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Scattering of light in cholesteric liquid crystals with large pitch
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We consider the problem of light scattering in a slab of cholesteric liquid crystal with the pitch which
significantly exceeds the wavelength of light. The electromagnetic wave propagation and the Green’s function
are investigated for this medium basing on geometric optics approximation. The correlation function of the
director fluctuations is calculated with the aid of the vector analog of the WKB approximation. A general
approach to treatment of single light scattering in a stratified medium with smoothly varying properties based
on the Kirchhoff method is developed. Angular and polarization dependencies of the single light scattering
intensity as well as extinction of the mean field are analyzed. Unusual dependence of the light scattering
intensity on the size of the system is found.
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[. INTRODUCTION to the period of the structure and in this case methods devel-
o ) ) ) ~_ oped in x-ray diffraction theory are effectiy8]. So far such

|-nVeSt|gat|0n of Opt|Ca| .propertI.eS and. ||ght Scattenng n an approach was the on|y one used in CLC Stume.g_z:l In
helical structures are particularly interesting both for theorythis case the existence of forbidden zones is typical. The
and in applications. Recently these problems became imporormal waves, the Green’s function of the electromagnetic
tant in connection with extensive use of twisted liquid crys-field [13—-16 and the spatial correlation function of the di-
tals (LCs) in information mapping and especially in LC dis- rector fluctuation§17—20 were studied also.
plays. In the opposite case when the wavelength is much less

In order to solve the problem of light scattering one has tahan the characteristic size of LC structure no appreciable
describe the incident fielthormal waves in the mediymto ~ attention was paid so far. However, this case becomes impor-
calculate the Green’s function of the electromagnetic fieldant due to application of nematic twist cells and CLC with
and to obtain the correlation function of the permittivity fluc- the large pitch in information mapping. .
tuations. In media with spatial inhomogeneities each of these It is well known that when an electromagnetic wave
problems presents a serious mathematical obstacle. In tf¥oPagates along the spiral axis the Mauguin's adiabatic re-
present work we consider these problems for the cell of thgime takes place, i.e., the polarization of the wave rotates
cholesteric liquid crystalCLC) with the pitch which signifi-  tog9ether with optical axig21]. In the general case of oblique

cantly exceeds the wavelength. On the basis of the obtainélgc'dence it is relevant to use the WK@Ventzel-Kramers-

: : . ; rillouin) method as long as the size of inhomogeneities is
ig:lug?rg_\cl:v.e consider the problem of light scattering by themuch greater than the wavelength. Direct application of the

Cholesteric liquid crystals are systems with one-WKB method for electromagnetic waves is difficult since it
. . S g leads to a system of several coupled equatiph5]. For
d|men3|onal'per|od|0|ty. _The regular spatial structure Igads tELC with the large pitch the generalization of the WKB
unusual optical propertles suph as selective reflection an ethod was suggested in RE22]. It allowed one to obtain
anomalously large optical activity. The problem of electro-y,o anaytical solution for oblique incidence of light and, in

magnet_ic wave pr(_)pagation in the_ media with one- articular, to get the normal waves of the problem. On the
dimensional periodicity has been a subject of a huge numbgg,qis of this method the Green's function in such a medium
of studies. The problem leads to a set of differential equap s heen obtained in Ref@3-25 as well.

tions with periodical coefficients which has the exact solu- |, ~| ¢ the director fluctuations yield the main contribu-
tion for special cases only. In CLC the only particular case ijo 1o scattering. The problem of the director thermal fluc-
the wave propagation along the spiral ads3]. The formal ,ations in CLC was considered for fluctuations with charac-
analyuqal_spluuon_for an ol:_)hque incidenfeé-6] .hqsaform teristic scale greater than the pitdhbsmecticlike” CLO)

of the infinite series and it appears to be difficult for the 17-20. The opposite case of short wavelength fluctuations
analysis. Therefore various approximate methods are Widel%‘nematiclike” CLO has been recently studied in RE26]
used in optics of layered liquid crystdl2,8]. The emphasis g the vector generalization of the WKB method.

was concentrated on cases with the wavelength being close In this work we developed a general scheme of calcula-

tion of light scattering intensity in CLC with the pitch sig-
nificantly exceeding the wavelength. The approach based on
*Electronic address: aksev@mail.ru the Kirchhoff method provides explicit expressions for angu-
"Electronic address: V.Romanov@pobox.spbu.ru lar and polarization dependencies of single light scattering
*Also at Saint Petersburg Institute for Foreign Economic Reladintensity and the extinction coefficient. The obtained results
tions, Economics and Law, Liteiny 42, Saint Petersburg 191104are presented in the form convenient for comparison with the
Russia. Electronic address: alexvalk@mail.ru experiment.
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The paper is organized as follows. In Sec. Il we present - ~
the basic equations describing the elastic energy, fluctua- E(r)=E°(r)+k§fTo(r,r’)as(r’)E(r’)dr’. (2.9
tions, and the propagation of electromagnetic waves in CLC.
In Sec. Ill the normal waves of CLC with the large scale The electric fieldE®(r) and the Green’s function of electro-

periodicity are considered. Maxwell equations are solved ir}nagnetic field?o(r r') obey the equations
the framework of the geometric optics approximation. Sec- '

tion IV concerns the construction of the Green’s function of [curl curl —k2&%(2)JES(r) = 0, (2.6)

the electromagnetic field using the normal waves of the me-

dium. In Sec. V our general approach based on the Kirchhoff . R

method for calculation of the light scattering by a slab of [curl curl =K3e°(2) IT(r,r") = 8(r = ") (2.7

CLC is presented. In Sec. VI we calculate the light scattering -

intensity and analyze various geometries of the experimentierel is the unit matrix.

Section VI is devoted to the calculation of the extinction Since Eq.(2.6) is homogeneous the field°(r) can be

coefficient due to the light scattering. In the conclusiBec.  Written as a linear combination of the normal waves. In order

VIIl) we discuss the obtained results. The spatial correlatioto make the problem unambiguous E@.7) should be

function of the director fluctuations in CLC is presented insupplemented by the corresponding boundary conditions. In

Appendix A. In Appendix B the surface corrections for the the infinite medium they are radiation conditiof8]. Due

light scattering intensity in a homogeneous medium are calto symmetry of CLC with respect to displacements in xiye

culated. The obtained formulas are compared with the Kirchplane we hava@®(r,r")=T%r , -r' ;z,Z’), wherer , =(x,y).

hoff method results. The second term in the right hand side of E25) corre-
sponds to the scattered fielf®, produced by the incident

IIl. BASIC EQUATIONS field E°. Solving this equation by iterations and restricting
ourselves to the lowest order if¢ we obtain the scattered
The elastic free energy of the cholesteric liquid crystal hagield E® in the Born(single-scatteringapproximation
the form[27]

1 E(S)(r):kgf?O(rL—rl;z,z’)&é(r’)EO(r’)dr’. (2.9
F= 5 f dr[Ky4(div n)? + K,y(n - curln + qg)?

The properties of the scattered light are determined by the
+ Ksg(n X curln)?], (2.1 function of coherence,

whereK; (I=1,2,3 are the Frank modules. The unit vector © (9" a2l -0 .
director n=n(r) describes the local orientation of the long (B (r)Eg (1) =ko | Tay(ris —r11:202)
axes of molecules. In the equilibrium the ener@l) is o ., ;o
minimal for helical distribution of the director, X Tpra1 =T211222)Gu(r1,72)
. < EO ’ EO* ’ ’ Ay ! 2.
n%r) = n%2) = (cos¢,sin ¢,0). (2.2 Ar)E, (ro)arydr, 2.9

where
Here we introduced the Cartesian coordinate system with the

z axis directed along the CLC axigh=¢(2)=qgz+ ¢, the Gruur 1,75 :(58w(ri)5gzﬂ(ré)>
angle ¢, determines the orientation of the director in the
planez=0, qy=/P, P is the pitch. The directan’(r) in Eq. is the permittivity correlation function, the brackéts-) and
(2.2) is normal to thez axis and rotates uniformly around it. the star designate the statistical averaging and complex con-

The permittivity tensoe describes the optical properties jugation respectively. Due to CLC symmetry we have
of cholesterics. For CLC in equilibrium it has the fofi2i7] R ~

0 ( )_ 0 ( )_ Sont 0( ) O( ) (2 3) g(ri’ré)Eg(rii_réL;zj,Lizé)-
Fapll) = Eapl2) = 81 0ap ™ N\ DNE2), ' In liquid crystals the director fluctuations

wheree,=¢—¢ |, g,&, are the permittivities along and per- o
pendicular ton® respectively. In the general casr) an(r)=n(r)-n(2 (2.10
;Qo(r)+5§(r) where 5(r) is the fluctuation of the permit- 5.0 most essential iaé [27] and in this paper we consider
tivity tensor. o , , these fluctuations only. In the framework of this approxima-

The wave equation in a nonmagnetic medium for a monogion hoth the equilibrium and the fluctuating permittivity ten-
chromatic wave is sor has the form similar to Eq2.3) with substitutionn®(z)
[curl curl —k2&(r)]E(r) = 0, 2.4 N0
whereE is the electric fieldky,=w/c, w is the circular fre- Eapll) = &1 0u + £aMaNINE(N). (219
quency.c is the light velocity in vacuum. The wave equation  In the first order the permittivity fluctuations in CLC have
(2.4) in the integral form is written as the form
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Se,4p(1) = e[n(D)NG(r) + Ny (NN%(2)].  (2.12 k(r) X k(r) X e(r) + k3&°(r)e(r) = 0. (3.3
The relationship between corresponding correlation funcFor each fixed point Eg. (3.3 coincides formally with the
tions is ordinary equation describing the propagation of plane waves
in homogeneous anisotropic med8], so that it is possible
Gapysr 1:2.2)) = e nUDNYZ ) Gps(r 1 52,2) to use well known results. Particularly in order to have a
0DV aulr 12,2 nonzero solution of Eq3.3) the determinant of the matrix in
Na(2NAZ)Gpr 1:2.2) the left hand side has to be equal to zero.
+ N3 (2NAZ)Geslr 152.2) From Eq.(2.4) the conservation law follows:
+n3(2NNZ)G,(r 1 522)]. (2.13 div S=0, (3.4
Here where
Oap(N11 = T21321,25) =(Ny(r1,2) Ng(rz,,2)) S(r) = L[k|E\2 -E"(E -k)] (3.5
(2.14 87ko

is the Poynting vectof29]. Note that in our cas&(r)

is th lation functi f the di fl ions. Thus_ . S .
is the correlation function of the director fluctuations uszso(z) and the medium is homogeneous in they) plane.

