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Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers
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A theoretical investigation is made into the dynamics of pitch jumps in cholesteric liquid-crystal layers
having finite strength surface-anchoring conditions. A presentation is given of general formulations which
connect the dynamics of pitch jumps with the key material parameters such as the viscosity, the specific form
of the anchoring potential, and the dimensionless paranSgtelk,,/Wd, whereK,, is the elastic moduludyy
is the depth of the anchoring potential, amhds the layer thickness. To illustrate the dependence of the pitch
jump dynamics upon the shape and strength of the anchoring potential, we investigate two sets of different
model surface-anchoring potentials for a jump mechanism that is connected with the slipping of the director at
a surface over the barrier of the anchoring potential. Two types of “narrow” well potentials that are natural
extensions of the more familiar “wide” potentials are considered: one type is based upon the well-known
Rapini-Papoular potential and the other upon Ehpotential, introduced in Belyakov, Stewart, and Osipov,
JETP 99, 73 (2004). Calculations for the unwindingwinding) of the helix in the process of the jump were
performed to investigate the case of infinitely strong anchoring on one surface and finite anchoring on the
other, which is important in applications. The results show that an experimental investigation of the dynamics
of the pitch jumps will allow one to distinguish different shapes of the finite strength anchoring potential, and
will, in particular, provide a means for determining whether or not the well-known Rapini-Papoular anchoring
potential is the best suited potential relevant to the dynamics of pitch jumps in cholesteric layers with finite
surface-anchoring strength.
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I. INTRODUCTION electric field perpendicular to the helical axib]. This type

The influence of finite surface anchoring and thermody-Of €xperiment may be used to measure the rotational viscos-
namic fluctuations upon the temperature dependence of pitdFV 1 [16].
variations in planar layers of cholesteric liquid crystal have Very recently, theoretical modeling of the jump dynamics
recently revealed1,2] some interesting effects that are of has received new impetus because it has been found that
importance not only in the general physics of liquid crystalspitch jumps have revealed themselves in the lasing frequency
but also in their practical applications. As has been knowrjumps that occur in mirrorless temperature-controlled lasing
for some time, the temperature evolution of cholesteridn chiral liquid crystals[17,18. One notes that in real sys-
liquid-crystal structures in samples with finite anchoring en-tems, pitch jumps often do not occur simultaneously in the
ergy may be continuous over some range of temperature wittvhole cell. Instead a domain wallvhich in the case of a
jumplike changes at definite temperature poif8s5] and  straight wall moves with a certain stationary velotifg
strong hysteresis when the temperature is revefse®l.  formed which separates regions that have different values of
Some of these problems have been investigated recently bothe pitch. Such domain wallsvhich have very recently been
theoretically and experimentallyl,2,6,7. It has also been observed by KuczynsKi6] and Coles and co-workef48])
shown that in some cases such systems may possess sevéngrfere with lasing, and it is important to find ways to con-
metastable statd8,9]. The dynamics of thin cholesteric lay- trol them. It is important to note here that the stationary
ers may be even more important from the application poinvelocity of the domain wall is determined by that very relax-
of view because of their potential use in the construction ofation process of the helical structure in a thin layer which is
multistable displays and switches. From a more general poinhvestigated in this article. Other systems where dynamics of
of view, such systems belong to a wider class of liquid-jump-wise variations of the pitch may also be important are
crystal systems in a strongly restricted geometry with prop<holesteric layers with large flexoelectric coefficients and
erties being controlled to a large extent by surface anchoringveak surface anchoring subject to external electric fields
[4,10,11. The general dynamics of thin cholesteric, or even[19]. In such systems, one finds the so-called longitudinal
nematic, layers with special surface conditions and possibl§lexoelectric domaing20-22. Such domains also exist in
multiple metastable states is a very difficult computationalnematics(where they are also known as “variable grating
problem. Thus only a few particular cases have been invesnode” [[23], pp. 105-108 because the period of the do-
tigated so far. This includes, for example, the theoretical demains is inversely proportional to the applied voltage
scription [12] of the switching between two bistable statescholesteric cells, however, the orientation of the domains de-
[13,14] which was experimentally observed by Barberi andpends on the number of half-turns of the helix between the
Durand[13]. Another example is harmonic oscillation of the cell boundaries. This number is changed after the pitch jump,
helical structure in a cholesteric layer subject to a pulsednd thus the aforementioned relaxation of the helical struc-
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ture after the jump should control the reorientation of sucHinear effects are taken into considerajiateviation angles.
domains in an oscillating field. The problem is that jump dynamics is particularly sensitive
In this present article, which is a continuation of our pre-to the shape of the potential at large deviations, i.e., around
liminary study[7], we investigate pitch jump dynamics in a its maximum. The corresponding relaxation time is a unique
relatively thin planar cholesteric layer for the simplest casegquantity which can yield some qualitative information about
of an infinitely strong anchoring on one of the surfaces andhe form of the potentiamaximum(and not the minimum
weak anchoring on the other. This case corresponds to largehere the Rapini-Papoular potential is justifiede., about
values of the dimensionless paramefeK,,/Wd, where the form of the potential barrier which the director has to
K,, is the twist elastic constanty is the depth of the anchor- overcome after the pitch jump.
ing potential, andd is the layer thicknessS; is the nondi- The natural way to construct a surface potential for large
mensionalized (with respect tod) extrapolation length deviations from the equilibrium could be to add a number of
Ko,/ W. As discussed in previous articles, in the case of weakigher-order terms to the Rapini-Papoular potential as indeed
anchoring and relatively thin layers the jump-wise changesas been proposed by several authors including Baebati
of the pitch may occur without formation of defects becausd25] and Yoneyaet al. [26]. Such expressions, however,
it is always more energetically favorable to adjust the direcimake real sense only if the deviation angles are not too large,
tor orientation at the surface than to form a defect core. Theée., if the expansion converges rapidly. For very large devia-
same conclusion is also valid for dynamics of the helix in thetions, when the angle is about/2, it is difficult to decide
course of a jump. In the casg~ 1, the dynamical torques how many terms one has to keep in the expansion. In addi-
are of the same order as the equilibrium ones, and they at@n, the coefficients in these terms are generally unknown,
not sufficiently strong to cause any disruption of the directorand as a result the model anchoring potential will depend on
distribution, including any deviation from they plane. It a large number of independent parameters, which makes it
should be noted that even in this simple case, the relaxatiodifficult to arrive at any general conclusions. In this paper,
of the helical structure after the pitch jump is very differentwe have taken a different approach. Instead of using an ex-
from the dynamics of a helix unwinding in a field. It will be pansion of the general potential, we have selected a family of
shown that for finite values of surface-anchoring, the characsimple model potentials which depend on a single model
teristic relaxation times are much larger than the correspondparameter that characterizes the potential depth. All these
ing relaxation times in the unwinding proceGgshich have potentials, of course, reduce to the Rapini-Papoular potential
been estimated, for example,[i24]). This result enables one for small deviation angles. At the same time, different poten-
to justify the so-called quasistatic approximation, which as+ials considered in this paper differ dramatically in the vicin-
sumes that the homogeneous helical structure remains undigy of the maximum of the potential. As discussed below in
torted and only the pitch is slowly changing with time. In Sec. Ill, the family of such potentials mainly includes the
this case, the relaxation of the helical structure in the celgualitatively different limiting cases when the potential bar-
occurs without any orientational waves traveling from onerier is very sharp or very broad, respectively. This approach
surface to the other. The quasistatic approximation and itenables one to study the influence of some crude qualitative
limits of applicability are investigated and derived in detail features of the anchoring potential on the order of magnitude
in the Appendix. of the relaxation time of the helical structure in a thin cell.
The study of dynamics in the course of a pitch jump inSuch relaxation times can be measured experimentally and
this simple case can be considered as the first step in the results may shed some light on these qualitative shapes
modeling of more complex dynamical effects including, in of the surface potential barrier. However, it should be noted
particular, the movement of domain walls in thin cholestericthat such an approach may not be justified for a general
layers and switching between multistable states, which willstudy. For a particular physical system with known surface
be undertaken in the near future. At the same time, even iproperties, it may be a better idea to model the potential by a
this simple case, the study reveals some interesting featurésw terms taken from the general expansion, especially if
related to the effects of restricted geometry. In particular, thalifferent terms may have different physical meaning, i.e.,
pitch jump dynamics is essentially dependent on the shape difiey may be determined by different interactions or surface
the surface-anchoring potential, which may be different fromeffects. In this case, one can still use the general formulas
the Rapini-Papoular forni7]. There is no doubt that the obtained in this paper, which are valid for any form of the
Rapini-Papoular potential is a reasonable approximation fopotential.
any surface potential for small deviation angles. This is be- The plan of this article is as follows. In Sec. I, we discuss
cause the Rapini-Papoular potential is not a complete modé¢he nature of jump dynamics via the dissipation function and
but only the first term of the systematic expansion of anyspecial forms for the director orientation angle. The usual
potential around the equilibrium anchoring angle whichRapini-PapoulatRP) andB potentials are also summarized.
should be valid at least for sufficiently small deviations. ThisNarrow well potentials RPandB,, which are modifications
potential is frequently used not only because of its simplicityof the RP andB potentials that are indexed by are intro-
but also because usually one studies phenomena related daced in Sec. Ill. An identification of the jump angle of the
surface anchoring which are determined only from the condirector as a function of the dimensionless param&eis
sideration of small deviation angles, where the shape of thalso made. This leads naturally to a discussion of the jump
potential is approximately quadratic in the deviation angledynamics for narrow well potentials in Sec. IV, where the
Conventional experimental techniques are able to test theemporal behavior of the director angle at the layer surface
form of the potential for relatively small or mediutif non-  during a jump is presented in Figs. 7 and 8, with a compari-
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29 / F=2Kyy(V -n)?+2Kyp(n - V X n+q)?

