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We investigate the influence of hydrodynamic and particle-particle interactions on the microstructure and
rheological properties of semidilute colloidal suspensions of structureless particles. The time evolution is
described in a mesoscopic setting in which the correlation te(smmond moment of the pair correlation
function) is used as the microstructural state variable. Numerical solutions of the governing equations are then
presented as linear and nonlinear responses of the suspensions to simple viscometric flows.
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[. INTRODUCTION equation. The characteristic relaxation time associated with
the Smoluchowski equation is the self-diffusion timg see
Let us consider a fluid composed of two types of micro-Eq. (24) in Sec. Ill. In this paper we formulate a more
scopic particles: particleA and particlesB. Let particlesA  macroscopic description on whidir,R), the state variable
not interact among themselves. They interact only with parcharacterizing the microstructure in the Smoluchowski
ticles B which then interact among themselves. In this typetheory, is replaced by its second momenr,R) of g(r,R)
of fluid the interactiong\-B andB-B bring about interactions with respect to the unit vectom=R/R, R=|R|—i.e.,
among particled\. These indirecA-A interactions are medi- maﬁ(r,R):(R2/4w)fdnnanﬂg(r,R). The idea behind the re-
ated by particle®. Now let particlesB be much smaller than duction g(r,R) —m(r,R) is to keep only the largest time
particles A so that the interactioné-B and B-B can be scale appearing in the spectrum of the self-diffusion process
treated by means of classical hydrodynamiby solving in the absence of overall flows. To describe states of Hl
Stoke’s problem The inducedA-A interactions are then suspensions byn has been suggested by Phan-THigh In
called hydrodynamic interactions. The objective of this papethis paper we follow his suggestion. We show how the hy-
is to investigate fluids involving hydrodynamic interactions drodynamic interactions are expressed in termsmofind
(HI suspensions In particular, we contribute to answering Solve the reduced Smoluchowski equation numerically. We
the following two questionsi(i) Can the Smoluchowski recall that, in general, the advantage of introducing a
equation describing the time evolution of HI suspensions béeduced—i.e., a more macroscopic—description is in estab-
reduced to a simpler equation if our interest is focused onlyiShing a more direct link between the microscopic physics
on slower part of the time evolutior(®#) What are the linear Nvolved (in our case hydrodynamic interactionand the

and nonlinear responses of HI suspensions to imposed viscG1aCroscopic properties observed our case nonlinear rhe-
metric flows? ology), and in simplifying the numerical calculations in-

It is well known that the time evolution of HI suspensions volved in the process of obtaining detailed solutions of the

can be formulated with the phase-space distribution functio ¥ e N9 equations.

. . o . The second contribution of this paper is in deriving non-
Y(r,R,V) serving as the variable characterizing the MICTO%)inear rheology of HI suspensions. By the nonlinear rheology

structure(the equation governing its time evolution is the \ye mean nonlinear responsémth in the microstructure and
Fokker-Planck type kinetic equatiofi,2]) and also on a {he stressesto imposed simple shear and elongation flows.
more macroscopic level on which the configuration-spaceyyy imitation to time scales implies that responses to rapidly
distribution functiong(r,R) replaces/(r,R,V) (the equation  yarying (with the time scales that are smaller than the ones
governing its time evolution is the Smoluchowski equation kept in the governing equationexternal forces are outside
By r we denote the position vectoR denotes the vector the scope of our investigation. We compare our results with
connecting two particles, and s their relative velocity. The  experimental datf4], direct numerical simulationéStoke-
distribution functions ¢ and g are related byg(r,R)  sian dynamics of suspended partic[&3), and previous at-
=[dVy(r,R,V). The physics involved in the passage from tempts to solve approximatively the Smoluchowski equation
the Fokker-Planck to the Smoluchowski description is thg6-10 (see also Sec. M We also show that the linear
elimination of fast processes related to inertia of the sustheology (linear response to the oscillatory shear flow
pended particles as they move through the fluid. The charadmplied by our results agrees with the investigations reported
teristic friction timer, is a time scale of the Fokker-Planck in [11-13.
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To appreciate the new challenges that we meet in this The most well-known example of HI suspensions is a
paper, we compare briefly our .investigation With.the samesemidilute suspension of rigid spheres of diametéa<<L,
type of investigation conducted in the context of dilute poly-whereL is the dimension of the systgmin this paper we
meric suspensionfd4]. The state variable describing the in- assume that the suspensions are incompressible, isothermal,
ternal structure of dilute polymeric suspensions is often choand homogeneous. The assumption of homogeriieity the
sen to be also the pair correlation functigfiR) and the  assumption that the correlation function is independent of the
equation governing its time evolution resembles the Smoluposition vector and the volume fraction of the suspended
chowski equation for the HI suspensions. The essential d'fparticles is absent in the set of state variabjg®vents us
ference between suspensions of structureless particles aggmn investigating the experimentally observed flow-induced

dilute polymeric suspensions is in the physical interpretationyit sion of the suspended particles. We intend to return to
of g(R) and in the interactions. In particle suspensions thethis point in a future publication

correlation functiong(R) characterizes interparticle correla- This paper is organized as follows. In Sec. Il we present

tiont_s (IR) is indthisdc_laste thel vector connecting two s#spendeqhe Smoluchowski equation for HI suspensions. We make no
faT Ic es_),tan IT Ilu € po yrln(i_rlc ;u_sp_en?;]qgé?) (t: atratlﬁ- attempt to discuss its derivation from microhydrodynamics.
erizes intramolecular correla ion® is in this context the Instead, our attention is focused on the macroscopic behavior
end-to-end vector of a single moleculés for the interac- implied by it. In other words, we take the Smoluchowski
tions, the interparticle interactions, determining macroscopic : . . ! .
behavior of pzfrticle suspensions, vanish I%ls»go]o This is P equation as given apd mve;tge(fenm poth the mathematl-
true both for the direct interactiofgenerated by an interpar- _cal anq physical pom.ts of viewits solult|ons. In Sec. lll, we
ticle potential and also for hydrodynamic interactiokthat Investigate asympton@ag .t_’oo) solytlons and_ the 'related
are not generated by a potentiaConsequently, two sus- problem of the compatibility of the time evolution with ther-
pended particles become uncorrelated when they are far apdRodynamics. This investigation gives us also an expression
which implies thag(R) does not decay to zero &—. On  for the extra stress tensor. In Sec. IV we reduce the Smolu-
the other hand, the intramolecular interactions, determiningnowski equation to a moment equation. We discuss its
the macroscopic behavior of dilute polymeric suspensionsPhysical content and, in Sec. V, we solve it numerically. The
tend to infinity asR— . This then means thaj(R) tends solutions are then presented as responses of the microstruc-
rapidly to zero aR — . The asymptotic behavior @f(R) in ture and the stresses to imposed viscometric flows. Our re-
HI suspensions is a source of anomalildee divergence of Sults aIIQW us to inve_stigz_ite the influence of hy_drodynamic
moments ofg(R)] that render many of the methods.g., and various interparticle interactions on the microstructure
stochastic dynamic simulation or reductiprieveloped for —and rheology.

solving the Smoluchowski equations corresponding to poly-

meric suspensions inapplicable to the HI suspensions. For Il SMOLUCHOWSKI EQUATION
example, let us _C(_)nsider the method o_f reductior_n. For this Following Smoluchowskj16], we choose to describe the
method to work, it is necessary that the time evolution can benicrostructure of suspensions by the pair correlation func-
split into slow and fast. The existence of such a scale sepajon g(R), where the vectoR is the vector connecting two
ration is seen in the spectrum of the operator appearing in theuspended particles. The equations governing its time evolu-
dissipative parti.e., the part that does not involve the overall tion is the Smoluchowski equation

flow) of the right-hand side of the Smoluchowski equation

(note that it is indeed a linear operatdf the spectrum is, in 9 _ i( %) N i( o D)

the vicinity of zero, discrete and sufficiently separated from ot IR, 9% g/ R, I yapap

the rest of the spectrum, then the scale separation exists and P 3

the eigenfunctions corresponding to the discrete eigenvalues + —<9Aa,3—(U +kgTIn g))_ (1)
provide an appropriate basis for describing slow time evolu- IR, IR

tion. In the case of polymeric solutions, the Smoluchowskigre and throughout the text we use the summation conven-

equatipn has such a propgrty and the eigenfunctions. COM&on (summation over repeated Greek indiceBy v(r), we
sponding to the discrete eigenvalues are well apprommategenote the overall velocity of the suspensiordenotes the

by polynomial functiond 15]. This is the main reason why osition vectorD denotes the rate of a strain tensor
the second momefite., JdRRRg(R)] serves as an appropri- P ' '

ate state variable in reduced theories. The Smoluchowski D _1 N, g
equation for HI suspensions does not have this property; B~ 5 g gl

moreover, the second moment does not even foigt to the o o ]

fact thatg(R) — const aR — c]. Our method of reducing the and the tensors\ and A are kinetic coefficients which are
Smoluchowski equation for HI suspensions is based on thiinctions ofR, radius of particlesa, and density gf particles,
observation that if we consider the dissipative operator as By OF €quivalently volume fractiors=(4/3)mnya”.
composition of two operators, one acting only on the angular Without lost of generality the function&(R, ¢), MR, ¢)
dependence and the other on the radial dependengéRpf  can be written in the following form:

then the angular part still keeps the properties guaranteeing

the scale separation. The radial dependence is then treatéd,; = T [al(R/a, ¢)RL§§ + 0,(R/a, ¢)(5aﬁ— RL?‘—’)}
separately by applying an appropriately adapted finite- 7703 R R
element method. (2
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R,R R,R €
)\aﬁy: |:Iu’1(R/a! ¢)?§ +/L2(R/a, ¢)<5a,8_ #)]RV UnI(R) = R_]_zi forR= Za, (5)

(3 wheree is some positive constant.

