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Telephone-cord instabilities in thin smectic capillaries
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Telephone-cord patterns have been recently observed in smectic liquid-crystal capillaries. We analyze the
effects that may induce them. As long as the capillary keeps its linear shape, we show that a nonzero chiral
cholesteric pitch favors the SW-——Sm-C” transition. However, neither the cholesteric pitch nor the presence
of an intrinsic bending stress is able to give rise to a curved capillary shape. The key ingredient for the
telephone-cord instability is spontaneous polarization. The free-energy minimizer of a spontaneously polarized
Sm-A" phase is attained on a planar capillary, characterized by a nonzero curvature. More interestingly, in the
Sm-C" phase the combined effect of the molecular tilt and the spontaneous polarization pushes towards a
helicoidal capillary shape, with nonzero curvature and torsion.
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I. INTRODUCTION as a fixed parameter and focus our attention on the determi-
) o i nation of the preferred filament shape.

Telephone-cord instabilities in carbon films have been o, main results deal with a smectic liquid crystal en-
identified as processes which allow the material to relax it$jowed with a nonzero spontaneous polarization. In the
residual stresl]. Recently, similar helicoid fibers have been g, o* phase we find curved planar configuratidtise cap-
observed in bent-shaped liquid crystétse so-calledanana gy axis is bent with nonzero curvatyréhat have lower
liquid crystalg [2,3]. Below a direct nematic-smectlt-  gnergy than straight ones. More interestingly, in the G-
transition temperature, tilted layered domains grow into the,nase the ground-state configuration is helicoidal. We derive
isotropic phase by giving rise to thin helices of fixed diam-ana|ytical relations linking the radius and pitch of the
eter and pitch, whose tips advance at a constant speed. gound-state shapes to the material parameters. These rela-
central role in the peculiar domain shape choice appears f,ns allow us to estimate the tilt angle of the S3h-phase.
be played by the spontaneous polarization, which charactéfrhe main issue, stemming from experimental evidence on
izes the banana moleculpé]. o _ telephone-cord instabilities and reflected in our results, is the

Although some nematics are polar liquis 6], the first  tact that the mechanism for the capillary to decrease its en-
well-known liquid crystals exhibiting S|gn1f|cant spontaneousegrqy is by bending and twisting. For other geometries, the
polarizations are found in the smect- phase. In this echanism for energy minimization may be the formation of
phase, the molecules are tl!ted with respect to the layer NOKomaing 4,10]. However, domain formation is often coupled
mal and thus break the mirror symme{y-9]. The local it the creation of energetically expensive boundary de-
polar|zat|on. vector of a smectic liquid crystal is perpendlcu-fects_ The defect energy favors the changes in material ge-
lar to the director. However, it is free to rotate in the pla”eometry that we describe in our analysis.
orthog_onal to it, thus giving azero polarization average over The plan of the paper is as follows. In Sec. Il we present
one pitch. The electro-optic effects of the Sn-phase 5nq giscuss the model and free-energy functional. Section Iil
emerge with the .unwmdlng of the helix by surface stat?lllza-iS devoted to linear capillary shapes: in it we show how a
tion and result in homogeneous spontaneous'polarlzano;qOnzero cholesteric pitch may anticipate the SmSm-C
throughout the sample. These homogeneous director statggnsition. In Secs. IV and V we analyze the curved domains.
give rise to the ferroelectric Si8- phases. For a much more |, the former we prove that neither the cholesteric pitch nor
detailed description of the role of polarization in liquid crys- the intrinsic bending stress is able to bend the axis of the
tals, we refer the reader to the book by Lagerda0] and,  gmectic capillary. In the latter we determine the curved
more precisely, to Secs. 4.9-4.10, 5.4-5.6, 6.1-6.2, anghapes induced by the spontaneous polarization. They turn
12.2-12.5 therein. o _ . out to be planar or three dimensional, depending on the

In this paper we analyze how polarization and chirality g, aA*—smc* phase of the liquid crystal. In the concluding

may influence the ground-state shapes of thin filaments. Thgstion we discuss the above results and test them against the
experimental observations show that the smectic f"ame”téxperimental observations.

grow by increasing their length, rather than by thickening
their radius. Consequently, we will treat the filament radius

Il. FREE-ENERGY FUNCTIONAL

*Electronic address: paolo.biscari@polimi.it We consider a liquid crystal occupying a curvilinear cyl-
"Electronic address: mcc@math.umn.edu inder(). The domain is thus the set of points which lie within
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A. Nematic energy