+2Kag(n X V X n)2. (2.3

d . :
‘ Vq’z / In a homogeneous planar cholesteric cell without defects,
only the twist deformation is present and the director is ex-

ressed as
FIG. 1. The case of nonidentical anchoring at the surfaces of g
cholesteric layer. The double-headed arrows represent the alignment ny=codqz, n,=sinqz, n,=0, (2.9

direction at the surfacegFor infinitely strong anchoring at the ) . )
lower surface,=0, and for finite anchoring at the upper surface, vyhereq is the wave vector of the helical structure. Substitu-

=0 tion of Eq. (2.2) into Eq. (2.1 yields the following simple
expression for the total free energy of the cholesteric |&yer

. . . . [1-4] in terms of the single variable (which has the mean-
son of the results for RPandB, potentials being given in ing of the director orientation angle at the surface with finite

Fig. 9. In Sec. V, the dependence of the switching times upor choring:
the normalized anchoring strength and sample thickness hadd! '
been calculated in Fig. 10; a comparison of the results for the Koy 5
temporal behavior at different values®fappears in Fig. 11. F(T) =We(¢) + E[(P =@M, (2.9
The article closes in Sec. VI with some conclusions and a
brief discussion. whereW(¢) is the surface anchoring potential ztd and
K, is the twist elastic constant. The anglés related to the
Il. JUMP DYNAMICS actual wave vector in the_ celi by the simple relationy
=qd. Here the anglepy(T) is the external parameter deter-
We investigate the dynamics of pitch jumps in a cell of mined by the director rotation angle &td in the absence of
cholesteric liquid crystal with strong anchoring at one sur-anchoring, i.e., the quantity dependent on the equilibrium
face(atz=0) and relatively weak anchoring at the other sur-wave vectorqy(T) of the helix in an infinite sample of the
face (at z=d, whered is the layer thicknegsas shown in  cholesteric liquid crystal¢y(T)=qy(T)d]. In terms of the
Fig. 1, where the double-headed arrows indicate the alignangle ¢, the dissipation functiorD [27-29 can then be ex-
ment direction at the surfaces. Similar to our previous articlepressed as
[7], we consider the reorientation of the director in the bulk ) ) ’
and assume hydrodynamic flow is negligible with the direc- D= 71(6_(1)) = 71(5) (di) (2.6)
tor being everywhere parallel to the plane of the surfaces, ot d dt/)’

.e., parallel to thexy plane. herey, is the rotational viscosit
The director distribution under the above assumptions id/ 71 . . Yoo
The equation determining the equilibrium value¢hs a

completely specified by the azimuthal angléz,t). In the . . .
absence of flow, the director relaxation is described by th%;ng)t':: dczl;tgﬁléirgseratur@r ¢o(T)] is obtained from Eq.