The usual way to arrive at E@1) (see, e.9.[17,18) is to
select one particle in the suspension, analyze all the forces
acting on it, write the Newton equations, neglect the inertia,
and finally write the corresponding Liouvillécontinuity)
equation which then becomes Eq). The forces acting on

. 1 2 the selected particle are the force due to the direct particle-
Nyap= 5()\7aﬁ+ Nyap = gaaﬁxw,,). particle interactiongi.e., the forces generated by the poten-
tial U), the Brownian forcdthe force generated gT In g),
Below, we shall continue to use the symhlto indicate ~and the force mediated by the fluid due to the hydrodynamic
symmetrized and traceless part of second-order tensors. interactionsexpressed in Ed(1) in the terms involving the

We have introduced the dimensional fackgT/377,ain  tensorsA and\]. From the simplifying assumptions made in
A, because\ plays the role of amnisotropicdiffusion ma-  the process of the derivation of E(l) we may expect that
trix describing a self-diffusion of particles in the presence ofthe suspensions are rather dilute, isothermal, monodisperse,
hydrodynamic interactionsg is the diameter of the sphere, homogeneous, and incompressible suspensions of rigid
7o is the viscosity coefficient of the Newtonian fluid in spheres in Newtonian fluids. The spheres are all identical and
which the spheres are suspendkgljs the Boltzmann con- their radiusa is much smaller than the characteristic linear
stant, andT is the temperatur@ssumed to be constant size L of the fluid container. The concentration of the sus-

Specific features of hydrodynamic interactions are exension is limited mainly by considering only binary hydro-
pressed in the coefficientso,(R/a,¢), ox(R/a,d), dynamic interactions. Another way to estimate the range of
wi(R/a, ¢), and uy(R/a, ¢). The functionso, and o, must ~ applicability of the Smoluchowski'equatior} is to deﬁve iFs
be non- negativéin order to guarantee the non-negativenessconsequences for the macroscopic behavior. Our investiga-
of the diffusion matrixA—see Sec. )i, but otherwise, they tion proceeds in the latter direction. _
can be seen as parameters in the governing equations that canEduation (1) has to be supplemented by appropriate
be adjusted to fit experimental data. In our computations iPeundary conditions. For the far-field "ijf’o’ we as-
Sec. V we consider only zeroth-order termsdn(we limit sume tha'_t th_e C(_)rrelat|on functiantends tong (i.e., to the
ourselves only to binary interactionsnd we use expressions Uniform distribution,
of Batchelor and Gree[P8] (see Appendix A o g(R— ) — 12, (6)

In order to be able to see how the hydrodynamic interac- P
tions influence the evolution of the microstructure and thewheren, is the number density of suspended particles, as-
rheology, we shall also consider suspensions with no hydrosumed to be a constant.
dynamic interactions. In such suspensions the surrounding Another boundary is the surface of the partidRe; 2a.
fluid imposes only a drag force on single particles and parfor this boundary we adopt the boundary condition intro-
ticles interact as rigid spheres—i.e., through hard-core interduced by Batchelof17]. The flux, defined by the Smolu-
actions. In Eq.(1) this corresponds to the choiee=0 and  chowski equation, through the boundary, in the direction
A=8kgT/(3mna) (o1=0,=1). perpendicular to it, vanishes—i.e.n,J,|g-2a=0, wheren,

By U(R) we denote the total two-particle potential energy=R,/R and
due to the particle-particle interactions. It is a sum

Regarding the tensax, we take into account the fact that
enters the time evolution equatidf) as well as the stress
tensor(see Sec. Il A beloywonly in symmetrized and trace-

less fOI’m,;\, with respect to last two indices:

v, Jd g
Jo= — + 0Ny, Dg, | + —_—, 7
U=Upyc+Uy a <gRB(9rB O apy ﬁ)’) gquaﬁaRB Geq ()
of the hard core potentidl, Oeq IS the equilibrium correlation function defined as
UnclR) = 0, for R>2a, @ ~ F( Un|> ®
HCYY ™ 1, for R<2a. Geq™ X keT/

and a nonlocal potentidl,, arising due to long-rangé.e.,  Written explicitly, this condition takes the form
beyond the intermolecule scalimteractions such as electro-

static forces or some self-consistent effective potential taking 71(28)geq 22) [n ii} + 2ag(2an)
into account multiparticle interactior with case it may b IRgGeq | | R=2a
depend org). In this paper we shall take into account the X (114(28) = 1)nn:D = 0 (9)

hard-core potential by applying specific boundary condition

at the surface of the particl&R=2a (see the end of this We note that due to the asymptotic behavior of( R)
sectior). Only the nonlocal part),, of the potential energy is (u;— 1, whenR— 2a; see Appendix A the second term in
kept hereafter in the Smoluchowski equatidn In our cal-  Eg. (9) vanishes. In the absence of hydrodynamic interac-
culations we shall choosd,, to be the repelling part of the tions this term is different from zero and plays the role of the
Lennard-Jones potential, force driving the correlation functiog out of equilibrium.
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We also note that in the presence of hydrodynamic interacpapej. For the entropy we take the Boltzmann expression.
tions the functionr; vanishes on the boundaR~2a as well ~ The energy is a sum of the kinetic energy of the overall flow
(see Appendix A In spite of it, Eq.(9) remains to be a and the potential energ§J,)=/dRgU,, arising due to the
meaningful condition(both in the presence and in the ab- presence of the suspended particles. As we discussed above
sence of hydrodynamic interactioreelecting a unique solu- we have excluded the singular hard-core interaction energy
tion to our initial boundary value problefi19]. Uy from the free energy.

In this paper we shall not contribute in any way to the The requirement that the time evolution is compatible
clarification of the relation between E{¢l) and the micro-  with thermodynamics implies
hydrodynamic viewpoint of suspensions. Our objective is to
take Eq.(1) as an equation representing a given mesoscopic do _
theory and look towards its more macroscopic consequences. dt
In particular, we shall investigate the compatibility of Ej).
with thermodynamics, derive a reduced model of B, AS the timet—c the free energyb(u,g) reaches its mini-

0. (13

and derive the nonlinear rheology implied by it. mum. The states at whict reaches its minima are called
equilibrium stategueq, Jeq). As We see immediately from Eq.

lIl. DYNAMICS AND THERMODYNAMICS (12), it is the state at which no flow takes pla@ee., u=0)
OF HI SUSPENSIONS andU,=In g, Wheregg, is the equilibrium pair correlation

) . function. WhenU,=0—i.e., when the suspended particles
In the sequel we want to consider rheological consejnieract only via the hard-core potential—theg=1.

quences of Eq(1). We thus have to extend the set of state  pqiowing [24], we shall express the compatibility of dy-
variables by adopting into it the average overall momentunysmics with thermodynamics in a somewhat stronger re-

u(r). The time evolution equatiofi) extends to quirement. In order to formulate it we need an additional
au P notation. Letz:=(u,g) and Eqgs.(10) and (11) be formally
—E == (U, t 8Pt 04y, (100  written as
a oo, 7 7
dz

a9 P ( ) a a:F(Z)- (14

= 2 gR T | + ——(g\ D

ot R,\9 Porg aRy(g vasDap)

The right-hand side of Eq910) and (11)—i.e., F(z)—is,
J 9 (11) moreover, written as a sum of the time reversible [
IRg eq’ X (2z) and the time irreversible paRi™V)(z):

Equation(10) is the standard local momentum conservation dz _
law, v=u/p, p is the overall mass density of the suspension P FreV(z) + Fimev(z), (15)
(a constant p is the hydrostatic pressutdetermined by the

incompressibility requirementand o is the extra stress ten- ith

sor that remains to be specified.

