanically stabled at
slightly higher densities. This indicates that the nematic
phase undergoes a first-order transition to the smectic phase
at these temperatures. The tricritical point separating these
two regimes was calculated according to Eq.s23d. The varia-
tion of the tricritical temperatureTtc with l has been in-
cluded in Fig. 2. According to the figure,Ttc exhibits a non-
trivial pattern at low values ofl followed by a steady
increase as the attractions are made longer ranged. No tric-
ritical point was found for valuesl /Dù3.85.

The phase diagram for the casel /D=1.5 is shown in Fig.
6 in the temperature-density plane. The tricritical point is
located atTtc=0.847, withhtc=0.304, andsPv0/edtc=0.937.
For temperaturesT.Ttc, the nematic–smectic-A transition is
continuous and the coexistence line is given by the bifurca-

tion line. For temperaturesT,Ttc, the transition is first order
and the corresponding transition densities were calculated by
equating the pressure and chemical potential in both phases.
As can be observed in Fig. 6, the nematic–smectic-A transi-
tion takes place at increasingly higher densities as the tem-
perature increases. From our previous remarks, the nematic–

FIG. 5. Equation of state in the pressure-densitysP-hd plane for
a system of parallel hard ellipsoids of anisotropyL /D=5 with
l /D=1.5 for various temperaturesT. From top to bottom the values
of the temperature areT=1.0, 0.847, and 0.6 in units ofe /kB. The
tricritical temperature isTtc=0.847. The dashed curve represents the
line of bifurcation densities. The smectic-A phase corresponds to
the high-density region. The closed circles show the location of the
first-order nematic–smectic-A transition atT=0.6. The pressure is
given in units ofe /v0, with v0 being the molecular volume.h is the
packing fraction.

FIG. 6. Phase diagram for a system of hard ellipsoids of aniso-
tropy L /D=5 and attractive rangel /D=1.5 in the temperature-
densitysT-hd plane showing the regions of stability of the nematic
sNd and smectic-AsSm-Ad phases. The dashed curve represents the
line of bifurcation points. Above the tricritical pointsfilled circled,
the N–Sm-A transition is continuous. The solid curves correspond
to first-order N–Sm-A transitions. Nematic-nematic separation takes
place forT,0.108 and is not visible in the scale of the plot. The
temperature is given in units ofe /kB, andh is the packing fraction.
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smectic-A transition is expected to be preempted by the
formation of the solid phase at sufficiently high temperature.

We show in Fig. 7 the variation of the smectic layer spac-
ing d with density along a number of selected isotherms
whenl /D=1.5. In all cases,d is seen to decrease smoothly
with increasing density or temperature. The value ofd was
always found to be of the order of the molecular lengthL.

We emphasize again that our approach is able to describe
the stability of the smectic phase relative to the nematic but
yields no information as regards the relative stability with
respect to the solid phase. Bearing this in mind, one may still
wonder whether or not the solid phase preempts the forma-
tion of the smectic phase, thereby leaving the latter merely as
metastable. A fully consistent theoretical description of the
solid phase involves considerable numerical complication
and it was not considered here. Instead, the relative stability
of the solid and smectic phases was assessed by using com-
puter simulation.

Simulation results are given in Fig. 8 for the model used
here with molecular anisotropyL /D=5 and attractive range
l /D=1.5. Most simulations were performed in theNPT en-
semble using standard Monte Carlo techniques. Details will
be given elsewheref57g. Figure 8 includes part of the results
obtained by expanding a solid configuration at high densities
and pressuresshigher than those shown in the figured along
two constant-temperature paths. AtT=1.0, the solid is seen
to melt into a smectic-A phase atPv0/e<1.45 with hA
<0.39 andhS<0.43. When compressing the system from
low densities, the smectic-A phase was seen to crystallize at
a slightly larger pressuresPv0/e<2.0d. As expected, the
smectic-solid transition is first order and exhibits hysteresis.
Therefore, the quoted values of the pressure represent the
limits of mechanical stability of the solid and smectic phases
upon expansion and compression of the system. The transi-
tion pressure, as well as the densities of the coexisting
phases, will be somewhere in between. The smectic phase
was also seen to be stable relative to the solid atT=0.6.
Simulation results along this isotherm are shown in Fig. 8. At

