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Side-branch growth in two-dimensional dendrites. Il. Phase-field model
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The development of side-branching in solidifying dendrites in a regime of large values of the Peclet number
is studied by means of a phase-field model. We have compared our numerical results with experiments of the
preceding paper and we obtain good qualitative agreement. The growth rate of each side branch shows a
power-law behavior from the early stages of its life. From their birth, branches which finally succeed in the
competition process of side-branching development have a greater growth exponent than branches which are
stopped. Coarsening of branches is entirely defined by their geometrical position relative to their dominant
neighbors. The winner branches escape from the diffusive field of the main dendrite and become independent
dendrites.

DOI: 10.1103/PhysRevE.71.051601 PACS nunier68.70+w, 68.35.Ct, 05.40.-a

I. INTRODUCTION power law but the exponents are larger than in the case of

In the preceding papdf] we presented experimental re- large diffusion length. However, by increasing the diffusion
sults on the growth of lateral branches in two-dimensional€ngth in the numerical calculations the values of the expo-
dendriteg 2—12] both for small and large values of the Peclet Nents are reduced. These results are in accordance with the
number(large and moderate values of the diffusion length,€xperimental results in this regime. Regarding the screening-
respectively. For small Peclet number an almost self-affineoff effect, it is present in our numerical results for length
fractal is observed. In this case and for short times a powescales smaller than the diffusion length. We observe that the
law behavior is obtained for the growth of the branches beslowest branches stop due to the screening effects of the
fore screening with exponents around 0.5 and 0.6. This initialarger neighbors and this effect is entirely dominated by geo-
stage turns out to be of crucial importance in the selection ometrical reasons. For large time scales, we observe how the
the final pattern. Branches which are the largest at long timeranches become independent of the main dendrite by accel-
have the largest exponents and are the dominant from therating and finally approaching the same constant velocity of
initial regime. Apart from the initial stochastic disturbance, the main dendrite in agreement with experimental results of
the growth process looks very deterministic and characterRef. [1] for large values of the Peclet number.
ized by these exponents. The coarsening of branches is re- In Sec. Il the phase-field model employed in this work is
lated to the competition process between neighboringresented and the numerical procedure is discussed. In Sec.
branches and shows an exponential behavior. For large dif}l we concentrate on the growth of individual side-branches.
fusion length the side-branches never become free dendritédg Sec. IV the competition between side-branches and the
but they remain prisioners of the lateral front of the mainscreening-off process are considered. In Sec. V we present
dendrite. Their velocities are not constant and they keep inthe results of the evolution of the winner branches for long
teracting by a screening-off process. Experimentally a hiertimes. The conclusions are given in Sec. VI.
archy of sizes is obtained. For moderate diffusion length the
faster branches escape from the diffusion field and become II. MODEL AND NUMERICAL PROCEDURE
independent. . . ]

In this paper, we present a numerical study of the growth, e have performed numerical simulations of the equa-
of branches with large Peclet number. To this purpose we udgPns of a phase-field model for solidificati¢f4,15,19,21
a phase-field moddlL2—22. These models are based on the The correspondlng equations for _the time evolupon of the
introduction of a set of partial differential equations for an Phase field(r,t), whose value varies between(gblid) and
order parameter coupled to a diffusive field. In this way wel (liquid), and the dimensionless diffusive field(r.t),
avoid the more complex treatment of integrodifferentialWhose value varies between tdupersaturatgdand O(tran-
equations to describe the interface. We use a standard phagétion), can be written in the following fornp21]:
field model of solidification that has been validated exten- 9 1
sively [14]. We are looking for a qualitative picture of side- €+ 6)— = (1 - ¢)<¢>— — + 30eaAug(l - ¢))
branching and we corroborate the universal features obtained a 2

in experiments. We could interpret our results for moderate J ad 9 e
diffusion length in terms of the picture of large diffusion _éza_x W07 (0)— | +— 7}(6’)7/(0)&
length of Ref[1] with some differences. For example, in the N ¥y

initial stages the growth of branches is also described by a +EV[A0)V @), (2.1
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ML o042 6083+ 304022 = v2
P + A(30¢> 60¢° + 30¢") P Vau+ (x,y,t),