3
+ &_Ragquaﬁ

J
— (rev)
A. Extra stress tensor T (Uy‘bua +0,,p+ Ucﬁv)
F(rev)( ) — Y
g

In order to find the expression for the extra stress tensor, J oD, J
we can either turn to microhydrodynamieee, e.9.[17,20) - —(gRﬁ “) + — (9N 43D p)
and analyze forces acting on a surface element placed inside R g R,
the suspension, or we can turn to macroscopic consequences
of Egs.(10) and (11) [i.e., solutions of Egs(10) and (11)] d
and to their comparison with results of macroscopic obser- ' u or ey
vations. Since we have already decided not to look into the F('”e")( ) = 4 , (16)
microscopic basis of the Smoluchowski equatidd), we 9 i(gA iq) )
naturally take the second route. IR\ P JRg g

The macroscopic observation that we shall require to be
reproduced in solutions of Eq&l0) and(11) is the approach Where

_ Y (irrev)

to equilibrium and the applicability of classical thermody- 1/ 9 J
namics to describe the behavior of suspensions at the equi- Das= —<—q>u +—d, )
librium. Let ®(u,g) be the free energy of the suspension. In 2\or, B drg e

a system under consideration it is given by and &4 and ®, denote variational derivatives of the free

u2 energy functional(12) with respect to the corresponding
<I>:Jdr —+Jng(Un,+kBTIn g . (12 function—i.e.,®4=(5P/5g) andd,=(5P/u).
2p : . . . .
We recognize the time reversible and irreversible parts of
We recall that the free energy equals the entropy mines thiéhe vector field by evenness and oddness with respect to time
energy multiplied by the temperatui®e (a constant in this inversion operatorZ; Z(u,g)=(-u,g). We thus have
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Frev(72)=—F®(z) and FimeV(7z)=F("V)(z). We are also . 5
i i ; : : mev) = — ol L+ =¢p|D (19
splitting the stress tensor into the time reversible and irre- Oap o 2 ay:

versible parts,
We see that the viscosity depends linearly on the volume

o(2) = "™ (2) + 6" (2), fraction ¢ of suspended particlesy=(4/3)n,a°.

with o®(Z72) = - (2) and o1"Y(T2) = ¢V (2). Itis easy to verify that

Now, we are prepared to formulate the stronger require- (@) _ }D (1 +§ )D
ment of the compatibility of dynamics with thermodynamics. dt / irew T o e 2¢ apB
Instead of Eq(13), we shall require

J J
= | dR| —=— D4 |gA o5l —— P, | <O,
(@) =0, (17) f (z?Ra g>g aﬁ( &RB g)
dt (rev) (20)
dP and thus Eq.18) holds providedA is a positive definite
(—) <0, (18)  tensor andy, is a positive coefficient.
dt /(irrev) Next, we find ‘™" from the requirementl17). A direct

lculati [)] 24] f ilsl
where the subscriptérev) respectively(irrev) describe the f(? culation of(d®/d) rey (Se€{24] for more detailpleads us

reversible and irreversible parts, respectively, of the time
evolution equation. In other words, Eq47) and(18) mean 9 J o 9

i i i ion i - V=~ | dRg| Ry= ~ Z8,sR, == ~ Nyup— | @
that the time-reversible part of the time evolution is nondis- %as g R, 3°BY4R vaB n |0
sipative and the time-irreversible part is dissipative. What are # A 4
the physical arguments with which we can support the re- (21)

quirements(17) and(18)? _ _ The inequality(13), which is now guaranteed provided
First, we note that in the particular case when the timepe extra stress tensor is given by E(E9) and (21), means
reversible evolution constitutes the complete time evolutionpat the free energsp plays in the time evolution governed
(as itis, for example, in the case of the time evolution gov-py Eqs.(10) and (11) the role of a Lyapunov function. This
erned by the Liouville equation corresponding to the Hamil-| yapunov function guarantees the approéast — =) to the
ton dynamics of classical particleshe time-reversible part equilibrium sates that minimize the free energy. We thus con-
is indeed nondissipative. This is a well-known fact. The re-c|yde by saying that Eqd) is compatible with equilibrium
quirements(17) and(18) can be thus seen as an extension ofthermodynamics provided the extra stress tensor is given by
the association of time reversibility with nondissipativity the sum of the irreversible, E4L9), and the reversible, Eq.
known from the microscopic time evolution to the mesos-(21), parts,,,>0, andA is a positive-definite tensor.
copic time evolution where the reversible time evolution rep-  Fipga|ly, collecting all contributions to the extra stress ten-

ond argument supporting Egd.7) and(18) comes from its  gyrive at

association with the Onsager-Casimir relations. If we linear- hydr . DI "
ize Eq.(14) about equilibrium state§.e., states at whickb Tap=0qp T Oopt Ogp, (22
attains its minimumand use the Onsager-Casimir relations,here

(i.e., the statement that the linearized part of the reversible

and irreversible parts, respectively, Bf is skew-adjoint and G ( 1+ 5 q,)) (23)
self-adjoint, respectively, with respect to the inner product ap o 27)

involving the second derivative of the free energy as the

weight function then, as we immediately see, the linearized ol 1 Upy
version of Egs.(17) and (18) is a consequence of the (Ta,rfzf dn nan5—§5aﬁ Ag(2an)—deRE
Onsager-Casimir relations. The third argument in favor of 52

Egs. (17) and (18) comes from its association with th&e- 1

NERIC formalism (see [25] and references cited thergin X(”a”ﬂ‘§5aﬁ)Ag(R)' (24)

which is a structure extracted as a common structure of many

well establishedi.e., well tested with results of experimental 1
observations mesoscopic dynamical theories describing a g:g: - 2,u1(2a)f dn<nanﬁ— :—gﬁaﬁ)Ag(Zan)
time evolution that is compatible with thermodynamics. This 52
structure, which can also be seen as a nonlinear extension of P JU
the Onsager-Casimir relatiofsee[26]), implies Egs.(17) —f dR[3(M1_Mz)+RL1+ 1R_nl}
and(18). IR IR
As for the irreversible part of the extra stress tensor, we 1
shall choose the standard Navier-Stokes constitutive relation X(%”ﬂ— §5a;;>A9(R)- (25)

with the overall fluid viscosity containing Einstein contribu-
tion [27] due to one-particle hydrodynamic self-interactions:By the symbolAg=g-ge, We denote a deviation from equi-
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librium of the correlation function. The integration in Egs. 1 3mnea 1
(24) and(25) is over the two-dimensional unit sphete Un — k_TUnh Aap— T Aoy Napy— a)\aﬁy-

The first term on the right-hand side of E§2), o™, is 8 B
a contribution from the Newtonian fluid in which particles Heren, is the number density of the suspended particles.
are suspended. The second terrH|, comes from the direct The resulting dimensionless form of Eq&0), (11), (22),
interactions including the hard coférst term in Eq.(24)]  and(21), is now
and a long-range soft tail potentidl,. The third term in Eq.

(22), o™, is a contribution arising due to hydrodynamic in- Mo _ _ pei U+ 8,ep+ ia
i ot or “ 7T Re M)
teractions. ,
We note that the partr,=c"'+¢' of the extra stress
tensor that arises due to the presence of suspended particlesdgg d r?vaA

J J
is traceless. We also note that due to the near-field =~ PeaTvyg - PeaR Rﬁar g+ PeaR I\ yapDap
asymptotic behavior of the functiop(R) [u;—1, asR 7 “ P 7
—2; see Eq(A7)] the local part of the extra stress tensgr 9 J 9
. . - HI DI . A + gqua’B (28)
(i.e., the sum of the first term ie™ and ¢') vanishes. This IR, JRgJeq
is a consequence of the lubrification approximation used in
the derivation of the near-field asymptotics of the coefficient®

g and u, [28]. However, when we consider the suspension ~ 5 27 #? 1
O-aﬁ__ 1+§¢ Da,y___ 2 . dn nanﬁ—gﬁaﬁ

nd the extra stress tensor

of hard spheres without hydrodynamic interactions, this local 87 Pe

term is different from zero and provides the only contribu-

tion to o, Iy
It is satisfying to see that the stress ten&®), derived X[1 - uq1(2)]JAg(2n) —f dR| (g — up) + Rﬁ

above from the requirement of the compatibility of dynamics

with thermodynamics, coincidém the casdJ,=0) with the Uy 1

expression obtained by Batcheld7] in the setting of mi- +(1 _’U“l)Ra_R NaNp~ §5aﬁ Ag(R) (. (29

crohydrodynamics.

