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The development of side-branching in solidifying dendrites in a regime of large values of the Peclet number
is studied by means of a phase-field model. We have compared our numerical results with experiments of the
preceding paper and we obtain good qualitative agreement. The growth rate of each side branch shows a
power-law behavior from the early stages of its life. From their birth, branches which finally succeed in the
competition process of side-branching development have a greater growth exponent than branches which are
stopped. Coarsening of branches is entirely defined by their geometrical position relative to their dominant
neighbors. The winner branches escape from the diffusive field of the main dendrite and become independent
dendrites.
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I. INTRODUCTION

In the preceding paperf1g we presented experimental re-
sults on the growth of lateral branches in two-dimensional
dendritesf2–12g both for small and large values of the Peclet
numberslarge and moderate values of the diffusion length,
respectivelyd. For small Peclet number an almost self-affine
fractal is observed. In this case and for short times a power
law behavior is obtained for the growth of the branches be-
fore screening with exponents around 0.5 and 0.6. This initial
stage turns out to be of crucial importance in the selection of
the final pattern. Branches which are the largest at long times
have the largest exponents and are the dominant from the
initial regime. Apart from the initial stochastic disturbance,
the growth process looks very deterministic and character-
ized by these exponents. The coarsening of branches is re-
lated to the competition process between neighboring
branches and shows an exponential behavior. For large dif-
fusion length the side-branches never become free dendrites
but they remain prisioners of the lateral front of the main
dendrite. Their velocities are not constant and they keep in-
teracting by a screening-off process. Experimentally a hier-
archy of sizes is obtained. For moderate diffusion length the
faster branches escape from the diffusion field and become
independent.

In this paper, we present a numerical study of the growth
of branches with large Peclet number. To this purpose we use
a phase-field modelf12–22g. These models are based on the
introduction of a set of partial differential equations for an
order parameter coupled to a diffusive field. In this way we
avoid the more complex treatment of integrodifferential
equations to describe the interface. We use a standard phase-
field model of solidification that has been validated exten-
sively f14g. We are looking for a qualitative picture of side-
branching and we corroborate the universal features obtained
in experiments. We could interpret our results for moderate
diffusion length in terms of the picture of large diffusion
length of Ref.f1g with some differences. For example, in the
initial stages the growth of branches is also described by a

power law but the exponents are larger than in the case of
large diffusion length. However, by increasing the diffusion
length in the numerical calculations the values of the expo-
nents are reduced. These results are in accordance with the
experimental results in this regime. Regarding the screening-
off effect, it is present in our numerical results for length
scales smaller than the diffusion length. We observe that the
slowest branches stop due to the screening effects of the
larger neighbors and this effect is entirely dominated by geo-
metrical reasons. For large time scales, we observe how the
branches become independent of the main dendrite by accel-
erating and finally approaching the same constant velocity of
the main dendrite in agreement with experimental results of
Ref. f1g for large values of the Peclet number.

In Sec. II the phase-field model employed in this work is
presented and the numerical procedure is discussed. In Sec.
III we concentrate on the growth of individual side-branches.
In Sec. IV the competition between side-branches and the
screening-off process are considered. In Sec. V we present
the results of the evolution of the winner branches for long
times. The conclusions are given in Sec. VI.

II. MODEL AND NUMERICAL PROCEDURE

We have performed numerical simulations of the equa-
tions of a phase-field model for solidificationf14,15,19,21g.
The corresponding equations for the time evolution of the
phase fieldfsr ,td, whose value varies between 0ssolidd and
1 sliquidd, and the dimensionless diffusive fieldusr ,td,
whose value varies between −1ssupersaturatedd and 0stran-
sitiond, can be written in the following formf21g:
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where lengths are scaled in some arbitrary reference lengthv
and times are scaled byv2/D, D being the diffusion coeffi-
cient. u is the angle between thex axis and the gradient of
the phase field andhsud=ssud /ss0d, ssud being the surface
energy. The characteristic parameters of this phase fieldf
tsud, D, a, andeg are related to physical parameters.D is the
dimensionless undercooling. The kinetic coefficient has been
taken as isotropicsbod, which leads totsud=mhsud with con-
stantm=cpDbo/Ldo, cp being the specific heat per unit vol-
ume,L the latent heat per unit volume, anddo the capillary
length.a is equal toÎ2v /12do. The parametere controls the
interface thickness and bye→0 the classical sharp-interface
model is recovered. The termc introduces an external noise
that induces side-branchingf21g.

