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Continuum model for mesh crystallization
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The front propagation of a single crystallizing domain has been well studied for more than a century. In
many important crystallization processes, however, multiple domains grow simultaneously, resulting in a
multicrystalline, meshlike aggregate. This is the typical case for organic compounds, including polymers and
alkanes. We have studied such growth in the case of a nhormal alkane precipitating from solution in the presence
of kinetic inhibitors—additives which, when present in trace amounts, have a dramatic effect on growth
kinetics and morphology. In this case, we observe a distinct banded growth with a typical length scale of
300 um superimposed on the finer mesh structure. We present a simple continuum model that demonstrates the
essential behavior of this growth.
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I. INTRODUCTION across and only a few micrometers thick—due to large an-
) .. isotropy in growth velocities for different crystallographic
Because of the tremendous importance of crystallizationyirections. Specific additives developed by the petroleum in-
(e.g., in mineralization, materials manufacturing, and préyystry to prevent the precipitation of alkanes from diesel
cipitation), crystallization front propagation has been mod-f,e|s and fuel oils at low temperatures cause alkanes to crys-
eled theoretically since the late 19th cent{ity?]. Many of  (5)jize as a highly branched meshlike network. In a previous
these studies examine the diffusion-limited propagation of &;,qy, we reported the characteristics of such networks, in-
single domain from a molten or solvated state. One cOmmORyding the formation of a distinctly banded structure when
approach is to treat crystallization as a Stefan problem iyystallized in a moving temperature gradigsi. We find
which local quasiequilibrium is maintained at the moving ihat our model is able to reproduce the essential behavior of
growth front while heat, impurities, or solvent excess generihe panded crystallization. We describe our experimental
ated at the front is carried away by diffusip®,3]. _ techniques and results in Secs. Il and Ill, respectively,
In many cases of interest, competition between S|multa-presem our continuum growth model in Sec. IV, and com-

neously crystallizing domains.results in acqmplic_ated micro—pare the model results, obtained in Sec. V, with the experi-
structure. For compact domains, the resulting microstructuré,antal data.

exhibits grains with relatively simple shapes. Few theoretical

studies have addressed the case where multiple domains with
complicated front structures produce a solid with a compli- Il. EXPERIMENTAL METHODS
cated microstructure. This case is, however, relevant to many

systems O.f Interest, .su.ch as crystallization from S.OIUt'Onviously reported 5]. Briefly, samples consisted of tricosane
where solidification is incomplete, and crystallization of (n-C,aH.s Which we refer to as ) dissolved in dodecane
polymers, where the resulting structure consists of a noncrysy_c 2H26, or Cy,), at concentrations of 18—55 mol %. To
talline arrangement of crystalline lamellae, which are oftensomle of t'he samp’Ies was added a small am¢2@itby mass
separated by amorphous material. One important example Br the studies reported héref poly(octadecyl acrylate

spherulitic growth in which crystallites are arranged in @ ra- o eafter referred to as PA-18, which is known to affect the
dial array bound by a spherical envelope which propagates #netics of alkane crystallizatio,fﬁ 6.

constant speef#]. This morphology is typical of polymers, For visualization by optical microscopy, sample cells con-

but is seen in other materials, usually at deep undercoolinggistmg of square glass plates approximately 2 cm across
as l:\'e”' . del of K separated by wire spacers of diameteruff were filled
ere, we present a continuum model of network growty, i, the sample solutions. The sample cells were sealed us-

which cqnsi(_:iers solute diffusion and a simple treatment o ng an adhesive that crosslinks on exposure to UV radiation
growth kinetics. We apply our model to the crystallization of (NOA 61, Norland Producjs

normal alkanes from solution in the presence of additives Crystallization of the samples was studied by video mi-
that affect the kinetics of growth. Purealkanes typically croscopy using an optical microscog®lympus BX-60
crystallize as thin plates—often hundreds of micrometer§/ideo cameraSony DXC-390, and frame grabbetSciorR

CG-7). The sample temperature was controlled by a direc-

tional solidification stage in which the sample is translated at

*Permanent address: Dept. of Materials Science & Engineeringg constant velocity through a known temperature gradient.