Sz

Here <¢>=(4/3)np7ra3 is the volume fraction of particles in a

B. Dimensionless formulation fluid. _ .
In the above equations we have introduced two well-

_In this subsection we transform the governing equationg,,vn dimensionless constants: the Reynolds number, Re,
introduced above to dimensionless form. We begin by iNtro4 14 the Péclet number. Pe. defined as

ducing the dimensionless tinte-t/ 7, whererg is the char-

acteristic relaxation time associated with the Smoluchowski _Upd _ pa®y
equation(11): Re R
6mnea’
TS=————. 26 T Bmryea®
S keT (26) pe=_"5 - 7o
Thyd kBT

Another characteristic time arising naturally in E¢E0) and
(11) is the hydrodynamic timey, q defined via characteristic
scalar rate of strairy [for constant tensdb the scalar strain
rate is defined a§=(D D),

The Péclet number is a ratio of mesoscofassociated with

the time evolution of the internal structyrand macroscopic
(hydrodynamig time scales. In the Smoluchowski equation
(28) the Péclet number can be regarded as a scalar parameter
measuring strength of the hydrodynamic flow.

Thyd= ¥ (27)
We introduce dimensionless position coordinatesidR as IV. MOMENT MODEL OF THE SMOLUCHOWSKI
follows: EQUATION (MS EQUATION)
r—r/a,R— R/a. The possibility that Eq(28) can be solved analytically in

~ aclosed form is quite remote. We turn therefore to numerical
The overall momentunu— u/ug, where the characteristic methods and/or to their appropriate combinations with ana-

velocity ug is defined by lytical methods. We can, at least in principle, take a direct
numerical approach to finding solutions of E8). In order
Up = pa/ Thyg. to avoid very cumbersome reformulatiof@iscretizationsof

Eq. (28) needed on this route, we shall follow another route
®n which the search for solutions of Eq&8) takes a physi-
cal meaning. We begin by realizing that in order to derive a

The dimensionless form of the rest of the variables enterin
the governing equationd.0) and(11) is given by

2 1 nonlinear rheology of suspensiofiee main objective of this
g— % p——p o, — 04, papej we do not need all the details of solutions of the
Ny pa Y Smoluchowski equation. We need, as we shall argue below,
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only information about the slow part of the time evolution. of the second-order differential operator in irreversible part
The question then arises as to whether we can identify aof the Eq.(28) is proportional to the Laplace operatdr
equation, which we expect to be simpler than E28) (sim-  =(4/4n)-(d/4n) in the angular variables. This operator has a
pler in the sense of finding numerically its solutipdescrib-  discrete spectrum with spherical harmonics, which are linear
ing just the slow time evolution. We shall now proceed t0ompinations of the moment kernald™ =n_ ---n. . as
find such equation. o ) . ayam ML

its eigenfunctions. In particulakth harmonics is a linear

In order to identify the slow state variables we need to binati fic functionswi™. with m<k. and it
recognize in the Smoluchowski equation a hierarchy of charfompination otk functions » WIth M=K, ‘and 1tS corre-

acteristic relaxation times. Such a hierarchy is revealed if wSPONding eigenvalue igk+1) which appears in Eq30) as
look at the set of moments of the orientation vectars @ Multiplicative factor in the fifth term on its right-hand side.

s

=R/R: Consequently, there clearly exists a separation of relation
times in the space of angular variables of the ve&orhis
MK (R) = K f dng(R)n, -+ n consideration implies t_hd#l[z] is the slowestin the absence
“1" 41 R of external forcing variable among the moment(*. We

shall therefore suggest to choose it as the state variable in our
reduced formulation of Eq28). To simplify the notation, we
shall use hereaftevil?=m.

Another argument supporting this choice is the observa-

wherek indicates the order of the moment. By averaging Eq
(28) with corresponding weights we construct the following
hierarchy of equations governing the time evolution of the

momentsMIX (k are even and positive integgrs .
( P o tion that the stress tens@9) turns out to be expressed only

MK J in terms ofm:
- Pe{ks@ M+ Ry = DDMITE 4 (L~ o)
X(SD - MM - D:Mk+2) +io.g 9 Ml 5 27 4%
. sR71Fed R geq U:_(1+§¢>DQB_EP_G 2[1-my(2)Im(2)

—k(k+ 1)§(M[kl - %&(w [“]))). (30)

aJ d o
f dR<R &Rn'(l —pa) + 3y~ o) + Ré,_RMl>m} ,
Here k=0,2,4,.. .,geq denotes the equilibrium radial pair ?
correlation functiorgeq= Rzgeq, the tensom is the flow vor- (32

ticity tensor,

0. = 1(‘90_a _ a_vé’) where r°n=m—§5tr m. As we see from Eq(32), the extra
B2 g A, ' stress tensor depends indeed onlyronand moreover, the

dependence om is linear.
If we now switch on the imposed flow, the first three
1 X terms on the right-hand side of E(B0) are different from
(SKA)al...ak: EE Api(al‘..ak), (31 zero and consequently the hierarct®0) becomes coupled.
Fi=l In particular, we see that the equation governing the time

where P, denotes the operator dfsuccessive permutations €volution ofm involves also the momerM“l However, as
among indicesay, ... . In additon, we assumeM[®  we see in Eq(30), the terms representing the coupling are all
=trM[2=(R?/47) [ dng(R) andM[-Z=0. multiplied by the Péclet number. This means that if the Pé-
The set of equation€0), if we consider it in its entirety, ~clet number is small, we can still expect the second moment
is equivalent to Eq(28). What we have gained by writing to evolve in time in a slower pace than the fourth moment,
Eqg. (28) in the form (30) is the possibility of recognizing which itself evolves in a slower pace than the sixth moment,
slow and fast variables. By limiting ourselves only to theetc. Even for larger Péclet numbers, the second moment is
slow ones, we hope to arrive at a simplifi@@duced ver-  still very likely an appropriate state variable. Our numerical
sion of Eq.(28). predictions of the microstructure and rheology presented be-
We begin by making a few observations about the hierarlow indicate that this is indeed the case. The above three
chy (30). We see that the equation for tkih-order moment arguments support our hypothesis that the time evolution
involves(k-2)th- and(k+2)th-order moments. The coupling generated by the Smoluchowski equations and the time evo-
to the higher order moments appears only in the terms regution generated by an appropriately constructed equation
resenting the advectiofthe first three terms on the right- governing the time evolution ain(R) (called hereafter the
hand side of Eq(30)]. In the absence of the externally im- mS equatioh are essentially identical provided we look at
posed flow(i.e., Pe=0 the hierarchy is thus uncoupled. If the slow part of the time evolution. Below, we shall find the
we choose ank=2,4,6,..., weobtain a closed set of equa- mS equation and in Secs. V A and V B investigate its solu-
tions. Ast— oo, all the moments approach their equilibrium tions.
values. Moreover, we see that the higher is the order of the If we putk=2 in Eq.(30), we obtain an equation govern-
moment, the faster is the approach. Indeed, the angular parig the time evolution ofm:

and the symbo§, denotes the symmetrization operation,
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am 9 1 4
— =P w-m-m-w+—R(u; - HMA:D + (1 - M[4]:D:—<——| M:D+2(0h-D+D -
P e{w w R (1= 1) (1-po) (4) (tr m)3 21 3l ( )]
d . dm 4 o o o o o o
X(D-m+m-D-2M“D) t + —0y8eq = —=1[8(th-h):D+2(h-h-D+D-t-m)]
dR IR Qeq 7
-6%%1. (33) +z[m-rh(m-m);a+zm-m-o-m-r‘h]>,

(34)

This equation involves so far unspecified fourth order mo+wherel, and |, are the second and third invariants of the

ment M%), In order to continue, we have to express it in tensorrh:

terms of the second order momemb. The function . . v e .