general equation27-29
aWs | Kep

dF
—:—f DO, (2.1) de d
dt Jo

[¢—¢o(T)]=0. 2.7

Here, and below, the anglesand ¢y(T) denote the deviation
whereF is the total free energy of the liquid-crystal cdllis  of the director at the surface with finite anchoring from the
the Rayleigh dissipation function, arfdl is the sample vol- alignment direction(this involves an inessential change of
ume. It is further assumed that the director distribution in thethe origin when assessing the director orientation angle
layer is quasistatic, that is, the helical structure within theanalysis of Eq(2.7) [1,2,7 shows that a smooth change in
layer remains undistorted and corresponds to some value dfie director deviation angle is possible whilep is less than
the pitch which is changing with time. In this case, the azi-some critical anglep.. Upon ¢ achieving the critical value
muthal angle in the bulk and its derivative can be expressed:, a jumplike change of the pitch occurs. F&y>1/21, the
in terms of the angle(t) at the surface=d via the relations transition to the unique new configuration of the helix occurs
that differs by one in the number of half-turNs In this case,
it is possible to restrict the range of valuesgfo the inter-
val [-7/2,7/2] using the formulap=Nm+¢’, where the
integer N=int{ ¢/ 7] is the number of half-turns within the
According to Eq.(2.2), the angleg(z,t) vanishes at the sur- layer thickness. All solutions fot’ fit into the domain|
facez=0 which is characterized by strong anchoring, and is-#/2,7/2]. For the remainder of this article, we only use
equal toe(t) at the surface=d. This quasistatic approxima- the variableg’, with the prime dropped for simplicity. The
tion and its limits of validity are derived and considered in critical value of the director deviation angle. corresponds
detail in the Appendix. to the configuration withN director half-turns in the layer

The free energy in Eq2.1) is the volume integral of the when it is at an instability point. We also record here that for
well known Frank distortion energy of the cholesteric phasethe typical valueK,,=5X 10" dyn and anchoring strength

9% _zde

z
qb(z,t)—ago(t) and o ddt (2.2
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W=10"3erg cm?, the criterion§;>1/27 is certainly satis-
fied for cell thicknessed <30 um.

The pitch in the layer just before the jumpy, and the
corresponding natural pitchp, are expressed by, via the
following formulas:

Pa(Te) = 2d/(N + /),

P(Te) = 2d/[N + o(To)/ ], (2.9

where T, is the jump temperature. The angig(T.) (the
natural one at the jump point temperatuie given by the
formula

d
@o(Te) = @c + _|: (2.9

K22

d Ws( (P) ]
e lp=g,

The value ofe after the jump, denoted by;, which is
basically connected to the pitgi;(T,) in the layer after the
jump, is determined by the solution of the equation

IWs(o) i K_22
Je d

where ¢y(T,) is determined by Eq(2.9). The critical angle

[~ ¢o(Te) + 7] =0, (2.10

¢ for identical anchoring at both surfaces is determined onl

by the shape of the anchoring potentjia|2]; nevertheless,

for different anchoring at the surfaces it may be dependent In a similar way,

on other parameters of the problem.
Substitution of Eq(2.6) into Eq. (2.1 yields the follow-
ing equation for the dynamical variablgt):

3 dF

dy; dﬁD.

do _

= (2.11)

As mentioned in the Introduction, we shall select a family of

simple model potentials which depend on the parameéter
(and, in Sec. Il below, om), which characterizes the depth
of the surface potential wells. In such instanc®g,¢)
=Wf(¢p), wheref(p) is some dimensionless function ¢f
For example, for the Rapini-Papoular potenfiaj19], f(¢)
—(1/2)co(¢). In this case, Eq(2.11) can be rewritten in
the simple dimensionless form

d dF
do_ g dF (2.12
dt dyide
where the dimensionless free ene%ys
r— Sur 2
F=flo)+ S le- @M, (2.13

and the dimensionless tinieand the dimensionless param-
eter§; are defined by, respectively,

7Ky

71d2 '
Equation(2.12) allows us to determine the solutignim-

plicitly, by integration overe from t=0 when the director

angle ¢ at the surface is equal to the critical valpg up to
¢(1) corresponding to the timie As discussed in detail in our

_ Kz

f=t =—=£
wd

Sy (2.14
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FIG. 2. Qualitative plots ofa) the Rapini-PapoulaiRP) and the
B potentials, andb) the Rapini-Papoular-likéRP,) and theB-like
(By) potentials. These examples are for2.

revious articld 7], the critical anglep. corresponds to the
nstability point where the solution fop, which minimizes
the free energy2.5) [or Eq.(2.13)], loses its stability.
one can also define the duration of the
jump 7 [7] that is given by the same integration of Eg.11)
with the upper limit being replaced hy;, which is the angle
reached at the final equilibrium state after the jump. This
results in the durationr of the jump being given by

dylf‘Pi [dF]'l
-— — | do.
3 ‘e de

One notegsee Sec. Il that the values of; and ¢; de-
pend strongly upon the shape of the anchoring potential, that
is, upon the form of the functiom(¢) given in the present
model. In[7], we considered two types of anchoring poten-

tial. The first one was the well-known Rapini-PapoulgP)
potential[3,4,19,27 given by[see Fig. 23)]

(2.15

T=

W(g) = - VEVcos%o), 2.16

which, for smallg, is simply the first term in the systematic
Fourier expansion of any surface potential which depends
only on the anglep. The RP potential clearly has periotd

The other potential considered was the so-caBeabtential

[7], which can be expressed e Fig. 2a)]

_ o) 1
Wy(p) = W[cosz(Z) 2],
(2.17

The B potential also has periog when it is continued peri-
odically for |¢|>m/2 according to the relationWy(¢)
=Wy(p—m).

The RP and potentials are very similar in the vicinity of
the minimum pointe=0, but in the region around the edge

m_ T
2 "¢ o
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of the potential well, i.e., near themaximumpoint (at ¢ introduced in the following two subsections. These are natu-
=1/2), the behavior of th®& potential is very much different ral generalizations of thB potential(introduced in[7]) and
from that of the RP potential. The RP potential is verythe RP potential.
smooth everywhere, and is characterized by the same curva-

ture at the minimum and maximum points. In contrast,Bhe

potential has a discontinuous first derivative at the edge of

the potential well, that is, at the maximum point of the po-  The B, potential is defined by

A. B, potential

tential. Physically, this means that the edge of such a poten- 1

tial is very “sharp”(i.e., the curvature is very largeand the W) = —W{ Cos’-(”—@) - —} if - = < o< 1,
torque acting on the director rapidly changes sign. In this 2/) 2 2n 2n
article, we consider a complementary class of “narrow” po- (3.1

tentials which are characterized by having a potential well

width less thanw and a very broad maximum aroungd

=m/2 (very low curvatur¢ where there is no restoring W) =0 if 1<|¢|<
torque, i.e., where every value of the anglén the “broad 2n
maximum” region is marginally stable.