The experimental methods employed here have been pre-

Tsinghua University, Beijing, China. Directional solidification allows the growth front to be ex-
TAuthor to whom correspondence should be addressed. Electron@mined at an approximately constant position in the labora-
address: jhutter@uwo.ca tory frame.
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FIG. 1. Phase separation behavior of3(C;, solutions. The
solvated state is unstable below the liquidsslid curve, resulting

n S.Ohd'flcatlon of a_n_e_arly_ pure g phase. !:or small & concen PA-18. In this case the sample is moved to the right in a temperature
trations(=<58%), solidification typically begins at temperatures be- . . ;
. S o radient of 10°C/mm at aconstant velocity of 32um/s, resulting
low the dashed curve, while no significant undercooling is seen al . S .
. . in a front that remains at a nearly constant location in the gradient.
higher concentrations.

The scale bar is 10@m.

FIG. 2. Meshlike network formed by 4 crystallization from
34 mol % solution in G, in the presence of 1710 mol %

. Data from the resulting grovvth movies were analyzed USHt bands perpendicular to the sample motion. X-ray diffrac-
ing custom macros created with digital image processin

Yion data (not shown reveals no preferred orientation of
software(NIH Image, v. 1.6]. crystallites relative to the imposed growth direction.

The lateral growth of a new band is quite rapid
lll. EXPERIMENTAL RESULTS (~80 um/s9) relative to the average rate of advance of the
. N . front. As a result, the average front position advances in

The phase behawor of this binary _solut|on. has been eXﬁearly steplike fashion controlled by the formation of new
perimentally studied7]. The phase diagram is somewhat bands, with growth of the previous band playing only a mi-
complieated, with G able to solidif;t‘ into af,‘ orthorhombic or roie. However, the density of crystallites within a band
CWSta”'r.‘e phase, or one of several rotator phaees. Flgure_ ontinues to increase after the initial formation of the band,
summarizes the deteuls_ required for our a”?'ys's- The S.Ol' s evident in Figs. 3 and 4. Figure 4 shows the increase in
curve indicates the liquidus curve, below which the solutlonOptical density of two bands as a function of time.

phase separates into g4epleted solution and a solid,6 We measured the dependence of the band repeat spacing

phasee.qg., crystalline or rotatorSince G, is only sparingly -, oy nerimental parameters, such as the imposed velocity
soluble in the solid phases of4 the solidus line is vertical 4 Gs concentration. The results summarized in Fig. 5

on the right edge of the graph. Experimentally, we have ob[S ; : : ;

i ) e pacing vs(a) imposed velocity andb) C,5 concentratiof
served tha_t for h_|gh_ g concentratlon_$258%) , It IS d_'ff" __indicate that the repeat spacing is a decreasing function of
cult to achieve significant undercooling before solidification) parameters. Measurements of the dependence of the

begins[5]. At low concentrations, however, a reproducible g, ing on the temperature gradiémit shown indicate that
degree of und_erceohng is achieved, as represented by thRe spacing decreases with increasing gradient.
dashed curve in Fig. 1. This has been explained as the result

of nucleation via a transient, metastable phasith negli-
gible nucleation barriey which becomes possible attlaer-
modynamicallydetermined undercoolingy].

Pure normal alkanes with odd chain length between 11
and 43 typically crystallize into the orthorhombic structure,
forming platelike crystals with larg00L faces bound by
{110} and{010Q planes[8]. The[001] direction, correspond-
ing to the orientation of the alkane molecules, is then the
slow growth direction. In the presence of PA-18, the crystals
instead form a meshlike, highly branched network. This
growth morphology is illustrated in Fig. 2.

When crystallized by directional solidification, we find
that for low imposed sample velocities ranging up to
~6 um/s, the crystallized network is organized into bands,
as shown in Fig. 3. In most cases, successive bands nucleatef|G. 3. Banded morphology resulting from directional solidifi-
ahead of the primary growth front and grow laterally to cation of G in the presence of 171073 mol % PA-18. Here the
cover the previous band. This process repeats at approxt,; concentration was 34 mol %, and the imposed velocity was
mately equal intervals, resulting in a nearly periodic pattern..6 um/s. The scale bar measures 200.
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FIG. 4. Sample opacityin arbitrary unit$ as a function of po- 1000 F zl T T T ]
sition in the sample averaged laterally in a direction perpendicular 1.59 pm/s —o—i
to the gradient. Fifteen profiles separated by 20 s intervals are € 800 | I 4.77 pm/s —e— ]
shown for a sample of £ concentration 34 mol % and PA-18 con- 2 I
centration 1.X10°mol% as it is moved with a velocity of 2 600 L
3.2 um/s through a gradient of 10C/mm. i { I

