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We consider the problem of light scattering in a slab of cholesteric liquid crystal with the pitch which
significantly exceeds the wavelength of light. The electromagnetic wave propagation and the Green’s function
are investigated for this medium basing on geometric optics approximation. The correlation function of the
director fluctuations is calculated with the aid of the vector analog of the WKB approximation. A general
approach to treatment of single light scattering in a stratified medium with smoothly varying properties based
on the Kirchhoff method is developed. Angular and polarization dependencies of the single light scattering
intensity as well as extinction of the mean field are analyzed. Unusual dependence of the light scattering
intensity on the size of the system is found.
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I. INTRODUCTION

Investigation of optical properties and light scattering in
helical structures are particularly interesting both for theory
and in applications. Recently these problems became impor-
tant in connection with extensive use of twisted liquid crys-
tals sLCsd in information mapping and especially in LC dis-
plays.

In order to solve the problem of light scattering one has to
describe the incident fieldsnormal waves in the mediumd, to
calculate the Green’s function of the electromagnetic field
and to obtain the correlation function of the permittivity fluc-
tuations. In media with spatial inhomogeneities each of these
problems presents a serious mathematical obstacle. In the
present work we consider these problems for the cell of the
cholesteric liquid crystalsCLCd with the pitch which signifi-
cantly exceeds the wavelength. On the basis of the obtained
solutions we consider the problem of light scattering by the
cell of CLC.

Cholesteric liquid crystals are systems with one-
dimensional periodicity. The regular spatial structure leads to
unusual optical properties such as selective reflection and
anomalously large optical activity. The problem of electro-
magnetic wave propagation in the media with one-
dimensional periodicity has been a subject of a huge number
of studies. The problem leads to a set of differential equa-
tions with periodical coefficients which has the exact solu-
tion for special cases only. In CLC the only particular case is
the wave propagation along the spiral axisf1–3g. The formal
analytical solution for an oblique incidencef4–6g has a form
of the infinite series and it appears to be difficult for the
analysis. Therefore various approximate methods are widely
used in optics of layered liquid crystalsf7,8g. The emphasis
was concentrated on cases with the wavelength being close

to the period of the structure and in this case methods devel-
oped in x-ray diffraction theory are effectivef8g. So far such
an approach was the only one used in CLC studiesf9–12g. In
this case the existence of forbidden zones is typical. The
normal waves, the Green’s function of the electromagnetic
field f13–16g and the spatial correlation function of the di-
rector fluctuationsf17–20g were studied also.

In the opposite case when the wavelength is much less
than the characteristic size of LC structure no appreciable
attention was paid so far. However, this case becomes impor-
tant due to application of nematic twist cells and CLC with
the large pitch in information mapping.

It is well known that when an electromagnetic wave
propagates along the spiral axis the Mauguin’s adiabatic re-
gime takes place, i.e., the polarization of the wave rotates
together with optical axisf21g. In the general case of oblique
incidence it is relevant to use the WKBsWentzel-Kramers-
Brillouind method as long as the size of inhomogeneities is
much greater than the wavelength. Direct application of the
WKB method for electromagnetic waves is difficult since it
leads to a system of several coupled equationsf4,5g. For
CLC with the large pitch the generalization of the WKB
method was suggested in Ref.f22g. It allowed one to obtain
the analytical solution for oblique incidence of light and, in
particular, to get the normal waves of the problem. On the
basis of this method the Green’s function in such a medium
has been obtained in Refs.f23–25g as well.

In CLC the director fluctuations yield the main contribu-
tion to scattering. The problem of the director thermal fluc-
tuations in CLC was considered for fluctuations with charac-
teristic scale greater than the pitchs“smecticlike” CLCd
f17–20g. The opposite case of short wavelength fluctuations
s“nematiclike” CLCd has been recently studied in Ref.f26g
using the vector generalization of the WKB method.

In this work we developed a general scheme of calcula-
tion of light scattering intensity in CLC with the pitch sig-
nificantly exceeding the wavelength. The approach based on
the Kirchhoff method provides explicit expressions for angu-
lar and polarization dependencies of single light scattering
intensity and the extinction coefficient. The obtained results
are presented in the form convenient for comparison with the
experiment.
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The paper is organized as follows. In Sec. II we present
the basic equations describing the elastic energy, fluctua-
tions, and the propagation of electromagnetic waves in CLC.
In Sec. III the normal waves of CLC with the large scale
periodicity are considered. Maxwell equations are solved in
the framework of the geometric optics approximation. Sec-
tion IV concerns the construction of the Green’s function of
the electromagnetic field using the normal waves of the me-
dium. In Sec. V our general approach based on the Kirchhoff
method for calculation of the light scattering by a slab of
CLC is presented. In Sec. VI we calculate the light scattering
intensity and analyze various geometries of the experiment.
Section VII is devoted to the calculation of the extinction
coefficient due to the light scattering. In the conclusionsSec.
VIII d we discuss the obtained results. The spatial correlation
function of the director fluctuations in CLC is presented in
Appendix A. In Appendix B the surface corrections for the
light scattering intensity in a homogeneous medium are cal-
culated. The obtained formulas are compared with the Kirch-
hoff method results.

II. BASIC EQUATIONS

The elastic free energy of the cholesteric liquid crystal has
the form f27g

F =
1

2
E dr fK11sdiv nd2 + K22sn · curln + q0d2

+ K33sn 3 curl nd2g, s2.1d

whereKll sl =1,2,3d are the Frank modules. The unit vector
director n=nsr d describes the local orientation of the long
axes of molecules. In the equilibrium the energys2.1d is
minimal for helical distribution of the director,

n0sr d ; n0szd = scosf,sinf,0d. s2.2d

Here we introduced the Cartesian coordinate system with the
z axis directed along the CLC axis,f=fszd=q0z+f0, the
angle f0 determines the orientation of the director in the
planez=0, q0=p /P, P is the pitch. The directorn0sr d in Eq.
s2.2d is normal to thez axis and rotates uniformly around it.

The permittivity tensor«̂ describes the optical properties
of cholesterics. For CLC in equilibrium it has the formf27g

«ab
0 sr d ; «ab

0 szd = «'dab + «ana
0szdnb

0szd, s2.3d

where«a=«i−«', «i ,«' are the permittivities along and per-
pendicular to n0, respectively. In the general case«̂sr d
= «̂0sr d+d«̂sr d whered«̂sr d is the fluctuation of the permit-
tivity tensor.

The wave equation in a nonmagnetic medium for a mono-
chromatic wave is

fcurl curl −k0
2«̂sr dgEsr d = 0, s2.4d

whereE is the electric field,k0=v /c, v is the circular fre-
quency,c is the light velocity in vacuum. The wave equation
s2.4d in the integral form is written as

Esr d = E0sr d + k0
2E T̂0sr ,r 8dd«̂sr 8dEsr 8ddr 8. s2.5d

The electric fieldE0sr d and the Green’s function of electro-

magnetic fieldT̂0sr ,r 8d obey the equations

fcurl curl −k0
2«̂0szdgE0sr d = 0, s2.6d

fcurl curl −k0
2«̂0szdgT̂0sr ,r 8d = dsr − r 8dÎ . s2.7d

Here Î is the unit matrix.
Since Eq.s2.6d is homogeneous the fieldE0sr d can be

written as a linear combination of the normal waves. In order
to make the problem unambiguous Eq.s2.7d should be
supplemented by the corresponding boundary conditions. In
the infinite medium they are radiation conditionsf28g. Due
to symmetry of CLC with respect to displacements in thexy

plane we haveT̂0sr ,r 8d; T̂0sr '−r '8 ;z,z8d, wherer '=sx,yd.
The second term in the right hand side of Eq.s2.5d corre-

sponds to the scattered fieldEssd, produced by the incident
field E0. Solving this equation by iterations and restricting
ourselves to the lowest order ind«̂ we obtain the scattered
field Essd in the Bornssingle-scatteringd approximation

Essdsr d = k0
2E T̂0sr ' − r '8 ;z,z8dd«̂sr 8dE0sr 8ddr 8. s2.8d

The properties of the scattered light are determined by the
function of coherence,

kEa
ssdsr 1dEb

ssd*sr 2dl = k0
4E Tag

0 sr 1' − r 1'8 ;z1,z18d

3 Tbz
0*sr 2' − r 2'8 ;z2,z28dGgnzmsr 18,r 28d

3 En
0sr 18dEm

0*sr 28ddr 18dr 28, s2.9d

where

Ggnzmsr 18,r 28d = kd«gnsr 18dd«zm
* sr 28dl

is the permittivity correlation function, the bracketsk¯l and
the star designate the statistical averaging and complex con-
jugation respectively. Due to CLC symmetry we have

Ĝsr 18,r 28d ; Ĝsr 1'8 − r 2'8 ;z18,z28d.

In liquid crystals the director fluctuations

dnsr d = nsr d − n0szd s2.10d

are most essential ind«̂ f27g and in this paper we consider
these fluctuations only. In the framework of this approxima-
tion both the equilibrium and the fluctuating permittivity ten-
sor has the form similar to Eq.s2.3d with substitutionn0szd
→nsr d:

«absr d ; «'dab + «anasr dnbsr d. s2.11d

In the first order the permittivity fluctuations in CLC have
the form
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d«absr d = «afna
0szddnbsr d + dnasr dnb

0szdg. s2.12d

The relationship between corresponding correlation func-
tions is

Gabgdsr ';z,z8d = «a
2fna

0szdng
0sz8dgbdsr ';z,z8d

+ na
0szdnd

0sz8dgbgsr ';z,z8d

+ nb
0szdng

0sz8dgadsr ';z,z8d

+ nb
0szdnd

0sz8dgagsr ';z,z8dg. s2.13d

Here

gabsr 1' − r 2';z1,z2d = kdnasr 1',z1ddnbsr 2',z2dl
s2.14d

is the correlation function of the director fluctuations. Thus
for calculation of the single light scattering intensity we

should find the normal wavesE0, the Green’s functionT̂0,

and the permittivity correlation functionĜ. In the following
two sections we are concerned with the first and the second
problems.

III. NORMAL WAVES IN CLC WITH THE LARGE PITCH

Let us consider the problem of electromagnetic wave
propagation in CLC with the large scale periodicity,l! P,
wherel is the wavelength of light, so we have a large pa-
rameterV=k0/q0=2P/l@1. In this case it is reasonable to
suppose that the electric field has the form of a quasiplane
wave,

Esr d = Asr dexpfiCsr dg, s3.1d

whereCsr d is the real phase,Asr d=Asr desr d, esr d is the unit
vector of polarization,e·e* =1, andAsr d is the real ampli-
tude. At a distance of the order ofl variations of functions
Asr d, esr d and C8sr d are small compared to the functions
themselves. In this section we consider CLC in equilibrium
only, so the upper index “0” in the field components will be
omitted. Substituting Eq.s3.1d into the wave equations2.6d
we get

¹ 3 ¹ 3 Asr d + ifksr d 3 ¹ 3 Asr d + ¹ 3 ksr d 3 Asr dg

− ksr d 3 ksr d 3 Asr d − k0
2«̂0sr dAsr d = 0, s3.2d

where the three-dimensional wave vectorksr d= ¹Csr d is in-
troduced.