We identify the director orientation through the angles
a, ¢ (see Fig. L

n=(cosa)T + (sina cosg)N + (sinasing)B. (2.3
We also introduce the unit vectors

n, :==(sing)N +(cosg)B, nsz:=-(sina)T

+ (cosa cose)N + (cosa sin ¢)B. (2.9

Together withn, they complete another orthogonal basis
(nOnz=n; we arbitrarily definep=0 whena=0). We have
(see again the Appendix for technical detgils

FIG. 1. Geometric setting of the model. The liquid crystal oc-
cupies a curvilinear cylinde®) of width r, centered in the curve. ( a' + Kk COSg (¢’ = 7)sina — k cosa sing )
The left panel illustrates the |n_tr|n5|g framd&,N,B}. In the rlght_ Vn= 1-xé cosﬁn3 1 - kécosd 1
enlargement we show a smectic liquid crystal, layered in the direc-
tion orthogonal to the unit tangefit. The nematic directon is ®T,
identified through the angles, ¢ [see Eq(2.3)].

where a prime denotes differentiation with respect to the ar-

clengths. The Frank free energy density is thus giver b
a maximum distancefrom a smooth curve:[0,£]— R2 (to g 9y ltyis thus giver{by]

be determined ol a, @] = K (div n)? + Ky(n - curln + gg)2 + Kgln Oceurln

0= {P e RSZP - C(S) + ge, + Uo|2 + (KZ + K4)[tr(vn)2 - (dIV n)2]
(a' + k cOSg@)?

for somes e [0,£],6 € [0,r], ande-e=1}. = m(Kl sir? a + K3 cos a)
(2.1
sina

Figure 1 illustrates the geometry of the problem. WeNet * K2<qch_ 1 - k& cosY
andB be the normal and binormal unit vectors oithe unit
tangentT completes an orthogonal basisnd denote by
and 7 the curvature and torsion along the same curve. We
recall that a curve characterized by constaanzerg values
of both curvature and torsion is necessarily a cylindrical he-

2
X[(¢' = 7)Sina — k cosa sin qo]) + K3<b0 sina

_ (¢ —7sina—kcosasing a)z

lix, whose radius and pitch are given by 1-«écosd
5 where q., is the cholesteric pitch andvg=byTOn
- K __ AT =bysinan, is the intrinsic bending stress.
I’hel K2+72, phe| K2+ . (22) 0 L
Given a pointP € ), the arclengthse[0,¢] identifies its B. Smectic energy
projection onc, while £ [0,r] yields its distance front. Let (s)=p(s)€“® be the smectic order paramefdrl],

Finally, 9 € [0, 27) is the angle that the unit vecterin Eq. g that
(2.1) determines witiN. We show in the Appendix that the _ .
coordinate sets, &, 9) is well defined as long a8 is suffi- V= (p' + uow’)e"“(s)_r
ciently thin: r <mins_o qx (). 1-kécos®
According to the experimental conditions in which smec-
tic helices have been observe®,3], we consider a freely
suspended capillary, immersed in an isotropic fluid that doe
not interact with the surface director. Thus, free-boundary Oenlpr0,a] =C| V w-iqsm¢n|fn+cl|v z//—iqsmlpnﬁn
conditions will be imposed on both the nematic and smectic

andT is also the normal to the smectic layers. The smectic
gart of the free-energy density is given by

variables. However, an anchoring energy will be necessary in +p) = Cl[ p'?cos a
order to take into account the surface charges induced by (1 - k& cos9)?
spontaneous polarization. o COSa 2

In the absence of nematic anchoring, there is no energy + 2(— —qsm) }
gain for the system if the smectic and nematic variables de- 1-«¢cost

pend on the transverse coordinaigs). We then assume . C.(sir* @)(p'*+ p*w'?)

throughout our calculations that all fields depend only on the (1 x£c0S0)? +{(p), (2.5
arclengths. This will imply that the smectic layers are planes
orthogonal to the unit tangefit where the subscrigin or Lnin Eq. (2.5 refers, respectively,
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to the components parallel or orthogonal to the nematic di- Tancl P1= wpP(1 -p - v),
rectorn. The smectic pitch ig|,, while { is a scalar poten-
tial depending on the degree of smectic order. whereP andp, respectively, denote the intensity and direc-