W:m—M is called a closure. An ultimate criterion for lo=tr(m-m), I3=tr(m-m-m).

choosing the closure is the requirement that solutions to the

closed equatiorti.e., to the mS equatigrapproximate well

solutions to the Smoluchowski equation if we pay most at

tention to asymptotict — ) behavior and to the rheological

predictions. Such a criterion is obviously difficult to put into

practical use. In Appendix B we derive a simfdairth-order

(in terms of normalized momentslosure by requiring some

specific conditions. They are symmetry, normalization, frame

indifference, positive definitness, and an exact match in two |:0-lgeqR£zA21|
eq

To complete the formulation of the mS equation, we have
to supply the boundary conditions. We derive them from Eqs.
(6) and (9) by making appropriate averages:

1
(m/R2)|R—>OC - égquv

+ Pduy(2) - 1]M[4]|m:m(2)ZD =0.

important limiting cases—namely, in the weak fldive., R=2
near equilibrium, P& 1) and in the strong flowsi.e., when (35)
Pe— in uniaxial and biaxial elongation flowsWith this ) ] - )
closure, the expressiol!¥:D appearing in Eq(33) be- Summing up, we have identified a reduced Smoluchowski
comes equation, called the mS equation, whose solutions have the
following properties:(i) If Pe=0, then the asymptotig.e.,
equilibrium) solutions of the Smoluchowski equation and of
4 the mS equation are identicéih the sense that the second
ME:D = > miakD, moment of the equilibrium solution of the Smoluchowski
n=0 equation equals the equilibrium solution of the mS equation

Both the Smoluchowski and mS equations are compatible
with thermodynamics(ii) If the Péclet number is small,
2 then, for large times, solutions to the mS equation approxi-
MighD =D, mate well solutions to the Smoluchowski equation.

In order to situate our approach to finding solutions to the
Smoluchowski equation, we compare it with the approaches
to the same problem developed[®7,6]. The starting point

4. 2 1 o . . in all three papers is an ansatz about the form of the solution.
M{3):D = Etr(m ~MegD + ;[&n.D +2(m-D+D-m)], Phan-Thien [3] assumes that the solutions have a
S-function-like behavior in the dependence Bn[i.e., the
solution is proportional ta(R-R)]. In concentrated suspen-

1/ 4 2 sions this may indeed be a good approximation \Rtbheing
ME‘Z‘}:D = —(—IZD -—[8(m-m):D+2(M-m-D the surface of the particle. In this paper we do not consider

trm1105 21 concentrated suspensions. The dependenc® a@oes not

. 1., . . show a sharp peak about any valueRof

+D-m-m)]+ é(mm:D +2m-D- m)), Hess[7] does not discuss rheology and does not include
hydrodynamic interactions. The ansatz used by Hess is the
following: g(R)—geq(R) ~a,5R.,RsN(R), where g, is the
correlation ~ function at  equilibrium  and a,g
=JdRg(R)R,RsN(R), whereh(R) is a cut off function(i.e., a

1 (8 1., . .
MilD = (—I3D+—I2[ém:D+2(m-D+D-m)]

@ (trm)?\ 45 7 function that approaches zero sufficiently rapidly Rs> o
1 so that the integral existsHess uses thus the assumption of
-Z[m(M-m:D+ (M -mm:D+2(M-D-m-m the separation of scales. As appears from our analysis, such a

separation indeed exists but only in the angular dependence
of g(R). We do not make any assumption of this type in the
+m-m-D- r‘h)]), radial dependence. The disadvantage of our approach is that
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we do not calculate the pair correlation functigtR) [we  hard-core potential does not enter explicitly their governing

calculate only its moments(R)] and thus the structure fac- equations since we take into account the potefutjgl in the

tor [the Fourier transform af(R), a quantity that is observed boundary conditior{9). Two types of DI suspensions will be

in optical measurementss missing in the list of our results. investigated: one with only the hard-core potential and the
The authors of6] do not include hydrodynamic interac- Other with the hard-core potential together with the nonlocal

tions and consider only the hard-core interparticle potentialpotential(5).

Their ansatz is thag(R) is expanded in a finite number of ~ In both HI and DI suspensions we consider only two-

functions introduced by29]. In Sec. V B we shall compare particle interactions. Since the contributionskeparticle in-

our results(for the particular case when the hydrodynamicteractions to the stress are proportionatpto whereg is the

interactions are absenwith the results obtained if6]. volume fraction of the suspended particles, we shall present
the stresses in the formx/ ¢2.

Below, we present microstructural and rheological re-
V. PREDICTIONS OF MICROSTRUCTURE sponses to viscometric flow.e., homogeneous shear and
AND RHEOLOGICAL PROPERTIES elongation flows that are, as for their dependence on time,

In order to arrive at data collected in rheological observa-either_Star_t up or oscillato)yLinear_responses to oscillatory
tions, we have to first solve the set of partial differential lOWs implied by the Smoluchowski equation are well known

equations(33) for six independent components of the tensorl 12,13 The results presented in Sec. V A serve tfiggo

m(R,t). The complexity of this task is considerably reduced?ompleti.the “S.t olf the rheor:ogi%al predictiond) to cfor;]— S
relative to the complexity of the task of solving numerically Irm, In this particular case, that the consequences of the m

the original Smoluchowski equatiof28). Due to the un- model and the Smoluchowski equation are identical, @nd
bounded domain of the variabR and the nonpolynomial to compare the linear responses with the nonlinear responses
nonlinearity appearing in the closure relations, the proble resented in the subsequent subsection. Nonlinear responses
of solving numerically Eq.(33) remains still, however, a to shear and elongation flows, presented in Sec. V B, have

nonroutine problem. We solve the unboundedness of the ddot been, to the best of our knowledge, calculated before.
main by changing the variabldlR— x(R)=1/R] and the
nonpolynomial nonlinearity by using a nonlinear version of A. Linear response solution

the Galerkin method known as thgroup finite-element |, this section we look at small linear perturbations of
method[30]. Details of the numerical approach are given ingqyilibrium caused by weak oscillatory shear flows with the

Appendix C. , rate of strainD=Dye"“!. The linear response solution to Eq.
In the context of the mS equation83) and (32), the (33) has a general form

microstructure of the suspension is characterized by the mi-

crostructure tensor 1 .
M= Qe =5+ PefDge!], (36)
1 A3

sy Lo L
m (R) = 2m—4ﬁ_fdnnng(R).

R wheref(R), called a linear response function, is at this point

an unknown function. In terms of the correlation function the

As follows from its definition, the absence of pair correla- X
ansatz(36) looks like

tions (i.e., the absence of microstructure in HI suspengions
means that the microstructure tensor is proportional to the 15
unit tensor: namelym’(R)=(1/3)6. The nonzero tensoq g:geq(l +—Pefnn:DOe“°t>. (37
:m*(R)—%ﬁ indicates the presence of the microstructure 2

v_vhich can be induced either by_ direct ipterparticle_interac—n is important to realize that both the Smoluchowski equa-
tions (hard-core or non_local part|cle-part|cle_ |r_1teract|1_)ns tion (28) and the mS equatiof83) are completely equivalent

by flow through advectl_on and hydrpdynamm mteractlons: .Infrom the point of view of linear response thediye., they

the absence of flow, direct interaction forces create equilibjesq to the same linear perturbation solujicFhis is because
rium correlationsme(R) =(1/3)geq(R) & which are isotropic  the closure relation for the fourth moment has been chosen to
and depend only on the interparticle distafiteThe aniso- pe consistent with the equilibrium solution.

tropy generated by the imposed overall flow creates an an- gybstituting the expressiori86) into Eq. (33) and keep-
ISOtI‘Opy in the m|CrOStrUCtUre, so that the tensor is no |ng On'y linear terms with respect tB, we obtain the fol-

longer proportional tod. Such an anisotropy is created, on jowing equation determining the linear response funcfion
the one hand, by the combined influence of the advection and

direct interactions and, on the other hand, by hydrodynamic Jd . 0 . [60,
interactions that are anisotropic by their nature. ﬁ“lgeqﬁf ~ f0eq R to
In order to expose the effect of hydrodynamic interactions
on the microstructure and rheology, we shall investigate sus- _ 2. (oM (20 _
pensions both with and without hydrodynamic interactions. =7 15% R IR (1-m)+R R a2 |-

In the absence of hydrodynamic interactidns., if we put
A=0 and A=4), the suspensions will be called direct-
interaction (DI) suspensions. The singular behavior of the We impose the following boundary conditions:

(38)
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— — 27 *
e oneres wina K(w) = ;{sgec@)ml(z) - 1f(2.0) + f dRGFH(R )

o L .—.— soft spheres without HI 2

d U,
X[R%+Ra—RI(1—/«L1)+3(/Uv1_/~L2):|}' (41)

Beside the complex viscosity, the quantity of interest in
oscillatory flows is the complex modulu8" =G’ +iG” re-
lated to the complex viscosity () as follows:G =iw7'.

Figure 2 shows elastic modul@ and effective viscosity
7' as functions of the frequenay.