In comparison to the first term the second and the third
terms are of the order ofV, the fourth and the fifth terms are
of the order ofV2 in Eq. s3.2d. This hierarchy makes it
possible to use the geometric optics approximation. If we
keep the principal terms onlys,V2d then we get the vector
analog of the eikonal equation. In this approximation we can
calculate¹C=k and the polarization vectore. The terms of
the order ofV yield the so-called transfer equation. This
equation makes it possible to determine the wave amplitude
Asr d.

According to Eq.s3.2d the eikonal equation has the form

ksr d 3 ksr d 3 esr d + k0
2«̂0sr desr d = 0. s3.3d

For each fixed pointr Eq. s3.3d coincides formally with the
ordinary equation describing the propagation of plane waves
in homogeneous anisotropic mediaf29g, so that it is possible
to use well known results. Particularly in order to have a
nonzero solution of Eq.s3.3d the determinant of the matrix in
the left hand side has to be equal to zero.

From Eq.s2.4d the conservation law follows:

div S= 0, s3.4d

where

Ssr d =
c

8pk0
fk uEu2 − E*sE ·kdg s3.5d

is the Poynting vectorf29g. Note that in our case«̂0sr d
= «̂0szd and the medium is homogeneous in thesx,yd plane.
Thenksr d=kszd=sq ,kzszdd.

Equation s3.3d for uniaxial homogeneous media for the
fixed k direction has two well known solutions correspond-
ing to ordinary and extraordinary waves. In particular the
module of the wave vectork has the form

ks1d = k0
Î«' = k0ns1d,

ks2dszd = k0Î «'«i

«' + «acos2u
= k0ns2dszd, s3.6d

where u is the angle betweenn0szd and kszd, ns1d and
ns2dszd are refractive indices of the ordinary and extraordi-
nary waves, respectively. In Eq.s3.3d polarization vectors
es1dszd andes2dszd corresponding to these values of thek vec-
tors are determined by conditions

es1dszd ' n0szd, es1dszd ' k s1dszd,

«̂0szdes2dszd ' k s2dszd, s3.7d

the vectores2dszd is in the plane formed by vectorsk s2dszd and
n0szd, i.e.,

es1dszd i k 3 n0

es2dszd i n0sk «̂0kd − ksk «̂0n0d. s3.8d

Let us present thek s jdszd vector in the formk s jdsq ,zd
=(q , ±kz

s jdsq ,zd). Taking into account that cosu
=k s2dszd ·n0szd /ks2dszd=q ·n0szd /ks2dsq ,zd one can see that the
second expression of Eq.s3.6d for givenq becomes an alge-
braic equation with respect tokz

s2dsq ,zd. Thus we have

kz
s1dsq,zd ; kz

s1dsqd = Î«'k0
2 − q2,

kz
s2dsq,zd =Î«ik0

2 − q2 −
«a

«'

fq ·n0szdg2. s3.9d

The signs “+” and “−” correspond to waves propagating in
the positive and the negativez direction, respectively. Note
that according to Eq.s3.8d polarization vectorses jd depend on
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q also. Figure 1 shows schematically two solutionss3.6d for
a fixedq vector.

Thus we get four normal waves in the form

E±
s jdsr … = As jdsq;z,z0des jdsq,zd

3 expSiq · r ' ± iE
z0

z

kz
s jdsq,z8ddz8D s3.10d

with the undetermined amplitudesAs jdsq ;z,z0d.
Contrary to the standard relations for the homogeneous

medium values of k s2d ,es1d, and es2d entering Eqs.
s3.6d–s3.10d depend onz. Note that polarization vectors in
Eq. s3.8d are real in this approximation.

For wavess3.10d we get

Ss jdsq,zd =
c

8pk0
As jd2sq;z,z0dhk s jdsq,zd − es jdsq,zd

3fes jdsq,zd ·k s jdsq,zdgj. s3.11d

In our case we have the conservation law in the form
div Ss jd=]zSz

s jdsq ,zd=0. Therefore the componentSz
s jdsq ,zd

does not depend onz. Then the amplitudesAs jdsq ;z,z0d can
be written in the form

As jdsq;z,z0d = E0
s jd Bs jdsq,zd

Bs jdsq,z0d
, s3.12d

where

Bs jdsq,zd =Î k0

kz
s jdsq,zd

Î« j

ns jdsq,zdcosds jdsq,zd
, s3.13d

«1=«', «2=«i, ds jdsq ,zd is the angle between theEs jd and
Ds jd= «̂Es jd vectors. For the ordinary beam

cosds1d = 1,

for the extraordinary beam

cosds2d =
ses2d«̂0es2dd1/2

ns2d
=

«'sin2u + «icos2u

Î«'
2 sin2u + «i

2cos2u
.

In this case the constantE0
s jd determines the initial amplitude

of the field in the planez=z0.
Equationss3.6d–s3.13d have a clear physical meaning.

They correspond to the adiabatic regime of the wave propa-
gation. These equations can be considered as generalization
for the case of the oblique incidence of the well known Mau-
guin solution f21g. Propagating between planesz=z0 and
z the normal wave with index j gains the phase
ez0

z kz
s jdsq ,z8ddz8. As long as vectorses jdsq ,z0d andes jdsq ,zd do

not coincide the polarization vector rotates in the wave
propagation process. The dependence of the amplitudes
As jdsq ;z,z0d on z in Eq. s3.12d is determined by the law of
energy conservation for the wave propagating in the inhomo-
geneous medium without absorption. The wave vector
k s jdsq ,zd in each fixed point of CLC is directed normally to
the wave front. For the ordinary beam the wave vectork s1d

=k s1dsqd does not depend onz, whereas the modulus and the
direction of the wave vector of the extraordinary beamk s2d

=k s2dsq ,zd does depend onz. The directions of polarization
vectorses jdsq ,zd depend onz for both types of waves. For
each vectorq the wave vectork s jdsq ,zd is in the plane con-
taining vectorsq andez both for ordinary and extraordinary
beamsez is the unit vector along thez axis.

The tangent to the trajectory of the beam is parallel to the
Poynting vectorS. Parametrizing the trajectory as(r 'szd ,z)
we can write

dr 'szd
dz

=
S'szd
Szszd

. s3.14d

As far asds1d=0, Ss1dsq ,zd ik s1dsqd and it does not depend on
z. Therefore the trajectory of the ordinary beam is a straight
line parallel to the wave vectork s1d.

In generalds2dÞ0 and as it follows from analysis of Eq.
s3.11d the vectorSs2dsq ,zd as a function ofz does not belong
to the same plane. Since our system is locally uniaxial,
Ss2d i «̂k s2d. So

S'
s2dszd

Sz
s2dszd

=
„«̂szdk s2dszd…'

„«̂szdk s2dszd…z

s3.15d

and Eq.s3.14d for the trajectory of the extraordinary beam
takes the form

dr 'szd
dz

=
n0szdq cosfszd«a + q«'

kz
s2dsq,zd«'

. s3.16d

Integrating Eq.s3.16d we get the trajectory of the beam,

r 'szd =
«aq

«'
E

0

z n0sz8dcosfsz8d
kz

s2dsq,z8d
dz8 + qE

0

z dz8

kz
s2dsq,z8d

.

s3.17d

A typical trajectory of the extraordinary beam calculated by
Eq. s3.17d is shown in Fig. 2. Here the following parameters
were used«i=2.3, «a=2.0, the angle of incidence on the
plane z=0 is equal top /4, and anglef0=−p /4. We take

FIG. 1. Two wave vectorsk s1d andk s2d corresponding to given
q. Here circleS1 and ellipseS2 are the cross sections of the sur-
faces of ordinarys1d and extraordinarys2d wave vectors by the
plane containingq andz axis.
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sufficiently large«a for better presentation only. One can see
that the trajectory of the extraordinary beam is helixlike. Its
pitch coincides with the pitch of CLC and the “diameter” of
the helix grows with increasing ofq, i.e., with the increase of
the incidence angle. The caseq=0 corresponds to the propa-
gation along the cholesteric axis and the trajectory becomes a
straight line directed along thez axis. This case was investi-
gated by Mauguinf21g.

Now let us consider conditions when the wavess3.10d can
penetrate into the CLC. For the ordinary wavekz

s1d is real
provided the conditionq2øk0

2«' is fulfilled. In this case the
ordinary beam can penetrate to any depth in thez direction.
If q2.k0

2«', the value ofkz
s1d is imaginary and the ordinary

wave cannot propagate inside the CLC.
For the extraordinary beam the conditions of propagation

are more complex and depend on the relation betweenq and
z parameters. In this case the following situations are pos-
sible:

sid If q2.k0
2maxs«i ,«'d then kz

s2dsq ,zd is imaginary for
any z, and the wave cannot propagate inside CLC.

sii d If q2,k0
2mins«i ,«'d then the valuekz

s2dsq ,zd is real
for any z and the wave can penetrate into CLC to anyz.

siii d If k0
2mins«i ,«'døq2øk0

2maxs«i ,«'d then the ex-
traordinary beam can propagate into the CLC in certain lim-
its of z. The range of these values is determined by the in-
equality cos2fszdø«'sk0

2«i−q2d /q2«a, for «a.0, and the
inequality cos2fszdù«'sk0

2«i−q2d /q2«a for «a,0. Note that
in the considered region ofq the condition 0ø«'sk0

2«i

−q2d /q2«aø1 is fulfilled.
So in the last case the capture of the extraordinary beam

in CLC takes placef24,25g. From the physical point of view
this effect implies that the beam starts to deviate and in the
point z=z*sqd the componentkz

s2dsq ,zd turns to zero changing
then its sign. This effect in some aspect is similar to total
reflection from a surface inside the medium. Since the refrac-
tive index is a periodical function ofz such a beam would
reflect alternately from two planes normal to thez axis. It

means that a plane wave channel is formed and inside this
channel the extraordinary beam propagates at a large dis-
tance alongr ' remaining within one period inz. The projec-
tion of the ordinary and extraordinary beams and formation
of the waveguide propagation are shown in Fig. 3. The
curves are calculated for«i=2.86,«'=2.28,f0=0, and for
different angles of incidencex0 on the planez=0. These
permittivities were used in experiments of Refs.f30,31g. For
the ordinary beamx0=63.2° s1ad andx0=85.0° s1bd, for the
extraordinary beam the anglex0=63.2° s2ad corresponds to
propagation outside of the wave guide channel and for angles
x0=63.4° s2bd and x0=70.0° s2cd the wave guide regime
takes place. Here they axis is directed along theq vector.

The trajectory of the ordinary beam is a straight line for
an arbitrary angle of incidence. For extraordinary beams with
no wave guide regime the trajectory is helixlikesFig. 2d. For
extraordinary beams captured into a wave guide channel the
trajectory is nonplane also and its form can be calculated by
Eq. s3.17d with an additional condition that the component
kzsq ,z8d changes its sign in the turning points. The width of
the wave guide channel depends on the incidence angle and
varies within the limitss0,Pd. The widest channel is re-
stricted by planes with minimal values of the refractive in-
dex,ns2dszd=Î«'. The beam capture starts with the angle of
incidence,

x0
* = arcsin

Î«'

Î«i − «acos2fi

, s3.18d

wherefi is the angle betweenq andn0 vectors in the plane
z=0. For parameters«i=2.86, «'=2.28 used in Fig. 3 the
anglex0

* <63.3°. The effect of the extraordinary beam return
was observed experimentallyf30,31g.

IV. FIELD OF THE POINT SOURCE

As far as our medium is homogeneous in thexy plane it is
suitable to complete the transverse Fourier transformation,

fsr d =E dq

s2pd2 fsq,zdeiq·r ',

FIG. 2. A trajectory of the extraordinary beam in CLC. All
distances are expressed in terms ofP.