5 400 [ ]
IV. A CONTINUUM MODEL FOR MESH GROWTH 3
. : . : 200 | 3 ]

The experimentally motivated mathematical challenge is
to develop a simple mesh growth model that can be applied 2'0 9:0 410 5;0 50
to an isotropic disorganized clutter of fibrils. A few mesh (b) Sample concentration (mol%)

growth models have been previously suggested, particularly

for spherulitic growth. These models study mechanisms for FIG. 5. Band repeat spacing as a function(@fimposed veloc-

lamellar branchind 9], bundle formation[10], fibril align- ity for a sample of concentration of 34 mol %, atij C,5 concen-

ment within a spherulitgl1], and crystallization into macro- tration for two different imposed velocities. The temperature gradi-

scopic multispherulitic structure$12,13. Several math- ent was 10 °C/mm itboth cases(Adapted from[5].)

ematical studies have been devoted to the surprising stabilit%/ ) . .

of spherulitic frontg14]. The kinetically-limited aggregation [Tont. The width of the depletion zone is expected to be

regime has been modeled by cellular autonfa, which ~D/gf, whgreD is the d|ff.u3|o.n constant anak is the front .

were subsequently approximated by two coupled partial difvelocity. This expected width is of the same order of magni-

ferential equation§16]; however, these models were devel- tude as the observed band spacings. Beginning with empiri-

oped for radial growth and with a single fixed growth direc- cal laws for diffusion in porous media in Sec. IV B, we in-

tion, and so may not be applied to our system. clude mass transfer via a second partial differential equation.
We choose to model the grovyth in a coarse-grained ap- A. Growth-evolution equation

proximation, where volumes of interest are far larger than . N

any individual crystal or structural unit. Formulated as such, In order to develop th? continuum approxmatlon,lwe fof'

our model does not predict the formation of the networkmally separate_the growing aggregate into aggregation units.

geometry itself, but is powerful enough to describe propaga-EaCh aggregation unit has t_he same volwnme_same_nu.m-

tion of the crystallization front and thickening due to con- ber of facesn’ of ee_lch typej, and the same dllmenS|0|h'$

tinuing crystallization in regions left behind. We consider theMeasured perpendicular to the faces. The units are assumed

volume fraction of crystalsh(x,t) to be the only important to occupy the same volume whether they are aggregated or

_fieId variable of thg aggregate, with mesh geometry faCtOfQ'@ﬁg‘%”g?,'gfﬁ& of depends, in general, on two types
included via predefined constants that can be estimated fror(’gf terms. representin Iocalpand n'onlgcal effécts Theyllgcal-
expenmenta_ll datg. !n sec. IV A we develop a partial dlfrer_growth térmg cause g’thickening" of the structure. The non-
ermal equation, similar to the F|sher—K_olmogorov—Petrovsky—IOCaI radient terms allow the structure to rc') a0ate in
Piskunov (FKPP equation, to describe the growth. The spac’eg propag
FKPP equation, presented in 198¥7], and variants have : . L

beer_l successfully appl?ed to var_ious processes involvingacteéfﬂipi?gpoxi (E)?/n;;]ieggggrégzti':)?]mu(l))gilvevir;ﬁOpurf)bC:bSiIe-. Ifa
nonlmgar fronF propagation, mc!udmg crystalllzan_[ﬂ]. An ity p! per unit time, the growth rate of the crystalline volume
extensive review of the classical FKPP equation can b t '

found in Ref.[18] raction ¢ is approximately
The growth-evolution equation alone is not sufficient to ap =
explain the banding process. Observations that nucleation i Vgslf’u (1)

events persistently occur ahead of the front, but not in the _
cooler region closer, can be explained by solute depletionheres is the number of faces of typgper unit volume
(and consequent decreased supersatujatibrthe growing available for growth(which we refer to as open fage§he
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growth probability per unit of time of a facgcan be esti- P =hdx,
mated as the ratio of its normal growth velocity to the '
aggregation unit dimensidh. The densities of open crystal-
line facesd, are possibly very complicated, model dependent
functions involving the microstructure of the aggregate. In
general, the functions should initially increase with increas-
ing crystalline volume fraction, later start to decrease and
eventually approach zero when little uncrystallized space is
available. As an approximation, we assume that the open
face densities are approximately equal to the product of the
number of units per volume/ v, number of faces! of type