The smectic energg2.5) does not rule out the possibility tion of the polarization vectdP, » is the outer normal at the
of the elastic constant§;,C, being different. TheC, term  external surface, anap is an effective anchoring strength.
may be neglected when dealing with Skmaterial§12,13,  The anchoring potential above may favor either homeotropic
but it is necessary to keep it in the free energy when tiltecor planar anchoring for the polarization vector, depending on
phases come into play. The Stphase may become un- the sign ofwp.
stable wherC | <0[14], and in that case a higher-order term
should be included in the free energy to ensure the functional IIl. LINEAR SHAPES
to be positive definite. However, we do not need to insert
extra terms in the free energy, since we will prove that the We first consider a linear smectic capillary in the absence
transition to a tilted phase can be induced by the cholesteriof spontaneous polarization. In this section we show that the
pitch, even in the presence of a positi@e. We remark that presence of a nonzero cholesteric pitch may induce a Sm
the free-energy densii2.5) remains positive definite even if -A—Sm-< transition in the ground-state configuration, even
C, is negative, providedr is not too large. In factg,,,=0 if C, >0.
whenever Let k=7=0. The free-energy density= o+ oy, SImpli-

] fies to
C,cod a+C, sifa>0,
ola,,p,w] = (K sirf a + Kz cos a)a’?

+Ka(qen— ¢ sir? @)

C
CL>00rtar?a<—C—”.

| + Ky sir? a(by — ¢’ cosa)?

+Cy[p'? coS a+ p*(' cosa ~ ey)?]
C. Spontaneous polarization +C, sir? a(p'?+ p?w'd) + {(p). (3.1

One important difference between polar smectics and sokp,q Euler-Lagrange equations associated with the free-
ids is the freedom of the polarization vector to rotate in theenergy density(3.1), with respect to the variables and o,
layer plane in the forme(P is a Goldstone variableas op-  -an pe easily integrated once to yield
posed to taking specific values determined by the solid lattice

[10,15,18. Because of this vectorial symmetry, the energy Jdo Jo

density of the fieldP contains, together with a term of the 90’ =Cy, o' =Cy,

form | V P|? which penalizes interfaces in the material, a term ¢

proportional to(div P)?, with ¢, and c, constants along the capillary. The free-

ool P] = G|V PP+ G,(div )2+ G(|P)). (2.6) boundary conditions requirg;=0 andc,=0, and thus

In Eq. (2.6), G denotes a scalar potential which determines , _ KaCen+ Kgbp COSer o' CyGsm COSa

the polarization intensitjP|. When the permanent molecular ® T KysiPa+Kscof a’ C,cof a+C, sirfa’

polarization is not sufficiently strong to self-interact, this

term avoids the onset of a spontaneous polarization. This isurthermore, the free-energy densi8.1) is minimized if

why we will insert the potential2.6) only in Sec. V, when a'=0 andp’=0 (which is allowed by the free-boundary

we will be dealing with spontaneously polarized materials. conditions. When these requirements are satisfied, the free-
A complete description of the polarization energy densityenergy density depends only on the constant valuesafd

can be found in Ref.17]. We remark that, in materials with p-

strong permanent polarization, tk& term can also take the ] )

different form(div P—cg)?, wherec, can be either positive or o(agpo) = KoK 3(Gen Cosag = by Sin a)

negative. This reflects the preference of the material for a 0o K, sirf ag + K3 cog ag

specific sign of the polarization. However, in the following

we will restrict our attention to the cagg=0. We also ne- -

glect the nonlocal Coulombian interaction of the polarization CycoS ag+C, sin’ ag

with the self-field.

CI\CLqugm Sirf ag

+(po). (3.2

The smecticA phase(ap=0) is always associated to a sta-
tionary point of Eq.(3.2). However, it becomes unstable
even whenC, >0, provided that

The presence of a nonzero polarization induces a surface
charge in the capillary, which in turn requires an opposite s o Ky
charge layer in the surrounding fluid. This boundary effect C10smo0 < K_3QCh(K2qch+ 2boKy). (3.3
can be taken into account through an effective anchoring
energy, which depends on the polarizat[d8,19: In fact,

D. Anchoring energy
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If we insert it in the free energy, we arrive at

¢
F= Af dS(f(Kr)(K13A2 + Kpq®?) — 2K 50, P + Kpa03
0

Geh/Gsm Gch/Gsm Geh/Gom

2

- Y ic 2P ) _
FIG. 2. a5 as a function ofge/gsm When K,=K3=Cyp3; C, frr) ~F07Sm
=3C, (left), C, =2C, (cente}, or C,=C; (right), and by/qsy,=0

(bold line), %‘, % % 1 (dotted line. The minimum value of this energy is obtained when0. To

prove this assertion we notice thdt is monotonically
increasingl. In particular, it is always greater thafii0)=1.

K KoQeh + 2bgK it i i i
(g, po) = o(0,po) + <Ciq§mp§ _ 20ch( 2chh o 3))a(2) Zg.rthermore, it is possible to write the free energy functional
3 .

+ O(ag) asay— 0.