FIG. 3. The beam trajectories in CLC. Projections on thez,k'

plane. All distances are expressed in terms ofP.
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fsq,zd =E dr 'fsr de−iq·r '. s4.1d

The corresponding problems2.7d for the field of the point

sourceT̂0sq ;z,z1d is reduced to a set of equations,

L̂szdT̂sq;z,z1d = dsz− z1dÎ , s4.2d

where

Labszd = sezaezb − dabd
]2

]z2 + isqaezb + qbezad
]

]z

+ sq2dab − qaqbd − k0
2«abszd

is the linear differential operator of the second order. The

first three terms of the operatorL̂ correspond to operator
curl curl in sq ,zd presentation. For convenience we consider
hereq as a three-dimensional vector withqz component be-
ing equal to zero,qz=0. Thus the calculation of the Green’s
function leads to solution of the system of nine differential
equations with periodic coefficients. The principle of radia-
tion determining the behavior of the solution atz→ +` and
z→−` is chosen as boundary conditions. The set of equa-
tions for the caseV@1 was solved in Ref.f25g, where the
approach typical to the Sturm-Liouville problem was used.
The solution of the inhomogeneous equations4.2d is con-
structed as the superposition of solutions of the correspond-
ing homogeneous equations3.10d in the regionsz.z1 and
z,z1. The coefficients of the superposition are chosen so as
to ensure the corresponding singularity in the right hand side
of Eq. s4.2d. The result has the formf25g

T̂0sq;z,z1d = T̂s1dsq;z,z1d + T̂s2dsq;z,z1d + T̂s3dsq;z,z1d,

s4.3d

where

Tab
s jd sq;z,z1d =

i

2k0
Bs jdsq,zdBs jdsq,z1dea

s jdsq,zd

3 eb
s jdsq,z1dexpSiUE

z1

z

kz
s jdsq,z8ddz8UD ,

s4.4d

for j =1, 2, and

Tab
s3dsq;z,z1d = −

ezaezb

k0
2«'

dsz− z1d. s4.5d

It can be shown that the solutions4.3d satisfies the Eq.s4.2d
and the radiation condition. The first and the second terms of
Eq. s4.3d contain oscillating factors and determine the as-
ymptotics of the Green’s function in the far zone. The third
term is a short-range one and it contributes to the static field
of the dipole only. In what follows this term is omitted.

In order to get the Green’s function in the coordinate pre-
sentation it is necessary to complete inverse two-dimensional
Fourier transformation. The integrals can be calculated by
the stationary phase method. For this purpose it is necessary
to find the stationary pointqst and then to expand the expo-

nent in its vicinity as a Taylor series overq−qst up to terms
of the second order. For the first terms4.3d the stationary
point is determined by the condition

¹qfkz
s1dsqduz− z1u + q · sr ' − r 1'dg = 0. s4.6d

Solving Eq.s4.6d we get

qst
s1d = Î«'k0

r ' − r 1'

ur − r 1u
. s4.7d

The exponent in this term is equal toiC1 where

C1 = kz
s1dsqst

s1dduz− z1u + qst
s1d · sr ' − r 1'd = Î«'k0ur − r 1u.

s4.8d

For the second term of Eq.s4.3d the equation for the sta-
tionary point has the form

r ' − r 1' =
1

«'
UE

z1

z «̂'sz8dqst
s2ddz8

kz
s2dsqst

s2d,z8d U , s4.9d

where «kl
'szd=«klszd, sk, l =1,2d is the transverse projection

of «̂szd on thexy plane. The exponent of the second term will
be equal toiC2 where

C2 = UE
z1

z

dz8kz
s2dsqst

s2d,z8dU + qst
s2d · sr ' − r 1'd. s4.10d

Thus we get the Green’s function in the far zone

Tabsr ,r 1d =
expsiC1d
4pur − r 1u

ea
s1dsqst

s1d,zdeb
s1dsqst

s1d,z1d

+
expsiC2d
4pur − r 1u

Bs2dsqst
s2d,zdBs2dsqst

s2d,z1d
ÎdetD̂sqst

s2d;r ,r 1d

3 ea
s2dsqst

s2d,zdeb
s2dsqst

s2d,z1d, s4.11d

where

Dklsq;r ,r 1d = −
k0

ur − r 1uÎ«'

UE
z1

z F «kl
'

f«i«'k0
2 − sq«̂'qdg1/2

+
s«̂'qdks«̂'qdl

f«i«'k0
2 − sq«̂'qdg3/2Gdz8U . s4.12d

According to Eq.s4.11d the Green’s function decreases
with the distancer as 1/r. This behavior is valid if the phase
s4.10d is real. The effect of the wave guide channel described
in Sec. III appears for the Green’s function too. For the sec-
ond term of the Green’s functions4.11d the wave guide re-
gime takes place similar to the extraordinary normal wave.
For waves captured in a wave guide channel Eq.s4.11d
should be modified. In order to calculate the Green’s func-
tion inside the channel it is necessary to sum the waves at a
given point after various numbers of reflections. Here we do
not study the problem of calculating the Green’s function
inside the wave channel but we only perform the qualitative
analysis of the effect. First we obtain the decay law of the
Green’s function. As far as all waves hitting in the channel
are being in plane layer for any distanceur '−r 1'u, the wave
energy inside the channel decreases asur −r 1u−1<ur '
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−r 1'u−1. Hence the amplitude of the field decays asur
−r 1u−1/2 instead of the usual behaviorur −r 1u−1.

Let us estimate the fraction of the energyCt of the ex-
traordinary wave outgoing in the channel from the pointlike
source situated in the origin of the coordinate framefsee Fig.
3, beamss2bd and s2cdg. This value is of the order of the
fraction of the solid angleut forming by the beams outgoing
into the channel to the total solid angle 4p. For positive
directions,z.0 the beams in the channel are radiated in the
range of anglesx0

* øxøp /2 where the minimal anglex0
* is

determined by Eq.s3.18d. The solid angleut has the form

ut = 2E
0

2p

dfiSE
x0

*

p/2

sinx dxD . s4.13d

Here factor 2 is introduced in order to take into account
beams propagating in the negative direction,z,0. Calculat-
ing integralss4.13d we get

Ct ,
ut

4p
=

2

p
arctan

Î«a

Î«'

. s4.14d

For «'=2.28 and«i=2.86 used in calculation, Fig. 3, the
fraction of the energy outgoing into the wave guide channel
is Ct<0.30.

Let us analyze the limitq0→0 in Eq.s4.4d corresponding
to the uniaxial homogeneous medium, in particular to nem-
atic liquid crystal in our case. The valuesn0szd, kz

s jdsq ,zd,
Bs jdsq ,zd, es jdsq ,zd in this limit do not depend onz:n0szd
=n0, kz

s jdsq ,zd=kz
s jdsqd, Bs jdsq ,zd=Bs jdsqd, es jdsq ,zd=es jdsqd

whereas the functionT̂s jdsq ;z,z1d depends on the difference

of the spatial coordinates,T̂s jdsq ;z,z1d=T̂s jdsq ;z−z1d only.
Equations4.4d in this limit is

Tab
s jd sq;z− z1d =

i

2k0
Bs jd2sqdea

s jdsqdeb
s jdsqdeikz

s jdsqduz−z1u.

s4.15d

In homogeneous uniaxial media the three-dimensional
Fourier transform of the field of the point source has the
form f32g

Tab
0 sQd =

1

k0
2S o

j=1,2

es jdasQdes jdbsQd

es jdsQd«̂0es jdsQd

ks jd
2 sQd

Q2 − ks jd
2 sQd − i0

−
QaQb

Q«̂0Q
D . s4.16d

Here Q is the three-dimensional wave vector,es jd are the
polarization vectors, andks jd are the wave vectors of the or-
dinary and extraordinary plane waves propagating in homo-
geneous uniaxial media. The corresponding wave numbers
and polarization vectors of the ordinary and extraordinary
waves have the forms3.6d and s3.8d with the substitution of
kszd into Q:

ks jdsQd = ks jdsQd, es jdsQd = es jdsQd. s4.17d

Let us present the wave vectorQ in the formQ=sq ;qzd
and fulfill the inverse Fourier transformation overqz in Eq.
s4.16d,

Tab
0 sq;zd =E

−`

` dqz

2p
Tab

0 sq;qzdeiqzz. s4.18d

For z@l the principal contribution to asymptotics of this
integral is determined by the poles of the first two terms in
Eq. s4.16d. These poles can be found by solving the disper-
sion equations,

q2 + qz
2 − ks jd

2 sq,qzd = 0, s4.19d

j =1, 2. Completing one-dimensional Fourier transformation
over qz we get from Eq.s4.16d

Tab
0 sq;zd =

i

k0
2 o

j=1,2
ks jd

2 S2qz
s jd − U ]ks jd

2

]qz
U

qz=qz
s jd
D−1

3
es jdaes jdb

es jd«̂
0es jd

expsiqz
s jduzud, s4.20d

where ±qz
s jdsqd are two solutions of Eq.s4.19d; values of

es jd and ks jd are calculated for the wave vectorQs jdsqd
; (q ,qz

s jdsqd).
Substituting expressionss4.17d for ks jd

2 sQd into Eq. s4.19d
and solving the obtained equations forj =1, 2 with respect to
qz we get in both cases thatqz

s jd=kz
s jdsqd wherekz

s jdsqd is de-
termined in Eq.s3.9d. Note that for j =2 it is necessary to
take into account thatQ ·n0=q ·n0. Thus we haveQs jdsqd
=(q ,kz

s jdsqd)=k s jdsqd. Using Eq.s4.17d it is not difficult to
verify that values ofes jd(k

s jdsqd) and ks jd(k
s jdsqd) coincide

with es jdsqd and ks jdsqd, respectively, in Eqs.s3.8d and s3.9d
for q0=0. Also it is easy to verify the identity

kz
s jdsqdBs jd2sqd

k0
=

ks jd2sqd
k0

2es jdsqd«̂0es jdsqd

3 Sqz −
1

2
U ]ks jd

2 sq,qzd

]qz
U

qz=kz
s jdsqd

D−1

s4.21d

for both cases,j =1, 2. As a result Eq.s4.20d coincides with
Eqs.s4.3d and s4.15d.

V. GENERAL THEORY OF THE SINGLE LIGHT
SCATTERING IN THE STRATIFIED MEDIA

In our medium the normal waves are not plane, the
Green’s function has a complicated structure and the corre-

lation function of the permittivity fluctuationsĜsr 1,r 2d de-
pends not only on the difference of the spatial coordinates
but also on their values separately. Therefore the intensity of
the single scattering is not proportional to the three-
dimensional Fourier transformation of the permittivity fluc-
tuationsd« for the scattering vectork ssd−k sid fsee Eq.sB1dg.

Another problem results from Eq.s2.8d which describes
the scattered field inside the medium only, whereas in an
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experiment the scattered light is usually measured outside
the medium. For homogeneous systems this problem is
solved in the following way. The scattering volume is as-
sumed to be imbedded into a homogeneous medium with
permittivity «0 in order to avoid the problem of refraction
near the boundary of the specimensgenerally the refraction
at the boundary could be taken into accountd. As far as in the
homogeneous medium the incident wave is plane and the
scattered wave in the far zone inside the medium can be
considered as the quasiplane the refraction problem can be
treated with the use of the Fresnel formulas. In this case there
arises a problem of recalculation of solid angles from the
incident to the refracted beam. This problem was considered
in Refs.f33g for general case of anisotropic media.