j on an isolated growth unit, and the probabiliiy—¢) that
there is no other aggregation unit located next to the unit’s _ _ - _
face. Consequentlg =ni (1-¢)/v; this is also the simplest FIC_;?. 6. Schematic of an elementary slice defining the variables
function that has the correct mathematical behavior. In as¥Sed in the text.

suming that all faces have an equal probability of being

open, we are ignoring details of the microstructure. Since w&een grown inside of the slice, but instead escaped through
expect individual branches to be randomly distributed, théhe left surface. Therefore, the net correction to the grown
closer |l is to actual structural measurements such as th&olume due to the left surface alone is

distance between branching points, branch thickness, etc.,

_ j . .
the better one would expect the estimate to work. The ap- [I'hzhgdxzdxg]ﬂ[d;(xl—dxl) P — (X)) 7]
proximation leads to v
vl
K o X [1-d(X)]7=. 4)
f=¢(1—¢)2 alvl, ) T (
j

If we assume that the fraction of albpen and blocked]
where the mesh geometry factaes=n!/I can be estimated faces oriented in th& direction is equal to the fraction of all
from experimenta| data. J faces oriented in the—é) direction(i.e., 7]il+: 77{_:77{), this

Equation(2) can be extended to branched networks if wecorrection becomes

allow nl to be fractional. Formally, 1 . o
) ) ) - EdXZdX:;nJUJ[l - ¢(X1)]|:h2h3h_l_:| . (5)
ni= nb(l +3 (k- 1)p1k), 3 R G
k=2

When we add the similar correction for growth across the

Wheren{) is actual number of faces of tygeon one unit and right surface,

pl. is the probability that a facgbranches intd units when 1 o I g

itkgrows. dezdxgnJuJ[l —¢(x)] hzha%f :
Next we consider nonuniform growth. Let us consider a 1771 Ixr/2

small volume inside of the large sample. If the aggregate iseplace the difference by a derivative, and divide by the slice

not spatially uniform, we must account for an imbalance bevolume I'h,hsdx,dx;, we obtain the correction teg/ ot due
tween the number of crystals growing in both directionsto facesj and directiong,,

(6)

across the surfaces of this volume. This can be done as a sum .
over the growth facegand growth directions. We divide the [1 - (x)]xlo] 1 4 hoh il@ @)
volume further into elementary slices by coordinate surfaces ! hyhohg dxy 2 3hl Xy |’

perpendicular to one of the basis vectéigsee Fig. 6. We
choose each elementary slice to have thickmiesssdx, and
volumelih,hadx,dxs, Where theh; are scale factors. First, we
account for aggregation units growing into the slice centere
at x; from the left. The slice on the left contains
[’hyhsdxdxsIn' p(x, —dx;)/ v faces of typej, of which a dp - o

fraction 7}, are oriented in thed, direction. These faces E=(1—¢)Z vd ¢+ V(7 Vel (8)
grow with a probability per unit time!/1!, each increasing . o

the crystallized volume by per growth event. The crystals where7) is the set of diagonal matrices diag, 75, 75), rep-
that cross the boundary into the selected slice are limited byesenting the distribution of faces of typeover the three
the available space in that slice, and not in their slice oforientations.

origin. Thus, the growth is “unblocked” with probability 1 In cases that are purely kinetically limited, the normal
- ¢(x,). Because of the choice of slice thickness, only half ofgrowth velocities)!(c, T) are parameters. Otherwise, they are
the generated volume, on average, crosses the slice bordérnctions of the unknown fields, to be determined by includ-
Similarly, we must subtract the solid volume that would haveing mass and heat transfer equations.