f lculati f the single ligh ing i i
(;r clchg a;tlohn of the Ismg ZE(;g ; S((:;\tterlrylgflntehs[t})é we Thenk(r)=k(2)=(q.k(2)).
should find the normal wavel®, the Green's Tunctiori™, Equation (3.3 for uniaxial homogeneous media for the

and the permittivity correlation functiog. In the following  fixed k direction has two well known solutions correspond-
two sections we are concerned with the first and the secongg to ordinary and extraordinary waves. In particular the

problems. module of the wave vectds has the form
(1) = s"— =
I1l. NORMAL WAVES IN CLC WITH THE LARGE PITCH K Kove | kon(l)’
Let us consider the problem of electromagnetic wave £,g
propagation in CLC with the large scale periodiciky< P, kK2(2) =kg\| —————= kon(2)(2), (3.6)
e, +£,0050

where\ is the wavelength of light, so we have a large pa-
rameter{)=Ky/go=2P/\>1. In this case it is reasonable to where ¢ is the angle betweem®z) and k(z), ng and
suppose that the electric field has the form of a quasiplang , (z) are refractive indices of the ordinary and extraordi-

wave, nary waves, respectively. In E3.3) polarization vectors
E(r) = A(exdiw(r)], (3.1) eD(z) ande(z)(z).correspondir?g to these values of theec-
tors are determined by conditions

whereW (r) is the real phasé(r)=A(r)e(r), e(r) is the unit
vector of polarizationg-€" =1, andA(r) is the real ampli-
tude. At a distance of the order afvariations of functions N @
A(r), e(r) and ¥'(r) are small compared to the functions e(2€9(2) L k'9(2), (3.7
themselves. In this section we consider CLC in equilibriumine vectore(2) is in the plane formed by vectoks?(z) and
only, so the upper index “0” in the field components will be n%Q2), i.e.,

omitted. Substituting Eq(3.1) into the wave equatiol2.6)

eP(z) L n%2), eV(2) L kY(2),

we get eV llk x n°
VXV X A(r) + I[k(l') X V X A(r) +V X k(r) X A(I’)] e(z)(z) I no(kéok) _ k(kéono). (38)
_ — 1220 - ) )
K(r) X k(r) X A(r) = kee™(r)A(r) =0, (3.2 Let us present th&')(z) vector in the formk'(q,2)
where the three-dimensional wave vedtér)= VW (r) isin-  =(q,%k!’(q,2). Taking into account that cas
troduced. =k@(2)-n%2)/k®(2)=q-n°%2)/k®(q, 2) one can see that the

In comparison to the first term the second and the thirdsecond expression of E(B.6) for given g becomes an alge-
terms are of the order &, the fourth and the fifth terms are braic equation with respect kf)(q ,2). Thus we have
of the order ofQ? in Eq. (3.2. This hierarchy makes it
possible to use the geometric optics approximation. If we
keep the principal terms only~(?) then we get the vector
analog of the eikonal equation. In this approximation we can e
calculateV¥=k and the polarization vecta. The terms of K?(q,2) = \/Snkg -~ —2[q-n%2P. (3.9
the order of() yield the so-called transfer equation. This €1
equation makes it possible to determine the wave amplitud&he signs “+” and “-” correspond to waves propagating in
A(r). the positive and the negativedirection, respectively. Note
According to Eq.(3.2) the eikonal equation has the form that according to Eq3.8) polarization vectorg!) depend on

KM(g,2) = KY(q) = Ve k- ¢,

Ve
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FIG. 1. Two wave vector&® andk@ corresponding to given
g. Here circleX; and ellipseX, are the cross sections of the sur-
faces of ordinary(1) and extraordinary(2) wave vectors by the
plane containing andz axis.

g also. Figure 1 shows schematically two solutid@%) for
a fixedq vector.
Thus we get four normal waves in the form

EV(r) =AV(q;2,2)e(q,2)

z
xexp(iq-rliij k(Zj)(q,z’)dz’> (3.10

7

with the undetermined amplitude$’(q; z, 7).

PHYSICAL REVIEW E 71, 051702(2005

(8% )12 ¢ sirfh+ e c0SH
COSdp) = =

N2 Ve sirkg + sfcoéa'

In this case the constaEQ) determines the initial amplitude
of the field in the plane=z,.

Equations(3.6)—3.13 have a clear physical meaning.
They correspond to the adiabatic regime of the wave propa-
gation. These equations can be considered as generalization
for the case of the oblique incidence of the well known Mau-
guin solution[21]. Propagating between planesz, and
z the normal wave with indexj gains the phase

§0k(z”(q ,Z')dZ . As long as vectorg¥(q, z,) ande'’(q,2) do
not coincide the polarization vector rotates in the wave
propagation process. The dependence of the amplitudes
AY(q;z,2) on zin Eq. (3.12 is determined by the law of
energy conservation for the wave propagating in the inhomo-
geneous medium without absorption. The wave vector
kU)(q,2) in each fixed point of CLC is directed normally to
the wave front. For the ordinary beam the wave ve&tdt
=k(q) does not depend an whereas the modulus and the
direction of the wave vector of the extraordinary bekffi
=k@(q,2) does depend om. The directions of polarization
vectorse(q,z) depend ore for both types of waves. For
each vectoq the wave vectok’(q,2) is in the plane con-
taining vectorgy ande, both for ordinary and extraordinary
beamse, is the unit vector along the axis.

The tangent to the trajectory of the beam is parallel to the
Poynting vectorS. Parametrizing the trajectory &s,(2),2)
we can write

Contrary to the standard relations for the homogeneous

medium values of k@ ,e® and e? entering Egs.
(3.6—(3.10 depend orz. Note that polarization vectors in
Eq. (3.8 are real in this approximation.

For waves(3.10 we get

S(q,2) = ﬁOA(“Z(q;z,zO){k(”(q,z) -el(q,2)

x[e7(a,2) -k"(q,2)]}. (3.11

In our case we have the conservation law in the form

div S(i)=ﬁz§zj)(q,z)=0. Therefore the componerﬁ(zj)(q,z)
does not depend on Then the amplituded’(q;z,z,) can
be written in the form

i , BYq,2)
M (q- — g2 MY
A (q!ZlZO) EO B(J)(q,ZO), (312)
where
—
BI(q,2) = | -0 %] , (3.13
@2 k?(q,2) ng)(d,2)cos;)(d,2) (313

e1=¢,, &=, §;(d,2) is the angle between the!) and
DW=gEW vectors. For the ordinary beam

cosé =1,

for the extraordinary beam

dr (2 S, (2
dz ~ S(2°

As far asd;1)=0, SV(q,2) Ik (q) and it does not depend on
z. Therefore the trajectory of the ordinary beam is a straight
line parallel to the wave vectde.

In generald;) # 0 and as it follows from analysis of Eq.
(3.11) the vectorS?(q,2) as a function of does not belong
to the same plane. Since our system is locally uniaxial,
S@ ek, so

(3.19

S?@) _ (3(2k?@).
S22 (3(2k?(2),

and Eq.(3.14 for the trajectory of the extraordinary beam
takes the form

dr (20 _n%(2)qcosé(2e,+qe,

(3.19

3.16
dz K2(q,2)e, .19
Integrating Eq(3.16 we get the trajectory of the beam,
e0 (2 n%Z')cosd(Z) Z  dz
rl(z):iqj — ({) dz’+qf =5
€ 0 kz (qu) 0 kz (qaz)
(3.17

A typical trajectory of the extraordinary beam calculated by
Eq. (3.17) is shown in Fig. 2. Here the following parameters
were usedeg =2.3, ¢,=2.0, the angle of incidence on the

planez=0 is equal tow/4, and anglepy=-m/4. We take
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2p g 2t z/P (1a) (2a)

(1b)

d -0. 5k

1 1 FIG. 3. The beam trajectories in CLC. Projections on zhe,
1 -1 P plane. All distances are expressed in term$of

10 means that a plane wave channel is formed and inside this

channel the extraordinary beam propagates at a large dis-
20\ tance along ; remaining within one period im. The projec-
tion of the ordinary and extraordinary beams and formation
of the waveguide propagation are shown in Fig. 3. The
curves are calculated faf=2.86,¢, =2.28, ¢=0, and for
different angles of incidencg, on the planez=0. These
permittivities were used in experiments of R€f30,31]. For

FIG. 2. A trajectory of the extraordinary beam in CLC. All
distances are expressed in termdPof

sufficiently largee, for better presentation only. One can see

; . ; L the ordinary beany,=63.2°(1a) and y,=85.0°(1b), for the
that the trajectory of the extraordinary beam is helixlike. Its : _ o
pitch coincides with the pitch of CLC and the “diameter” of extraordinary beam the angjg=63.2°(24) corresponds to

the helix grows with increasing f, i.e., with the increase of propagation outside of the wave guide channel and for angles

L X0=63.4° (2b) and y,=70.0° (2¢) the wave guide regime
e o425 lce. Here he s i dected long 1 vectr
straight line directed along theaxis. This cajse wa)g investi- The trajectory of the ordinary beam is a straight line for