There is a fundamental difference between the scattering
medium with the periodic inhomogeneities and the homoge-
neous environment. The normal waves and the Green’s func-
tion inside and outside the scattering volume are essentially
different. In particular the incident and the scattered waves
can be considered as plane waves outside the medium only,
so the effect of the boundary is important.

In order to overcome this obstacle for the scattering prob-
lem in the medium with one-dimensional regular inhomoge-
neities we suggest the Kirchhoff method. The problem is
solved in three stages:sid The scattered field is calculated
inside the medium in thesq ,zd representation.sii d We recal-
culate the scattered field in the boundary outside the medium
into that in the outside space.siii d The coordinate represen-
tation of the field in the outside area is calculated on the
basis of its value in the boundary outside the medium in
sq ,zd representation.

In what follows we assume that the scattering volume is
the plane layer, 0øzøL, with a large transverse sizeL'

@L sFig. 4d. The incident plane wave starts fromz=−` and
the scattered field is recorded in the regionz.L, i.e., in the
positive half space. The latter is not essential as far as scat-
tering in the negative half space,z,0, can be considered in
a similar way. Let the incident field is a plane wave with the
wave vectork sid. The scattered wave has the wave vectork ssd

and is measured in the far zone.
Due to the identitykz

2+k'
2 =k0

2«0 which is valid outside the
stratified medium the total wave vectork is determined by
the componentk' and the sign of thekz component. There-
fore it is sufficient to define the vectork

'

sid and direction of
the incident wave, positive or negative, with respect toz. The
latter is valid for the wave vectork

'

ssd.
Below indices “in” and “out” refer to the values inside

and outside of the inhomogeneous medium, respectively.

A. Kirchhoff method

Let us consider an arbitrary inhomogeneous specimenG
bounded by a closed surfaceS situated outside in a homo-
geneous medium. The electromagnetic field outside the inho-
mogeneous specimen,Esr d=Eoutsr d, satisfies the wave equa-
tion

scurl curl −k0
2«0dEsr d = 0. s5.1d

It is easy to notice that the system of the three equationss5.1d
is equivalent to the system

HsD + k0
2«0dEsr d = 0,

div Esr d = 0.
J s5.2d

The first equations5.2d implies that each vector component
satisfy the scalar Helmholtz equation and the second equa-
tion yields the additional condition divE=0 since the elec-
tromagnetic field is transversal.

The Green’s functionTsr ,r 8d=Toutsr ,r 8d, r ,r 8¹G, satis-
fies the equation

sD + k0
2«0dTsr ,r 8d = − dsr − r 8d. s5.3d

Equations5.3d does not define the functionTsr ,r 8d uniquely
and additional boundary conditions are required. If we take
TuS=0 as the boundary condition then the fieldEasr d in the
observation point may be expressed in terms of the field
Easr 8d on the surfaceS. According to the Kirchhoff-
Helmholtz integral theoremf34g,

Easr d = −E
S

d2r8Easr 8d¹r8Tsr ,r 8d ·ssr 8d, s5.4d

wheressr 8d is the external normal to the surfaceS in the r 8
point.

The expression for the Green’s function satisfying the
condition TuS=0 depends on the form of the specimen. For
simplicity we shall consider the surfaceS as a piece of the
planez=L with a large transverse sizeL' closed by a large
hemisphere. If the Green’s functionTsr ,r 8d satisfies the ra-
diation condition in the infinity then the contribution of the
hemisphere to integrals5.4d tends to zero with increasing of
its radius. In this case the boundary conditionTuS=0 in our
geometry is reduced toTuz=L=0, and using the mirror image
method we get

Tsr ,r 8d =
1

4p
S eikur−r8u

ur − r 8u
−

eikur−r 18u

ur − r 18u
D , s5.5d

wherer 18 is the mirror image ofr 8 point with respect to the
boundary planez=L.

Let us suppose that the field is measured in the pointr
=sr ' ,zd, z−L@L'. Then in both terms of Eq.s5.5d we can
use the plane wave approximation of the form

eikur−r8u

ur − r 8u
<

eikr

r
e−ikssd·r8. s5.6d

As far as in our geometryssr 8d ·¹r8=−] /]z8, we get from
Eq. s5.4d

FIG. 4. Geometry of light scattering. HereD is the distance
between the slab and the screen.
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Esr d =
− ik0

Î«0

2p

eikr

r

z

r
e−ikz

ssdLP̂sr dEsk'
ssd,L d. s5.7d

In order to fulfill the condition divE=0 we multiplied the
field by the projector

P̂sr d = Î −
r ^ r

r2 ,

providing the field to be transversal in the far zone. This way
we get the vector analog of the Kirchhoff formula.1

Now due to relationea
ssdPab=eb

ssd we obtain the intensity
of the scattered field with polarizationessd,

I =
Î«0c

8p

k0
2«0

4p2

1

r2Sz

r
D2

kuessd ·Eout
ssd sk'

ssd,L du2l. s5.8d

Thus the scattered field in thesq ,zd representation in the
boundary outside the media,Eout

ssd is required for the follow-
ing calculations.

B. Recalculation of the field in the specimen boundaries

The relations between field components inside and out-
side the medium are determined by the boundary conditions
of electrodynamics. According to these conditions the trans-
verse components of the wave vectors and the fields do not
change when the waves pass through the boundaries,

Eout'
sid sk'

sid,0d = Ein'
sid sk'

sid,0d,

Eout'
ssd sk'

ssd,Ld = Ein'
ssd sk'

ssd,Ld. s5.9d

The z components of the fields could be obtained from the
condition for the induction vector divD=0. This condition
gives

Dout z
sid sk'

sid,0d = Din z
sid sk'

sid,0d,

Dout z
ssd sk'

ssd,Ld = Din z
ssd sk'

ssd,Ld. s5.10d

So linear relations between the fieldsEin andEout are valid at
the boundaries inside and outside the specimen

Ein
sidsk'

sid,0d = M̂out→insk'
sid,0dEout

sid sk'
sid,0d,

Eout
ssd sk'

ssd,Ld = M̂ in→outsk'
ssd,LdEin

ssdsk'
ssd,Ld. s5.11d

HereM̂out→in andM̂ in→out are transformation matrices which
can be calculated from Eqs.s5.9d and s5.10d. As far as the
director componentnz

0=0 these matrices do not depend on
k' and we get

M̂out→in = diaĝs1,1,«0/«'d,

M̂ in→out = sM̂out→ind−1, s5.12d

where diag denotes the diagonal matrix.

VI. SCATTERING OF LIGHT IN CLC

For stratified media with boundaries parallel to the layers
the wave inside the medium has the form

Ein
sidsr d =Esidsk'

sid,zdeik'
sid·r ', s6.1d

where Esidsk
'

sid ,zd is determined by the properties of the
stratified medium and also by polarization and amplitude of
the incident wave. In caseP@l the functionEsid is deter-
mined by Eqs.s3.10d and s3.12d.

From Eqs.s2.8d and s6.1d we obtain the scattered field
Ein

ssdsk
'

ssd ,Ld at the boundaryz=L inside the specimen

Ein
ssdsk'

ssd,Ld = k0
2E

0

L

dz8T̂0sk'
ssd;L,z8d

3 d«̂sk'
ssd − k'

sid,z8dEsidsk'
sid,z8d. s6.2d

From Eqs. s5.11d and s6.2d and relation kd«̂sk' ,zd
^ d«̂*sk' ,z8dl=S'Ĝsk' ;z,z8d we obtain the intensity of the
single light scattering outside the specimens5.8d in the form

I =
Î«0c

8p

k0
6«0

4p2

S'

r2 Sz

r
D2

ea
ssdeg

ssdMab
in→outMgd

in→out

3 E
0

L

dz1E
0

L

dz2Tbr
0 sk'

ssd;L,z1dTdw
0* sk'

ssd;L,z2d

3 Grnwmsk'
ssd − k'

sid;z1,z2dEn
sidsk'

sid,z1dEm
sid*sk'

sid,z2d,

s6.3d

whereS' is the cross-section area of the specimen.
We restrict our treatment to the case when the polarization

of the incident light inside the medium has only one of two
possible types of wavesEin

sidsr d, Eq. s3.10d. Otherwise the
summation oversid should be performed for the field inside
the medium. In a similar way the scattered light outside the
medium corresponds only to one type of the scattered wave
inside the medium,Ein

ssdsr d. So in what follows it is possible
to omit the summation overssd for the field inside the me-
dium. Thus indicessid andssd take values 1, 2 dependent on
types of the incident and scattered waves.

A. Light scattering intensity in CLC with large pitch

Expression for the scattering intensitys6.3d contains the
conjugate couples of fields and Green’s functions. Substitut-
ing expressions for the incident field, Eqs.s3.10d, and the
Green’s function, Eq.s4.4d, into Eq. s6.3d we get the inten-
sity of scattering,

1It is known f34g that direct translation of the scalar Kirchhoff
formula to the vector problem leads to violation of the relation
div E=0, i.e., the field becomes nontransversal. For elimination of
this contradiction it is possible to apply the Kirchhoff-Kottler rela-
tion ssee, e.g., Ref.f35gd. However, this effect in the far zone is of
the order ofl /L'!1. Therefore we shall use the vector equation
s5.7d where the projectorPabsr d makes our field transversal. In the
far zone this approach is similar to the Kirchhoff-Kottler method.
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I = J0Sz

r
D2Bssd2sk'

ssd,Ld
Bsid2sk'

sid,0d
1

L
E

0

L

dz1E
0

L

dz2

3expFiE
z1

z2

qz
sscdsz8ddz8GBsidsk'

sid,z1dBsidsk'
sid,z2d

3 Bssdsk'
ssd,z1dBssdsk'

ssd,z2der
ssdsk'

ssd,z1dew
ssdsk'

ssd,z2d

3 Grnwmsq'
sscd;z1,z2den

sidsk'
sid,z1dem

sidsk'
sid,z2d, s6.4d

whereq
'

sscd=k
'

ssd−k
'

sid, qz
sscdszd=kz

ssdsk
'

ssd ,zd−kz
sidsk

'

sid ,zd,

J0 =
Î«0cE0 in

sid2

8p

k0
4«0

16p2

Vsc

r2 ea
ssdeg

ssdMab
in→outMgd

in→out

3 eb
ssdsk'

ssd,Lded
ssdsk'

ssd,Ld,

andVsc=S'L is the scattering volume. Using the first equa-
tion in Eq. s5.12d we can calculate the fieldE0 in

sid inside the
medium through the fieldE0 out

sid outside the medium:

E0 in
sid = E0 out

sid Feout'
sid2 +

«0
2

«'
2 eoutz

sid2G−1/2

,

whereeout
sid is the polarization vector of the incident field out-

side the medium.
Integral s6.4d contains rapidly oscillating factor

expfiez1

z2qz
sscdsz8ddz8g. As far as the vicinity of the linez1=z2

yields the main contribution to the asymptotic behavior of
the integrals6.4d it is convenient to introduce new variables
z+=sz1+z2d /2 andz−=z2−z1. Expanding the phase function
in series near the linez−=0 up to the terms of the first order
we have

E
z+−z−/2

z++z−/2

qz
sscdsz8ddz8 < qz

sscdsz+dz−. s6.5d

This approach is valid forqz
sscdP@1. But as it follows from

Appendix A the correlation functionsA21d contains rapidly
decaying factors expf−q

'

sscduez1

z2m jszddzug. Therefore the ap-

proach is valid not only forqz
sscdP@1 but also forqz

sscdP
,1, q

'

sscdP@1, i.e., finally forqsscdP@1.
FunctionsBsidsk

'

sid ,zd, Bssdsk
'

ssd ,zd and eb
ss,idsk

'

ss,id ,zd vary
slowly compared to the rapidly oscillating function
expfiqz

sscdsz+dz−g. Therefore it is possible to substitutez+ in-
stead ofz1 and z2 into these functions. We can expand the
region of integration over thez− variable within the limits ±̀
and for the correlation function we get the Fourier image

Ĝ(q
'

sscd ,qz
sscdsz+d ,z+).