wherexl =nili/2.
This correction procedure must be repeated for all face
pesj and direction®,. Summation ovej andi leads us to

he final growth evolution equation

051606-4



CONTINUUM MODEL FOR MESH CRYSTALLIZATION PHYSICAL REVIEW E71, 051606(2005

B. Mass transfer equation the aggregation units are assumed to be cube=soum

Growing branches of the aggregate present obstacles {ﬁr all j. In keeping with the network structure, we assume
the path of the diffusing molecules, decreasing diffusiont"@t the cubes have two types of faces. Two opposite faces,

rates. Diffusion in such media is a mathematically compli-YP€ 1, can either grow with rate" or branch with probabil-

cated problem. Therefore, either of two semiphenomenologi'

ity ~0.1. The other four faces, type 2, are assumed to be
cal treatments are typically uséd9,20. Both approaches quickly inhibited, so that their effective growth rates are
adjust the diffusion constam in Fick's law,

taken to be zeraw?=0. In the case of anisotropic structures,
such as those observed in spherulites, one may need to use
J.=-DVg, (99 unequal diagonal values in the face orientation matrices
diag 7, 7y, 77,), €.9., ;# 77,. In the case of the banding
problem considered here, we adopt an isotropic face orienta-
tion distribution wherenilzll6.Thus Eq.(8) simplifies to

wherec is a concentration in moles per volume ahds the
corresponding current density. The first approach to adjust
is to multiply the diffusion constant in homogeneous solu-
tion, Dy, by porosity of the structurél —¢) divided by tor- dp

tuosity (a path complexity parameterThe other approach, i v(1-¢)lad+ V4], (14
adopted here, is to include the phenomenology into one mul-

tiplier (1-¢)™. The exponentm has been estimated for dif- Wherex~1/a~1 um. We neglect the branching probability
ferent media and found to be close t1B]. We thus assume @and the orientation matrices at this point due to the rough

an effective diffusion constant given by estimates ofx and . _ _ _ _
5 The most difficult quantity to estimate for this model is
D(¢) =Dg(1 - ¢)*. (100 the growth ratev. For simple growth mechanisms, the

owth rate is a power of the chemical potential difference
u between the solid and liquid phases, where the power
law depends on the details of the growth mechanism. In the

equivalent to the claim that an aggregation unit occupies th8résence of the kinetic inhibitor, the growth rate does not
same volume in both the crystal and liquid phases. MasQP€Y such a simple growth law. As an approximation, we use

transport by aggregation unit diffusion must also satisfy locaP 9€neric case af ceAu [3], wherece is the equilibrium
mass conservation: molar fraction in the solution, andAu=KkgT In(c/cey)

~kgT(c/Ceq—1). Consequently, we use
==V .J, (11 v = 0k(C— Ceg), (15)

wherep is the total molar density of th reqate materi Iwherevkz5><1(T6 m/s is chosen so thatat the instant of
erép 1S the fotal mofar densily ot the aggregate matenal, o iion agrees with the experimentally measured lateral

(including aggregation units in both the solid and liquid b e L

: . . rowth velocities. The equilibrium concentratiog, is deter-
phases If we incorporate Eq(9) into Eq. (11) and multiply ?nined from a fit to theqexperimental quuiduéghcur[lﬁ 7]
by the molar volume of the solute, we can express the maszfccording to ’

transfer equation in terms of volume fractions:

%’b:V-(DVW), (12

Considering mechanical flows makes the problem needless
complicated, hence we assume that there is no volum
change during crystallization. This assumption is formally

ap
ot

T(Ceg) = ax + by In(cey), (16)

whereay=45.9 °C andby=10.2 °C. In the conserved vol-
ume approximation, molar fractiono is related to volume
wherew is the volume fraction of solvated material in the fraction in the solutiorw by 1/c—1=\(1/w-1), whereX is
liquid phase, andy is the total volume fraction of the mate- the solvent to solute molar volume ratio.

rial (including both the phasgsSincew andy are related via As discussed above, new bands are initiated by nucleation
w=(y—-¢)/(1-¢), the mass transfer equation can be ex-events ahead of the front; consequently, a nucleation term
pressed as v Jo, Wherev” is the volume of the critical nucleus, adglis
o the nucleation rate, must be introduced into Egl). Then
P Do[(1 - ) V2= (1 - ) V?¢]. (13 b
~ VA Plad+ VIl + 3, %)