We observe thaG'(w) reaches a constant val@é.) in
the limit w—o°. Here we have to pose and note that at suf-
ficiently high frequencies we eventually reach the time scales
107 : : t<< 7, which are out of the realm of the applicability of the
Smoluchowski equatioril) and, in fact, also the Fokker-
Planck equation. We observe, however, that the quantity

FIG. 1. Dependence of the linear response funcfigdimen-  G’(w) reaches the limiG, at frequencies that still remain
sionles$ on interparticle distanc® (presented in dimensionless within the domain of applicability at least in the case of HI
units R/a) in a stationary flow(w=0) of suspensions of hard suspensions. Indeed, the plateau ®(w) starts atw= 10
spheres with and without HI and suspension of soft spheres withotfor HI suspensions and at=~ 10° for DI suspensions. We

HI interacting by nonlocal potentidly, Eq. (5), with e=10" should stress again that the high-frequency limits for the mS
equation and Smoluchowski equation are completely identi-
flrooe — O, cal because of the equivalence of these two equations in

linear near-equilibrium approximation. The well-knoysee,
for example[12,13) analytical estimation for the valug_,
of in HI suspensions is

4
— + —[wm(2)-1]=0, 39
Rl @1 (39 N

9 * U
G’z—zf dRRR [R—“‘l— +R
o 5(P Jeq (9R( H1) IR

derived from the condition&) and(9) by omitting all non- 2

linear terms inD. 2
We solve Eq(38) by applying a numerical method that is +3(py — ,uz)] . (42
a linearized version of the method that we use below for the
nonlinear problenjsee Eq.(C4) in Appendix d. For hard spheres with hydrodynamic interactions this quan-

Let us look first at stationary flow&w=0). The remark- tity takes the value
able fact that we note is that the functidg=f|(w=0) is a ,
nonpositive function(see Fig. 1 both in the presence and G., ~ 35.56,
absence of hydrodynamic interactions. The nonpositivity ofand it coincides well with the limit reached in our computa-

fo is a consequence of the nonpositivity of the right-handtions. We are unable to derive a similar analytical estimate
side of Eq.(38). The consequences of the negative sign offor G/, in the case of DI suspensions.

the response functiofy can be easily seen in E¢36). Let

D, be diagonalthis can be achieved by choosing appropri- B. Nonlinear response to start up and steady shear

ately the coordinate systemVe see from Eq(36) thatm is and elongation flows

also diagonal. Moreover, we see that the Iarger_is the entry of We denote the normalized dimensionless gradient of ve-
D, (note that larger entry means larger stre_tchlng of the im{ocity by Lap= 'y'lﬁva/&rﬁ, Where'y:(ava/ﬁrﬂ)(ﬁvﬂlara)l/z.
posed flow, the smaller is the corresponding entry of the | the simple shear flow,

microstructural tensam. This means that the correlations are

larger in the direction of the contraction of the imposed flow 010
and not in the direction of its stretching as it is in the case of L=({0 0 Of, (43
polymeric suspensions. This effect persists in the nonlinear 000
response. We shall see it in the next subsection.
By inserting Eq.(36) into the expressiof29), we find the and in the elongation flow,
effective complex viscosity 2 0 0
5 L= i_ 0 -1 0]. (44)
n*(w)=7/o<1+5<p+K(w)<p2>, (40) Wlg o -1
First, we analyze how the microstructure changes in start up
where the functiorK(w) is defined as flows. In our numerical calculations, the suspension rests ini-
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— hard spheres with HI 130
- — - hard spheres vyithout HI 0 Q R-2.0
.~ .~ soft spheres without HI s
21 o 1
’h, 10 |
R=2.4
: ;  R=50
‘E 0() 0/ \
16 -1 R=3.0 1 N
-1 0 1 4 0 1
1.4 t=0.0625
12 t=0.25 i
1 \ o —
t=0 t=10
085 25 3 35 4 45 5
(a) R
1.3
FIG. 2. The dimensionless effective viscosityp=[Re&(7")
~ Thyadd/ 70, Where 7,4=70[1+(5/2)¢], and the dimensionless 0 Q =)
elastic moduluss’ =Re(G")/ G, whereGy= 7,/ 75 and 7g is given e
by Eqg. (26), as functions of dimensionless frequengy(as trans-
formed from dimensional fornw— wrg) for suspensions of hard 18 43 .
spheres with and without HI and suspensions of soft spheres with- . O R-2.31
out HI. Soft spheres interact directly by nonlocal potential, &4. . 16 i
with e=10%, in addition to the hard-core potential, Ed). E s
T4 1 7N
tially at equilibrium (g=geq, L =0); then, at timet=0, the R=3 0\ P
overall velocity gradient Rejumps instantly from zero to its 1.2 Silmrarl
steady value. Figures 3 and 4 show the behavior of the mi-
crostructure tensom” for two cases: suspension of hard ]
spheres with and without hydrodynamic interactions. We W
represent the tensan” by its trace and correlation ellipses 0.8 ‘ t=1.25 t=50 , ,
defined as projections of ellipsoids described by the equatior(b) 2 25 3 3-5R 4 45 5
3 . . . «
E x-(m*)flx- _ (45) FIG. 3. Tracg of thg d|mgn3lonless microstructure tenson, tr
i ! U e m" and the correlation ellipses in a moderately strong shear fRsv

=10) of suspension of hard spher@s with HI and (b) without HI.

on the(x;,X,) plane. The normalization factorrlm*g q(R)/3 All correlation ellipses correspond te 10 for figure(a) andt=50
' < for figure (b). Timet and distancd are presented in dimensionless

is chosen in such a way that the correlation ellig® at the . S
equilibrium state is represented by a sphere with unit radiu™"'s 't/ 7s Wherers is given by Eq.(26), andR—R/a.
(for any R). In both flows, Eqs(43) and (44), the third co-  of molecules coincides with the orientation of the ellipsoid of
ordinate is not important due to the translational symmetrycorrelations induced by intramolecular forge$his effect
along thex; axis in shear flow and the rotational symmetry in can be seen as a nonlinear version of the nonpositivity of the
the (x;,X3) plane in the elongational flow. Consequently, pro-linear response that was observed in the linear ¢sse the
jection on the plan&;=0 provides enough information about preceding subsectionThe difference that we have just noted
the microstructure. is explained by the difference in the character of the interac-
We observe that at largg, in all suspensions, the corre- tions. The forces generated by the hard-core potential as well
lation ellipses become circles. This indicates that the correas the forces generated by hydrodynamic interaction have a
lation anisotropy decays wherincreases. For smal, the  repelling character. The interaction forces decrease with in-
anisotropy of the microstructure is significant. We observecreasing the distance while the intramolecule forces in poly-
that in both suspensions the direction of the major axis of theneric solutions are attractive and increase with increasing
correlation ellipse is inclined towards the direction of thethe distance.
strongest flow compressidne., towards the direction of the Next, we discuss standard viscometric quantities associ-
eigenvectors corresponding to smallest eigenvalue of the ratted with the start up shear and elongation flows. Here we
of strain tensoD) and not towards the flow stretching like in have to repeat the comment that we have made in the previ-
the case of polymeric solutions. In the latter case the microeus subsection in the context of the limit— «. Indeed,
structure tensor characterizes the orientation of polymeri¢eactions to start-up flows are determined, in the initial small
molecules in the physical spaéemore precisely, orientation period, by fast processes that are outside of our model. The
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FIG. 5. Time dependence of the dimensionless and normalized

FIG. 4. Trace of the microstructure tensonyir, and correlation ) i -
particle shear viscosityA 7= 7s= 7y Where nuyq=1+5¢/2 and

ellipses in moderately strong elongation fl¢Re=10 of suspen- ' : - ) y -
sions of hard spherds) with HI and (b) without HI. All correlation ~ 7siS defined in Eq(46) in start-up simple shear flow of suspensions
ellipses correspond to=50 for figure(a) andt=10 for figure(b). ~ ©f hard spheresa) with HI (b) without HI. Timet is presented in
Time t and distanceR are presented in dimensionless units dimensionless units—t/rs, wherers is given by Eq.(26).
—t/ 75, whererg is given by Eq.(26), andR— R/a.