Thus the intensity of light scattering has the form

I = J0Sz

r
D2Bssd2sk'

ssd,Ld
Bsid2sk'

sid,0d
1

L
E

0

L

dz+Bsid2sk'
sid,z+d

3 Bssd2sk'
ssd,z+der

ssdsk'
ssd,z+dew

ssdsk'
ssd,z+d

3 Grnwm„q
sscdsz+d,z+…en

sidsk'
sid,z+dem

sidsk'
sid,z+d, s6.6d

whereqsscdszd=(q
'

sscd ,qz
sscdszd).

Equation s6.6d describing the scattering intensity in the
Born approximation in the far zone refers to the spatially

inhomogeneous scattering medium and it is derived using the
Kirchhoff method. We show in Appendix B that this equation
is reduced to the standard expression of the scattering theory
in the limit of the spatially homogeneous medium.

The correlation functionsĝ(qsscdszd ,z) and Ĝ(qsscdszd ,z)
for the caseq

'

sscdP@1 are considered in Appendix A. Substi-
tuting Eq.sA32d into Eq.s6.6d we get for the light scattering
intensity

I ; Isesid,essdd

= J0kBT«a
2Sz

r
D2Bssd2sk'

ssd,Ld
Bsid2sk'

sid,0d

3
1

L
E

0

L

dzo
j=1,2

Bsid2sk'
sid,zdBssd2sk'

ssd,zd
Kjjq

sscd2 + sK33 − Kjjdsqsscd ·n0d2

3 fsej ·esiddsn0 ·essdd + sej ·essddsn0 ·esiddg2, s6.7d

where n0=n0szd, esid=esidsk
'

sid ,zd, essd=essdsk
'

ssd ,zd, ej

=ejsqsscd ,zd, qsscd=qsscdszd. Comparing the applicability con-
ditions for Eqs.s6.6d andsA32d we finally get that Eq.s6.7d
is valid for q

'

sscdP@1.

Note, that in our case the correlation functionĜ, the wave
vector qsscd, and the amplitude factorsBs jd depend on thez
variable. According to Eq.s6.7d the intensity of scattering
presents a sum of scattering intensities produced by the nem-
aticlike layers of thicknessdz. The director orientationn0 of
each layer coincides with the specimen orientation in thez
point. The scattering intensity from each layer has the form
fsee Eq.sB2dg

dI =
I0k0

4dVsc

s4pd2r2 ea
ssdeb

ssdGanbmsqsscdden
sidem

sid,

whereI0 is the intensity of the incident light,dVsc=L'dz is
the layer volume. According to Eqs.s3.10d and s4.4d the
factorsBsid andBssd determine the amplitudes of the incident
and scattered fields in each layer.

B. Basic scattering geometries

Let us analyze the light scattering intensities for various
polarizations. In what follows we use the notationssod and
sed for ordinary and extraordinary beams. In this system
there exist four types of scattering,sid−ssd.

The scattering of thesod−sod type is absent since the
polarization vector of the ordinary beam is perpendicular to
the director,n0·es1d=0. So for thesod−sod scattering it is
valid that n0·esid=0, n0·essd=0 and hence the scattering in-
tensitys6.7d goes to zero. This situation is similar to that for
the nematic liquid crystal.

In the case ofsod−sed scattering there is only one nonzero
term in brackets of Eq.s6.7d. So we get

AKSENOVA, ROMANOV, AND VAL’KOV PHYSICAL REVIEW E 71, 051702s2005d

051702-10



Ises1d,es2dd = J0kBT«a
2Sz

r
D2

Bs2d2sk'
ssd,Ld

3
1

L
E

0

L

dzBs2d2sk'
ssd,zdfn0szd ·es2dsk'

ssd,zdg2

3 o
j=1,2

fejsqsscd,zd ·es1dsk'
sid,zdg2

Kjjq
sscd2szd + sK33 − Kjjdfqsscdszd ·n0szdg2 .

s6.8d

Intensity of thesed−sod scattering can be obtained from
sod−sed scattering intensity if we substitutees1d
es2d and
k ssd
k sid.

For sed−sed scattering both terms in brackets in Eq.s6.7d
contribute in general to the intensity,

Ises2d,es2dd =
J0kBT«a

2Bs2d2sk'
ssd,Ld

Bs2d2sk'
sid,0d

Sz

r
D2

3
1

L
E

0

L

dz Bs2d2sk'
ssd,zdBs2d2sk'

sid,zd

3 o
j=1,2

1

Kjjq
sscd2szd + sK33 − Kjjdfqsscdszd ·n0szdg2

3 hfejsqsscd,zd ·es2dsk'
sid,zdgfn0szd ·es2dsk'

ssd,zdg

+ fejsqsscd,zd ·es2dsk'
ssd,zdgfn0szd ·es2dsk'

sid,zdgj2.

s6.9d

Equationss6.8d and s6.9d describe the intensity of the
single light scattering by the CLC cell in the positive half
space for the arbitrary director orientations at the boundaries.
For the negative half space the scattering intensity is calcu-
lated in a similar way.

In obtaining Eq.s6.7d we use large parametersV=k0/q0

and Ṽ=q
'

sscd /q0. Therefore the application of the WKB ap-
proximation imposes restrictions on the scattering geom-
etries. First of all the scattering angleg between vectorsk

'

sid

and k
'

ssd is not small sg@q0/k0,l /Pd, sinceq
'

sscdP@1 in
Eq. s6.7d. Moreover, the angles between thez axis and the
wave vectors of the incident and scattered waves for the
extraordinary beam cannot be close to 90° due to the effect
of the beam capture in the plane wave channel which was
described in Sec. III. At last there is a restriction on the
thickness of CLC,L!k0/q0

2,pP2/l, it is the consequence
of the second inequalitysA33d. From the latter inequality it
follows that obtained equations are valid to the region of
thickness from a rather thin CLC up to that containing many
pitches.

We calculate the light scattering intensitiesIses1d ,es2dd and
Ises2d ,es2dd for the geometry shown in Fig. 4. The results are
represented as the intensity distribution on a flat screen, nor-
mal to thez axis. We choose the following CLC parameters:
«a=1.0, «'=2.5, K11=3.0310−6 dyn, K22=2.0310−6 dyn,
K33=5.0310−6 dyn, the ratio of the CLC thickness to the
pitch L /P is equal to 1/2; the anglefi between the vector
k

'

sid, and the vector director of the beam entering the CLC at
z=0 is set to befi =p /4. Figure 5 shows the intensity of the

scattered light for the angle of incidencep /4 with respect to
the z axis. For both types of scattering the intensity is maxi-
mal in the region of small scattering angles,usc

=/sk ssd ,k sidd<0. One can see that this region forsod−sed
scattering is wider than for thesed−sed type. The intensity of
sed−sed scattering fork ssd<k sid formally tends to infinity
whereas for thesod−sed case it is finite. Here we do not
consider the regionuk ssd−k sidu&q0 fthe white spot in the Fig.
5sbdg, since our approach is not applicable in this region.
Figure 6 shows the same intensities for the angle of inci-
dence equal top /8.

Figure 7 shows the angular dependencies of thesod−sed
light scattering intensity on the slab thickness. The intensity
is normalized by the scattering volume. The calculations are
completed fork

'

sid ik
'

ssd and the angle of incidencexsid=p /3.
The pitchP is fixed and three slab thicknesses corresponding
to the director twisting anglesp /6 ,p /3, andp /2 are con-
sidered. One can see that dependence of the scattering indi-
catrix on the slab thickness is nonlinear. Note that for a linear
dependence these lines should coincide.

FIG. 5. The logarithm of the light scattering intensity forsod
−sed, sad, and sed−sed, sbd, types of scattering. All magnitudes are
expressed in relative units identical for both types of scattering.
Angle of incidence is equal top /4. Coordinatesx andy are mea-
sured in distances between the slab and the screenD ssee Fig. 4d.
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VII. EXTINCTION

When the beam propagates in the fluctuating medium it
loses the energy due to scattering and these losses determine
the extinction coefficients. This coefficient can be calcu-
lated by integration over all angles of scattering. In the ho-
mogeneous medium the damping of the beam has an expo-
nential form

Is,d = Is0dexps− s,d, s7.1d

where, is the path of the beam. In the inhomogeneous me-
dium the extinction coefficient depends on the coordinates
and Eq.s7.1d is substituted by

Is,d = Is0dexpS−E
0

,

sslddlD , s7.2d

where dl is an element of the beam trajectory. The local
coefficientss,d in Eq. s7.2d is determined by the totalsinte-
grald cross section of the scattering. According to Eq.s6.7d
the scattering intensity from a narrow layerdzcoincides with
the similar relation for nematic liquid crystalssNLCd, so the
coefficients can be calculated using the known results for
NLC f36–38g.

In a homogeneous anisotropic media there are two extinc-
tion coefficientsss1d and ss2d. In the Born approximation
they are equal to

ssid =
k0

4

16p2

ea
sideb

sid

nsidcosdsid

3 o
s=1,2

E dVkssd
nssdem

ssden
ssd

cos2dssd
Gambnsk sid − k ssdd s7.3d

with i =1 for ordinary andi =2 for extraordinary beams,
edVkssd is the integration over all directions of the unit vector

k ssd /kssd. In our system the valueses jd ,ds jd ,ns jd, and Ĝ in the
right hand side of Eq.s7.3d depend onz, therefore ssid

=ssidsk
'

sid ,zd.
As far as our expression for the correlation function Eq.

sA32d is valid for q@q0 fEq. sA23dg the domain of integra-
tion in Eq. s7.3d have to be restricted byq= uk ssd−k sidu*q0.
For the ordinary beamsi =1d this cutoff is not essential since
the term withs=1 is equal to zero and for the term withs
=2 the scattering vectork ssd−k sidÞ0 in general. For the ex-
traordinary beamsi =2d the integral withs=2 for the corre-
lation functionsA32d diverges logarithmically for small scat-
tering angles. For NLC this fact is well knownf37,38g.
Therefore the cutoff is essential in this term. Note that the
region q!q0 contrary to the case of NLC does not notice-
ably contribute toss2d. The reason is that the correlation
function of the director fluctuations in CLC forq!q0 has
smecticlike behaviorf17g and the integrals7.3d for uk ssd

−k sidu→0 converges. Therefore the regionuk ssd−k sidu*q0
makes the main contribution to the extinction and Eq.s7.3d
with such a cutoff is reasonable approximation for the ex-
tinction coefficient in CLC with the large pitch.

FIG. 6. The logarithm of the light scattering intensity forsod
−sed, sad, and sed−sed, sbd, types of scattering. The angle of inci-
dence is equal top /8. The other magnitudes are the same as in Fig.
5.