w
_l

> (3.2

and is continued periodically fdi| > /2, according to the
I1Il. NARROW WELL MODEL ANCHORING POTENTIALS relations Wy(¢) =Wy(¢—m), wheren>1, as shown in Fig.
2(b). The case fon=1 corresponds to thB potential shown

The model anchoring potentials to be introduced in thisy Fig. o). The critical angle for th@, potential is given by
section are natural generalizations of the RP Brmbtentials .= /2n. Depending on the value of the parameSgrthere

studied in[7]. These new generalized model anchoring po-4re two possible cases for the value of the postjump angle

tentials will be employed to examine the temperature behav- .

ior of the cholestepricyhelix in a planar cholepsteric layer of(’o-j' I Su<n2/'[27r'(n71)], then the'dewatlon. angle of the
o . S P ) y director remains inside the anchoring potential well after the
finite thickness having finite strength of anchoring at one of;

) S jump and ¢; is determined from Eq(2.7) with ¢o(T) re-
E?gbcl))undary surfaces and infinite strength at the otkee placed byey(To) - . If Sy>n2/[2m(n-1)], then the devia-

As in[7], we restrict the analysis of the temperature varia—tion arjgle of the direqtor oceurs outside_of the anchoring
tions of the director configuration in the layer by assumingf&i?;'rflavxe:l aft(glz_r)tk; {lﬁnggﬁt'esmdegg,m'r;i? %éthuergree
that the pitch jump mechanism is connected with the director gieol Te P P Jump,

overcoming the anchoring barrier at the surface and, more:& by the angle of the director orientation at the surface in

over, that liquid-crystal thermal fluctuations may be ne—the absence of anchoring, which is given by expression
glected. Our main attention follows the approach contained T N
in [1,2,7] and will be concentrated on the transitions between oo(T)=—+——.
N andN+1 half-turns of the director in the layer which pro- n 25
ceed without strong local disturbances of the director conThis means that i§,>n?/[2m(n-1)], then the jump ends at
figuration. ;= o(T)=m/2n+n/2S;

As was shown if1,2], the variations of the pitch in the The free ener for the B.. potential accents the form
layer and, in particular, hysteresis, are determined by the 0y2.9 nP P

dimensionless paramet&;=K,,/Wd, whereW is the depth F(T) ne\ 1| S 5
of the anchoring potential. These variations are rather univer- =" g PV + E[‘P = @o(T]
sal because they are not directly dependent upon the sample

(3.3

thickness. This means that for any specific form of the an- ) iy T

choring potential in expressid.5), Eq. (2.7) may be trans- it = n <e< on’ (3.4

formed to a form in which the parametaitsK,,, andW of

the problem occur only in combinations which reduce to the

dimensionless paramet&. FM = E[QD — oM if 7~ | < 7 T (3.5
Note that, in principle, the anchoring potential may be w2 2n 2n

reconstructed from experimental measurements of the te
ratur nden f the an fitting the m r . . . .
perature dependence of the angldy g the measured first term on the right-hand side of E(8.4)] continued as a

values to the solution of Eq2.7), whereWy(¢) should be ) AR RO .

assumed as an unknown function subjected to determinatioﬁfenricé'dﬂz 22‘5 d?tlijct;lgef()l:?ngll\:tag d“;nb'toagg)g?] Tﬁz t;nzﬁtcljifr)]/ theo_

However, as a first step it is more practical to compare th ; . : A 9p
ential. Equation(2.7) determines the equilibrium value of

measured values with the solutions of Eq(2.7) b ; . ’
means of some tria?f‘unctions faW(¢). In otherc\]/v(org)s, v)\//e in the layer as a function of the temperat{e ¢,(T)] and is
P—f the form

have to adopt some model potentials for the surface ancho
ing which have shapes that are reasonably acceptable from

ITf\_laturally, the surface term in the free enei@y4) [i.e., the

2
the physical point of view. sin(ng) + —Sd[(p -¢@o(M]=0 if - 21 << 21
We now apply the general relations from the previous n n n
section to specific shapes of the surface anchoring potential (3.6
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T T 3\
=go(T) if — <o/ <7-—. 3. \
= @o(T) on lg| <7 n (3.7) \

If Sy<n?/[2m(n—-1)], then the deviation angle of the di- 1

rector remains inside the anchoring potential well after the g

jump, and sog is restricted by the condition =/2n<¢ e N -

<r/2n. For this case, the deviation angle after the jump

. . . R \
is determined from the expression ! \
~
. 25y N S~TT=S
sin(ng;) + 7[901' —¢o(Ty) + 7] =0, (3.9 0 2 e 8 10
d
where ¢; is inside the potential well, i.e., m/2n<g; FIG. 3. Post-jump angle; (thin lines and the angular width of

<m/2n. It should be remembered here again that the angletie jump ¢;—¢ (bold lineg as functions ofS;, calculated for the
@, ¢}, and ¢o(T) are measured relative to the alignment di- RR, (dashed lingsand B, potentials(solid lineg whenn=2.
rection(cf. Fig. 1), so that after the jump they are reduced by

. For the case§;>n?/[2m(n-1)], as has been mentioned F(T) 1

. aa T
previously, ;= ¢o(To) =7/ 2n+n/2S;. W oo ECOSZ(WP) + %[(P - (M if - on <P o
(3.13

B. RP, potential

In a similar fashion, we may define the Rpotential by FT) S T -
= le-eMP if —<|e|<m-_-.
W 2 P T w2 2n 2n
Wy(¢) = — —cos(n if——<e<—, 3.9
The surface term in the free energy described by E3j43
n T _m and(3.14) [i.e., the first term on the right-hand side [&q.
Welg) =0 if 2n <lel<m 2n’ (3.10 (3.13] continued as a function o outside its limitations
o . o i has to satisfy the periodic conditions formulated above for
which is continued periodically fofg| > /2 according to  the anchoring potential. As before, E.7) determines the
the relationW(¢) =W(¢—m), wheren>1, as shown in Fig. equilibrium value ofe in the layer as a function of the tem-
2(b). The case fom=1 corresponds to the RP potential peraturglor ¢o(T)] and has, in this situation, the form
shown in Fig. 2a).
For RR, potentials, a jump-wise transition occurs Sf

iN2ne) + 2o @M]=0 if - = <<~
<n?. In such cases, the critical angle is dependengpand sin2ne) n [ = eoM]= ! ¢ '