€
_ o _ ]—":Af ds(f(Kr)K13A2+[f(Kr)—1]K23<I>2
Figure 2 shows that, when conditidB.3) applies, the pre- 0

ferred angle moves continuously fromy=0. An exceptional

situation arises wheby,=0 andC, =C, (bold plot of the right + E;me(L)_l +Kog(d — )2
pane). In that case the optimal value ef, jumps from 0 to f(xr)
/2 when q., exceedsqs, In all other cases, the Sm KK
-A—Sm< transition induced by the cholesteric pitch is sec- + -2 3(qch cosa - by sir? a)?
ond order. K
CiC. pgmSIMT ) (4.1)
IV. BENT DOMAINS C,cof a+C, sifa/’ '

Let us now consider a general shape, withr#0, in the  All the terms depending on the curvatdteat is, all terms
absence of spontaneous polarization. In this section, wappearing in the first row of Eq4.1)] are minimized ifx
prove that the combined effect of intrinsic bending stresses 0, and thus the ground-state shap&df linear. When this

and/or chirality do not induce shape transitions towardss the case, the search for the energy minimizer may proceed
curved domains. as in Sec. lll.

The ground-state configuration of the free-energy density
o:=0¢+0gyis still characterized by’ =0 andw’ =const. If
we further introduce the notations V. POLARIZATION-INDUCED TRANSITIONS

A:=a' +kcose, Kiz:=K;sir a+K;cod a, We now focus attention on spontaneously polarized liquid
crystals. First, we insert in the free-energy functional the
terms o and onen introduced in Sec. 1I. Furthermore, the
intrinsic bending in theK; term is to be replaced by a term
+Kjcos a, AP, proportional to the polarization vector. We will show that
these changes induce a spontaneous curvature in the shape of
(KoQen+ Kabgcosa)sine ,  Kyg2,+ Kb sir? a a sme_cticﬁ* capillary and both a curvature and a torsion in a
1= Ky v U= Kys ' smectic€ caplllary: » .
Telephone-cord instabilities have been observed in banana
c liquid crystals. The microscopic shape of these molecules
C:= (C,cod a+C, sir a)ps, w:= r”pgqsmCOSa, gives rise to a spontaneous polarization vector which is al-
ways orthogonal to the director. The vec®mwill thus be-
long to the plane determined by the unit vectors n;, de-
2(1—\s’m)/x2 if x e (0,1], ;inlted in Eq.(2.4). We identify it through the anglep as
ollows:

®:= (¢’ - Dsina— kcosasing, Kyy:=K,sira

= a2, f(x):=
A=, 1) {1 if x=0,

P=Pp=P[(cos¢)n, +(sinp)ns].
the integration of the free-energy density over the transverse p=Pl(cosg)n, +(sin#)ns]

coordinates yields

¢ ) 5 = 2 A. Bent smecticA” capillary
f: ./4 dif(Kr)(KlaA + Kzaq) + C(,()’ ) ) X )
0 In a smecticA phase the liquid-crystal molecules are or-

- ) - thogonal to the layers. We then let=0, which implies
— 2(Kogth @ + Cmw') + Kya; + Cpglsml -

The Euler-Lagrange equation fes and the free-boundary  The functionf is monotonically increasing sincé(x)=2(2-x?
conditions yieldsw’ Ew(’)m:w/f(xr). -2V1-x3)/(x3V1-x3>0 0 xe (0,1
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n=T, n, =B, n3=N.

2a)pP0
r

Foplir=0= Af( + KOG+ Ke)\%) . (5.2

We assume that the potentigland G are strong enough to ) ) ) )

fix the values ofp=const=p, and P=const= Py=:\y/X\, We are looking for a configuration with a free energy lower

where\, has the dimensions of an inverse length. order than Eq.(5.2). To this aim, we focus on curves with constant

to simplify notations, we put(py)=G(Py)=0. Finally, we Curvature and torsion. The free-energy density is minimized

defineF::GPS having the dimensions of a nematic elastic if the polarization vector lies parallel or antiparallel to the

constant, and the dimensionless parameterG,/G. principal normalN, depending on yvhethd(3 is greater or
The bulk free-energy densityry=oe+ogyt oo NOW smaller thanwp/(2\). In the following, we assume thdt;

reads as = wp/ (2)\). In this case the minimization process requires
p=N (i.e., p=7/2). Nevertheless, the considerations below
K {()\ « >2+ 21ho(1 - sin¢)] \;\Sltiulilsztand in the cask;<wp/(2\), provided we choose
Op=R2UYep™ Rg| | Ao~ - :
‘ 1-~«gcosd 1-«kgcosd With the choice above, the free energy depends only on
5 Y 2 the particular values chosen lyandr, and can be written as
+ CIIpO T o Usm
LT ooy ool T) _ g 2t + At
— —— =Ap— KI + Kr Kr
LTI + 72+ (L4 y) P sir? 6] At o