FIG. 7. Indicatrix of thesod−sed scattering in thexz plane. The
dependence of intensity on the direction of the wave vector of the
scattered wave is shown. The part of the indicatrix corresponding to
the regionz.0 is presented. The curves are calculated for different
slab thicknessesL: sad P/6; sbd P/3; scd P/2. Here«i ,«' and Frank
modulesKii are the same as in Fig. 5;ex andez are directions of the
x and z axes. Dotted line is the intensityI expressed in arbitrary
units and normalized by the scattering volumeVsc.
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The element of the trajectory lengthdl in Eq. s7.2d is a
function of k

'

sid and z. For ordinary beam it depends onk'

only,

dl = dzFs1dsk'd,

where

Fs1dsk'd = ks1d/kz
s1dsk'd = s1 − «'

−1k0
−2k'

2 d−1/2.

For the extraordinary beam

dl = dzFs2dsk',zd,

where

Fs2dsk',zd =Î1 +Udr 'szd
dz

U2

.

The ratiodr ' /dz is determined by Eq.s3.16d, so we get

Is jds,d = Isids0dexpS−E
0

,

dzss jdsk',zdFs jdsk',zdD .

s7.4d

The functionsssidsk
'

sid ,zd can be rewritten as functions of
a single scalar variableuszd, the angle betweenk sidszd and
n0szd, i.e., ssid=ssidsud. The cause is thatssidsk

'

sid ,zd in Eq.
s7.3d is a local value and the local symmetry of CLC coin-
cides with the NLC symmetry. Figure 8 shows the depen-
dence of the extinction coefficientsss1,2d on u.

VIII. CONCLUSION

We have considered the problem of light propagation and
scattering in cholesterics with the large pitch. From the op-
tical point of view this system presents a stratified medium
and solution of the scattering problem differs significantly
from the case of the homogeneous system. In the homoge-
neous system the incident beam is a plane wave, the scat-
tered wave is considered in the Fraunhofer zone and as a
result the light scattering intensity is determined by the three-
dimensional Fourier image of the permittivity fluctuations.

In a helical medium the incident plane wave is trans-
formed inside the scattering system into a normal wave of
the helical medium which is not plane. The Green’s function,

i.e., the field of a point source, has a complex form as well.
In particular, it depends on positions of the source and the
receiver separately. Moreover, the Green’s function has for-
bidden zones, i.e., regions where the wave cannot penetrate.
These features are caused by the variation of the optical pa-
rameters in the medium. As a result the trajectory and the
polarization vector of the wave change in a rather compli-
cated way. Besides, for certain directions the wave returns
back and as a result a wave guide propagation takes place.
This causes, in particular, an unusual behavior of the light
scattering intensity as far as the scattered waves can be cap-
tured by the wave channel. Finally, the spatial correlation
function of the permittivity tensor fluctuations resulting from
the director fluctuations, as well as the Green’s function, is
not determined by the difference of the coordinates only, but
essentially depends on their projections to the helical axis.

In the present paper we have analyzed all these factors for
CLC with the large pitch and have obtained the expressions
for the light scattering intensity in a closed form. They differ
essentially from the expressions for the spatially homoge-
neous media. First of all they represent integrals over all
layers of CLC medium along the helical axis. The light scat-
tering intensity, similar to the case of nematic liquid crystal,
depends on the Frank modules, permittivity tensor, director
orientations on the boundaries, and the wave vector direc-
tions of the incident and the scattered waves. An additional
parameter is the cholesteric pitch. As a result of the presence
of the large-scale periodic structure the dependence of the
light scattering intensity on the volume is nonmonotonic and
the damping due to scattering is not described by the Buger
law.

Using the typical parameters of CLC we have calculated
the angular dependance of the light scattering intensity. The
obtained dependencies are less sharp in comparison to NLC,
where the correlation length is infinitef27g. The reason is the
fluctuation damping due to emergence of the characteristic
sizeP in the system which plays a role of the finite correla-
tion length. Nevertheless, the light scattering intensity
changes significantly with the scattering angle and depends
on the orientation of the wave vectors of the incident and the
scattered waves and on the direction of the helical axis.

Experimental investigations of light scattering in CLC
with the large pitch make it possible to clarify the whole set
of interesting problems. First of all, there exists a problem of
behavior of thesed−sed-type scattering intensity for the small
anglesusc. In nematics this value tends to infinity asusc
→0. In cholesterics the correlation function varies from the
nematiclike to the smecticlike for small scattering angles
f17g. As a result the light scattering intensity becomes less
singular forusc→0. Thus measuring the angular dependence
of the light scattering intensity it is possible to investigate the
transition from one regime to another one. Second, studying
the light scattering in rather thick CLC samples provides a
possibility of observing penetration of the scattered light into
the wave channel. And, finally, investigating the vicinity of
the turning point permits us to determine the specific features
of light scattering near caustic.
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APPENDIX A: CORRELATION FUNCTION OF THE
DIRECTOR FLUCTUATIONS IN CLC WITH THE

LARGE PITCH

In order to calculate the correlation function of the direc-
tor fluctuations in the Gaussian approximation we restrict
ourself to the quadratic terms overdn in the free energy
s2.1d,

dF =
1

2
E dr hK11s= · dnd2 + K22fn0 · s= 3 dndg2

+ K33fsdn · = dn0 + sn0 · = ddng2j. sA1d

Here we take into account the relations divn0=0 and
curl n0=−q0n

0 which are valid for the helical structures2.2d.
The vectordn=sdnx,dny,dnzd can be parametrized by using
two functions. As far asunu= un0u=1 the conditiondn'n0 is
valid in the first order indn. Therefore for CLC this param-
etrization has the formf17,18g

dnxsr d = − u1sr dsinfszd,

dnysr d = u1sr dcosfszd,

dnzsr d = u2sr d. sA2d

The modesu1 and u2 determine the director fluctuations in
the xy plane and along thez axis, respectivelysFig. 9d. In
vector notations we can write

dnsr d = u1sr dhs1dszd + u2sr dhs2d, sA3d

where

hs1dszd = hs2d 3 n0szd, hs2d = ez, sA4d

andez is the unit vector directed along thez axis.
From Eq.sA3d we can express the correlation function of

the director fluctuations through the correlation matrix of the
scalar functionsu1,2,

gabsr ';z1,z2d = o
k,l=1

2

Gklsr ';z1,z2dha
skdsz1dhb

sldsz2d, sA5d

where

Gklsr 1' − r 2';z1,z2d ; Gklsr 1,r 2d = kuksr1dulsr 2dl.

sA6d

As far as in equilibrium CLC is spatially homogeneous in
the plane normal to thez axis we use a two-dimensional
Fourier transformation. Substituting Eq.sA2d into Eq. sA1d
and completing two-dimensional Fourier transformation we
can get the distortion energy in the form

dF =E d2q

s2pd2dFq, sA7d

where

dFq =
1

2
E dzhK11u]zu2 + is− sinf qx + cosf qydu1u2

+ K22u− ]zu1 + iu2scosf qy − sinf qxdu2

+ K33fuu2q0 + iscosf qx + sinf qydu1u2

+ uu2u2scosf qx + sinf qyd2gj. sA8d

Integrating by parts and omitting the terms outside the inte-
gral we present the valuedFq as a quadratic form

dFq =
1

2
E u*sq,zdÂsq,zdusq,zddz sA9d

with

u = Su1

u2
D .

The matrixÂ is a differential operator of the second order. In
the coordinate frame with thex axis directed along theq
vector sqx=q, qy=0d it has the form

Â = K11S q2sin2f iq sinf]z

iq]zsinf − ]z
2 D

+ K22S − ]z
2 − iq]zsinf

− iq sinf]z q2sin2f
D

+ K33S q2cos2f − iq0q cosf

iq0q cosf q2cos2f + q0
2D , sA10d

where]z
2;]2/]z2.

The probability of fluctuations is proportional to
expf−dFq /kBTg wherekB is the Boltzmann constant andT is
temperature. As it follows from general principles of statis-
tical mechanicsf39g the calculation of the correlation func-

tion leads to inversion of theÂ matrix. This procedure is
equivalent to solution of the equation

Âsq,zdĜsq;z,z1d = kBTdsz− z1dÎ . sA11d

For unambiguous solution Eq.sA11d has to be comple-
mented by boundary conditions. In the infinite system the

principle of the correlations decay,Ĝsq ;z,z1d→ 0̂ for z
→ ±`, should be used as such conditions.

FIG. 9. Fluctuation modesu1,2 in CLC.
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The correlation function of the director fluctuations

Ĝsz,z1d in CLC with the large pitch was considered in detail

in Ref. f26g. The matrixĜ obeys the inhomogeneous system
sA11d of two differential equations with periodic coefficients
and decay condition atz→ ±`. Note that for zÞz1 Eq.

sA11d is homogeneous. Primarily we solve the homogeneous
equations forz.z1 andz,z1 and then we construct the cor-

relation function using the continuity condition forĜ and the
jump of its derivative forz=z1.

The system of homogeneous equations has the form

F− SK22 0

0 K11
D d2

dj2 + iṼsK11 − K22dsinfS0 1

1 0
D d

dj

+ SṼ2sK11sin2f + K33cos2fd − iṼ cosfsK22 + K33d

iṼ cosfsK11 + K33d Ṽ2sK22sin2f + K33cos2fd + K33

DGusjd = 0, sA12d

whereṼ=q/q0, j=q0z. The system of two differential equa-
tions of the second order Eq.sA12d has four linearly inde-
pendent solutions. Let us construct two matricesû1sjd and

û2sjd with the propertiesû1sjd→ 0̂ at j→ +`, û2sjd→ 0̂ at
j→−` using four linearly independent vector-column solu-
tions of Eq. sA12d. Such a selection provides the required

behavior ofĜsj ,j1d at infinity.
The correlation function is sought in the form

Ĝsj,j1d = Hû1sjdv̂1sj1d for j ù j1,

û2sjdv̂2sj1d for j , j1,
J sA13d

wherev̂1 and v̂2 are 232 matrices. We have

Ĝsj,j1d = kBTq0
−1Hû1sjdû1

−1sj1dŵsj1dK̂−1 for j ù j1,

û2sjdû2
−1sj1dŵsj1dK̂−1 for j , j1,

J
sA14d

whereŵsjd=fû28sjdû2
−1sjd− û18sjdû1

−1sjdg−1,

K̂ = SK22 0

0 K11
D .

We consider the CLC with large pitch of helix, that im-
plies the caseq@q0, and get the solutionsu of the homoge-

neous equationsA12d using a large parameterṼ@1. Using
the vector WKB method we get