(2.2
where lengths are scaled in some arbitrary reference length ™
and times are scaled y?/D, D being the diffusion coeffi-
cient. 4 is the angle between theaxis and the gradient of
the phase field angj(6) =a(6)/a(0), o(6) being the surface
energy. The characteristic parameters of this phase field
7(0), A, a, ande] are related to physical parametessis the
dimensionless undercooling. The kinetic coefficient has beer
taken as isotropi€B,), which leads tor( §) =m(6) with con-
stantm=c,DB,/Ld,, ¢, being the specific heat per unit vol-
ume,L the latent heat per unit volume, andg the capillary
length.a is equal toy2w/12d,. The parametet controls the
interface thickness and ke 0 the classical sharp-interface
model is recovered. The terghintroduces an external noise
that induces side-branchifg1].

The phase-field model equations have been solved or
rectangular grids with mesh spacidx using first-order fi-
nite differences. In order to study dendrites we have consid-
ered a fourfold surface tension anisotropy=c(0)[1 FIG. 1. Dendrite without side-branching obtained with the
+7yco946)]. The noise term is evaluated at each uncorrephase-field model. The isoconcentration lines of values -0.15,
lated cell of lateral sizé\x simply aslr, wherel denotes the —0.55, and -0.95 are indicated.

amplitude of the noise, andis a uniform random number in

the interval[-0.5, 0.5. We have used a set of parameters thafiMes. The branches which are studied throughout this paper
gives rise to a needle without side-branching whef. The &€ labeled from 1 to 9. There is a competition process be-

employed parameters afe=0.32, m=20, a=400, €=0.006 tween branches at the scale of their lateral diffusion length. It
Ax=0.02, At=2X 104, y=0.1, and1=20. The values of Can be observed that, at the time shown, branches 1, 4, 6, and

these parameters are chosen for numerical convenience. Ogi@"€ winning their competition while branches 2, 3, 5, 7, and
results may be grid and interface thickness dependent but o&S€em to be affected by the diffusion field of their neighbors

qualitative comparison with experiments does not depend ofind thus screened. _ .
them. Figure 3a) shows the temporal evolution of the dendrite’s

tip position and the ploy,(t,) of the growing length of six of
the branches of the dendrite shown in Fig. 2, similarly to
. GROWTH OF BRANCHES what we did in the experiment of the previous pajigr The
temporal origin ofy, is taken when the tip of the dendrite
First, we show in Figl a dendrite without side-branching crosses the point from which the protusion grows. It is
obtained using the phase-field model with the set of paramshown that for the considered times, branches 2, 3, and 5
eters of Sec. Il and taking:O. The isoconcentration lines have already been screened and consequently they stop,
are indicated for different valuegu=-0.15, -0.55, and while branches 1, 4, and 6 keep growing. The final state of
-0.99. Two frames of reference are represented. The labothe winner branches will depend on the interaction among
ratory frame of referenceX( OY is chosen so that the den- them. If the lateral diffusion field is of the order of the dis-
drite grows along the X axis. The moving frame of refer- tance between these branches, then another competition pro-

ence X', OY’ has its origin at the tip of the dendrite. We cess is taking place. However, if the diffusion field is not
define the diffusion lengthy(x) as the distance between the

tip of the dendrite and the point of the isoconcentration line 1900
of value —0.95 that cuts theXDaxis. Moving further down i
the dendrite from the tip, the distance between the interface
and the isoconcentration line far=-0.95 is larger than
I5(X). The gradient of the diffusion field in front of the tip is
the largest in the dendrite, which makes the tip the fastest
point of the dendrite.