= PE€ Y033~ 02)), (48)
natural averaging made by experimental apparatus recording
the reaction of the suspension may however bring the ob- Mol = 022~ 011, (49

served behavior to the realm of our model. A detailed discus\-Nh reo is a dimensionl ir tensor
sion of this point is clearly beyond the scope of this paper. In Ereo1s a ENSIONIESS SWESS tensor.
Figures 5-9 show rheological predictions for HI suspen-

the case of the start up shear flow, these quantitieqiare sion as well as DI suspensions. We are comparing them in
terms of the dimensional variablethe normalized shear vis- Susper o paring
order to observe similarities and differences in the effects

(ri?:lltsyt TZSS: S—(%é{(faifc,i(tar;]%ngzr;ah_z;dﬂ?;szt an(?e_siczc));]gznor- produced by hydrodynamic interactions in combination with
1= 22 VT 7 2T A733 w22 Fo - hard-core interparticle interactions and by purely hard-core

where o, are the components of the dimensional extra, :
interactions.

stress tensor. In the elongation flow, the only interesting vis- In the shear flow our predictions confirm experimentally

coriletnc parameter is the normallzeq eIong{:\tlon Y'Scos'tyobservecﬂ] shear and normal stress thinning behavia.,
7e1= (09— 017)/ . After the transformation to dimensionless

. - decay with growth of Pe numbgein HI suspensions at least
variables(see the Sec. lll Bthese quantities become for Pe ranging from 0 to 500. The same behavior pertains in

DI suspensions. In the time evolution of all rheological quan-

M=~ 012 (49 lities we observe an “overshot” followed, in some cases, by
weak and strongly damped oscillations before reaching
Y =PeYopy— 0qy), (47) steady-state values. The overshoots and the damped oscilla-
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FIG. 7. Time dependence of the dimensionless normalized elon-
] ] ) ) ~ gation viscosity(49) in start-up elongation flow of suspensions of
FIG. 6. Time dependence of the dlmgr_lsmnlc_ess normallz_ed firshard spherega) with HI and (b) without HI. Timet is presented in
(47) and second48) normal stress coefficients in start-up simple gimensionless units—t/ s, wheres is given by Eq.(26).
shear flow of suspensions of hard sphemsvith HI and (b) with-
_out HI. Timet is presented in dimensionless urtits t/ 75, whererg than Pe>10?) for which, due to the stiffness of our discrete
is given by Eq.(26). equations, we are unable to produce numerical results with

tions are more pronounced in flows with moderate PécleBufficient accuracy. _
number, Pe, and are negligible for small and large Pe. In order to test our method of solution of the Smolu-
Another observation concerns the second normal stresgloWski equations we compare our results with results ob-
coefficient which in our tests appears to be, at steady statetined by using other methods. In particular, we compare the
negative, in both HI and DI suspensions. This is in accorfredictions for the shear viscosity and the first normal stress
dance with observations made by other researddgrbut in  coefficient in the case of hard spheres without hydrodynamic
disagreement with Phan-Thi¢8]. interactions with the predictions based on approximate solu-
We also note that within the tested range of Péclet numtions found by Btawzdziewicz and Szan{él]. We see that
bers we do not see the thickening behavipe., increase our results for the shear viscosity coefficient agree well with
with increasing Pe Such behavior has been observed in ex-the results reported if6] for small Pe. The first normal stress
perimental measuremené] as well as in numerical simu- coefficient as well as the shear viscosity coefficient for large
lations[5]) in concentrated suspensions and for large PéclePe appear to be different. A detail comparison of our and the
numbers. The reasons why we do not see it may be thBtawzdziewicz-Szamel approximations is needed to explain
following: the thickening effect arises due to the physics thathe discrepancy.
we did not put into our governing equatioteg., the role of Our results for start-up elongation flows reveal a remark-
more-than-two particle interactions that certainly play an im-able qualitative difference between HI and DI suspensions.
portant role in concentrated suspensjoasid/or the thicken- In HI suspensions we see a thinning behavior for the elon-
ing effect begin to appear for largetlBt numbers(larger  gation viscosityz, at large Pe while in DI suspension we see
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. , , FIG. 9. Steady-state values of the dimensionless elongation vis-
25} . /62 — hard spheres without HI ] cosity, 7e, EQ. (49), vs Peclét number Pe in an elongation flow for
_____ 1T - B&S solution suspension of hard spheres with and without HI.

20+ S~ - — . soft spheres without HI b

namic interaction show much weaker resistance to the flow
compression than suspensions with only hard-core interac-
tions. In strong flows, the hard-core interactions create very
high strains along directions of the compression because the
particles strongly resist being drawn near to each other.
However, the strong repulsion is, at least partly, shielded by
hydrodynamic interactions, even if the hydrodynamic inter-
actions retain still the repelling character.

VI. CONCLUDING REMARKS

0 . . . We have investigated in this paper two types of suspen-
107 107 10° 10' 10°  sions: HI and DI suspensions. We shall now compare them
(b) Pe with dilute polymeric suspensions that have been extensively

FIG. 8. Steady-state values of the dimensionless normalized pa;s-tUdlecj.In the Ilteraturﬁseer,] e'%'[14])' Beforg making .fjhe i
ficle shear ViSCOSity,A 7= 7s- 7yqn Where 7,q=1+54/2 and comparison we noteht at the three suspensmnsI are idealiza-
Tehear IS given in Eq.(46), the dimensionless firstyy) and the tions representing three extreme_case_zs. _In real suspensions
second(,) normal stress coefficients, Eqg7) and(47), vs Péclet the features of the above three idealizations are mixed. A

number Pe in a simple shear flow of suspensiotaphard spheres better understanding of the relationship between microstruc-

with HI and (b) hard and soft spheres without HI. Dash-dotted linesturé and rheology in Hi, DI, and polymeric suspensions is
correspond to the approximate solution by Btawzdziewicz andonly a step towards understanding the rheology of real sus-
Szamel[6]. Soft spheres interact directly by nonlocal potential, Eq. P€NSIONS.
(5) with e=10%, in addition to the hard-core potential, Ed). We begin the comparison with the physical settings. All
three suspensions are assumed to be isothermal, incompress-
a thickening behavior. However, we note that at small Pable, and spatially homogeneous. The fluid in which par-
(Pe<1), DI suspensions also show a weak thinning behavticles, are suspended is in all three suspensions the same. It is
ior. a Newtonian fluid. The suspended particles are structureless
The difference between the elongation viscosity of HI and(rigid spheresin HI and DI suspensions and with an internal
DI suspensions is explained by the peculiar behavior of hystructure(for example, the particles are modelled as dumb-
drodynamic interactions when two particle are close to eachells) in polymeric suspensions. In all three cases the sus-
other(Ris close to 2. According to the lubrification approxi- pended particles are subjected to the Brownian force and the
mation (see[10,28)), which is used to derive the near-field drag force imposed by flow. In HI suspensions in addition to
asymptotic behavior of the functiom, , in Eq.(2) andu,, the latter the suspended particles are subjected to the hydro-
in Eq. (3), the hydrodynamic interaction compensates thedynamic interaction. There are no intraparticle forces in-
hard-core interaction so that the projection on the normal tovolved in HI and DI suspensions; there is such foftee
the particle surface of the sum of the two for¢éese coming  force originating from the spring connecting the two spheres
from the fluid and the other from the hard cpegjuals zero of the dumbbe)l in polymeric suspensions. Typically, the
at the surface. Consequently, the suspensions with hydrodyntraparticle potential in polymeric suspensions is chosen to
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be proportional tdR? for small R and reaching infinity for a APPENDIX A: KINETIC COEFFICIENTS 04,02, 1, M2

finite R [the so-called finitely extensible nonlinear elastic L -
(FENE) potential. There are no interparticle forces involved _The Kinetic cogfﬁmentsA and }‘. [se_e Eq§(2) .and (3)],
arise from the microhydrodynamics investigati¢Btokes

in the dilute polymeric suspensions; the interparticle force ; o . . .
involved in Hlpanyd DI suspe%sions is generatecﬁ) by the hardpr.Oblem of the motion of ”.g'd spheres in a Newtonian fluid.
core potential4) It is not our intention in this paper to contribute to the solu-

P ' tion of this difficult problem. We shall be content with the

Next, we compare the theoretical descriptions. In all three roximative solutiofi28] obtained for two suspended par-
suspensions the internal structure is chosen to be describ &P . . : ; ISP P
icles. We will work with dimensional notation that were

%C‘?‘Ost"’r‘gctclj’rgetlzgggn':y(rg“Oﬁfa x ?At:r;‘:é';’ﬁg’ :%r;lem used in Sec. II. In the far-field limit—i.e.. in the imiR
' — oo—we use the following approximatioi 7,28

[m"(R)=(4m) [ dnnng(R), where R=|R| and n=R/R] of
g(R) in the unit vectom. In polymeric suspensions the vec- 3a a® 15a*

tor R is the intraparticle coordinatg¢he end-to-end vector of o =1- SRR AR’ o(@/R)®), (A1)
the dumbbell that models the particland in HI and DI

suspensions the vector connecting two suspended particles. 3 a3

The functiong(R) represents the intraparticle correlation in 0,=1-—=--—+0((a/R)° (A2)
polymeric suspensions and the pair correlation function of all 4R 2R

suspended particles in HI and DI suspensions. The microgng

structure tensom’(R) can be integrated ové*t only in poly- . s .