û1sjd = S− im1
−1sinf 1

− 1 − im2
−1sinf

DF̂−,

û2sjd = Sim1
−1sinf − 1

− 1 − im2
−1sinf

DF̂+, sA15d

where phase factorsF̂±=F̂±sj ,j0d,

F̂±sj,j0d =
ucossj0 + f0du

ucosfu
diaĝHÎ mlsjd

mlsj0d

3 expS±ṼE
j0

j

mlsj8ddj8DJ , sA16d

diaĝsxld denotes the diagonal matrix with elementsx1,x2 on
its main diagonal,f=fsjd=j+f0, ml =mlsjd,

mlsjd =Îsin2fsjd +
K33

Kll
cos2fsjd, l = 1,2. sA17d

If we get back from dimensionless variablej to the vari-

ablez we finally have for theĜ matrix

Ĝsq;z1,z2d = Ĝ1sq;z1,z2d + Ĝ2sq;z1,z2d, sA18d

where

sGjdklsq;z1,z2d =
kBT

2qK33cosfsz1dcosfsz2d

3 expS− qUE
z1

z2

m jszddzUD
3 ,k

s jdsq;z1,z2d,l
s jd*sq;z2,z1d, sA19d

where cosf=q ·n0/q, sinf=Îq2−sq ·n0d2/q,

øs1dsq;z,z8d = Si sgnsz− z8d
sinfszd
Îm1szd

,Îm1szdD ,

øs2dsq;z,z8d = SÎm2szd,i sgnsz8 − zd
sinfszd
Îm2szd

D . sA20d

Summing overk and l in Eq. sA5d and using Eqs.sA4d
and sA18d–sA20d we get the correlation function of the di-
rector fluctuations in the form
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gabsq;z1,z2d =
kBT

2qK33cosfsz1dcosfsz2d

3 o
j=1

2

expS− qUE
z1

z2

m jszddzUD
3 fa

s jdsq;z1,z1 − z2dfb
s jd*sq;z2,z2 − z1d,

sA21d

wheref s jdsq ;z,z−z8d=ok=1,2,k
s jdsq ;z,z8dhskdszd. In the coordi-

nate system used in Eq.sA10d vectorsf s jd have the form

f s1dsq;z,z−d =
sgnsz−d
Îm1szd

3 Si sin2fszd,−
i

2
sin 2fszd,sgnsz−dm1szdD ,

f s2dsq;z,z−d = Îm2szd

3 S− sinfszd,cosfszd,sgnsz−d
i sinfszd

m2szd
D .

sA22d

Note that the correlation functionsA21d grows in points
z1,2 where cosfsz1,2d in the denominator of Eq.sA19d tends
to zero. These points occur in the region where the WKB
approximation is violated and Eq.sA21d is inapplicable.

The range of applicability of the WKB approximation is
determined by three inequalities. The first inequality,

Ṽml @ 1, sA23d

implies that phase factors in Eq.sA16d are rapidly varying
values. The second inequality impose limitations on the
proximity of the eigenvaluesm1 andm2 in the whole interval
from j0 up to j,

min
j0øj8øj

um1sj8d − m2sj8du @ Ṽ−1. sA24d

Finally the third inequality implies smallness of the next cor-
rection to the exponential terms in Eq.sA16d for any j0,j
and imposes restrictions on the width of the regionj−j0
where the WKB formula is applicable,

uj − j8u ! minsm1,m2dṼ, sA25d

whereml is the average ofml within fj0;jg interval.
Let us discuss the applicability range of Eq.sA21d. The

first condition, Eq.sA23d, holds true in our case since the

value Ṽ is a large parameter and by virtue of Eq.sA17d
m1,2,1 for K33/Kll ,1. Therefore there remain two possible
restrictions due to inequalitiessA24d and sA25d. As far as
m1,2,1 it follows from inequality sA25d that uz1−z2u
!q/q0

2,ṼP.
The limitationsA24d is the most essential since the eigen-

valuesm1 andm2 coincide for cosf=0. Therefore Eq.sA21d
loses its sense if the pointz* with cosfsz*d=0 is situated
between pointsz1 and z2. As far asm1=m2 identically for
K11=K22 it is essential that inequality uK11−K22u

@2sK11K22/K33dsq0/qd has to be fulfilled. In particular it is
illegal in Eqs.sA21d to use the equal constant approximation
for the Frank energys2.1d.

Let us estimate the region where inequalitysA24d is valid.
For this purpose we introduce a new variablez=q0z+f0
−p /2=f−p /2 and expandml near the pointz=0,

ml < 1 + Clz
2, sA26d

whereCl =sK33−Klld /2Kll , l =1,2. In this case the condition
sA24d gives

Ṽuzu3 @ 1. sA27d

It means that the expressionsA21d is valid if Ṽuzu3@1,

Ṽuz1u3@1 and there are no points with coincidingm1 andm2
betweenz andz1 where cosf=0.

Analysis of the correlation function behavior in the vicin-
ity of points with cosf=0 is based on methods which are
used for investigation of the turning points in the WKB
method. This problem we have discussed in detail in Ref.
f26g. It is shown there that the correlation function is finite in
the points with cosfsz1d=0 and cosfsz2d=0.

Now we are going to construct the function

Ĝ(qsscdsz+d ,z+), which enters the expression for the light scat-
tering intensity. We shall perform a procedure analogous to
that as in obtaining of Eq.s6.6d. In all slowly varying factors

of Ĝsq ;z1,z2d we substitutez1 andz2 by z+. We restrict our-
selves by the term linear inz− in the exponential factors and
also keep factors containing the function sgnsz−d. In this case
Eq. s2.13d takes the form

Gabgd„q
sscdszd,z… = «a

2fna
0szdng

0szdgbd„q
sscdszd,z…

+ na
0szdnd

0szdgbg„q
sscdszd,z…

+ nb
0szdng

0szdgad„q
sscdszd,z…

+ nb
0szdnd

0szdgag„q
sscdszd,z…g,

sA28d

where

gab„q
sscdszd,z… =

kBT

2q'
sscdK33cos2fszd

3 o
j=1

2 E
−`

`

dz−expfiqz
sscdszdz− − q'

sscdm jszduz−ug

3 fa
s jdsq'

sscd;z,z−dfb
s jdsq'

sscd;z,z−d. sA29d

In Eqs. sA29d and sA22d we take into account the order of
arguments and complex conjugation of thef s jd functions in
Eq. sA21d.

Performing integration overz− and summation overj in
Eq. sA29d we get
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gab„q
sscdszd,z…

= kBTo
j=1

2
ejasqsscd,zdejbsqsscd,zd

Kjjfqsscd2 − sqsscd ·n0d2g + K33sqsscd ·n0d2 ,

sA30d

where

e2sqsscd,zd =
qsscd 3 n0

Îqsscd2 − sqsscd ·n0d2
,

e1sqsscd,zd = n0 3 e2sqsscd,zd. sA31d

Hereqsscd=qsscdszd, n0=n0szd.
Substituting Eq.sA30d into Eq. sA28d we get the correla-

tion function of permittivity fluctuation in CLC,

Grnwm„q
sscdszd,z… = o

j=1

2
kBT«a

2

Kjjq
sscd2 + sK33 − Kjjdfqsscd ·n0szdg2

3 fejnsqsscd,zdnr
0szd + ejrsqsscd,zdnn

0szdg

3 fejmsqsscd,zdnw
0szd + ejwsqsscd,zdnm

0szdg.

sA32d

Note, that the correlation functionĝsqsscd ,zd, Eq. sA30d, for
any fixedz coincides withĝsqsscdd in NLC f27g if we for-
mally putqsscd=qsscdszd andn0=n0szd in the nematic correla-
tion function. This fact has the transparent physical meaning.
The expressionsA30d was obtained by the WKB method

using the large parameterṼ@1, i.e.,q
'

sscdP@1. In this case
the correlation functionsA21d is not negligibly small in the
region uz1−z2u! P only. For such scales CLC locally coin-
cides with NLC.

Another feature of Eq.sA30d is the absence of divergence
which is present in Eq.sA21d for cosfszd=0. This differ-
ence is related to the conditionuz1−z2u! P used for obtaining
of Eq. sA30d. If one of the pointsz1,2 in Eq. sA21d belongs to
the region where cosfszd=0 then the second point belongs
to the same region too. In this case singularities in termsj
=1, 2 of the correlation function are canceled. This is evident
from the fact that in Eq.sA19d exponentsm1szd ,m2szd
→1fcosfsz1d ,cosfsz2d→0 consequentlyg and in the limit
z1→z2 the conditiono j=1,2,k

s jdsq ;z1,z2d,l
s jd*sq ;z2,z1d→0 is

fulfilled.
Thus in the problem of light scattering it is possible to

restrict ourself to the expressionsA32d for the correlation
function if the inequalities

q @ q0, uz1 − z2u ! q/q0
2 sA33d

are fulfilled.

APPENDIX B: SURFACE CORRECTIONS FOR LIGHT
SCATTERING

For calculation of the scattering intensity in the Born ap-

proximation the Green’s functionT̂sr ,r 8d in the far zone is
usually used and the Fraunhofer approximation, Eq.s5.6d, is

appliedssee, e.g., Ref.f29gd. If the observation point is lo-
cated outside the scattering volume then the refraction at the
boundaries should be taken into account. Such an approach
is convenient for spatially homogeneous media and in this

caseT̂sr ,r 8d=T̂sr −r 8d.
For layered scattering systems there is no simple expres-

sion for the Green’s functionT̂sr ,r 8d in the coordinate rep-
resentation. However, this function is known in the mixed
sq' ,zd representation in the WKB approximationfEq.
s4.3dg.2 This is why we calculated the scattered field outside
the layered medium using the Kirchhoff method.

Though these methods are conceptually different we show
that for the spatially homogeneous scattering medium both
approaches give coinciding results.

Let us consider at first an isotropic system. The scattering
intensity is the modulus of the Poynting vectors3.5d which
for isotropic medium is

S=
c

8p
nuEu2

k

k
.

Let the incident beam in Eq.s2.8d be a plane wave,E0sr d
=E0

sidesidexpsik sidr d. We use the Fraunhofer approximation
s5.6d for the Green’s function. In the Born approximation the
scattered field inside the scattering medium has the form

Essdsr d = E0
sidk0

2eikr

4pr
essdSE

Vsc

dr 8d«̂sr 8deisksid−kssdd·r8Desid

= E0
sidk0

2eikr

4pr
essdd«̂sQdesid. sB1d

HereQ=k ssd−k sid is the scattering vector,d«̂sQd is the three-
dimensional Fourier component of the permittivity fluctua-
tions. Hence scattering intensity inside the specimen is equal
to

I in =
c

8p
ninE0

sid2S k0
2

4p
D2Vsc

r2 ea
ssdeb

ssdGanbmsQden
sidem

sid, sB2d

where ĜsQd is the three-dimensional Fourier component of
the permittivity correlation function.

Now we introduce the energy flux inside the specimen
through the small areadSin perpendicular to the Poynting
vectorS

dIin = S ·dSin = I indSin = I inr
2dVin, sB3d

wheredVin is the element of the solid anglessee Fig. 10d. In
order to calculate the energy flux outside the specimen it is
necessary to take into account the surface corrections. First,
it is necessary to take into account changes of the amplitude
and propagation direction of the wave owing to the refraction
at the boundary. Second, the corrections manifest themselves
in the difference of the solid angles inside and outside the
specimen,dVin anddVout, due to difference of the refractive
indices.

2This expression is valid in the wide range ofz−z8, in particular
in the near and in the far zone.
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Now we consider the refraction at the boundary. Consider
that E0

out= tin→outE0
in, wheretin→out is the transfer constant of

the field amplitude, which can be obtained using the Fresnel
formulas. The energy flux at the boundary is equal toSz.
Inside and outside the specimen we can get

Sz
in =

c

8p
ninE0

in2cosxin,

Sz
out =

c

8p
noutE0

in2tin→out
2 cosxout. sB4d

So the surface correction to the energy flux due to refraction
has the form

dIout

dIin
=

Sz
out

Sz
in =

nouttin→out
2 cosxout

nincosxin
.