9 : 9 ' an arbitrary angle of incidence. For extraordinary beams with
gatNed b?/ Maugun[_Zdl]. diti hen th g no wave guide regime the trajectory is helixlikgg. 2). For

owlet us consiger con tions w gnt e wav@ Q can extraordinary beams captured into a wave guide channel the
penetrate into the CLC. For the ordinary wak¢' is real trajectory is nonplane also and its form can be calculated by

proyided the Conditiorq2$k§si is fulfilled. In_ this case the Eqg. (3.17 with an additional condition that the component
ordinary beam can penetrate to any depth infigrection. | 21y changes its sign in the turning points. The width of

If g">koe ., the value ofk;™ is imaginary and the ordinary e wave guide channel depends on the incidence angle and

wave cannot propagate inside the CLC. _ varies within the limits(0,P). The widest channel is re-
For the extraordinary beam the conditions of propagationicie by planes with minimal values of the refractive in-

are more complex e_md depend on the_ relat_lon k_)etvapmmd dex, n(z)(z):\st. The beam capture starts with the angle of
z parameters. In this case the following situations are pos-

sible: incidence,

(i) If *>kimaxs,e,) then kf)(q,z) is imaginary for
any z, and the wave cannot propagate inside CLC. Ve,

(i) If g?<kZmin(e,e,) then the valuk”(q,2) is real XO:arcsinﬁ, (3.18
for any z and the wave can penetrate into CLC to any Ve ~ £2COS

(i) If Kmin(e;,e,)<g?<kmaxs,e,) then the ex-
traordinary beam can propagate into the CLC in certain "m'whereqsi is the angle betweeq andn® vectors in the plane
its of z. The range of these values is determined by the iny_q £, parameters,=2.86, ¢, =2.28 used in Fig. 3 the

equality C0§¢(z)$Si(kgez“_qz)/qzsa' for £,>0, and the 5,016, ~ §3.3°. The effect of the extraordinary beam retumn
inequality code(2) =&, (Kge —0?)/ 0%, for £,<0. Note that o< ohserved experimentall$0,31],
in the considered region off the condition G<e, (k3
-9/ gPe,=<1 is fulfilled.

So in the last case the capture of the extraordinary beam IV. FIELD OF THE POINT SOURCE
in CLC takes plac¢24,25. From the physical point of view
this effect implies that the beam starts to deviate and in the aq far as our medium is homogeneous in fyeplane it is
pointz=7(q) the componenk;”(q,2) turns to zero changing - syitable to complete the transverse Fourier transformation,
then its sign. This effect in some aspect is similar to total
reflection from a surface inside the medium. Since the refrac-
tive index is a periodical function of such a beam would dq
reflect alternately from two planes normal to thexis. It f(r) :f (2m)?

f(q,2€9"-,
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B nent in its vicinity as a Taylor series ovgr-(g up to terms
f(a,2) =f dr f(r)e™are, (4.1 of the second order. For the first terf.3 the stationary
point is determined by the condition
The corresponding problert2.7) for the field of the point e
- Vqlk z=z|+q-(r, -r =0. 4.6
sourceT%(q;z,z) is reduced to a set of equations, alke (@ il +a- (=) 4.6
L R Solving Eq.(4.6) we get
L(2T(q;z,z1) = 8(z—- )1, (4.2 e —
s’ = Veukop - (4.7)
1

The exponent in this term is equal itd'; where
2 2 \Pl:k(zl)(q(s%))|z_zl|+q(sjt-) (rp=ry)=Ve Kolr —rq.
+ (q 5{1/[3 - qqu) - kosaﬁ(z) (48)
is the linear differential operator of the second order. The For the second term of E¢4.3) the equation for the sta-

first three terms of the operattit correspond to operator tionary point has the form
curl curl in (q,2) presentation. For convenience we consider

where

s = O 1) s + (0 + p)
af - ezaezﬁ af3 (922 Qu Z3 deZa 9z

-di i - . 1| (?&%(z)q@dz
hereq as a three-dimensional vector witfh component be F-ry, =— L Rl (4.9
ing equal to zerog,=0. Thus the calculation of the Green'’s z k(f)(qé'f),z’)

function leads to solution of the system of nine differential N , L
equations with periodic coefficients. The principle of radia-here si(2=eq(2), (k,1=1,2) is the transverse projection
tion determining the behavior of the solutionzat: +e and ~ ©f g(2) on tr_lexy plane. The exponent of the second term will
z— - is chosen as boundary conditions. The set of equabe equal ta¥, where

tions for the cas€)>1 was solved in Refl25], where the z

approach typical to the Sturm-Liouville problem was used. v, = f dzk?(q?,2)
The solution of the inhomogeneous equati@n?) is con- 2]

_structed as the superpos_ition of _solutions _of the correspondl-hus we get the Green's function in the far zone
ing homogeneous equatigB.10 in the regionsz>z, and

z<z,. The coefficients of .the s.uperpqsit.ion are chosen so as T Arrp) = exp(ivy) (g 2D (g 2,)

to ensure the corresponding singularity in the right hand side BV T Al -1y @ Gst»2)€5 st 21

of Eq. (4.2). The result has the fori25]

+92 - (r, -ry)). (4.10

expiV,) B?(q¥,2B?(q%.z)
4mlr =1l \deD(q@;r.ry)

Tq;2.2) = TV(q;2.2) + T2(d;2,2) + T3 2,29),

4.3
“ x e2(q2,262(q2,2,), (4.11
where
_ where
TEE};(q;z,zl)=iOB“)(q,Z)B(“(q,zl)eii)(q,Z) Du(Gir ) Ko f{ ey
qirry)=-———— .
N ' Ir=ri\e, 7 [SHSLkg_ (qe*q)]*?

X eg>(q,zl)exp(i

z
f k(q,2)dZ

4|

)' N (e q)(e'q), }dz, 4.12

[SHSJ_k(Z) - (qe*q)*?

According to Eq.(4.11) the Green’s function decreases
with the distance as 1f. This behavior is valid if the phase
€, (4.10 is real. The effect of the wave guide channel described
To(dz2) = - k%—széé(z— z). (4.9  in Sec. Il appears for the Green’s function too. For the sec-
+ ond term of the Green’s functiof#.11) the wave guide re-
It can be shown that the solutidd.3) satisfies the Eq4.2)  gime takes place similar to the extraordinary normal wave.
and the radiation condition. The first and the second terms dfor waves captured in a wave guide channel Eq11)
Eqg. (4.3 contain oscillating factors and determine the as-should be modified. In order to calculate the Green’s func-
ymptotics of the Green’s function in the far zone. The thirdtion inside the channel it is necessary to sum the waves at a
term is a short-range one and it contributes to the static fielgiven point after various numbers of reflections. Here we do
of the dipole only. In what follows this term is omitted. not study the problem of calculating the Green’s function
In order to get the Green’s function in the coordinate pre-nside the wave channel but we only perform the qualitative
sentation it is necessary to complete inverse two-dimensionalnalysis of the effect. First we obtain the decay law of the
Fourier transformation. The integrals can be calculated bysreen'’s function. As far as all waves hitting in the channel
the stationary phase method. For this purpose it is necessaaye being in plane layer for any distance -r4 |, the wave
to find the stationary poingg, and then to expand the expo- energy inside the channel decreases |asr | t=|r

(4.9
for j=1, 2, and
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-r,,|™t. Hence the amplitude of the field decays |as Let us present the wave vect@ in the formQ=(q;q,)

-r4[*?instead of the usual behavifr-r,|™. and fulfill the inverse Fourier transformation ovgrin Eq.
Let us estimate the fraction of the ener@y of the ex-  (4.16),

traordinary wave outgoing in the channel from the pointlike -

source situated in the origin of the coordinate frdisee Fig. T° (a°7 :f _quo ) gl92 41

3, beams(2b) and (2¢)]. This value is of the order of the as(4:2 2w ap(: )& (4.19

fraction of the solid angle, forming by the beams outgoing o o ) )
into the channel to the total solid angler4For positive For z>\ the principal contribution to asymptotics of this
directions,z>0 the beams in the channel are radiated in thentegral is determined by the poles of the first two terms in
range of angleg,< x< m/2 where the minimal anglg;is  Ed- (4.16. These poles can be found by solving the disper-
determined by Eq(3.18. The solid angled; has the form sion equations,

2m 2 q?+ 0~ kG)(9,0,) =0, (4.19
b= Zfo d(ﬁi(JXB sinx dX>' (4.13 j=1, 2. Completing one-dimensional Fourier transformation

over g, we get from Eq.(4.16
Here factor 2 is introduced in order to take into account . 9 "
beams propagating in the negative directips,0. Calculat- T (q:2) = 1 S k2 | 2q0 - JKij)
aﬁ(QyZ) = k(z) - zk(j) ; -
j= =0

ing integrals(4.13 we get aq,
6, 2 e, €&
/E j)a™=(j . (i
Ci~ —+ = Zarctan=2. (4.14 X Wexmqg)ld), (4.20
Amm Ve, €))e &)

For &, =2.28 ande,=2.86 used in calculation, Fig. 3, the Where #(q) are two solutions of Eq(4.19; values of
fraction of the energy outgoing into the wave guide channeB) and k, are calculated for the wave vectd®’(q)
is C;~0.30. o . =@,V @)).