this temperature, the smectic-solid transition takes place at
slightly lower densities and pressure, as expected. When the
system is expanded to densities below those shown in Fig. 8,
the smectic phase undergoes a transition to a nematic fluid.
The results from simulation in this region are shown in Fig.
9. At T=1.0 the nematic–smectic-A transition seems to pro-
ceed in a continuous way at a densityhNA<0.27, the value
of the pressure beingPv0/e<0.60. The theoretical calcula-
tions yield a continuous transition at this temperature with
hNA=0.335, Pv0/e=1.47. At temperature T=0.6 the
nematic–smectic-A transition was observed to be clearly first
order. As shown in Fig. 9, results fromNVT Monte Carlo
simulations give evidence of a van der Waals–like loop at
this temperaturesthese simulations were perfomed at con-
stant volume but allowing for changes in the box shaped.
From the simulation results we can infer that the transition
takes place atPv0/e<0.088, the transition densities being
hN<0.18 andhA<0.25. The theoryssee Fig. 6d predicts a
first-order nematic–smectic-A transition at this temperature
with hN=0.239,hA=0.257, andPv0/e=0.135.

As noted before, the region of stability of the smectic-A
phase must be bounded at high temperaturesand pressured.
Several exploratory runs were performed by expanding a
solid configuration along different constant-temperature
paths. Forl /D=1.5, our results indicated that the solid
phase melts directly into the nematic phase with no interme-
diate smectic phase for temperatures aboveT<3.25 f57g.

From the simulation results we infer that there are ther-
modynamic conditions at which the smectic phase is stable
not only relative to the nematic phase, but also relative to the
solid phase. Although the simulations have been restricted to

FIG. 7. Variation of the smectic spacingd/L with packing frac-
tion h at different values of the temperatureT slabeled on the plotd
for a system of parallel hard ellipsoids of anisotropyL /D=5. The
range of the attractive interactions isl /D=1.5.

FIG. 8. Detail of the smectic-A–solid sSm-A–Sd transition re-
gion for a system of hard ellipsoids of anisotropyL /D=5 and at-
tractive rangel /D=1.5. Data have been obtained from Monte
Carlo simulations in theNPT ensemble along two isothermsT
=1.0 scirclesd andT=0.6 strianglesd. The open symbols are for re-
sults obtained expanding a solid configuration. The closed symbols
are for results obtained after compressing from a fluid configura-
tion. The curves are included as a guide to the eye. The temperature
is in units of e /kB, the pressure is in units ofe /v0, and h is the
packing fraction.

E. M. del RÍO AND E. de MIGUEL PHYSICAL REVIEW E71, 051710s2005d

051710-8



a single value ofl, the conclusions are expected to be ap-
propriate for other values ofl. The simulation data are also
consistent with the prediction of a temperature-induced tric-
ritical point, and the disappearance of the smectic phase at
high temperatures. The agreement between theoretical pre-
dictions and simulation results can be considered satisfactory
at a qualitative level. Not surprisingly, there are quantitative
discrepancies. This can certainly be ascribed to the use of the
mean-field approximation, which is known to underestimate
the contributions from molecular correlations at short dis-
tances.

V. SUMMARY AND CONCLUSIONS

The motivation of this work is to gain an understanding of
the behavior of thermotropic smectic liquid crystals. A num-
ber of molecular theories neglect the effect of hard cores and
point at the anisotropic attractive interactions as responsible
for smectic ordering in thermotropics, whereas simulations
sas well as microscopic theoriesd of systems of hard particles
have stressed the importance of the anisotropic excluded-
volume interactions in driving smectic formation. Here we
have focused on two specific points; first, whether smectic
ordering may be brought about by the coupling between the
anisotropic short-range repulsions and the isotropic contribu-
tion of the soft, long-range attractions; and second, what is
the rolesif anyd of the range of the soft attractions in stabi-
lizing the smectic phase. In our approach this requires a suit-
able molecular model and an appropriate theory for describ-
ing the inhomogeneous smectic phase.

As regards the molecular model, we have considered a
system of hard ellipsoids to mimic excluded volume effects

with an attractive square well of rangel /D.1 with spheri-
cal symmetry outside the hard core. In a way, the model can
be considered as the natural extension of the square-well
model for simple fluids to systems of nonspherical particles.
The model is certainly a crude representation of the molecu-
lar interactions, but still contains the simplest microscopic
features which are thought to be responsible for stabilizing
the smectic phase in thermotropic liquid crystals.