(1 - ké cosd)? A

o :“r) + Bf(kr)(71)2,

We remark that, in curved domains, the bend elastic term “

pushes towards configurations where the spontaneous polavhere the signs are chosen in a way such Biahd allA’s

ization lies along the principal normal of the curve. Indeed,are positive:

the K5 term is minimized if sinp=1 which, together with

a= Ois‘impﬁesP: PoN. " g Ag= K2q§h+ KB)\g + Cllptz)qgm"' 20pPylr,
The anchoring energyanch IS given by

Tanch= @pPo[1 = SiN(¥ + ¢)]. 2N/
If we integrate the free-energy density over the transverse Ao =[Ks+T(1+y)ir?,
section of the curve and then we substitute the equilibrium ) s
value ofw’, we finally derive the free-energy density per unit Az = CpgQism:
capillary length:
B=T/r2
(1 - kT COSO)AD + ” §dédd The free energyFoy is clearly minimized whenr=0 (plane
anc ®1 — k& cosd curve. On the contrary, the minimum af is attained
2eaP when the curvature has a strictly positive value, since
= A[ rP 0, KkwpPg Sin ¢ + qugh Fopl%,0)
TR (Ao = Ag) = 2Aqkr

f(kr)—1
KNG = 2in sin ¢ + 7f(xr)] + c:péqim%
K

1
+ (Az + §A3)(KI')2+ O(kr)* askr— 0.
’ 2 2
*TUg + 9%+ (L yisir? d)]f(Kr)]' (5.3 We remark thatF,, possesses a unique minimum as a func-
tion of «. Indeed, the conditiotid/ dx) Fo,=0 is equivalent

To prove that the spontaneous polarization bends a smectié@

A" material, it suffices to find a curved configuration possess- Asf’(kr)

ing a smaller free energy than the linear one. We begin by AL2(kr)f(kr) + (k1) (k1) ]+~ =2A; (5.3

noticing that in the linear cadec=7=0) the free energy per Fxr)

unit length(5.1) is minimized wheng assumes any constant and this equation has one and only one root, since the func-

value. When this is the case, the optimal value for the fregion on the left-hand side vanishes when— 0, is every-

energy is where strictly increasing and diverges when—1". Let
x:=r. Equation(5.3) can be written as

2All the instabilities we find in this section hold also if we take - f'(X) Ao
into account either nonunifor®, p, or spontaneous polarizations 2xH(x) +x7f(x) + 5% N (5.4)
not necessarily orthogonal to the director. However, we skip those 0
quite longer proofs to shorten our presentation. with
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g:=&’:M *:=A2)\0:K3+F(1+»y1)
A2 K3 + F(l + 71) ! 0 2A1 (2K3 _ wP/)\)r .
(55) RoptT

Figure 3 shows how the solutions of E&.4) depend on\,
(which is proportional to the intensity of the spontaneous
polarization for three different values of the dimensionless
parameter. In the absence of spontaneous polarization the
curvature is null. Then, it increases monotonically with
When the spontaneous polarization makgsnuch greater
than its reference valuaa, the curvature approaches its
maximum allowed valug™ . The curvature increases more
rapidly when¢ is small—that is, in thinner capillaries.

Aa/AG

B. Helicoidal smecticC" capillar
priary FIG. 3. The preferred curvature of the axis of the smeétic-

In this final section we study how the spontaneous polarcapillary increases with the spontaneous polarization. The inverse
ization may induce a telephone-cord transition in a smectictength), is proportional tdP|, and its reference value, is defined
C’ capillary. We focus on a particular, even if quite common,in Eq. (5.5. From top to bottom, the graphs correspond &o
case. We assume that the smectic part of the free energy #9,1,10.
able to fix the opening angle of the smediic-cones to a
fixed value:a= «qy. Furthermore, we assume that the spon-
taneous polarization of the liquid-crystal molecules deter- Even under the above simplifying assumptions, the bulk
mines a constant angle with respect to the principal normairee-energy density to be minimized is still quite cumber-
of the capillary(¢=cons]}. some to handle:

k2 cog ¢ sir? ay sin ag ) _ )
0 = Ospfap) + Klm +Ka| Gen = m[(so - 7)Sinag — Kk COSag SiN¢]
2 r_ H _ H 2
K, (7\0 sind— M) N (7\0 cosdh— (¢' = Isinay— k COSag Sin @ 05a0>
1-«kécosv 1-«kécosv