Let us analyze the limifi,— 0 in Eq.(4.4) corresponding  Substituting expression@.17 for k% (Q) into Eq. (4.19
to the uniaxial homogeneous medium, in partlcu(!?r t0 NeMynd solving the obtained equations ferl, 2 with respect to
at([c): liquid ((_:)rystal in our case. The values(z), k (q(,)z), g, we get in both cases thqg):lg(j)(q) Wherekg)(q) is de-
Bjéq’z& el (q,Z()D in this limit do not depend o:n(2)  ermined in Eq.(3.9). Note that forj=2 it is necessary to
=n", k' (9,2=k; (q), BY(q,2=BY(q), €V(q,2=e"(q)  take into account thaQ-n°=q-n° Thus we haveQU)(q)
whereas the functio)(q;z,z,) depends on the difference =(q,k!(q))=k¥(q). Using Eq.(4.17) it is not difficult to
of the spatial coordinatesT¥'(q:z,z)=T0(q:z-z,) only.  Verify that values ofe;,(k"(q)) and k;,(k(q)) coincide

Equation(4.4) in this limit is with e¥(q) andk@(q), respectively, in Eqs(3.8) and (3.9)
for gp=0. Also it is easy to verify the identity
: [ - - A @Dyl . ) )
TiHaiz-2) = 5 BYA@e @) (et . @B _ k)
.19 ko ke (@)s%" ()
2 -1
In homogeneous uniaxial media the three-dimensional % Z_} M
Fourier transform of the field of the point source has the 2 a9, 0,740
form [32] (4.21)
0 1 e)a(Qe)pQ)  K;(Q) for both casesj=1, 2. As a result Eq(4.20 coincides with
Top(Q) = 5 > ~0 2_ .2 : Egs.(4.3 and(4.15.
ko\j=1,2€}(Q)e"e;)(Q) Q° —kij)(Q) —i0
V. GENERAL THEORY OF THE SINGLE LIGHT
- %{g) (4.19 SCATTERING IN THE STRATIFIED MEDIA

_ _ . In our medium the normal waves are not plane, the
Here Q is the three-dimensional wave vecta;, are the  Green’s function has a complicated structure and the corre-

polarization vectors, ankl;, are the wave vectors of the or- |ation function of the permittivity ﬂuctuationé(r 1,15 de-
dinary and extraordinary plane waves propagating in homopends not only on the difference of the spatial coordinates
geneous uniaxial media. The corresponding wave numbelsyt also on their values separately. Therefore the intensity of
and polarization vectors of the ordinary and extraordinanthe single scattering is not proportional to the three-
waves have the forn(8.6) and(3.8) with the substitution of  dimensional Fourier transformation of the permittivity fluc-
k(2) into Q: tuationsde for the scattering vectdk® -k [see Eq(B1)].
_ _ Another problem results from E@2.8) which describes
ki) Q) =k(Q), €;(Q) =€e"(Q). (4.17  the scattered field inside the medium only, whereas in an
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A. Kirchhoff method

Let us consider an arbitrary inhomogeneous speciinen
bounded by a closed surfagesituated outside in a homo-
geneous medium. The electromagnetic field outside the inho-
mogeneous specimeB(r)=E,(r), satisfies the wave equa-
tion

12 —
FIG. 4. Geometry of light scattering. Hel2 is the distance (curl curl —kge E(r) = 0. (5.2)

between the slab and the screen. It is easy to notice that the system of the three equat(ibris
is equivalent to the system

experiment the scattered light is usually measured outside {(A+k§so)E(r):0
’ (5.2

the medium. For homogeneous systems this problem is ) ~
solved in the following way. The scattering volume is as- div E(r) =0.

sumed to be imbedded into a homogeneous medium withhe first equatior(5.2) implies that each vector component
permittivity &, in order to avoid the problem of refraction gatisfy the scalar Helmholtz equation and the second equa-

near the boundary of the specimggenerally the refraction tjon yields the additional condition d&=0 since the elec-
at the boundary could be taken into accouAs far as in the  tromagnetic field is transversal.

homogeneous medium the incident wave is plane and the The Green’s functio(r ,r')=Tyu(r,r’), r,r’ ¢ T, satis-
scattered wave in the far zone inside the medium can bgeg the equation

considered as the quasiplane the refraction problem can be

treated with the use of the Fresnel formulas. In this case there (A+ kSsO)T(r,r N==8r-r"). (5.3
arises a problem of recalculation of solid angles from th
incident to the refracted beam. This problem was considere
in Refs.[33] for general case of anisotropic media.

There is a fundamental difference between the scatterin , . . ,
medium with the periodic inhomogeneities and the homoge® bse:rvat|on point may be expressed in terms of the field
neous environment. The normal waves and the Green'’s fundz-a(r ) on _the surfaceX. According to the Kirchhoff-
tion inside and outside the scattering volume are essentialljfe!mholtz integral theorerf4],
different. In particular the incident and the scattered waves
can be considered as plane waves outside the medium only, E,(r)= —f d?r'E(r")V, T(r,r") -s(r’), (5.9
so the effect of the boundary is important. s

In order to overcome this obstacle for the scattering prob-

! 1 1 !
lem in the medium with one-dimensional regular inhomoge—vv(:]ii:es(r ) is the external normal to the surfaein the r

neities we suggest the Kirchhoff method. The problem i? . , . .
§olyed in three_ stage$i) The scattered fieldﬂ is calculated Coggﬁoﬁﬁﬂisg 'ggpfgr: dtsh(ce)nGtLieposrrr:ung:Ihoen s?)aettl:?rfny(lanng g;?
inside the medium |n.th(aq,z) representatlon(.u)_ We recal- . simplicity we shall consider the surfad as a piece of the
culate the scattered field in the boundary outside the med'urBIanez—L with a large transverse side, closed by a large

- ah

into that in the outside spacéii) The coordinate represen- hemisphere. If the Green’s functidi(r ') satisfies the ra-

tation of the field in the outside area is calculated on the,. . e L -
basis of its value in the boundary outside the medium i diation condition in the infinity then the contribution of the

) rhemisphere to integrdb.4) tends to zero with increasing of
(q.2) representation. _its radius. In this case the boundary conditiBR=0 in our

In what follows we assume that the scattering V(_)Iume 'Sgeometry is reduced ], =0, and using the mirror image
the plane layer, &z=<L, with a large transverse siZe, method we get

>L (Fig. 4). The incident plane wave starts frans—~ and

guation(5.3) does not define the functiof(r ,r’) uniquely
and additional boundary conditions are required. If we take
|s=0 as the boundary condition then the fi#g(r) in the

the scattered field is recorded in the regonl, i.e., in the 1 [ &Mrr'l gklrry]
positive half space. The latter is not essential as far as scat- T(r,r')y=— — = 1, (5.5
tering in the negative half space< 0, can be considered in Am\[r=r'| r-rg

a similar way. Let the incident field is a plane wave with the\ynerer! is the mirror image of ' point with respect to the
wave vectok . The scattered wave has the wave ve&tdr boundalry plang=L.

and is measured in the far zone. Let us suppose that the field is measured in the point

Due to the identity; +k? =kGeo which is valid outside the  —( " )"z’ .. Then in both terms of E¢(5.5) we can
stratified medium the total wave vectkris determined by | co t’he,plane wave approximation of the form

the componenk ; and the sign of th&, component. There-
fore it is sufficient to define the vecttbuﬂ') and direction of gklr=r'l gk S
the incident wave, positive or negative, with respect. tbhe r=r| = Te : (5.6)
latter is valid for the wave vectdt'®.

Below indices fn” and “out’ refer to the values inside As far as in our geometrg(r')-V,,=-d/dz', we get from
and outside of the inhomogeneous medium, respectively. Eq. (5.4
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- iko\“”SO eik Z
27 r r

E(r)= eKLPHEKS,L).  (5.7)

In order to fulfill the condition divE=0 we multiplied the
field by the projector

B(r) = rer

PHYSICAL REVIEW E 71, 051702(2005
jout=in = aggﬂ, legle ),

Min—»out: (Mout—»in)—1’ (5.12

where diag denotes the diagonal matrix.

VI. SCATTERING OF LIGHT IN CLC

providing the field to be transversal in the far zone. This way

we get the vector analog of the Kirchhoff formdia.
Now due to relatrores)P ap= e we obtain the intensity
of the scattered field with polarrzatrce‘rs)

\'800 kogo

| = ——
8 4212

( ) (e¥-EQukP.LP. (58

Thus the scattered field in tr(q,z) representation in the
boundary outside the medi&'?, is required for the follow-
ing calculations.

out

B. Recalculation of the field in the specimen boundaries

The relations between field components inside and out-
side the medium are determined by the boundary conditions
of electrodynamics. According to these conditions the trans-
verse components of the wave vectors and the fields do not

change when the waves pass through the boundaries,

E(')u(k('), 0) = Ei(rir)r(k(ri)yo) ,

ES (k9,1 =E® (k9,L). (5.9

The z components of the fields could be obtained from the

condition for the induction vector di®=0. This condition
gives

D(Iutz(k 0) D|n z(kilo)

D®

Inz

D®

out z(k(f)vl-) (k(f):l—)- (5.10)

So linear relations between the fieldg andE,,; are valid at
the boundaries inside and outside the specimen

E(| (k(r) 0) = Moutﬁin(k(l) O)Eout(kL ,0),

ES(kY,L) =Mk DEPK,L). (5.1

Here M°Utin and Mi"—Ut gre transformation matrices which
can be calculated from Eqs5.9) and (5.10. As far as the

For stratified media with boundaries parallel to the layers

the wave inside the medium has the form
EO(r) = €0k, 2k (6.1)

where £7(k(),2) is determined by the properties of the
stratified medium and also by polarization and amplitude of
the incident wave. In casB> \ the function€® is deter-
mined by Egs(3.10 and(3.12.

From Egs.(2.8) and (6.1) we obtain the scattered field
E(S)(k<s) L) at the boundaryg=L inside the specimen

L
Wk, = kgf dz To(k?;L,2)
0

x se(k'® -k VeV kD z). (6.2
From Egs. (5.11) and (6.2 and relation (éz(k, ,2)

® 88" (k,,2))=S,G(k , :2,Z') we obtain the intensity of the
single light scattering outside the specimérB) in the form

_ \"%C@i< )
87 472 r?

—outy —out
(as) (ys)Mln ouMln ou

f dzlf dzT9, (k'YL z) To,(k L, 2)

X ngtp,u,(k(f) - k(Jl_)'21122)85;”('((}_)!Zl)gil)*(kgi_)sz)u
(6.3

whereS, is the cross-section area of the specimen.