_ _ ¢ 2n 2n
is determined from the expression (3.19
1
@cz%[arccoé—%ﬂ. (3.11 - -
=T if —<l|o|<7m—-—. 3.16
¢=¢o(T) if lo| < o (3.16

There are two possible cases depending on the value of the

paramete§,. If §<(1/2)[nsin(2ng) /{m1-1/2n)]-¢), If S<(@/2)[nsin2ne)]/{n{1-1/(2n)]-¢c}, then ¢ re-
then the deviation angle of the director remains inside thénains inside the anchoring potential well after the jump, and
anchoring potential well after the jump argis determined

from equations analogous to Eq&.7) and(3.9). If n>> S . - e
>(1/2)[nsin(2ngy) [/{#{1-1/(2n)]- ¢}, then the deviation 2 e
angle of the director occurs outside the anchoring potential “
well after the jump andp; is determined bypy(T), i.e., by 1
the angle of the director orientation at the surface in the 8 |
absence of anchoring, which is given by the expression s’
n B sptode
Teo) = e+ ——Sin(2ng,). 3.12 -7
@o(Te) = ¢¢ 25, (2nec) ( ) _2/”’,,
In the case whei$;>n?, there are no jumps for the RP 0.5 1 15 2 25

potentials and the variations ap with temperature are thickness

smooth. This is an observable consequence of the difference FiG. 4. pPost-jump angle; (thin lines and the angular width of
between the RPand B, potentials because jumps exist for the jump ¢;-¢. (bold lines as functions of the layer thickness
By, potentials at any value of the parameS8r The free en-  (normalized by the penetration lengky,/W) calculated for the

ergy (2.5 for the RR, potential accepts the form RP, (dashed lingsand B, potentials(solid lineg whenn=2.
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RP, potential whenn=2; the dependence af. upon the

layer thickness is presented in Fig. 6 for this same potential.
0.7

IV. JUMP DYNAMICS FOR NARROW POTENTIALS

@ (rad)
)
k=)

We shall describe the jump dynamics of the layer in the
course of the transition from thi configuration to theN
+1 configuration for the narro,, potentials(3.1) and(3.2)
and the RP potentials(3.9) and (3.10, using the same ap-
04 proximation as in[7], that is, we assume that the angular
S distribution of the director inside the layer is quasistatic and
that any hydrodynamic flow is negligible. In our problem the
FIG. 5. The dependence of the critical angieuponS, for the  anchoring forces, being localized at the layer surfaces, are
RP, potential whem=2. nevertheless extremely important because they influence the
director distribution in the bulk of the layer. However, as
is therefore restricted by the conditionr#2n<e<m/2n. ~ Mentioned above, due to the imposed quasistatic approxima-
For this case, the deviation angte after the jump is deter- tion of the director inside the layer, the problem may be

05

mined from the expression reduced to that of temporal motion of the director at the layer
surface.

25, We now employ the above general dynamical formulas in

sin(2ng;) + T[‘pj - ¢o(T) + 7] =0, (3.17)  the calculation of the temporal characteristics of the jump for

the modelB,, and RR surface anchoring potentials.

where ¢; is inside the potential well, i.e., m/2n<g; A. B, potential
<r/2n, and, more precisely, ¢z < ¢; < ¢.

The essential difference between tBg potentials(3.1)
and (3.2) and the RPR potentials(3.9) and (3.10 is in the
shape of the wells close to the well edges, just as iBthad
RP potentials, particularly in the values of the anchoring
force at the point$e|=/2n beyond which the anchoring is
absent over some angular interval. For Bygpotentials, this
force reaches a maximum value and is discontinuous there,;

For theB,, potentials, a jump-wise transition occurs at any
value of §; and the critical angle is given by.=/2n. If
S;>n?/[2m(n—-1)], then at the beginning of the jump
=7/2n and the director escapes off the well and the jump
ends ate;=¢o(T)=7/2n+n/2S;. In this case,m/2n<¢
< -/ 2n and the temporal dependencegofs represented

while for the RR, potentials the force at such values is zero t
n _ Pc

and continuous. ©=[eo(Te) — @] PP +1-exg- —I

The expressions in this section may be used for obtaining ot Te ¢ d
the dynamical characteristics of the pitch jumps Byrand  where
RP, potentials which, in particular, are determined by the P
initial equilibrium ¢, and finalg; values of the angle in the 4= N (4.1
course of a jump. As exampleg; and the angular width of 3K22

the jump(i.e., ¢;—¢c) have been calculated as functions of
S in Fig. 3 and as functions of the layer thicknesm Fig.

4 for theB,, and RR, potentials whem=2. Figure 5 demon-
strates the dependence of the critical angl@pon$; for the

If Sy<n?/[2m(n—1)], then the deviation angle of the di-
rector occurs in the next potential wélee Fig. 2b)] at the
end of the jump. When the director is off the wél/2n
<@ <m—l2n), the temporal dependence gfis again rep-
resented by the expressidd.1) However, for the director
motion inside the next wellm—w/2n<e<w+w/2n, or
what corresponds tom/2n< ¢ < m/2n in the N+1 configu-
ration of the director, the form of the temporal dependence
changes and is given by

0.7

B os
& t=t; - ZTdej [nsin(ng) —n+ 2Sy(¢ + 7= m/2n)] *de,
05
(4.2
04 where t; corresponds to the moment whenreaches the
2 4 6 8 10 value m—/2n [i.e., t; is determined by Eq(4.1) when ¢

thickness

=a—/2n] and the integration in Eq4.2) runs(in the di-

FIG. 6. The dependence of the critical angleupon the layer ~ rector configuration wittN+1 half-turng from —-7/2n to ¢

thickness(normalized by the penetration length,/W) for the R, under the restriction 7/2n < ¢ < ¢; </ 2n, whereg; is de-
potential whem=2. termined by the solution of the equation
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| — B, potential, n=2 | ]

nsin(ng)) + 2§ ¢; + m— n/(28y) - w/2n]=0. (4.3 0.5

It follows from Eq.(4.1)—(4.3) that the dynamics of pitch
jumps in anchoring potentials possessing a narrow angular
width of the well differs essentially from the corresponding
dynamics for both the RP ari8l potentials[7]. 08

9 (rad)

B. RP, potentials

For the RR potentials, a jump-wise transition occurs if
S;<n? and the critical angle, which is dependent & is
determined by the expressi@8.11). There are two possible

-1.5

cases depending on the value of the param&erlf S 20

<(1/2)[nsin(2ng) /{m{1-1/(2n)]- ¢}, then the deviation ]
angle of the director remains inside the anchoring potential e e e e e e e e e
well at the end of the jump ang; is determined from Eq. 7

(2.7 with @o(T) replaced bygy(To) - If n?>S;>(1/2) S S
x[nsin(2ney) /{m[1-1/(2n)]- @c}, then the deviation angle FIG. 7. Temporal behaviofin units of the characteristic time
of the director occurs outside the anchoring potential wella=d71/3Kz,) of the director orientation angle at the surface
after the jump andp; is determined byey(T,), i.e., by the uring a jump for theB,, potential forn=2 at various values o%;.