V. MODEL RESULTS Since the nucleation events reproducibly occur at undercool-

The system of equations described in the previous sectioimgs defined by the “freezing” or “rotator” curve, we ap-
can be readily used to model front propagation of an aggreproximate the nucleation term via a step function as
gate. As a demonstration, we use it to model the aggregate *a _ _
bands described in Sec. IlI. In this section, we justify our v Jo= voH(C = cR(T), (18)
choice of parameters and present the results of numericathereH is Heaviside step functiorg(T) is the rotator curve
solutions to Eqgs(8) and (13) in the one-dimensional case (i.e., the reproducible freezing cugyend, is a nucleation
appropriate to directional solidification. seed. We found nearly identical results for a broad range of
From optical microscopy data, we estimate the width ofsmall values ofs,. The rotator curve was also measufB¢|
the crystalline branches to bel um. As an approximation, and found to be
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Temperature (°C)
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4 : , . - 100

t = 1464.001 s /
o — / FIG. 7. Snapshot of the simu-

0.8 R

[o=]
o

lated evolution of the banded net-
work showing crystallized frac-
tion and solute concentration

c

%0-6 60 relative to the phase diagrana
£ andy are in terms of volume frac-
g tion, while c, the liquidus curve
§ 0.4 40 Ceq and the freezing curveg are

measured in mol %. In this case,
the Gs3 concentration was

Solution concentration (mol%)

0.2 20 34 mol % and imposed velocity
Ao was 1.6um/s.
{ nucleation
O 1 1 1 1 1 o
3.5 4.5 5 5.5
Distance from sample edge (mm)
T(cg) = ag+ brIn(cg) + cr IN?(cR), (19 are shown in Fig. 9. As can be seen, the band spacing de-
creases with increasing imposed velocity and increasing con-

whereag=47.24 °C,bg=13.0 °C, andtzg=0.19 °C. centration.
The temperature gradient in the sample is imposed by
temperatures of 10 and 50 °C maintained at opposite sides of
a 3.7 mm gap. The temperature inside of th@.075 mm VI DISCUSSION

thick sample is nearly identical to the temperature of the Our simulations of directional solidification based on the

~1.3 mm thick enclosing glass. When the sample is movegnodel described in Sec. IV exhibit the same behavior as we
with a constant velocity from the hot to cold side of the observed in the experimental studies described in Sec. IlI. In
apparatus, the gradient is not constant throughout the samplgarticular, including the possibility of nucleation results in

due to the finite heat conductivity of glass. The deviation isthe formation of a banded structure. To generate this simula-
easy to estimate theoretically by solving the heat conductivtion data, we assume that nucleation occurs reproducibly at
ity equation in the lab framéwhich is moving with respect  the instant when the rotator phase becomes stable relative to
to the glass The maximum deviation expected is 0.6%. the solution phase, even though it is not stable relative to the
Therefore, the temperature gradient can be considered cogrystalline phase. This nucleation mechanism via a meta-

stant throughout the sample. _ _ stable phase has been previously invoked to explain the re-
The diffusion constant for 4 in C;, is estimated to be producible freezing temperature observed for alkane solu-
Do=~5x10"° cn?/s, based on results of R¢R1]. tions [7]; here, it results in the regular nucleation of new
Using the boundary conditions bands in the supersaturated region ahead of the growth front.
Both experimental and numerical results show that the
(Vp)p=0 and(V ), =0 (20 g

bands grow predominantly on their warmer edges, presum-

guarantees zero mass current through sample borders. ~ ably because of depletion due to growth of the previous
We solve the system of Eq§l3), (17), and (20) with a

parallel implementation of the explicit finite difference T T T

method[22], using Message Passing Interfa&4Pl) [23]. - 08 ATHL

Our model produces the distinct banded structures for a 3
range of imposed velocities. Figure 7 represents the gradient 506 T
portion of the sample in the banded growth regime. In the £
particular frame shown, a new band has just nucleated: the Eo4t .
solution concentration curve is nearly tangent to the freezing 3 /
(rotaton curve at the nucleation point. A series of frames, as ; oo | i
shown in Fig. 8, shows the evolution of a pair of bands. Of e
note are the observations that growth of a band occurs pre-
dominantly on the warm side, and that growth continues af- 0 ' '

3.2 3.4 3.6 3.8 4

ter nucleation of the next band. We performed a series of
runs at varying imposed sample velocities and initigh C
concentrations to determine the dependence of the band re- FIG. 8. Volume fraction of solid phase. Ten profiles separated by
peat spacing on sample conditions for our model. The result0 s intervals are shown for the same simulation as in Fig. 7.