We restrict our treatment to the case when the polarization
of the incident light inside the medium has only one of two
possible types of waveE (r) Eqg. (3.10. Otherwise the
summation ovefi) should be performed for the field inside
the medium. In a similar way the scattered light outside the
medium corresponds only to one type of the scattered wave
inside the medrumE (r) So in what follows it is possible

director component?=0 these matrices do not depend 0Nty omit the summation oves) for the field inside the me-

k, and we get

Yt is known [34] that direct translation of the scalar Kirchhoff

dium. Thus indicegi) and(s) take values 1, 2 dependent on
types of the incident and scattered waves.

formula to the vector problem leads to violation of the relation
div E=0, i.e., the field becomes nontransversal. For elimination of ) o ) )
this contradiction it is possible to apply the Kirchhoff-Kottler rela-  EXpression for the scattering intensit§.3) contains the
tion (see, e.g., Ref:35]). However, this effect in the far zone is of Cconjugate couples of fields and Green’s functions. Substitut-
the order ofA/L, <1. Therefore we shall use the vector equationing expressions for the incident field, E¢8.10, and the
(5.7) where the projectoP ,4(r) makes our field transversal. In the Green’s function, Eq(4.4), into Eq.(6.3) we get the inten-

far zone this approach is similar to the Kirchhoff-Kottler method. sity of scattering,

A. Light scattering intensity in CLC with large pitch
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B(S>2(k(s L)1 inhomogeneous scattering medium and it is derived using the
[ _Jo r) B0 Lf leJ dz, Kirchhoff method. We show in Appendix B that this equation
' is reduced to the standard expression of the scattering theory
([ &S | ot Do) in the limit of the spatially homogeneous medium.
xexp 'L g (2)dz |BU(k},z)BY(k ] 2) The correlation functiong)(q*°(2),2) and G(q®*9(2),2)
o (S)l O S © SrE for the caseq(fc)P> 1 are considered in Appendix A. Substi-
X B¥(kY,z)B (kY z)e,” (K, z1)e.) (KT, 25) tuting Eq.(A32) into Eq.(6.6) we get for the light scattering
X g,,wm(f"‘),zl,z2>e“><k“> 2)e)kl\z), (64 MY
whereq??=k'? -k, 42 =k (k'Y ,2) -k (k",2), |
) | = |(e(|),e(5))
Jo= mEg'” kOsO Isc(s) s)MmaoutMmﬁout B(s)z(k (s) L)
87 1672 r 72 Ca =JokgTey ( ) W
) (1 ® +
s (k S,L) (k 5 y )! 1 B(i z(k(i) )B(S z(k(s) Z)
andV,=S, L is the scattering volume. Using the first equa- LL dzzllzK 992 + (Kgg— Ki)(q (59 . n0)2
tion in Eqg.(5.12 we can calculate the fieIE[g)In inside the : g .
medium through the fiele,  outside the medium: x[(g-e")(n%- &%) + (g - €)(n°- "), (6.7
i) 2 i) -1/2
)2 )2
EO in= EO ou €outr T Sieoutz ) where n%=n° (Z) (I)_ <I)(k(l) Z) (S)_e(s)(k Z) €

—e(q(SC 2), q®9=q®9(z). Comparing the appl|cab|I|ty con-
wheree .is the polarization vector of the incident field out- dltlons for Eqs (6.6) and (A32) we finally get that Eq(6.7)
side the medium, is valid for g*9P>1.

In_tezgr(e;!:) (,6'4), contains rapidly , oscillating factor Note, that in our case the correlation functi@nthe wave
exflif72q; " (z/)dZ]. As far as the vicinity of the lin@,=2, | actor q(sc) and the amplitude factor8Y) depend on the
yields the main contribution to the asymptotic behavior ofygriaple. According to Eq(6.7) the intensity of scattering
the integral(6.4) it is convenient to introduce new variables presents a sum of scattering intensities produced by the nem-
z.=(z+2,)/2 andz.=2,-2;. Expanding the phase function aticlike layers of thicknesdz The director orientation® of
in series near the line-=0 up to the terms of the first order each layer coincides with the specimen orientation inzhe

we have point. The scattering intensity from each layer has the form
2,+42.12 [see Eq(B2)]
f 0%9(z)dZ = g9(z,)z.. (6.5)
2,-2./2
This approach is valid foq<SC)P>1 But as it follows from di = OkOd SCe(9) s)g (CRERE
Appendix A the correlation functionA21) contains rapidly (4m)%r? % avbi "

decaying factors e>[qu)|f22,u](z)dzi] Therefore the ap-

proach is valid not only forg,;"P>1 but also forg,™ wherel, is the intensity of the incident lightV.=L ,dz is
~1,9%P>1, ie., flnaII forqsop>1, ;
a; y q(s) (sihor (si) the Iayer_ volume. According to Eq$3.10 and (4.4) the
FuncﬂonsB(')(k ,2), B9kT,2) and €;"(k™",2) vary  factorsB?) andB® determine the amplitudes of the incident
slowly compared to the rapldly oscnlatmg function and scattered fields in each layer.
ex;{|q(sc)(L)L] Therefore it is possible to substiture in-
stead ofz; and z, into these functions. We can expand the

region of integration over the variable within the limits o B. Basic scattering geometries

and for the correlation function we get the Fourier image _ o N _
5059 (9 Let us analyze the light scattering intensities for various
g@a;”,a, (z),z).

polarizations. In what follows we use the notatidies and
. (e) for ordinary and extraordinary beams. In this system
AR : SR (AR 2 (i there exist four types of scatterind) - (s).
1=3| 5| === dzB"%kV z) . ) .
o\ r B2k, 0) LJ, L The scattering of th€o)—(o0) type is absent since the
©200.(9 O O polarization vector of the ordinary beam is perpendicular to
x B¥AkY,z)e, (K, z,)e. (K, z) the director,n®-e®=0. So for the(0)-(0) scattering it is
0o 3o i i 0.6i)=0 n0.a®= ing i
X Goron(059(z,),2)eV KD, )k 2,), (6.6 valid thatn®-e"=0, n”-e®=0 and hence the scattering in-
pron(d (2208, (k1 2)8, (k1 .2.), (6.6) tensity (6.7) goes to zero. This situation is similar to that for
whereq*9(2)=(q*?,q%(2)). the nematic liquid crystal.
Equation (6.6) describing the scattering intensity in the  Inthe case ofo)-(e) scattering there is only one nonzero
Born approximation in the far zone refers to the spatiallyterm in brackets of Eq6.7). So we get

Thus the intensity of light scattering has the form

051702-10



SCATTERING OF LIGHT IN CHOLESTERIC LIQUID.. PHYSICAL REVIEW E 71, 051702(20095

2
1(eV,e?) = JOkBng(Z ) B@2(k'¥,L)
r In K(e'"), &),

- arb. units
R e IR (arb- units)
0

> (60,2 - VK, 2) P
512 Ki059%(2) + (Kgg = Ki[a®9(2) - n%(2) 1> -2
(6.8

Intensity of the(e)—(0) scattering can be obtained from
(0)—(e) scattering intensity if we substitute? =e®? and
k(® =Kk,

For (e)—(e) scattering both terms in brackets in Ef.7)
contribute in general to the intensity,

| (e(z), e(2))

_ JokaTe2BP2(k,L) ( ;)2
- B@2kY,0) In e, é?),
(arb. units)

r

1t .
o fo dz B24k"Y,2B?%k'),2)

XE 1 =2

2 Kj0®9%(2) + (Kgs = Kj)[q"*9(2) - n°(2) ]2 -4
x {[g(a*%,2) - €2k, 2][n°2) - €2 (k?,2)]
+[g(0?,2) - e?(k?,2][n°%2) - e? (k. 2)]}2.

(6.9)

Equations(6.8) and (6.9 describe the intensity of the
single light scattering by the CLC cell in the positive half _ ] o )
space for the arbitrary director orientations at the boundaries. FIG. 5. The logarithm of the light scattering intensity fa)

For the negative half space the scattering intensity is calcu-(€): (@. and(e)-(e), (b), types of scattering. All magnitudes are
lated in a similar way. expresseq in relatlye units identical for. both types of scattering.

In obtaining Eq.(6.7) we use large parametefs=ky/do Angle of incidence is equal ta/4. Coordinatex andy are mea-

=~ (s9 - sured in distances between the slab and the sdbetee Fig. 4.
and Q=g /do. Therefore the application of the WKB ap-

proximation imposes restrictions on the scattering geom-

i i i (0 . . .
EtfleS@Fl‘fSt of all the scattering angjebepNeer}S\éectork 1 scattered light for the angle of incidened4 with respect to
andk " is not small(y>do/ko~\/P), sinceq;"P>1in  thez axis. For both types of scattering the intensity is maxi-
Eg. (6.7). Moreover, the angles between thaxis and the mal in the region of small scattering angles.
wave vectors of the incident and scattered waves for the , (k(® k()~0. One can see that this region f@)—(e)

extraordinary beam cannot be close to 90° due to the effeclcattering is wider than for the) - (e) type. The intensity of
of the beam capture in the plane wave channel which Wa%e)—(e) scattering fork®~k@ formally tends to infinity

described in Sec. Ill. At last there is a restriction on thewhereas for the(o)—(e) case it is finite. Here we do not
thickness of CLCL <ko/q3~ mP?/\, it is the consequence ider th iofk® -k = - Tt h'. in the Fi
of the second inequalityA33). From the latter inequality it €O"S! er the regiotk'® —k'""| < g, [the white spot in the Fig.

follows that obtained equations are valid to the region of(®)]; since our approach is not applicable in this region.
thickness from a rather thin CLC up to that containing manyFigure 6 shows the same intensities for the angle of inci-
pitches. dence equal tar/8.

We calculate the light scattering intensiti¢s'?,e?) and Figure 7 shows the angular dependencies of(the (e)
1(e'?,e?) for the geometry shown in Fig. 4. The results arelight scattering intensity on the slab thickness. The intensity
represented as the intensity distribution on a flat screen, nots hormalized by the scattering volume. The calculations are
mal to thez axis. We choose the following CLC parameters: completed fork Ik and the angle of incidencg’ = /3.
£,=1.0, £, =2.5, K;;=3.0x10°° dyn, K,,=2.0x10®dyn,  The pitchP is fixed and three slab thicknesses corresponding
K33=5.0x 10" dyn, the ratio of the CLC thickness to the to the director twisting angles/6,7/3, and /2 are con-
pitch L/P is equal to 1/2; the angley between the vector sidered. One can see that dependence of the scattering indi-
k", and the vector director of the beam entering the CLC atatrix on the slab thickness is nonlinear. Note that for a linear
z=0 is set to bep,=x/4. Figure 5 shows the intensity of the dependence these lines should coincide.
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FIG. 6. The logarithm of the light scattering intensity f@)
-(e), (a), and(e)—(e), (b), types of scattering. The angle of inci-
dence is equal ter/8. The other magnitudes are the same as in Fig.