F !
" (1-«é cosﬁ)z({[(w

+[(¢" = COSag + Kk Sinag sin ]2} + yi{—[(¢' = 7)Sin ap COS + Kk COSE SiN ¢ — Kk COSay SiN ¢ COSP]coSay

- 7)siN oy COS¢h + K COS@ SiN b — Kk COSayg SiN @ COS |2

+[(¢' — TICOSay + K SiN ag SiN ©]cos ¢ sin ag)?),

where o, represents the smectic part, which fixes the value A=Ay = (1 + 9, O ag)Sin ¢ cos e,
of ap. The above expression simplifies if we introduce the
quantities x:={x;,i=1,2,3, A={A;:i,j=1,2,3, b:={b;,i

=1,2,3, andce R, defined as A1s= Agy 1=~ T'y1 SiNag COSaq Sin ¢ Cos 4,

Xy 1= _KCOSe )= (¢~ 7)sinag — k cOSaq sin g Ayz=Agy:= — 'y, sin ap COSag COS ¢,
1 - kécosd’ 1-kécosd ’
(¢ = 7cosag + ksinapsin g by == Ka\gSin¢g cosap, b, := Ky Sinag
Xe = 1-«écosd ' + KghgCOS¢ COSeyy, Db3:=0,
All:: Kl S|n2 [2%) + K3 C052 ap + F(l + Y1 CO§ aO)Sin2 ¢, C:= Usm(a,o) + KZq(2;h+ K3)\(2)
Ay = Ky Sirf ap + Kz cos ap+ I'(1 + 4 coS ap)cos ¢, which allow us to write
Agz:=T'(1 + vy, sir’ agcog ¢), op,=X-Ax-2b-x+cC.
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The scalar product between the polarization direction and '° 0
the outside normal to() is
Kopt | Topt [ deh
P - ¥ =COSag Sin ¢ cog Y — @) + coSe Sin() — ). Ao X0
0.5 |- 1

Thus, the integration of the anchoring energy across the sec
tion orthogonal to the axis of the capillary yields

2w
f Oancl (1 = kr cos9)dd
0

0.0 . . -2 L
0 : g :
o] [07
- ; . wpPy
= A[2 + «r(cosag sin ¢ cose + coS¢ sin¢) ] C FIG. 4. Curvature and torsion of an optimal-shaped smeztic-

capillary. The plots correspond to the values/\g
We now specialize our study to the small-curvatgoe  =0.1,0.5,1.0,1.5,2.
thin- capillary regimexr <1. In this case we can neglect the
correction to 1 in the denominators of thgs, and the inte-
gration of the bulk free-energy density over the transverse
section simply corresponds to a multiplication By This

— 2 H _ 2
K= \Xopt,1 T (Xopt,s Sinag Xopt,zcosao) )

allows us to derive an analytic expression for the free-energy 7=~ (Xopt,2SIN g + Xopt,3COS ),
minimizer. In fact, in this case the total free energy can be
written as o= arctanx"pt'3 SiN ag = Xgpt,2 COSag .
F - ~ Xopt,l
Al X-AX=2D-X+C, (5.6 However, at this stagef,, in Eq. (5.8) still depends on the
_ constant value attained by, the angle that identifies the
provided we define thi;’s andT as follows: polarization direction. Only the minimization g, with
5 © respect to¢ yields the complete description of the ground-
b, = <K3 - —P))\o Sin ¢ cosay, state configuration.
2\ In order to illustrate the result of this minimization proce-

dure we conclude this section by analyzing in detail two
particular cases. In both of them the optimal shape of the
smectic capillary turns out to be a three-dimensional helix,
characterized by non-null values of both the curvature and
torsion of its axis.

Bz = KyQe Sinag + <K3 - %))\0 COS¢ COSay,

~ wpP .
bs:= P20 cos¢ sin ag,
2 1. One-constant approximation

20oP. Let us first consider the particular case in which
= 2 2 £WprFo

C = ogmlap) + KoOg, + Kahg + Y v T — _
Kl—Kz—Kg—F—wp/)\ =: K, 'yl—O, (59)

The functional(5.6) is minimized with respect to the pos- while keeping the thin-capillary regimeyr <1. The optimal

sible values assumed by thgs when shape of the capillary axis depends on the tilt angjef the
_ i smecticC” molecules and on the cholesteric pitgh. Figure
X = Xopt= ATb. (5.7 4 illustrates the results. The right parelisplaying the tor-