Distance (mm)
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the separation of the curve and c.q in the temperature
gradient remains approximately constant over a wide range.
The velocity ranges studied are limited at the low end for
the same reason in both the experimental and numerical
cases: finite sample size. Too few bands can form in a sample
after initial transient effects and before the approaching
sample boundary becomes important. At higher velocities,
the experimental bands do not form clean parallel structures
and eventually merge. The bands produced by the model also
become indistinguishable at higher imposed velocities.
Although the model presented here was developed to de-
scribe a particular crystallization system, it may be possible
to apply it to a larger variety of crystallization processes
involving a nondense front of crystallites. One of its key
features is that it considers both growth kinetics and diffu-
sion, unlike, e.g., the Stefan model, in which equilibrigon
small departures from equilibriums assumed at the front
[1]. This was necessary for a description of our experimental
system, in which both processes are important. Growth im-
mediately after nucleation is in a strongly supersaturated
(and therefore kinetics-limitedegime, as evident from ob-
servations of an initially spherulitic morpholod$]. Diffu-
sion becomes important during the later stages of growth,
when the supersaturation decreases and depletion results in a
nearly complete cessation of growth on the trailing edges of

FIG. 9. Band repeat spacing as a function of sample veléaity bands. The ability to include both kinetics- and diffusion-
and sample concentratigh). Error bars represent 95% confidence |imited growth will also be useful in cases where a crossover
intervals due to statistical variation of the spacing during one simucan occur due to changing crystallization conditions.

lation run.

band. The details of the profile shapes depend on the grow
conditions in both the experimental and numerical cases. Th
model predicts a dependence of the spacial period of th

Our model is easily applied to cases with cylindrical and

herical symmetry. In these cases, our numerical re@dts

own indicate a constant front velocity in the isothermal
gase appropriate to spherulitic growf@4]. While other

bands on parameters such as imposed velocity and initidl0dels have been proposed to describe such cases, they in-

solution concentration that is in agreement with the experi-

volve a detailed description of the microstructdirecluding,

mental findings. Such agreement between model and expelfi[-’r instance, a radial orientation of crystallites/hich varies

ment strongly suggests that the mechanism for band formd

tion initially

presented in5] is essentially correct.

rom system to system and is not always well characterized.
Although results which depend on such details are lost in our

Although the solute concentration considered here ignodel, an understanding of the essential behavior on larger

much higher than that of any single component in a typicaf®Ndth scales is often the principal goal.

diesel fuel or fuel oil, the possibility of nucleation and
growth via the rotator phase may be an important consider-
ation in the development of improved additives for low-
temperature operability. For instance, this mechanism may
allow growth of new crystals even when existing crystals We have described a simple model for the growth of crys-
have been completely inhibited. Alternatively, deliberatelytalline networks from solution. This model incorporates sol-
exploiting this nucleation mechanism may allow the generaute diffusion, realistic kinetics based on the thermodynamic
tion of an increased number of crystal nuclei, resulting inphase diagram, and parameters that can be obtained from
smaller crystals for a given crystallized fraction. independent experiments. While the model invokes several
Curiously, our experimental results do not show a strongapproximations(for instance, the microscopic structure of
dependence of thiateral growth velocity on imposed veloc- the network is assumed rather than predicted, and the depen-
ity (though it does depend weakly on the initial sample con-dence of the growth on the details of the structure is only
centration with lower lateral velocities for higher concentra-considered in a mean-field sefsé is able to capture the
tions). This implies that the supersaturation of the crystallineessential features of growth of a crystalline network.
phase at the time of band nucleation is relatively constant We have used this model to understand the formation of a
regardless of the band spacing. The numerical results alamnique banded crystallization structure reported in an earlier
show an approximately constant supersaturation at the invork. The model exhibits the main features of the banded
stant of nucleation over a broad range of sample velocitieggrowth, is able to predict the correct dependence of the band
This can be understood in terms of Fig. 7, which shows thaspacing on several experimental parameters, and produces a

VII. CONCLUSIONS
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band density-profile evolution in qualitative agreement with
the experimental observations.

In addition to its value in modeling the specific crystalli-
zation system studied here, we expect that this model, pa
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