5.

VII. EXTINCTION
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FIG. 7. Indicatrix of the(o)—(e) scattering in thexz plane. The
dependence of intensity on the direction of the wave vector of the
scattered wave is shown. The part of the indicatrix corresponding to
the regionz>0 is presented. The curves are calculated for different
slab thicknessels: (a) P/6; (b) P/3; (c) P/2. Hereg, e, and Frank
modulesK;; are the same as in Fig. &; ande, are directions of the
x and z axes. Dotted line is the intensityexpressed in arbitrary
units and normalized by the scattering voluvig.

In a homogeneous anisotropic media there are two extinc-
tion coefficientse® and ¢'?. In the Born approximation
they are equal to

A (D)
o) = ko €€
1672 n(i)COS5(i)
(9a(s)

(S)eﬂ €, )
X > | deo———G, 5, (k" -k¥) (7.3
s=1,2 “ 00325(5) mP

with i=1 for ordinary andi=2 for extraordinary beams,

When the beam propagates in the fluctuating medium ifdQ), is the integration over all directions of the unit vector
loses the energy due to scattering and these losses determige /s |n our system the values )N andg in the

the extinction coefficientr. This coefficient can be calcu-
lated by integration over all angles of scattering. In the ho
mogeneous medium the damping of the beam has an expo-

nential form

7(¢) = Z(0)expg- o),

right hand side of Eq(7.3 depend onz, therefore o

=s0(k,2).

As far as our expression for the correlation function Eq.
(A32) is valid for g>qg [Eq. (A23)] the domain of integra-
tion in Eq. (7.3 have to be restricted bg=|k®-k®|=q,.
For the ordinary bearti=1) this cutoff is not essential since

where( is the path of the beam. In the inhomogeneous methe term withs=1 is equal to zero and for the term with
dium the extinction coefficient depends on the coordinates 2 the scattering vectde® -k 0 in general. For the ex-

and Eq.(7.1) is substituted by

¢
(€)= I(O)exp(— f o(l)dl) ,
0

traordinary beanti=2) the integral withs=2 for the corre-
lation function(A32) diverges logarithmically for small scat-
tering angles. For NLC this fact is well knowf87,3§.
Therefore the cutoff is essential in this term. Note that the
region q<<qy contrary to the case of NLC does not notice-

where dl is an element of the beam trajectory. The localably contribute too'?. The reason is that the correlation

coefficiento(€) in Eq. (7.2 is determined by the totdinte-
gral) cross section of the scattering. According to [E}.7)
the scattering intensity from a narrow laydr coincides with
the similar relation for nematic liquid crystalslLC), so the

function of the director fluctuations in CLC far<q, has
smecticlike behaviof17] and the integral(7.3) for |k
-k®—0 converges. Therefore the regigh®-k"|=q,
makes the main contribution to the extinction and E3)

coefficiento can be calculated using the known results forwith such a cutoff is reasonable approximation for the ex-

NLC [36-38.

tinction coefficient in CLC with the large pitch.

051702-12



SCATTERING OF LIGHT IN CHOLESTERIC LIQUID..

[ G(cm™1)
10f
sl
O(deg)
0 ' 25 ' 30

FIG. 8. The extinction coefficients>2(6) for A=0.6328um
in CLC with the sameg, e, andK; as in Fig. 5.

The elem%nt of the trajectory length in Eq. (7.2) is a
. i . .
furlnct|on ofk'” andz. For ordinary beam it depends ¢n
only,

di=dzFY(k,),
where
F(ky) = KK (k,) = (1 - %K) ™2
For the extraordinary beam
di=dzF?(k ,2),
where

dr,(2 2

FAk,,2=/1+ :
(k.,2) dz

The ratiodr | /dzis determined by Eq(3.16), so we get
4
70(6) =I“)(O)exp<—J dz(r(j)(kL,z)F(j)(kl,z)).
0

(7.9

The functionS(r“)(k(f,z) can be rewritten as functions of

a single scalar variablé(z), the angle betweek”(z) and
n%2), i.e., o¥=0"(6). The cause is thar"(k!,2) in Eq.

PHYSICAL REVIEW E 71, 051702(2005

i.e., the field of a point source, has a complex form as well.
In particular, it depends on positions of the source and the
receiver separately. Moreover, the Green’s function has for-
bidden zones, i.e., regions where the wave cannot penetrate.
These features are caused by the variation of the optical pa-
rameters in the medium. As a result the trajectory and the
polarization vector of the wave change in a rather compli-
cated way. Besides, for certain directions the wave returns
back and as a result a wave guide propagation takes place.
This causes, in particular, an unusual behavior of the light
scattering intensity as far as the scattered waves can be cap-
tured by the wave channel. Finally, the spatial correlation
function of the permittivity tensor fluctuations resulting from
the director fluctuations, as well as the Green'’s function, is
not determined by the difference of the coordinates only, but
essentially depends on their projections to the helical axis.

In the present paper we have analyzed all these factors for
CLC with the large pitch and have obtained the expressions
for the light scattering intensity in a closed form. They differ
essentially from the expressions for the spatially homoge-
neous media. First of all they represent integrals over all
layers of CLC medium along the helical axis. The light scat-
tering intensity, similar to the case of nematic liquid crystal,
depends on the Frank modules, permittivity tensor, director
orientations on the boundaries, and the wave vector direc-
tions of the incident and the scattered waves. An additional
parameter is the cholesteric pitch. As a result of the presence
of the large-scale periodic structure the dependence of the
light scattering intensity on the volume is nonmonotonic and
the damping due to scattering is not described by the Buger
law.

Using the typical parameters of CLC we have calculated
the angular dependance of the light scattering intensity. The
obtained dependencies are less sharp in comparison to NLC,
where the correlation length is infinif27]. The reason is the
fluctuation damping due to emergence of the characteristic
size P in the system which plays a role of the finite correla-
tion length. Nevertheless, the light scattering intensity
changes significantly with the scattering angle and depends
on the orientation of the wave vectors of the incident and the
scattered waves and on the direction of the helical axis.

Experimental investigations of light scattering in CLC
with the large pitch make it possible to clarify the whole set

(7.3) is a local value and the local symmetry of CLC coin- of jnteresting problems. First of all, there exists a problem of
cides with the NLC symmetry. Figure 8 shows the depenyehavior of thee) - (e)-type scattering intensity for the small

dence of the extinction coefficienté®? on #.

VIll. CONCLUSION

angles 6, In nematics this value tends to infinity a&,

— 0. In cholesterics the correlation function varies from the
nematiclike to the smecticlike for small scattering angles
[17]. As a result the light scattering intensity becomes less

We have considered the problem of light propagation andingular forfs.— 0. Thus measuring the angular dependence
scattering in cholesterics with the large pitch. From the op-of the light scattering intensity it is possible to investigate the
tical point of view this system presents a stratified mediuntransition from one regime to another one. Second, studying
and solution of the scattering problem differs significantlythe light scattering in rather thick CLC samples provides a
from the case of the homogeneous system. In the homoggossibility of observing penetration of the scattered light into
neous system the incident beam is a plane wave, the scdhe wave channel. And, finally, investigating the vicinity of
tered wave is considered in the Fraunhofer zone and as the turning point permits us to determine the specific features
result the light scattering intensity is determined by the threeef light scattering near caustic.

dimensional Fourier image of the permittivity fluctuations.
In a helical medium the incident plane wave is trans-
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APPENDIX A: CORRELATION FUNCTION OF THE
DIRECTOR FLUCTUATIONS IN CLC WITH THE

LARGE PITCH
In order to calculate the correlation function of the direc-
tor fluctuations in the Gaussian approximation we restrict X
ourself to the quadratic terms ovén in the free energy
2.9, Y
SF = % J dr{K4(V - n)? + Kzz[no (V% )PP FIG. 9. Fluctuation modes, , in CLC.
+Kgd(on- V)n®+(n°- v)on]3. Al 1
A ) ( ) (AL oFq=12 f dZ{K 43U, +i(= sin ¢ g + cOS¢b q)uy|?
Here we take into account the relations dR=0 and 2
curl n®=-qyn® which are valid for the helical structute.?2). + Kool= 9.Us + iUs(COS O — Sin 2
The vectorén=(dn,, dn,, on,) can be parametrized by using 22~ 0y ) 2cos¢ qy_ s qX)|2
two functions. As far agn|=|n°=1 the conditionsn L n° is + Kad |uz0o +i(COS ¢ 0y + Sin ¢ gy)uy|
valid in the first order inon. Therefore for CLC this param- + |u.l2(cos +5sin . A8
etrization has the forri17,1§ luzl*(cos¢ g ¢ &)l (A8)
] Integrating by parts and omitting the terms outside the inte-
on(r) == uy(r)sin ¢(2), gral we present the valuéF, as a quadratic form
= 1 * ~
(‘)hy(r) u,(r)cos¢(z), 5Fq:§Ju (q,2).A(q,2)u(q,2)dz (A9)
aNy(r) = uy(r). (A2) with
The modeau; and u, determine the director fluctuations in
the xy plane and along the axis, respectivelyFig. 9). In u= (ul).
vector notations we can write Uz
an(r) =uy(rh®(2) + uy(r)h®, (A3)  The matrixA is a differential operator of the second order. In

the coordinate frame with the axis directed along the
vector (g,=4, g,=0) it has the form
D7 =h@ 0 (2 =
h'Y(z2 =h'Y X n%2), h¥9=e, (A4) i osirte iq sin¢a,
ande, is the unit vector directed along tlzeaxis. —Ru iqa,sin ¢ - R