(The symmetric matrixA is positive definite because of the sio_n) proves the t_hree-dimensional character of the capillary_

case, the free energy takes the value pitch. However, a nonzerm, is not a necessary ingredient to
obtain three-dimensional shapes. In fact, if we ggdg-=0 to
fopt:?:—Nb-A‘lf) (5.8 Eqg. (5.9, we can derive an analytical expression for the op-
AL ' ' timal shape for all values ak:
Thex;’s obtained from Eq(5.7) fix the constant values af, |3 cos 2y - 1] 3 .
x, and 7. Indeed, in the thin-capillary limitr <1, and set-  oplay=0= 8 0 Toplayr0= ~ g SN 2a0Mo.
ting ¢’ =0, the definition of thex’s can be written as (5.10

= K COSQ, .
Xopt,1 = K COS® On the contrary, the role played by (i.e., the spontaneous

polarization is crucial. The ratio between either 7, and\,

is finite. Thus, bothw and 7 vanish when\y does so. This
observation is consistent with the results presented in Sec.
IV, where we have proved that the optimal capillary shape is
which can be inverted to obtain linear if the spontaneous polarization is null. Figure 4 is also

Xopt,2= = T SiNap = k COSayg SiN o,

Xopt,3= ~ TCOSap + Kk SiNag Sin ¢,
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ture becomes different from zero as soon as the spontaneous
polarization appears, even when vanishes. On the con-
trary, the torsion vanishes when eitheyor «¢ do so. How-

ever, a new and interesting result stems from the computa-
tion of the optimal free energy up ©(a?). We obtain

(Ks_ &) \2

]:opt 2 2)\ 2 2wp)\0
= +|KNg— 7 + +—
A€ O-Sm(a()) 30 K3+F(1 + yl) 2th I\

wp
2K, K3 = PN A oOeno
- +0(ad). 5.1
Ks+T(1+7,) (ag) (5.12

The minus sign in front of the first-order term iR, is
crucial. It implies that it is possible to decrease the free en-

FIG. 5. Equilibrium capillary shapes for an achiré,=0) ergy by tilting the dire(_:tor with respect to the layer norm_al.
Sm-C'k, in the one-constant approximation. The plots correspond! NiS result holds even ifsq(ao) pushes towards the smectic-
to helices whose radius and pitch are given by BdL1) for several A state, because in that casg, is minimum whenay=0, so
values of the tilt angley,. The base circle pictures the planar equi- that it does not contribute to th@(«g) term we are discuss-
librium shape of a SmA" (ap=0). As soon asx,>0, the circle  ing. The structure of the first-order termdi shows that this
becomes a tightly wound helix. Wheg increases, the helix opens. instabilization of the smecti& phase is a combined effect
The displayed shapes correspondate=0°, 5°, 10°, 15°, 20°, and of both the spontaneous polarization and the cholesteric
25°. pitch. Onceay becomes non-null, a nonzero value of the

torsion becomes preferred and the ground-state configuration
coherent with the result derived in Sec. V A for a smedtic- of the smectic€” phase becomes helicoidal.
material: in the limita— 0, the torsion vanishes while the
curvature does not. The radius and pitch of the helical shape V1. DISCUSSION
predicted by Eq(5.10 are given by

43cosdy—1| _ )
rhel|qch:0: A3 cos 1) o The present theoretical study proves that telephone-cord

5 =3 cos 2 instabilities are to be expected in smedicliquid crystals.

) We have derived the ground-state configurations and the pre-
24msin2ay (5.1 ferred shapes of a thin smectic capillary, possibly endowed
5-3cos2y ° ' with spontaneous polarization. Having in mind the experi-

mental conditions in which these instabilities have been al-

Tr/'e hﬁlix_pitcr;] vanri]shg_s whes, vanislrels, or iLiS equlal toh ready observed, we have imposed free-boundary conditions
m/2, thatis, when the director is parallel or orthogonal to thes e external surface of the capillary for both the nematic
layer normal. In both cases, the equilibrium shape is a plan

. o ; 1 3 %nd smectic variables. Nevertheless, a boundary energy has
circle. It attains its maximum value whea,=7; arccos;

S ! ) ! 5 been inserted in the free-energy functional to take into ac-
=27°. The helix radius decreases whegpincreases, until it o nt polarization effects on the surrounding liquid.

A. Analytical results

phel|qch:0 =

. " 1 1. opo o

vanishes at the critical value,=3 arccos; =35°, where the As long as the spontaneous polarization is absent, the pre-
helix becomes a linear segment. Figure 5 pictures the Unerred capillary shape remains linear, as we prove in Sec. IV.
winding of the helix induced by the tilt angle,. In this case, our analysi&Sec. Ill) proves that a non-null

cholesteric pitch may induce a SA+Sm-< transition, even

if the elastic constart, is positive. Figure 2 shows how the
Let us now analyze in more detail the sma}-imit. If optimal value of the tilt angler depends on the cholesteric

the bend elastic constant prevails again over the effectivpitch for several different values of the elastic constants and

2. Small tilt angle

anchoring[K5;= wp/(2\)], we obtain the intrinsic bending stress.
In Sec. V we have focused on spontaneously polarized
_ Kz—wpl(2)\) Xo+ Olaxg) smectic liquid crystals. We have found evidence for possible

opt™ Ks+T'(1+1y,) circular smecticA” and helicoidal smectiG™ capillaries.