As regards the theoretical approach, we have used a
density-functional theory based upon an extension of the
weighted-density approximation to systems with anisotropic
interactions. This is known to provide a fairly accurate and
consistent description of the contributions arising from the
hard cores. The attractive contributions are treated at a mean-
field level. The shortcomings of mean-field treatments are
well known, and obviously our approach suffers from the
same limitations. The theory has been applied to systems of
perfectly aligned molecules, although it can also be extended
to the general case where molecules are free to rotate. The
region in which the smectic phase turns out to be stable
relative to the nematic has been investigated using a bifurca-
tion analysis, and a full phase stability calculation.

From our calculations, the effects on phase behavior due
to variations onl are as follows. For very small values ofl
sapproximately,l /D,1.3d thermodynamic conditions are
found at which nematic order becomes unstable against a
smectic modulation. However, these conditions are such that
the solid phase is more likely to dominate. For this range of
values ofl, the attractions are very short ranged and the
effective attractions are not sufficiently anisotropic to bring
about smectic ordering. The phase behavior corresponds, es-
sentially, to that expected for a system of parallel hard ellip-
soids, i.e., nematic phase and a solid phase at high density.
Upon increasingl, the induced anisotropy is large enough so
as to stabilize smectic ordering. At very low temperatures,
the smectic phase is again expected to be metastable relative
to the solid, but at intermediate temperatures it is certainly
stable at densities well before crystallization, as demon-
strated by computer simulation. The nematic–smectic-A tran-
sition is seen to be continuous at high temperature and first
order at low temperature, both regimes being separated by a
tricritical point. By construction, our approach does not al-
low for a description of the solid phase. The stability of the
smectic phase relative to the solid phase has nonetheless
been proved by computer simulation. Although no calcula-
tion of the smectic-solid phase boundaries can be performed
within our theoretical treatment, some hint is given from
knowledge of the fluid-solid phase boundaries of the model
with l /D=1. Note that the latter provide an upper limit for
the smectic- sor nematic-d solid phase boundaries when
l /D.1. Interestingly, our calculations show that the
nematic–smectic-A bifurcation line must intersect the fluid-
solid line at sufficiently high temperatures. It follows that the
smectic phase in the present model does not extend to arbi-
trarily high pressures or temperatures. This has been con-
firmed by our computer simulation results. A similar conclu-
sion holds for the Gay-Berne modelf58,59g, and is
consistent with the fact that under these conditions the attrac-
tive interactions become less important and the hard ellipsoi-
dal cores are not able to stabilize smectic ordering. We recall

FIG. 9. Nematic–smectic-A sN–Sm-Ad transition region for a
system of hard ellipsoids of anisotropyL /D=5 and attractive range
l /D=1.5 at temperaturesT=1.0 sdiamondsd andT=0.6 scirclesd as
obtained from Monte Carlo simulations at constant pressuresfilled
symbolsd and constant volumesopen symbolsd. The inset shows the
first-order N–Sm-A transition at temperatureT=0.6 on a magnified
scale. The curves are included as a guide to the eye. The tempera-
ture is in units ofe /kB, the pressure is in units ofe /v0, andh is the
packing fraction.

SMECTIC PHASE IN A SYSTEM OF HARD… PHYSICAL REVIEW E 71, 051710s2005d

051710-9



that it is not infrequent to observe a decrease in the range of
the smectic phase under the application of hydrostatic pres-
sure, or the suppression of the smectic phase beyond a cer-
tain value of the pressuref60g.

Upon further increase ofl, the system stabilizes smectic
ordering at increasingly higher temperatures. The anisotropic
interactions are such that the typical side-by-side molecular
configurations of the smectic phase are largely promoted.
When l is further increased, the minimum of the effective
interactions aboutz=0 ssee Fig. 1d becomes increasingly
wider. Hence, the number of molecular configurations other
than the side-by-side which are energetically equivalent in-
creases and this results in a growing tendency to destabilize
the smectic layering. According to our calculations, the nem-
atic phase completely dominates the fluid region of the phase
diagram atl /D<4.0.

It would be desirable to provide a more complete com-
puter simulation study of the model in order to establish the
merits and limitations of the theoretical approach on a firmer
footing. Work along this avenue is in progress and will be
presented elsewheref57g. The numerical techniques used

here can be extended to accommodate hard disk-shaped el-
lipsoids. In such a case, the anisotropic interactions are ex-
pected to stabilize the columnar phase between the solid and
nematic phasesf61g. Finally, we are also considering a more
general treatment in which the constraint of perfect align-
ment is removed. We hope to present the results of this in-
vestigation in a future publication.
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