. g . o\ el ' '?here is a critical valu&;;=n?/[27(n-1)] where the nature of the
angle of director orientation at the surface in the absence of " . ~0) X

. N . solution changes, as discussed in the text.

anchoring, which is given by the expressi@12. In the
case n’> ;> (1/2)[nsin(2ngy) [/{m{1-1/(2n)]- ¢}, with
< o< go(To) <m—m/2n, the time and director deviation
angle are interconnected by the expressions

The temporal behavior of the director orientation angle
at the surface during a jump at various valuesSpis pre-
sented in Fig. 7 for th8,, potential and in Fig. 8 for the RP

. ) potential. The calculations were performed according the for-
t=- ZTdeJ [nsin(2ng) —nsin(2ne.) mulas(4.1)—(4.7) with t=t/ 74, wherery is the characteristic
time defined in Eq(4.1)

— . n
+254(p— @] My if < @< o (44
V. CALCULATIONS AND COMMENTS

(t—teo) T (t—to) The calculations we have performed reveal the observable
©=¢o(Te)| 1 —exp - T *oa XA T Td differences between the RBndB, potentials and also allow

a comparison with the results for the RP aBdotentials.

I _m Before discussing the matter of our main interest, namely,
i 2n < @<l < 2n’ 4.9 the dynamical properties of the jump, we look at the equilib-
rium characteristics of the layer for the RBnd B, poten-
_ ; ! tials. Figure 3 shows that jump-wise changes of the pitch
Eq. (4.5 is determined by Eq(4.4) when the upper integra- only exist for the RP potential over a limited range of the
tion limit is set equal to/2n. S, unlike that for theB,, potential, for which there is a jump

In the case§y<(1/2)[nsin2neg) ]{m{1-1/(20]-¢c}, 4t any value ofS,. For both types of potentials there are
with ¢o(T,) > 77— 7/ 2n, the time and director deviation angle jump-wise changes of the post jump anglewhich corre-
are again interconnected by the same expressions it#&).  spond to the minimum value d§ at which the deviation
and (4.5 while ¢ <m—/2n. However, whenp>m—m/2n,  angle of the director escapes from the potential well after the
the time and director deviation angle are provided by th§ump. However, this value of the parame®=S;; at the

where, in Eq(4.4), the lower integration limit igp., andt, in

expression jump point of ¢; (see Fig. 3 differs: §;; equals 0.637 for the
B, potential and 0.513 for the RPotential whem=2. This
t=t - szsdf [nsin(2ne) - nsin(2ne.) difference is demonstrated in Fig. 3 and also by Fig. 4, where

the dependence of the jump angle upon the layer thickness is
+2S(p+ - @) e if - g, <¢<g, (4.6 Ppresentedand the difference in the location of the jump point
is shown more clearly. This difference reveals itself, some-
wheret; is determined from Eq4.5) whene=m-m/2nand  times in quite a pronounced way, in the jump dynamics. In
the integration in Eq(46) rUnS(in the director Configuration generaL with growth of the difference between tf&q and
with N+1 half-turng from —7/2n to ¢, which is restricted Rp, potentials becomes less pronounced. In particular, the
by the condition -/2n< ¢ < ¢;, whereg; is determined by  difference in the values of the parameSgyat the jump point
the solution of the equation of ¢; decreases. For example, the valuesSgfat the jump
: e N point of ¢, are 0.712 for theB,, potential and 0.638 for the
nsin2ng) =nsinngo) + 25(¢j+ 7= ¢c) =0, (4.7 RP, potenjtial whem=3, and 0.752 and 0.784, respectively,
with ¢, being determined from Ed3.11). for n=4.
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FIG. 8. Temporal behaviofin units of the characteristic time ERad N
T4=0%y,/3K,,) of the director orientation angle at the surface 5 o
during a jump for the RPpotential forn=2 at various values d;. z |
There is a critical valu&y; for the jump pointy; where the nature oo
of the solution changes, as discussed in the text.

20 30 40 5.0 6.0 7.0 8.0 9.0 10.0

. . . . thickness d (um)
Comparison of Fig. 7 and Fig. 8 shows that the jump

dynamics is g_eneral_ly slower for the RPotential than for FIG. 10. () The dependence of the switching tireupon the
the B, potential. It is especially pronounced for lar§g  normalized anchoring strengW calculated for theB, and RR,

(weak anchoring For strong anchoringcorresponding to  potentials when typical values of the other relevant parameters are
small values ofS;), the differences becomes less but never-set tod=10 um, y,=0.05 Pa s, an&,,=10"' N. The normalized

theless retain features that are quite observable. anchoring strength has been defined W=W/W,, where W
Figure 9 presents a comparison of the jump dynamics fot 155 3 72, () The dependence 6f upon the sample thickness
the B, and RR potentials on a real time scale for typical \yhenw=5x 10" J mr2, with y, andK,, as in(a).
values of the experimental parameters involved in possible
T e eeces 1 e, &2 ucen re, an R ptenias, one shou prfrm an
. ' : periment for a weak anchoring, or for a thin samplef

dicates that for an experimental distinction to be made be(:ourse, it is better if both these conditions are fulfilled simul-

| T taneously. The normalized energW=W/W0 has been intro-

- [ — B potential - RP_potential -1
o5 | o P T duced in Fig. 9, where we have chosen to %At
ool LW=0:50 =10 J m2, motivated by typical values for the weak an-
e T W =020 choring strength derived from experimental res{ii§)].

Figures 7-9 show that f&; < S, the switching time in
the jump may be introduced in a natural way as the corre-

5 W=0.14 _ sponding time it takes for the deviation angle of the director,
g e [W=o0.17]"] after the jump, to reach the orientation that coincides with
s W=0.10 the edge of the surface anchoring potential well.