Figure 3 shows how the curvature of a smedticeapillary

Ks Ks— wpl(2\) X is expected to increase with the spontaneous polarization.

Topt:_F ‘m Noag+ O(ap), asay— 0. F|gur_e 4 dlsplays both the curvature'and the torsion as a
8 N function of the tilt angle, for several different values of the

These results display the same qualitative features of theholesteric pitchwhich, however, turns out to be not a key

one-constant solution analyzed above. The preferred curvangredient in the telephone-cord transition

051701-8
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In our opinion, the result derived in the final subsection, APPENDIX: CYLINDRICAL-CURVILINEAR
Sec. VB2, is particularly challenging. Equatiofb.12 COORDINATES

shows that even when the smectic part of the free-energy Let O be the domain defined in Eq2.1), {T,N,B} the

functional pushes towards the smedighase, it is possible .  ~ . . ;
to save free energy by slightly tilting the nematic molecules'mrInSIC frame associated with, and (s, ¢,9) the coordi-

with respect to the layers. Once the molecules are tilted@tes introduced in Eq2.1). Let furthere;,e, be the unit

(ap>0), the preferred torsion becomes non-null, and a/€ctors defined as

telephone-cord instability originates. This effect arises from e;= COSON +siN 9B, ey := —sinIN + cosIB.
a combined action of the spontaneous polarization and the

cholesteric pitch. When we follow the intrinsic unit vectors’ variation along a
curve(s(t), &), 9(t)) in Q, the Frenet-Serret formulas imply
B. Comparison with experimental measurements T=«SN, N=—«ST—-7SB, andB=7SN, so that

The analytical predictions above can be tested against the - ) . . : . L
experimental observations that inspired the present work: = (9= 758y~ kSCOSIT, €y = (I~ 15)€; + kSSIN IT.
More precisely, the geometry we have considered closelyye thus obtain
matches the measurements carried out by the Kent and Halle
groups on 2-nitro-1-3-phenylene Hi20,2]. This compound
is achiral and undergoes a direct isotropicphase transition
at 177 °C. TheB; phase is a tilted smectic phase, whose

p= d%[c(s) + g8, = (1 - k& COSV)ST + e, + £(9 - T9)ey.

detailed structure is still under studi21,22. For any differentiable real functiow: R3— R we have
The comparison between our theoretical predictions and

the experimental observations of R¢R] allow to derive W:M +7 e +&e

some information on th8; phase of the banana liquid crys- 1-«kécosy g T

tal compound. More precisely, from the helical parameters _ L )
we can estimate the tilting angle of the smectic phase and th¥N€re a comma denotes differentiation with respect to the
polarization-induced intrinsic bend. The experimental obserindicated variable. In particular, W depends only on the

vations evidence a capillary of radius=0.85um, which  arclengths,
forms a helix of radiusr,e=2.25um and pitch pyg

.o . 1 dw
=6.7 um. In the absence of more precise information on the V¥(s = —T.
elastic constants of the banana compound, we now assume 1-«k¢cosd ds

that the one-constant approximatit®9) holds, at least as a Furthermore

first-order approximation. If this is the case and considering '

that achirality implieqy.,=0, Egs.(5.11) provide an estimate K COST Ksind

for both r,e and pye in terms of the tilt anglewy and the VT= meg ®T- m% ®T,
polarization-induced intrinsic bend,. The inversion of these

equations leads to the estimates

K COSU 1
ap~20°, No=APy=~1.93um™. Veg:-mmbﬂgewea,
Note added in proofRecently, we became aware of a
previous paper by Sonex al.[23] in which a related prob- Ksind 1
lem was analyzed. If23], the polarization free-energy den- Vey= m'r T T ® ey,
sity (2.6) was neglected and, as a consequence, the polariza-
tion vector was allowed to develop a line disclination inside
the thin capillary. In that case, two instabilities can arise, VB = T N
depending on the value of the cholesteric pitch: an helical 1-«kécosV ’

disclination may develop inside a straight capillary, or the

capillary itself may undergo a twisting transition. .

VN:—;T@W——B
1-kécosd 1-kécosv
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