From Eq.(A3) we can express the correlation function of z
the director fluctuations through the correlation matrix of the - &f —iqd.sin ¢
scalar functionsl; ,, TR _ iqsingd, g’sirte

where

2 5 .
g’cogp  —iggq cose
BT 1212 = D Gy(r iz, 2h N (z)h(z,), (A5 +K ( . (A10)
Jap(l 1321,20) k‘% k(152,200 (z)hg (), (AS5) 33 igoq cosé GPcogd + G2
where where &= 1 322
The probability of fluctuations is proportional to
Gu(riL =r21321,20) = Gy(r 1,1 2) = (U(ryu(r)). exf—oF,/ksT] wherekg is the Boltzmann constant ardis

(AB) temperature. As it follows from general principles of statis-
tical mechanic$39] the calculation of the correlation func-
tion leads to inversion of thel matrix. This procedure is
equivalent to solution of the equation

As far as in equilibrium CLC is spatially homogeneous in
the plane normal to the axis we use a two-dimensional
Fourier transformation. Substituting EGA2) into Eq. (Al)
and completing two-dimensional Fourier transformation we

can get the distortion energy in the form A(9.29G(0;2,2,) =kgTAz~2))!. (AL1)
g For unambiguous solution_ _Ec{All) has_tq _be comple-
5|::f ——5Fg, (A7) mented by boundary conditions. InAthe infinite Asystem the
(2m) principle of the correlations decay;(q;z,z;)—0 for z
where — +, should be used as such conditions.
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The correlation function of the director fluctuations (A1l) is homogeneous. Primarily we solve the homogeneous
G(z,z) in CLC with the large pitch was considered in detail €quations foz>2, andz<z and then we construct the cor-
in Ref. [26] The matrixé Obeys the inhomogeneous System relation function USing the Continuity condition f@rand the

(A11) of two differential equations with periodic coefficients jump of its derivative forz=z,.
and decay condition az— *. Note that forz#z Eq. The system of homogeneous equations has the form

(Kzo 0\ ( 1)d
[ (0 K11>d§2+IQ(K11 Kyo)sin ¢ 1 0/

. (ﬁz(Kllsinzcﬁ +Kasc0€h)  —i0 cosd(Kap+ Kaa) ) } o0,

~ - (A12)
i cos(Ky+Kgg)  Q%(Kyssinep + KaicoSe) + Kag
[
whereQ =q/q, £=q,z. The system of two differential equa- - |cogéo+ o) ¢o)|’\ w(d
tions of the second order E¢A12) has four linearly inde- D.(¢,60) = lcos | w(&)
pendent solutions. Let us construct two matriég&t) and
0,(&) with the propertiedl; (&) —0 at é— +o, U,(§) —0 at % ex +Qf w(&)dE (A16)
&— — using four linearly independent vector-column solu- &
tions of Eq.(A12). Such a selection provides the required
behavior ofG(¢,&;) at infinity. diag’x)) denotes the diagonal matrix with elemerisx, on

The correlation function is sought in the form its main diagonalg=¢(&) =&+ dg, w=m(é),

~ ) 0(§oy(&y) for E= &y, :\/ ir2 2 =12 (A17
G(S'gl)_{az(g)az(gl) for £< £, (A13) m(é) si ¢(§)+ CO #(é), 2. (A17)

If we get back from dimensionless variakjeo the vari-

wherev, ando, are 2x 2 matrices. We have _ - _
ablez we finally have for theG matrix
01(5)011(§1)\7V(§1)k_1 for =&,

G (DN EDW(EYK™ for E< &y,
(A14)

G(£, &) = ke Tt G(0:21.2) = G1(;21,2) + G(4:21,2),  (A18)

where

keT
20K335c08 ¢(21)c0S P(Z,)

(= ) conf-of [
= : exp| - i(2)dz
0 Kpp q er“l

We consider the CLC with large pitch of helix, that im- X 00(:20,2) €9 (q;20,21), (A19)
plies the caseg> q,, and get the solutiong of the homoge-
neous equatiofA12) using a large parametél>1. Using  where cosp=q-n°/q, sin$=1q>-(q-n%?/q,
the vector WKB method we get

wherew(&)=[05()0; (9 - 03 (T (O] (Gpu(d;z1,20) =

sin ¢(z
_— (M(qiz,2) = (i sgriz-2) i(),\m))
; (g):<—|,u1 sin ¢ 1 )&) Vi (2)
! -1 —iu, sing )
z
(q;22) = <\,U«2(Z) | sgriz -2 ﬂ)) (A20)
iug tsing -1 - Vi2(2)
0,(6) = L |d.,  (A15) _ |
-1 —ipy sing Summing overk and| in Eq. (A5) and using Eqs(A4)
o and (A18)—(A20) we get the correlation function of the di-
where phase facto®.,=®.(&, &), rector fluctuations in the form
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( | kg T > 2(K11K5,/K33)(go/q) has to be fulfilled. In particular it is
9ap\0: 21 22) = illegal in Egs.(A21) to use the equal constant approximation
20K33C0S p(z1)COSh(Z
a 233C Hz)cos$(z) for the Frank energy2.1).
2 Let us estimate the region where inequalfy24) is valid.
X 2 exp -9 1i(2)dz For this purpose we introduce a new varialfteqyz+ ¢,
= . —-ml2=¢-/2 and expandy near the poin¢=0,
x (@22 - 2T (@22~ 20),
(A21) m=1+CZ, (A26)

wheref(i)(q;z,z—z’):Ekzl,z(fl((”(q;z,z’)h(")(z). In the coordi-

nate system used in EGA10) vectorsf) have the form where C;=(Kz5~Ky)/2Ky, 1=1,2. In this case the condition

(A24) gives
f(l)(q;Z,L) = S’gr(,_L) ~
Vua(2) QE>1. (A27)
L i
>< - A . . . . =
<I Sir ¢(2), Pk 2¢(Z)’Sgr(L)’u1(Z)>’ It means that the expressioi®21) is valid if Q[{3>1,
Q|4°>1 and there are no points with coincidipg and u,
f2(q;2,2) = Vuy(2) between/ and Z; where cosp=0.
i sin ¢(2) Analysis of the correlation function behavior in the vicin-
X <_ sin ¢(Z),COS¢(Z),SQF(L)M>. ity of points with cos$p=0 is based on methods which are
pa2(2) used for investigation of the turning points in the WKB

(A22) method. This problem we have discussed in detail in Ref.

) ) . ) [26]. It is shown there that the correlation function is finite in
Note that the correlation functiofA21) grows in points  ihe points with cosh(zy)=0 and cosp(z,)=0.

7, , where cosp(z, ) in the denominator of E¢A19) tends Now we are going to construct the function

to zero. These points occur in the region where the WKB, (o . . . )
approximation is violated and E¢A21) is inapplicable. G(a'*%(z.),2.), which enters the expression for the light scat

C ... tering intensity. We shall perform a procedure analogous to
The range of applicability of the WKB approximation is : . .
determined by three inequalities. The first inequality, thaAt as in obtaining of I_Eo[6.6). In all slowly varying _factors
_ of G(q;z,2,) we substitutez; andz, by z,. We restrict our-
Qu>1, (A23) selves by the term linear in. in the exponential factors and
also keep factors containing the function &gn In this case

implies that phase factors in EA16) are rapidly varying eEq' (2.13 takes the form

values. The second inequality impose limitations on th
proximity of the eigenvalueg, and w, in the whole interval

from & up to ¢, Gupys(0°9(2),2) = £3[N(2N)(2)955(0°%(2),2)
min [uy(€) - uo(€)] > Q71 (A24) + N (2N3(2)95,(a*%(2).2)
== +n(2n%(2)9.:0(2),2)

Finally the third inequality implies smallness of the next cor- 0710 (s9
rection to the exponential terms in EGA16) for any &, & *Ng(AN3(2)9.,(a™(2).2)],

and imposes restrictions on the width of the regipné, (A28)
where the WKB formula is applicable,

L —— where
|§_ §,| < mln(/“’luu’Z)Q! (A25)

wherey, is the average ofy within [&; £] interval. o _ kT

Let us discuss the applicability range of E&21). The  945(d°°(2).2) = 205K c024(2)
first condition, Eq.(A23), holds true in our case since the é =
value Q) is a large parameter and by virtue of E@17) ” . (s (s9
w1 2~ 1 for K3s/K) ~ 1. Therefore there remain two possible X % _ dzexdiq;™(2)z - a} '“J'(Z)|L|]
restrictions due to inequalitieg\24) and (A25). As far as ' ) )
u1o~1 it follows from inequality (A25) that |z,-2) x t9(q5%22) P z2). (A29)
<ql/g5~QP.

The limitation(A24) is the most essential since the eigen-In Egs. (A29) and (A22) we take into account the order of
valuesu, andu, coincide for cosp=0. Therefore Eq(A21)  arguments and complex conjugation of t#& functions in
loses its sense if the poirt with cos¢(z)=0 is situated Eq.(A21).
between pointg; and z,. As far asu,=pu, identically for Performing integration ovez. and summation ovef in
Ki1=K,, it is essential that inequality |Ki;—Ksj Eq. (A29) we get
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gaﬁ(q(SC)(z)lZ)

2
— k TE eja(q(SC)lZ)ejB(q(SC)vz)
® S K[a92 = (g9 - 92 + K3y(q? - n%)?’
(A30)
where
(so 0
&(q*9,2) = ———— 1" :
\5q(sc)2 _ (q(sc) i r.|O)2

e1(0%,2) =n°® x e,(q?,2). (A31)

Hereq®9=q9(z), n°=n%(2).
Substituting Eq(A30) into Eq.(A28) we get the correla-
tion function of permittivity fluctuation in CLC,

2 keTe?
Gou(09(2),2 = 2 52
proutd =1 Kja®9% + (Kag= Kj[a®? - n°(2) P

x [€,(0°,2n2(2) + €,(q"°%, 2n%(2)]
X [€;,(09,2n2(2) + €,(q,2n%(2)].
(A32)

Note, that the correlation functiol(qs®,z), Eq. (A30), for
any fixed z coincides withg(q®®) in NLC [27] if we for-
mally putq®®=q¢9(z) andn®=n°(z) in the nematic correla-

PHYSICAL REVIEW E 71, 051702(2009

applied(see, e.g., Refl29]). If the observation point is lo-
cated outside the scattering volume then the refraction at the
boundaries should be taken into account. Such an approach
is convenient for spatially homogeneous media and in this
caseT(r,r')=T(r-r’).