For theB,, potential, the corresponding switching tirhe
4 is determined from the expression

ts=— 74 In[1 + 27S4(1 — n)/n?]. (5.1

e For the RR, potential, the switching timeg, is determined
0.00 0.25 0.50 0.75 1.00 1,25;(.;320;475 2.00 225 2,50 275 3.00 from the eXpr955i0n$4.4) and (45) if one pUtS(,D:’iT[l
-1/(2n)] into Eq. (4.5. The dependence of the switching

FIG. 9. Comparison of the temporal behavior of the directortime t; upon the normalized energW=W/W,, with W,
orientation anglep at the surface during a jump for th potential =107 J nmi?, for the B,, and RR potentials(for n=2, 3, and
and RR Botential for various values of the normalized anchoring 4), is presented in Fig. 18) for typical values of the material
strengthW and for typical values of the other parameters being sepparameters, as indicated in the caption. Figuré)l8hows
atd=10 um, y;=0.05 Pa s, anéy,= 10'*N. The normalized an-  the dependence df upon the sample thicknesswhen the
choring strength is defined byw=W/W,, where we have chosen anchoring strength has been supposed fixed W5
Wy=105J n2, X 10%J m2, with the other parameters as indicated; for

051708-9



BELYAKOQOV, STEWART, AND OSIPOV PHYSICAL REVIEW E71, 051708(2005

os 'w r - r T r T ous account of thermal fluctuations in the director orientation
' W at the layer surface may be performed in the framework of
ool RP.S, =01 i the approach used {19].

It is worth noticing that the motion of the director at the
beginning of the pitch jump for the RP-like potentials is

R o5 71 essentially slower than that for tHg-like potentials. This
5 ] . .
& feature may be regarded as a convenient means by which one
‘; ' can experimentally distinguish between these two types of
- 1 potential.
[A-P,s,=09 } -------
s VI. CONCLUSIONS
—8B, B ] . i i
________ BP R;, i The results of this article enable one to shed some light on
L0 the form of the anchoring potential for large deviations of the

25 a0 s« director away from the easy axige., for that part of the
potential which can hardly be tested using conventional equi-
librium techniques For small deviations from the easy axis,
all potentials are quadratic in the first approximation. In con-
trast, the actual form of the potential for large deviations is
generally unknown and may differ significantly from the
simple RP form. One notes that for certain values of the
parameters, the pitch jumps may not occur at all in models
each value ofi there will be a critical thickness of the layer that are based on the Rap|n|_-Pap_ouIar form of the anchoring
potential [1]. It was shown in this paper that these same

below which the switching timé,, introduced via Eq(4.4), models are characterized by very lagermally diverging
(4.5), and(5.1), loses its sense and the temporal characteris- D y very W g .
tic of the jump is then the relaxation time of the process_relaxatlon times. Both results are in contradiction with exist-

gven by, . (4. T crtcal et s cerved o 19,20 TeNe l, g opial vlooes of doma |
the critical paramete; through the relatiort; =K,/ WS;. y P

b : g specific form of the Rapini-Papoular potential at large devia-
Note that the switching times a=10 um displayed in Fig. tion angles from the equilibrium and deserve a more detailed

10(b) coincide with those displayed in Fig. & at W=0.5.  giscussion. In this article, we have undertaken a comparative
As one expects, the switching times are shorter forBie gydy of the pitch jumps for four different types of potential:
potential than for the RPpotential at the same normalized the standard RP potential and tBepotential[see Fig. 2a)],
anchoring strengthV; however, this difference diminishes as which has a discontinuity of the derivative at the point of a
S decreases, i.e., as the anchoring strength increases. Thisnmximum(i.e., where there is very large curvatyrend the
evident from the qualitative results presented in Fig. 11narrow well RP andB potentials, which have very low cur-
which show the dependence of the deviation anglepon  vature around the midpoint between two successive wells
the normalized time=t/ 74, as introduced above. Calcula- [see Fig. 2b)]. The main qualitative results are summarized
tions for Fig. 11 were carried out for tH® RP,B,, and RR  in Fig. 11. First, one notes that the dynamics of the director is
potentials(for n=2) for the indicated values d;. qualitatively different in the cases of strong and weak an-
It should be mentioned here that for the R@tential, the  choring. For strong anchoringe., low values of the param-
integral in Eq.(4.4) diverges at the lower limitp.. In fact, eterS), the director dynamics and the corresponding relax-
with the aid of an elementary expansion and the identityation times are qualitatively the same for all types of
(3.1, it can be shown that the integrand in E4.4) has a  potentials, and although there are quantitative differences,
singularity of second order aroungE= ¢.. This forces a cut- one can hardly extract any qualitative information about the
off at some value ok which is determined from physical actual form of the anchoring potential from the experimental
reasons, otherwise the initial motion of the director in thedata. In contrast, for weak anchoring the dynamics of the
course of a jump occurs infinitely slowly. The evident expla-director strongly depends on the type of the potential. For the
nation for this required shift of the lower integration limit to RP potential, the relaxation time is very long and should vary
a value slightly abovey, is the presence of thermal fluctua- significantly from one measurement to another because, as
tions in the anglep, which have so far been neglected in this discussed in Sec. V, the director relaxation in this case is
article. If one estimates these fluctuationsgraccording to  triggered by a fluctuation of the azimuthal angleFor nar-
the phenomenological approach proposeddh then one row RP potentials, the general behavior is similar but the
finds that the angular fluctuations i due to thermal fluc- response times are slightly longer than those for the RP po-
tuations for typical values of the liquid-crystal parameterstential. These qualitative features can be observed experi-
and for a layer thickness of the order 4fn exceed 0.01. mentally if RP-type potentials represent good models for ac-
Therefore, in the calculations of the integfdl4) it was con-  tual potentials. In contrast, the response times are
sidered acceptable to introduce a cutoff equal to 0.01, i.e., gignificantly shorter forB-type potentials compared to the
was assumed that— ¢.>0.01. A more consistent and rigor- RP-type potentials and the dynamics is much more regular.

FIG. 11. Comparison of the temporal behavior units of the
characteristic timery=d?y,/3K,) of the director orientation angle
¢ at the surface during a jump for tie RP,B,,, and RR potentials
(for n=2) for various values of the parametgj. Recall that the
anchoring strength increases Sgsdecreases.
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For narrowB,, potentials, the response time is longer com-¢(z,t), which satisfies the Lagrange equatitsee, for ex-
pared to theB potential and this again may be a qualitative ample, Vertogen and de J¢28))
signature of the corresponding form of the potential.