The phase-field model equations have been solved on
rectangular grids with mesh spacingDx using first-order fi-
nite differences. In order to study dendrites we have consid-
ered a fourfold surface tension anisotropys=ss0df1
+g coss4udg. The noise term is evaluated at each uncorre-
lated cell of lateral sizeDx simply asIr , whereI denotes the
amplitude of the noise, andr is a uniform random number in
the intervalf−0.5, 0.5g. We have used a set of parameters that
gives rise to a needle without side-branching whenI =0. The
employed parameters areD=0.32,m=20, a=400,e=0.006,
Dx=0.02, Dt=2310−4, g=0.1, and I =20. The values of
these parameters are chosen for numerical convenience. Our
results may be grid and interface thickness dependent but our
qualitative comparison with experiments does not depend on
them.

III. GROWTH OF BRANCHES

First, we show in Fig. 1 a dendrite without side-branching
obtained using the phase-field model with the set of param-
eters of Sec. II and takingI =0. The isoconcentration lines
are indicated for different valuessu=−0.15, −0.55, and
−0.95d. Two frames of reference are represented. The labo-
ratory frame of reference 0X, 0Y is chosen so that the den-
drite grows along the 0X axis. The moving frame of refer-
ence 0X8, 0Y8 has its origin at the tip of the dendrite. We
define the diffusion lengthlDsxd as the distance between the
tip of the dendrite and the point of the isoconcentration line
of value −0.95 that cuts the 0X axis. Moving further down
the dendrite from the tip, the distance between the interface
and the isoconcentration line foru=−0.95 is larger than
lDsxd. The gradient of the diffusion field in front of the tip is
the largest in the dendrite, which makes the tip the fastest
point of the dendrite.

Results presented in Ref.f23g give evidence of the two-
dimensional character of dendrites studied in Ref.f1g. Thus
the behavior of dendrites obtained in two-dimensional simu-
lations is adequate to be compared with results presented in
Ref. f1g. In Fig. 2 a dendrite with side-branching obtained by
means of the phase-field model is presented at different

times. The branches which are studied throughout this paper
are labeled from 1 to 9. There is a competition process be-
tween branches at the scale of their lateral diffusion length. It
can be observed that, at the time shown, branches 1, 4, 6, and
9 are winning their competition while branches 2, 3, 5, 7, and
8 seem to be affected by the diffusion field of their neighbors
and thus screened.

Figure 3sad shows the temporal evolution of the dendrite’s
tip position and the plotynstnd of the growing length of six of
the branches of the dendrite shown in Fig. 2, similarly to
what we did in the experiment of the previous paperf1g. The
temporal origin ofyn is taken when the tip of the dendrite
crosses the point from which the protusion grows. It is
shown that for the considered times, branches 2, 3, and 5
have already been screened and consequently they stop,
while branches 1, 4, and 6 keep growing. The final state of
the winner branches will depend on the interaction among
them. If the lateral diffusion field is of the order of the dis-
tance between these branches, then another competition pro-
cess is taking place. However, if the diffusion field is not

FIG. 1. Dendrite without side-branching obtained with the
phase-field model. The isoconcentration lines of values −0.15,
−0.55, and −0.95 are indicated.

FIG. 2. Dendrite at different times obtained from the phase-field
model. Considered branches are labeled from 1 to 9.
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large enough, winner branches will finally behave as free
dendrites, as it is explained in Sec. V.