The variation of the solid angle can be calculated with the
help of Snell’s law. Let the angle of incidence of the scat-
tered field bexin and the refraction angle bexout. The polar
anglesfin and fout are measured from thex axis. The ele-
ment of the solid angle is equal to

dV = sinxdxdf.

Snell’s law has the form

ninsinxin = noutsinxout. sB5d

This law may be written for the projection of the wave vec-
tors on thex axis,

ninsinxincosfin = noutsinxoutcosfout.

It follows from these equalities thatfin=fout. If we differ-
entiate Eq.sB5d we get

nincosxindxin = noutcosxoutdxout. sB6d

Taking into account the equality of the polar angles, from
Eqs.sB5d and sB6d we have

dVin

dVout
=

nout
2 cosxout

nin
2 cosxin

. sB7d

Thus the cross section of the scattering intensity outside
the specimen has the form

dIout

dVout
=

dIout

dIin

dIin
dVin

dVin

dVout

=
c

8p
ninE0

in2tin→out
2 k0

4

16p2Vsc
nout

3

nin
3

cos2xout

cos2xin

3ea
ssdeb

ssdGanbmsQden
sidem

sid. sB8d

The scattering intensity calculated by the Kirchhoff method
refers to the region outside the specimen. For homogeneous
isotropic scattering system all values in Eq.s6.6d become
independent onz, and we can putea

ssdMab
in→outeb

ssdsk
'

ssdd
= tin→out, Bsid2=Bssd2=k0/kin z. Keeping in mind thatÎ«0
=nout we have from Eq.s6.6d

dIout
Kir

dVout
= Iout

Kir r2 =
c

8p
nout

3 E0
in2tin→out

2 S k0
2

4p
D2

3 VscSz

r
D2 k0

2

kin z
2 ea

ssdeb
ssdGanbmsQden

sidem
sid.

sB9d

If we take into account the relationsz/ r =cosxout and
kin z/k0=nincosxin then we get

dIout

dVout
=

dIout
Kir

dVout
.

Thus for homogeneous isotropic media the both approaches
are equivalent.

Now consider the case of the homogeneous anisotropic
scattering medium. In this case all quantities in Eq.s6.6d do
not depend onz+ and we can compare the scattering intensity
s6.6d obtained by the Kirchhoff method with that obtained
for homogeneous medium in Ref.f33g.

Similarly to isotropic medium it is necessary to take into
account the variations of the solid angle element and the
refraction at the boundary. The main problem is that the
Poynting vector for the extraordinary beam is not directed
along the wave vector. According to Ref.f33g the scattering
intensity inside the specimen has the form

I in =
c

8p
nssdE0

in2S k0
2

4p
D2Vsc

r2

f ssd
2

cos3dssd
ea

ssdeb
ssdGanbmsQden

sidem
sid.

sB10d

Here the factorf ssd is determined by the Gaussian curvature

f s1d = 1, f s2d = F sss2d«̂0ss2ddsss2d«̂02ss2dd
«i«'

2 G1/2

,

wheress2d=Ss2d /Ss2d. Recalculation of the intensity in terms
of external medium parameters is performed according to

dIout = I in
dVin

dVout
Tin→outr

2dVout. sB11d

Here the ratiodVin /dVout describes the variation of the solid
angles,

FIG. 10. Refraction on the boundary for the homogeneous scat-
tering medium:Sin ,Sout are the Poynting vectors inside and outside
the scattering medium,k in ,kout are the wave vectors,dVin and
dVout are the elements of the solid angles,xin is the angle of inci-
dence measured from theSin vector,xout is the angle of refraction
measured from theSout vector. For isotropic mediumSinik in and
Soutikout.
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dVin

dVout
=

nout
2 cosxout

nssd
2 cosxin

ssd

cos2dssd

f ssd
2 . sB12d

The factorTin→out determines the transfer of energy of the
beam passing through the boundary,

Tin→out =
noutcosxout

nssdcosxin
ssd

tin→out
ssd2

cosdssd
. sB13d

Herexin
ssd is the angle between the Poynting vector and thez

axis.
The scattering cross section outside the specimen in the

Born approximation has the form

dIout

dVout
=

c

8p
nssdE0

in2tin→out
ssd2 S k0

2

4p
D2

Vsc
1

cos2dssd

3
nout

3

nssd
3

cos2xout

cos2xin
ssd ea

ssdeb
ssdGanbmsQden

sidem
sid. sB14d

For the case of the homogeneous medium the integral in
Eq. s6.6d disappears and we get the scattering intensity ob-
tained by the Kirchhoff method,

dIout
Kir

dVout
=

c

8p
nout

3 E0
in2tin→out

ssd2 S k0
2

4p
D2

Vsccos2xout

3 Bssd4sk'
ssddea

ssdeb
ssdGanbmsQden

sidem
sid. sB15d

Comparing Eqs.sB14d and sB15d one can see that it is
necessary to prove the equality

fBssdsk'
ssddg2 = scosdssdnssdcosxin

ssdd−1. sB16d

For the ordinary beam this relation can be easily obtained
using Eq.s3.13d for Bssdsk

'

ssdd. As far as the directions of the
wave vector and the beam vector coincide for the ordinary
beam we havefBs1dsk

'

ssddg=k0/kz
s1d=1/ns1dcosxin

s1d, therefore
Eq. sB13d is fulfilled. For the extraordinary beam it is easy to
get the following expression for cosxin

s2d:

cosxin
s2d = kz

s2dns2dcosds2d/«ik0.

Using this relation we can verify validity of Eq.sB16d. Thus
we prove that for the homogeneous uniaxial scattering media
the Kirchhoff method is equivalent to the standard approach,

dIout

dVout
=

dIout
Kir

dVout
.

f1g C. W. Oseen, Trans. Faraday Soc.29, 883 s1933d.
f2g H. De Vries, Acta Crystallogr.4, 219 s1951d.
f3g E. I. Kats, Zh. Eksp. Teor. Fiz.59, 1854 s1970d fSov. Phys.

JETP 32, 1004s1970dg.
f4g D. W. Berreman and T. J. Scheffer, Phys. Rev. Lett.25, 577

s1970d; Phys. Rev. A5, 1397s1971d.
f5g D. W. Berreman, J. Opt. Soc. Am.62, 502 s1972d; 63, 1374

s1973d.
f6g Sah Yuvaraj and K. A. Suresh, J. Opt. Soc. Am. A11, 740

s1994d.
f7g S. Chandrasekhar,Liquid Crystals sCambridge University

Press, Cambridge, England, 1977d.
f8g V. A. Belyakov, Diffraction Optics of Periodic Media with a

Layered StructuresSpringer-Verlag, Berlin, 1992d.
f9g P. Galatola, Phys. Rev. E55, 4338s1997d.

f10g P. Hubert, P. Jagemalm, C. Oldano, and M. Rajteri, Phys. Rev.
E 58, 3264s1998d.

f11g C. Oldano and S. Ponti, Phys. Rev. E63, 011703s2000d.
f12g S. Ponti, C. Oldano, and M. Becchi, Phys. Rev. E64, 021704

s2001d.
f13g M. A. Peterson, Phys. Rev. A27, 520 s1983d.
f14g N. A. Nicorovici, R. C. McPhedran, and R. Petit, Phys. Rev. E

49, 4563s1994d.
f15g P. Galatola, Phys. Rev. E49, 4552s1994d.
f16g A. Yu. Val’kov, V. P. Romanov, and A. N. Shalaginov, Sov.

Phys. Acoust.37s4d, 329 s1991d.
f17g T. C. Lubensky, Phys. Rev. A6, 452 s1972d.
f18g M. J. Stephen and J. P. Straley, Rev. Mod. Phys.46, 617

s1974d.
f19g R. L. Stratanovich, Zh. Eksp. Teor. Fiz.70, 1290s1976d fSov.

Phys. JETP43, 672 s1976dg.

f20g M. S. Veschunov, Zh. Eksp. Teor. Fiz.76, 1515s1979d fSov.
Phys. JETP49, 769 s1979dg.

f21g M. C. Mauguin, Bull. Soc. Fr. Mineral.34, 71 s1911d.
f22g A. Yu. Val’kov, V. P. Romanov, and R. V. Grinin, Opt. Spek-

trosk. 83, 239 s1997d fOpt. Spectrosc.83, 221 s1997dg.
f23g E. V. Aksenova, V. P. Romanov, and A. Yu. Val’kov, Phys.

Rev. E 59, 1184s1999d.
f24g E. V. Aksenova, A. Yu. Val’kov, and V. P. Romanov, Mol.

Cryst. Liq. Cryst. Sci. Technol., Sect. A359, 351 s2001d.
f25g E. V. Aksenova, A. Yu. Val’kov, and V. P. Romanov, Opt.

Spektrosk.91, 1030s2001d fOpt. Spectrosc.91, 969 s2001dg.
f26g E. V. Aksenova, V. P. Romanov, and A. Yu. Val’kov, J. Math.

Phys. 45, 2420s2004d.
f27g P. G. de Gennes and J. Prost,The Physics of Liquid Crystals

sClarendon Press, Oxford, 1993d.
f28g L. D. Landau and E. M. Lifshitz,The Classical Theory of

Fields sButterworth-Heinemann, Oxford, 1995d.
f29g L. D. Landau, E. M. Lifshitz, and L. P. Pitaevsky,Electrody-

namics of Continuous MediasButterworth-Heinemann, Ox-
ford, 1995d.

f30g E. V. Aksenova, A. Yu. Val’kov, A. A. Karetnikov, A. P.
Kovshik, V. P. Romanov, and E. I. Ryumtsev, Zh. Eksp. Teor.
Fiz. 126, 1109s2004d fJETP 99, 965 s2004dg.

f31g E. V. Aksenova, A. Yu. Val’kov, A. A. Karetnikov, A. P.
Kovshik, and V. P. Romanov, Europhys. Lett.69, 68 s2005d.

f32g M. Lax and D. F. Nelson, Phys. Rev. B4, 3694s1971d.
f33g M. Lax and D. F. Nelson,Proceedings of the III Rochester

Conference on Coherent and Quantum OpticssPlenum, New
York, 1973d, p. 415;Theory of Light Scattering in Condenced
Media, I Soviet-American ConferencesNauka, Moskow, 1976d,
Vol. 2, p. 452.

SCATTERING OF LIGHT IN CHOLESTERIC LIQUID… PHYSICAL REVIEW E 71, 051702s2005d

051702-19



f34g M. Born and E. Volf,Principles of OpticssPergamon Press,
Oxford, 1965d.

f35g F. Kottler, Ann. Phys.70, 405 s1923d; F. Kottler, in Progress
in Optics sNorth-Holland, Amsterdam, New York, 1964d, Vol.
4.

f36g D. Langevin and M.-A. Bouchiat, J. Phys.sParisd, Colloq. 36
C1-197s1975d.

f37g E. Miraldi, I. Trossi, and P. Taverna Valabreda, Nuovo Ci-
mento Soc. Ital. Fis., B60, 165 s1980d.

f38g A. Yu. Val’kov and V. P. Romanov, Zh. Eksp. Teor. Fiz.90,
1264 s1986d fJETP 63, 737 s1986dg.

f39g L. D. Landau and E. M. Lifshitz,Statistical Physics, Part 1
sButterworth-Heinemann, Oxford, 1996d.

AKSENOVA, ROMANOV, AND VAL’KOV PHYSICAL REVIEW E 71, 051702s2005d

051702-20