Despite the fact that the specific calculations of the jump 1D
dynamics were performed under simplifying assumptions, 55_¢__Fe"¢’
there is no doubt that the qualitative features of the jump
dynamics discussed above will remain valid for jump-wise\here we have neglected, as usual, the inertial terms. Here
phenomena in general. One simplification used was to |gnorgel¢ is the generalized elastic force density
any possible effects due to backflow. As mentioned at the ™
beginning of Sec. Il, backflow in the classical twist geometry

. - afy afy
for nematics can be safely neglected: the qualitative results Felo= % - (70[(9((9 b’

are unaffected. Although backflow cannot be ruled out for
the problem discussed here, we anticipate that the S'tuat'o\ﬂherefd is the distortion free energy. Equati¢®.2) can be
rewritten in a simple explicit form if one assumes that the

will be similar to that for nematics in a classical twist geom-
etry because the key elastic mechanism in the jump dynanHirector always remains in they plane, i.e.,n=X cos¢
+V sin ¢. In the absence of any flow, the dissipation function

ics is related to twist.
The comparison of Figs. 7-1see also Figs. 3 and)4 D is again given by Eq(2.6), and the distortion free energy
Pd is given by

shows that experimental measurements would allow one t
obtain a qualitative conclusion about the applicability of the
RP potential in the description of jumpg$or S;>1, the 1 <(9¢)2

(A1)

(A2)

J
+ QOKzz_d)- (A3)

jumps are absent for the RP potentiahd, moreover, would fq= EKZZ pe

determine what kind of narrow well RP-like ailike po-
tentials, as introduced above, may be applicable in the de- _ .
scription of jumps. The results presented here show that eiS_tL)thgtltuR]ng fEl?S(Z.'G) and(A;;%) |r}to eqs.(Alt)r]ant()j(ﬁ(?), one
perimental investigations of the pitch jump dynamics will obtains the following equation fag(zt) in the bulk:
provide a unique opportunity to study the actual shape of the 96 2
anchoring potential for large angular deviations of the direc- y— =Koo—5.
tor away from the alignment direction. ot iz

We conclude this section with one final remark. Notice e ) ) .
that the calculations were mainly performed over a range of N€ diffusion equation(A4) describes the relaxation and
values for the paramete, for which the pitch jump with propagation of the azimuthal angle profile inside the liquid-

AN=1 proceeds to the equilibrium state of the layer, i.e., forcrystal cell. This equation has the same form as the one used

the situation where the free energy corresponding to the find]! the theory of the Freedericksz transiti27]. One notes
director configuration is less than the free energy of anyat the dynamics of the angli(z,t) is strongly influenced

other possible configuration. The corresponding limitationy the boundary conditions. We assume that the anchoring is
demands that the paramet®y exceeds some critical value Strong at the surface=0. Then¢(0,t)=0 for allt. The sur-

Sy For theB-like potentials,S;;=n/3w. For the RP-like facez=d is characterized by the anchoring eneidy(¢).
potentials,Sy. is slightly less than this because it is deter- The angleg=¢(d,t) at this surface satisfies the well known
mined by the relatiors,.=n sinarcco$-S,./n?]/3m, where  boundary condition

the case fon=1 corresponds to that arising from the RP and

0z

B potentials. ads_ (’9_05 _ ) AS
de 22\ " Qo (A5)
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In this article, we have assumed that the director configufimes to reveal that
ration inside the cell remains quasistatic during the jump, )
a_nd therefore the aZ|mut.haI angzlt{z,-t):(z/-d)g(t). In thls b(z0) = 2d + S A, exp(— n Kzzt)sin(nz). (A7)
simple case, the whole director configuration is described by n 1
the single variablep(t). This approximation can be justified
by considering a more general case when the director corHere the constant$, andn should be determined using the
figuration is not quasistatic and is specified by the functionsecond boundary condition derived from E45), namely,

APPENDIX
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2
dus = Koo dho/d = qg) + Ko, NA, exp(— M)COS(nd),
do n N

(A8)

which should be valid for alt.

It should be noted that for sufficiently large valuesdhf
the anchoring potential is always a nonlinear functiongof
and thus¢, andn can only be determined numerically. On

the other hand, these constants can be estimated for sorf}
limiting cases. For example, in the case of strong anchoring

at the surface=d the angles+ ¢(d,t) also vanishes and the
constants are expressed as= 7k/d, wherek=1,2,3,.... In
this case, the largest relaxation time ig=y,0%/Ky,m?,
which is the unit of time used i3] and is 3/ times the

unit of time 74 used in this article. One can readily see fromrPy
time obtained in the quasistatic approximation is of the order
of 107,. This means that for weak anchoring, the relaxation

Fig. 11 that in the case of weak anchoring, the relaxatio

times of some eigenmodes in E@\7) may be much larger
than 7y and therefore some constantsnay be much smaller

PHYSICAL REVIEW E71, 051708(2005

contrast, the functio,(z,t) contains only modes with large
relaxation timesr> 7,. At the time scald> 7, the function

¢ vanishes and the azimuthal angle profile is approximately
given by ¢(z,t) = ¢4(z,t), where ¢,(z,1) is expressed in the
form of Eq. (A7) with all n</d. Then the argument of the
sine function in Eq(A7) satisfiesz< 7 for all 0<z<d and
therefore sifnz) can be approximated as &irz) =~nz Con-
sequently, the azimuthal angle profile for , can be ex-
Eessed as

N?K ,t

H(z,t) = zpld + X, A, exp(— )nz: e(t)z/d,

Y1
(A9)

where ¢(t) is the azimuthal angle at the surfazed, given

2K oot
n—22>nd. (A10)

@(t) = o+ 2 A, exp(—
n Y1

One notes that EqA9) has exactly the same form as Eq.

than 7/d. This result enables one to derive the quasistatiq2.2), which describes the azimuthal angle profile in the qua-

approximation from the general equatioh7) and to inves-
tigate its region of validity.

Thus let us assume that some relaxation times in(&d)
are much larger tham,. This means that some< =/d. In

sistatic approximation. Thus the quasistatic approximation
has been derived directly from the general equatiai)
assuming that there exist relaxation times larger thams
discussed above, in this approximation the dynamics of the

this case, the general solution can be expressed as a sumgifch jump is described by Ed2.11), which indeed yields

two terms ¢(z,t)=¢1(z,t) +p,(z,t), where the function
¢,(z,1) is a sum of all eigenmodd$rom the general equa-
tion (A7)] with short relaxation times <7, or 7~ 7. By

sufficiently larger relaxation times in the case of weak an-
choring. This conclusion confirms the assumption made in
this article upon the anglé(z,t).
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