Results presented in RdR3] give evidence of the two-
dimensional character of dendrites studied in R&J. Thus
the behavior of dendrites obtained in two-dimensional simu-
lations is adequate to be compared with results presented in
Ref.[1]. In Fig. 2 a dendrite with side-branching obtained by  FIG. 2. Dendrite at different times obtained from the phase-field
means of the phase-field model is presented at differenhodel. Considered branches are labeled from 1 to 9.
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large enough, winner branches will finally behave as free
dendrites, as it is explained in Sec. V.
In Fig. 3(b) we present a log-log plot of the daga(t,,) of

Fig. 3@ where we confirm the power law growth of the  TABLE I. Growth exponeni and screening parameters and

branches described by the following equation: S for branches 1-9.
—\0
Ya(D) = Yoo (3.9) Branch @ Screened by Yo S

When fitting data obtained for different branches to Eqg. 1 0.68 not screened
(_3.1), it is observe_d 'Fhat winner branches grow from the ini- 2 0.52 1and 4 0.75 0.96
tial stages of their lives faster than looser branches, which 3 0.52 1and 4 0.95 0.44
reveals an unexpected deterministic behavior in side- ' ' '
branching development. This conclusion is obtained system- 4 0.66 not screened
atically when comparing different branches. In Table | we 5 0.61 4 and 6 0.86 0.55
present results for the value of the exponemtsf branches 6 0.67 not screened
1-9. It has also been observed in our simulations that the 7 0.67 6 and 9 0.55 0.47
value of the exponents decreases when the Peclet numberis g 0.65 6 and 9 0.60 1.01
reduced. Thus the simulation results confirm the tendencies o 0.70 not screened

observed in Ref{1].
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200 ations, we can consider a region such that containing
4 6 branches 4, 5, and 6 as our whole system in a regime of
= infinite diffusion length. This means that the fact that we

have a finite diffusion length only affects the large scales.
For short lengths the screening-off effect could be described
by a geometrical measurement. Following the procedure of
the previous papédf] we define a dimensionless quantity.

Yo = (V= Y lyy ™ (4.2)
Max

% 1050 wherey,** is the maximum length reached by branth
For any branch screened by branchgsandq, our geo-
FIG. 4. Region of the dendrite containing different branches inmetrical measurement could be done by means of the screen-

competition. Branch 5 is being screened-off by branches 4 and Gng angles#’ and 3. We define the paramet&;:
The angles of screening are indicated.

61 -2

S,=tangP+tang? (4.2)
IV. COMPETITION BETWEEN BRANCHES: With tan 6= (yo—yo)/ (Xo=X,) and tand 9= (yg-ya)/ (xg=Xy).
SCREENING-OFF PROCESSES We have studied the evolution with time &, for five

) ) ) N different screened branchéabeled 2, 3, 5, 7, and 8 in Fig.
In this section we consider the competition betweenp) and an exponential relation betwe¥pandsS, has always
branches and the consequent screening-off effect in whicBeen found. We present in Fi§ a semilogarithmic plot of

some branches stop due to the close presence of faster neigfl(s.) as described by the following equation:
bors. In Fig. 4 we present a region of the dendrite obtained

by the phase-field numerical results where branches 4, 5, and Yn=Yoexp-S/S). (4.3
6 are in a competition process. The angles of screening of

L : . In Table | we present the results of the fittingXgf for the
branch 5 are indicated. Although the birth of this branch Was, o cidered screened branches. The results do not strongly

g?{;&i;'g;'&ig?na;h dattf?:cjgrgg\(;ZnBC,etglzrlng:ﬁn; rzstﬁi;a:ggtﬁepend on the diffus.ion length and are in excellent accor-
ment, the screening-off effect of branch 6 on 5 adds to that Ogance with the experimental resuits of Rif].
branch 4. Part of the solute diffused by both 4 and 6 concen-
trates in front of the tip of 5 and makes it stop.

The process of competition obtained in our simulations
takes place under conditions of finite diffusion length, while In the previous section, we have studied the competition
in our previous pap€rl] it was also shown the competition between branches. In this section we characterize the growth
in an infinite diffusion length regimé.e., a diffusion length  of the winner branches during their whole life, that is, birth,
of the order of the system sizdn fact, for some consider- competition with neighbors, and final state as a free dendrite.