In Fig. 3sbd we present a log-log plot of the dataynstnd of
Fig. 3sad where we confirm the power law growth of the
branches described by the following equation:

ynstd = yn
0tn

an. s3.1d

When fitting data obtained for different branches to Eq.
s3.1d, it is observed that winner branches grow from the ini-
tial stages of their lives faster than looser branches, which
reveals an unexpected deterministic behavior in side-
branching development. This conclusion is obtained system-
atically when comparing different branches. In Table I we
present results for the value of the exponentsa of branches
1–9. It has also been observed in our simulations that the
value of the exponents decreases when the Peclet number is
reduced. Thus the simulation results confirm the tendencies
observed in Ref.f1g.

FIG. 3. sad Dendrite’s tip position andynstnd
for branches 1–6 as a function of time.sbd Log-
log plot of ynstnd as a function of time for
branches 1–6.

TABLE I. Growth exponenta and screening parametersYo and
So for branches 1–9.

Branch a Screened by Yo So

1 0.68 not screened

2 0.52 1 and 4 0.75 0.96

3 0.52 1 and 4 0.95 0.44

4 0.66 not screened

5 0.61 4 and 6 0.86 0.55

6 0.67 not screened

7 0.67 6 and 9 0.55 0.47

8 0.65 6 and 9 0.60 1.01

9 0.70 not screened
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IV. COMPETITION BETWEEN BRANCHES:
SCREENING-OFF PROCESSES

In this section we consider the competition between
branches and the consequent screening-off effect in which
some branches stop due to the close presence of faster neigh-
bors. In Fig. 4 we present a region of the dendrite obtained
by the phase-field numerical results where branches 4, 5, and
6 are in a competition process. The angles of screening of
branch 5 are indicated. Although the birth of this branch was
earlier in time than that of branch 6, this last one has a larger
growth exponent and thus advances branch 5. At this mo-
ment, the screening-off effect of branch 6 on 5 adds to that of
branch 4. Part of the solute diffused by both 4 and 6 concen-
trates in front of the tip of 5 and makes it stop.

The process of competition obtained in our simulations
takes place under conditions of finite diffusion length, while
in our previous paperf1g it was also shown the competition
in an infinite diffusion length regimesi.e., a diffusion length
of the order of the system sized. In fact, for some consider-

ations, we can consider a region such that containing
branches 4, 5, and 6 as our whole system in a regime of
infinite diffusion length. This means that the fact that we
have a finite diffusion length only affects the large scales.
For short lengths the screening-off effect could be described
by a geometrical measurement. Following the procedure of
the previous paperf1g we define a dimensionless quantityYn:

Yn = syn
Max − ynd/yn

Max s4.1d

whereyn
Max is the maximum length reached by branchn.

For any branchn screened by branchesp andq, our geo-
metrical measurement could be done by means of the screen-
ing anglesu n

p andu n
q. We define the parameterSn:

Sn = tanu n
p + tanu n

q s4.2d

with tanu n
p=syp−ynd / sxp−xnd and tanu n

q=syq−ynd / sxq−xnd.
We have studied the evolution with time ofSn for five

different screened branchesslabeled 2, 3, 5, 7, and 8 in Fig.
2d and an exponential relation betweenYn andSn has always
been found. We present in Fig. 5 a semilogarithmic plot of
Y5sS5d as described by the following equation:

Yn = Y0 exps− Sn/Sod. s4.3d

In Table I we present the results of the fitting ofYn for the
considered screened branches. The results do not strongly
depend on the diffusion length and are in excellent accor-
dance with the experimental results of Ref.f1g.

V. BEHAVIOR OF WINNER BRANCHES

In the previous section, we have studied the competition
between branches. In this section we characterize the growth
of the winner branches during their whole life, that is, birth,
competition with neighbors, and final state as a free dendrite.

FIG. 4. Region of the dendrite containing different branches in
competition. Branch 5 is being screened-off by branches 4 and 6.
The angles of screening are indicated.

FIG. 5. Semilogarithmic plot ofY5 as a func-
tion of S5.
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As a difference with respect to the limit of infinite diffu-
sion length, in the case of the finite value ofld, the fast
branches have the possibility to escape from the diffusion
field front of the main dendrite. In Fig. 6 we present the
temporal evolution of the position of the winner branch 6,y6,
and that of the tip of the dendritex for long times. Three
different regions in the behavior of branch 6 can be distin-
guished. For the initial timessregion Id we observe a power-
law growth as it was reported in Sec. III. In the second re-
gime of intermediate timessregion IId the branch has already
won the competition process with its neighbors and acceler-
ates. For large timessregion IIId the winner branch acquires
the same constant value of the velocity of the main dendrite.
Hence it finally behaves as a free dendrite. These three dif-
ferent behaviors have been observed in all the computed
winner branches.