For layered scattering systems there is no simple expres-
sion for the Green’s functiofi(r,r’) in the coordinate rep-
resentation. However, this function is known in the mixed
(q,,2) representation in the WKB approximatiofEqg.
(4.312 This is why we calculated the scattered field outside
the layered medium using the Kirchhoff method.

Though these methods are conceptually different we show
that for the spatially homogeneous scattering medium both
approaches give coinciding results.

Let us consider at first an isotropic system. The scattering
intensity is the modulus of the Poynting vect&:5 which
for isotropic medium is

5= nEps
8w k'
Let the incident beam in Ed2.8) be a plane waveE (r)
=EVeVexpik’r). We use the Fraunhofer approximation

(5.6) for the Green'’s function. In the Born approximation the
scattered field inside the scattering medium has the form

kG - ey ) i
E(S)(r):ES)—4 re(s) dr'se(r’)ek K g
V,

tion function. This fact has the transparent physical meaning. g sc

The expressiofA30) was obtained by the WKB method

using the large paramet5)> 1, i.e.,q(fc)P> 1. In this case
the correlation functiorfA21) is not negligibly small in the

region |z,—z,| <P only. For such scales CLC locally coin-

cides with NLC.

— E(I) k(z)eikr
- =0
4t

e958(Q)el. (B1)

HereQ=k® -k is the scattering vectose(Q) is the three-
dimensional Fourier component of the permittivity fluctua-

Another feature of EQLA30) is the absence of divergence tions. Hence scattering intensity inside the specimen is equal

which is present in Eq(A21) for cos¢(z)=0. This differ-
ence is related to the conditidn —z,| < P used for obtaining
of Eq. (A30). If one of the pointg, , in Eq. (A21) belongs to

the region where cog(z)=0 then the second point belongs
to the same region too. In this case singularities in teyms

to

2\2
c oo ko |7V -
- (H2( 20 | Isc(s)4(s) (1) (1)
lin= 5" ( 477) e G Qe (B2)

=1, 2 of the correlation function are canceled. This is evidenhereg(Q) is the three-dimensional Fourier component of

from the fact that in Eq.(A19) exponentsu,(2),us(2)
—1[cos(z;),cos¢p(z,) — 0 consequentlyand in the limit
z,— 2, the conditionEjzlyz(f(k‘)(q;zl,zz)el(‘)*(q;zz,zl)—>0 is
fulfilled.

Thus in the problem of light scattering it is possible to

restrict ourself to the expressidi32) for the correlation
function if the inequalities

a>do, |z-2] <q/af (A33)

are fulfilled.

APPENDIX B: SURFACE CORRECTIONS FOR LIGHT
SCATTERING

For calculation of the scattering intensity in the Born ap-

proximation the Green’s functioﬁ(r ,I'") in the far zone is
usually used and the Fraunhofer approximation, (Bd), is

the permittivity correlation function.

Now we introduce the energy flux inside the specimen
through the small ared.;, perpendicular to the Poynting
vectorS

dliy=S-d¥, = [;ndSi, = 1ir2dQ,, (B3)

whered();, is the element of the solid angleee Fig. 10 In

order to calculate the energy flux outside the specimen it is
necessary to take into account the surface corrections. First,
it is necessary to take into account changes of the amplitude
and propagation direction of the wave owing to the refraction
at the boundary. Second, the corrections manifest themselves
in the difference of the solid angles inside and outside the
specimend(};, andd(,,, due to difference of the refractive
indices.

This expression is valid in the wide range ofz’, in particular
in the near and in the far zone.
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Ky fS%)M n Ein2;2 ko Mout COSZ)(out
- : 8 in=0 |n—>out16772 sc n3 Cosinn
in xm:
: XeYeG ,5,(Q)EVE. (B8)

FIG. 10. Refraction on the boundary for the homogeneous scaffhe scattering intensity calculated by the Kirchhoff method
tering mediumsS", S*" are the Poynting vectors inside and outside refers to the region outside the specimen. For homogeneous
the scattering mediumki, ko, are the wave vectorsl()i, and  jsotropic scattering system all values in E§.6) become
dQ. are the elements of the solid anglgs, is the angle of inci- independent onz, and we can pute’ S)Mlneoute(s)(k S>)

dence measured from tf&" vector, x,, is the angle of refraction =t ous B02=p(92= ko/k;, , Keeping in mlnd that\so

ut H H H ing L.
goi:’ﬁurted from th&°" vector. For isotropic mediung"|k;, and =ng,, We have from Eq(6.6)
out

. _ , dlgu _ kir 2= 3 ging2 ﬁ% ?
Now we consider the refraction at the boundary. Consider 4 =loul“= 87Tnou 0 lin—out a4
that Eg"'=t;, ouEq, Whereti, o, is the transfer constant of out

the field amplitude, which can be obtained using the Fresnel z\? k0
formulas. The energy flux at the boundary is equalSfo X VSC K2
Inside and outside the specimen we can get "

e(S)e S)gaVBM(Q)e(I

(B9)
in c in2
S zaTninEO COSXin, If we take into account the relations/r=cosy,, and
ki, ./ Ko=ninCOSX;in then we get
Kir
S= NS uCOSXoue B4) Aoy _ diggy
dQOUt dQOUt

So the surface correction to the energy flux due to refractio

has the form %hus for homogeneous isotropic media the both approaches

are equivalent.
Out ng Nout? 0uCOS Xout Now consider the case of the homogeneous anisotropic
a SZ” RE— scattering medium. In this case all quantities in Ej6) do
in in©SXin not depend oz, and we can compare the scattering intensity
The variation of the solid angle can be calculated with the(6.6) obtained by the Kirchhoff method with that obtained
help of Snell's law. Let the angle of incidence of the scat-for homogeneous medium in R¢83].

tered field bey;, and the refraction angle bg,,. The polar Similarly to isotropic medium it is necessary to take into
angles¢;, and ¢, are measured from the axis. The ele- account the variations of the solid angle element and the
ment of the solid angle is equal to refraction at the boundary. The main problem is that the
_ Poynting vector for the extraordinary beam is not directed
dQ) = sin ydxdé. along the wave vector. According to R&3] the scattering
Snell’s law has the form intensity inside the specimen has the form
. _ . 2\ 2 2
NinSIN Xin = NouSIN Xout: (B5) I = il’l in2<ﬁ) Vsc f(S) (s) (s)g » (Q)e(')e
This law may be written for the projection of the wave vec- 8 4u) r? 00535 g
tors on thex axis, (B10)
NinSIN XinCOS ¢in = NouSiN XouCOS Pout: Here the factorf s is determined by the Gaussian curvature
It follows from these equalities thap;,= ¢, If we differ- . .
entiate Eq(B5) we get no fw=1 fo= |:(5(2)803(2))(S<2)8028(2)) v
’ 2 )
g€
NinCOS XindXin = Nou€OS XoudXout: (B6) L
L - wheres?=5?/52 Recalculation of the intensity in terms
Taking into account the equality of the polar angles, from
Eqs.(B5) and (B6) we have of external medium parameters is performed according to
(OF 0S dQ
d = OUtC XOUt (B?) dlout Iln |n—>0utr2d90ut- (Bll)
dQout n,ncos)(m dQou

Thus the cross section of the scattering intensity outsidélere the ratial();,/d€),, describes the variation of the solid
the specimen has the form angles,
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inn nzz)utCOSXoutcoszé(S) dlgtijrt C 3 _in2 (s)2 kg 2
= (B12) —> = —n 192 | — | Vscogy,
dQqye n(ZS)COSXi(ﬁ) f(zs) dQy, 87 out=0 tin—out\ 4 s out
(9)4(1 (5 a9 als) () (i)
The factorT,,_ ., determines the transfer of energy of the X Bk T)e € Gapu(QlE, €, (B1D)
beam passing through the boundary, Comparing Eqgs(B14) and (B15) one can see that it is
92 necessary to prove the equality
- _ Nou€OSXout tin"out (B13) (1 (972 (9)-1
in—out~ n(s>C05Xi(§) COSd’ [B®(kY)]° = (cosdgnieCosxin) - (B16)

9 : _ For the ordinary beam this relation can be easily obtained
Here;, is the angle between the Poynting vector andzhe using Eq.(3.13 for B(S)(k(f)). As far as the directions of the

axis. . . . . . wave vector and the beam vector coincide for the ordinary
The scattering cross section outside the specimen in thgeam we havéB(l)(k(S))]—kO/k@—1/n cosvd  therefore
Born approximation has the form B L )17 Rl1G = 21 EES X+ TR
Eq. (B193) is fulfilled. For the extraordinary beam it is easy to
dige ¢ n24(9)2 ( kg )2 1 get the following expression for cqqf):
t:

dQ t_87Tn(S)EO in—out
ou

4ar SCC0525(5) COSXi(ﬁ) = kgz)n(z)cosa(z)/{;‘”ko.

Using this relation we can verify validity of E¢B16). Thus

we prove that for the homogeneous uniaxial scattering media
the Kirchhoff method is equivalent to the standard approach,

For the case of the homogeneous medium the integral in

3

Nout COS Xout (s) (5 (i) A(i)

B A N = X Q)ee’. (B14
n(as) cos’-xi(r?) % Geopn(Q, 0 (BL4

Eq. (6.6) disappears and we get the scattering intensity ob- Aoyt — d'_clf'urt
tained by the Kirchhoff method, dQou  dQoue
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