V. BEHAVIOR OF WINNER BRANCHES

1 T 1 1 1 1 T 1 T 1

FIG. 5. Semilogarithmic plot o¥5 as a func-
+ tion of S.
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As a difference with respect to the limit of infinite diffu- dendrite at times in which considered branches behave as
sion length, in the case of the finite value Igf the fast free dendrites. It can be observed that in genkraicreases
branches have the possibility to escape from the diffusionwith 14, although some points seem not to fully confirm this
field front of the main dendrite. In Fig. 6 we present the observation. This general tendency in the behaviok afn
temporal evolution of the position of the winner brancly§,  be understood by considering that at larger valuek, dfie
and that of the tip of the dendrite for long times. Three diffusion field of winner branches reaches larger regions and
different regions in the behavior of branch 6 can be distinthus the screening off affects a larger number of branches,
guished. For the initial ime@egion |) we observe a power- which finally implies a larger distance between survivors.
law growth as it was reported in Sec. Ill. In the second re-The discrepancy to this explanation showed by some points
gime of intermediate timegegion II) the branch has already in Fig. 8 could come from the fact that once the competition
won the competition process with its neighbors and accelefprocess through the diffusion fields is over and winners grow
ates. For large timegegion Ill) the winner branch acquires as free dendrites, another process of interaction between
the same constant value of the velocity of the main dendritebranches can still take place. In fact, this process can always
Hence it finally behaves as a free dendrite. These three dibe present and consists in the stopping effect that secondary
ferent behaviors have been observed in all the computeBranches arising from a side branch can make on neighbor
winner branches. side-branches. During the whole process of dendritic growth

In Fig. 7 we show the temporal evolution of a disturbanceand in particular when side-branches behave as free dendrites
(branch 6 that eventually becomes a free dendrite togethethere are secondary branches which emerge from them that
with the isoconcentration line at=—-0.95. In Fig. Ta) the  could eventually stop another free side branch by just grow-
small perturbation later associated to branch 6 does not affefiig in the region in front of it. In this case, this free growing
the almost parabolic shape of the isoconcentration(five-  side branch would not contribute to the measurement of
tuations observed in this line are associated to the noise itand thus its value can be dramatically affected. Hence, al-
duced in the simulationsin Fig. 7(b), the branch is already though the plot ok vs | gives information about the general
acceleratingtime=9 in the simulation corresponds to time behavior, it also shows that is probably not the most ap-
=4.5 after the birth of the branch, this is, region Il in Fig. 6 propriate parameter to study dendrites in this regime of full
and the isoconcentration line in front of it is already dis- development of side-branching. A set of alternative param-
turbed. In Fig. Tc) branch 6 behaves already as a free deneters could be the surface area and the contour length, whose

drite (time=6.5 of Fig. 6, that is, region llland it can be behavior was analyzed in experimef#s9], and numerically
observed how the branch tends to perturb the isoconcentratudied in Ref[23].

tion line. In fact, the branch acquires its own concentration
g(railti, escaping from the global concentration field of the den- VI. CONCLUSIONS

The competition process between branches makes the dis- In this paper we have investigated the regime at large
tance between the survivoksincrease with time. In prin- values of the Peclet number in a solidification process by
ciple one could expect that the increasinghotook place means of a phase-field model. The growth of the individual
until the moment in which the competition was finished andside-branches is described by a power law at short times. The
the winner branches grew as free dendrites. In Fig. 8 wexponents become smaller for larger values of the diffusion
present the results for the value ®fas a function of the length. At intermediate times an screening process is ob-
diffusion lengthly associated to the tip velocity of the main served. At very large times winner branches accelerate. Ulti-
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FIG. 7. Different plots of the temporal evolution of a disturbance that becomes a free dendrite and the isoconcentration lines at
u=-0.95.(a) region I, (b) region Il, and(c) region III.

mately they reach the velocity of the main dendrite and theithe picture of experiments which suggest that the noise
velocity remains constant. These branches have escaped gunechanism plays a less important role in the determination
of the initial diffusion front of the dendrite and have becomeof the final side-branching structure than expected. We have
independent dendrites. Our results corroborate qualitativeljound that the competition process between branches is fully
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10 T - T T - T determined from the beginning and the branch which starts
growing faster succeeds. Our results may be grid and inter-
face thickness dependent. A more quantitative comparison
8} 1 with experimental results would require a more accurate
model such as the phase-field formulation with the thin-
interface limit[16].
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