In Fig. 7 we show the temporal evolution of a disturbance
sbranch 6d that eventually becomes a free dendrite together
with the isoconcentration line atu=−0.95. In Fig. 7sad the
small perturbation later associated to branch 6 does not affect
the almost parabolic shape of the isoconcentration linesfluc-
tuations observed in this line are associated to the noise in-
duced in the simulationsd. In Fig. 7sbd, the branch is already
acceleratingstime=9 in the simulation corresponds to time
=4.5 after the birth of the branch, this is, region II in Fig. 6d
and the isoconcentration line in front of it is already dis-
turbed. In Fig. 7scd branch 6 behaves already as a free den-
drite stime=6.5 of Fig. 6, that is, region IIId and it can be
observed how the branch tends to perturb the isoconcentra-
tion line. In fact, the branch acquires its own concentration
field, escaping from the global concentration field of the den-
drite.

The competition process between branches makes the dis-
tance between the survivorsl increase with time. In prin-
ciple one could expect that the increasing ofl took place
until the moment in which the competition was finished and
the winner branches grew as free dendrites. In Fig. 8 we
present the results for the value ofl as a function of the
diffusion lengthld associated to the tip velocity of the main

dendrite at times in which considered branches behave as
free dendrites. It can be observed that in generall increases
with ld, although some points seem not to fully confirm this
observation. This general tendency in the behavior ofl can
be understood by considering that at larger values ofld the
diffusion field of winner branches reaches larger regions and
thus the screening off affects a larger number of branches,
which finally implies a larger distance between survivors.
The discrepancy to this explanation showed by some points
in Fig. 8 could come from the fact that once the competition
process through the diffusion fields is over and winners grow
as free dendrites, another process of interaction between
branches can still take place. In fact, this process can always
be present and consists in the stopping effect that secondary
branches arising from a side branch can make on neighbor
side-branches. During the whole process of dendritic growth
and in particular when side-branches behave as free dendrites
there are secondary branches which emerge from them that
could eventually stop another free side branch by just grow-
ing in the region in front of it. In this case, this free growing
side branch would not contribute to the measurement ofl
and thus its value can be dramatically affected. Hence, al-
though the plot ofl vs ld gives information about the general
behavior, it also shows thatl is probably not the most ap-
propriate parameter to study dendrites in this regime of full
development of side-branching. A set of alternative param-
eters could be the surface area and the contour length, whose
behavior was analyzed in experimentsf8,9g, and numerically
studied in Ref.f23g.

VI. CONCLUSIONS

In this paper we have investigated the regime at large
values of the Peclet number in a solidification process by
means of a phase-field model. The growth of the individual
side-branches is described by a power law at short times. The
exponents become smaller for larger values of the diffusion
length. At intermediate times an screening process is ob-
served. At very large times winner branches accelerate. Ulti-

FIG. 6. Linear plot of the positionx of the tip
of the dendrite and the positiony6 of the tip of the
winner branch 6 as a function of time.
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mately they reach the velocity of the main dendrite and their
velocity remains constant. These branches have escaped out
of the initial diffusion front of the dendrite and have become
independent dendrites. Our results corroborate qualitatively

the picture of experiments which suggest that the noise
mechanism plays a less important role in the determination
of the final side-branching structure than expected. We have
found that the competition process between branches is fully

FIG. 7. Different plots of the temporal evolution of a disturbance that becomes a free dendrite and the isoconcentration lines at
u=−0.95.sad region I, sbd region II, andscd region III.
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determined from the beginning and the branch which starts
growing faster succeeds. Our results may be grid and inter-
face thickness dependent. A more quantitative comparison
with experimental results would require a more accurate
model such as the phase-field formulation with the thin-
interface limit f16g.
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