meric sus_pensmn@the_ tensorm.=fdRRmM"(R), cal!ed a u1:5%—81+25%+0((wR)7), (A3)
conformation tensor, is a very frequently used microstruc- R R® R

tural state variable In all three suspensions, the equation

governing the time evolution af(R) is the Smoluchowski- a° 6

type equation. M2= st o((&/R)°). (A4)

Finally, we compare the microstructure and the rheologi-
cal behavior. As for the microstructure, there is an essential In the limit R— 2a (the near-field limix [28],
difference in the responses to flow deformations in polymeric
suspensions and suspensions of structureless particles. The 01— 2(Rla-2), (AS)
“direction of ordering” defined to be the eigenvectomafR)
corresponding to its largest eigenvalue takes the direction of 0, —0.401 (AB)
the extension of the imposed flow in polymeric suspensiongq
and the direction of the contraction in suspensions. We have

seen it in both the linear and nonlinear responses. The dif- uy— 1-4.077TR/a- 2), (A7)
ference is a consequence of the repulsive character of the
hydrodynamic and direct hard-core interactions. = 0.406. (A8)

Now, we turn to the rheological responses. Although the _ .
responses to simple shear flows are qualitatively similar ifi€re we are keeping only the lower-order polynomial part of

both polymeric suspension and suspension of structureletchelor’s solution, dropping higher-order logarithmic

particles, we see an essential difference in elongation flowdunctions. _ _ _ )
In shear flows, for all three suspensions, we see shear thin- Ve interpolate both asymptotics by using a simple Pade
ning for the viscosity and the first and second normal stres§pprox'm§‘;"9”- Namely, we add higher-order terms with re-
differences and negative second normal stress coefficient. $PeCt toR™™ in the far-field approximation and choose coef-
elongation flows, the polymeric suspensidwith the FENE f!C|ents o] tha_t the rgsultmg polynomial m_atches the near-
potentia) always show thickening before reaching a pIateauf'eld asymptotlcs. This procedure results in the following
In HI suspensions we observe thinning and in DI suspension§terpolations:

thickening in the elongation flow. The main reason for all the 3a ab a’
differences in the rheological behavior of polymeric and oy=1--—+—75-——+109.0-236.0—,
structureless particle suspensions is the difference in the R R
character of the forces involved. The intraparticle forces in 3 5

polymeric molecules are attractive and tend to infinity at ~1 3a_1la ~10.336% (A9)
larger distances. On the other hand, the interparticle forces as
well as the forces generated by hydrodynamic interactions

between structureless suspended particles are repulsive aﬂﬂd
decrease as the interparticle distance increases. 533 g 5 253_6 43 712a_7 907 424a_8
~5—-8—,+ - . + . ,
Mo " PR T R R R8
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We note that the version of the Padé interpolat{é®) permutations, a more general inequality is valid:
has one important property: the functiosmg and o, remain
nonpositive on entire domaih=[0,1/2]. This condition is W=$,(MM) =0, (B1)
sufficient to ensure the non-negativity of the matix[see  where S, denotes a symmetrization operator as defined by
Eq. (2)]. Eq. (31).

Although there are more accurate and technically more Now, we want to constructV(M) satisfying the above
involved solutiond 10,21-23,3] to the Stoke’s problem that properties. To begin with, we assume that the fourth-order
can be used to calculate andX in the Smoluchowski equa- tensorW depends 0n|y on the second-order tenyb'(i_e_,
tion, we choose for convenience to work with our simpleywe assume thatV does not depend explicitly oB). This
approximation. For two binary hydrodynamic interactionsassumption is equivalent to the hypothesis aboutattieo-
this approximation matches correctly the leading orders iRropic character of a closure relatid82]. Since tM repre-
the far- and near-field asymptotic limits. We believe thatsents a normalization of the functi(g]in a space of ang|e
more accurate approximations in the transient domi@od-  variables, the normalized tensdf does not depend on I
erately largeR) will not change significantly the solutions but rather on its traceless pé@tzM—l/Bﬁ. The tensom

that we have found. can also be interpreted as a nonequilibrium perturbation of
the tensoM [i.e., M=M-M, whereM¢,=(1/3)6]. A re-

APPENDIX B: POLYNOMIAL CLOSURE striction in the polynomial order iV has then physical in-

. . . . . terpretation of the restriction to states that are not too far
In this appendix we derive a simple closure relation forg.qm equilibrium.

4. 4] ;
the fourth order momert'’; i.e., we expres#“/ in terms Any fourth-order tensor constructed from the second-

of the second-order moment and possibly also of the sym- ° L .

metrized velocity gradienD. We follow the strategy intro- order tensoM and satisfying the properti¢g) and(b) can

duced in[32,33. be written in the form
After renormalizing the distribution functiog(R), we

look for a closure relation in the form

M#(m,D) = tr(m)W(M, D),
whereW depends only on the normalized second-order ten\-Nhere the scalar C0§ﬁ'?'ena':” i=1,...,6 are functions of

W =S,{a;66+ azﬁl\'ﬁ +a35|\°/l M +a4|\°/||\°/| +a5h7|(h7l -l\o/l)
+ag(M -M)(M - M)}, (B2)

sor two invariants:l,=tr(M -M), I3=tr(M -M -M).
Condition (b) leaves only three functiongamong six
_ 1 functionsa,i=1,...,0 to be linearly independent. The re-
T tr(m) lations determining the first three coefficients are
which has unit trace. 1 5
Now, we proceed as follows: First, we select properties of q=g 3—5I2a4 - El3a5 * §3|2a6’
M[4l that we require to be preserved in the closure. Second,
we construct function8V of m satisfying the properties. 6 4
The properties that we require froll are the following. A=<= zlas— —lsa,
(a) Frame indifference: the functiow/(M,D) should [ 21
preserve its form in any coordinate system. 4
(b) Symmetry: the tensoW,;.,s must be symmetric __=
with respect to permutation of an)/iytwo indices. 8=~ (%t 1239). (B3)

(¢) Normalization:W,,,5,=Mg,,.
(d) Boundedness:
(i) Upper boundary:

The remaining coefficientsy, as, and ag will be now
specified by discussing particular flow regimes.
First, we note that the closure expressi¢Bg) and (B3)

W,gys<1, foranye,p,vy,é. are consistent with the equilibrium solutioM=0, W
(i) Lower boundary: =4/55,(66) by construction(we assume here that all the
functionsa;,i=1,...,6, are not singular
W= MM, In the system of coordinates wheké is diagonal,M 4

=0,4C,, the axial symmetry of flow means that two among
o ) : ! . " three eigenvalues are equal. We assume that the directions
—q._(\_N—I\/_IM).q, defined on 33 mat_ncesq,_ls _posmve of the eigenvectors dD coincide with the directions of the
definite—i.e.,B(q) >0, for anyq. T_h's inequality is a con-  gjganyectors oM. At least one or two eigenvectors related
sequence of the following relation: to the eigenvalues, are parallel to the directions of the flow

B(q) = ([q:(n = (n)]?), elonga}uon.lln the limit of strong flowsy— o, the corre- _

_ _ sponding eigenvalues become zero. Thus, we can consider

where (+) stands for averaging over angle variablés:  two limiting cases: one with two zero eigenvalues and the
=(4m)1fdneg. Due to symmetries with respect to index other with one zero eigenvalue. The first case corresponds to

which essentially means that the quadratic folBdq)
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the uniaxial compression flovsqueezing flowand the sec-

ond to the uniaxial elongatiofbiaxial compressionflow. M(X) = MggfX) + Geg s E,(X)My, (C2)
Due to the rotational invariance, we can combine these flows n=1

Wlth' any kind of homogeneous.rotatlon. Without loss of gen-\,nare the functions, represent a fixed set of finite ele-
erality, we can choose for the first case=1, ¢, 3=0 and for

ments.
the second casg =0, ¢,=1/2, andc;=1/2. Theelements of The second problem that we have to face is the nonpoly-
W become, in the first cas&y;111=1, Ws,,,=0, andWjs335

nomial nonlinearity appearing in the closuve4(m,x). We
=0, and in the second cas®y;;1,=0, W,,,,=3/8, and ¥ app g (m,x)

11 olve this problem by turning to thgroup finite-element
Ws3g5=3/8. Wenote that the remaining components depen ethod[30] which suggests to expand the nonlinear term
on these three components due to the symmetry and the ncM[4] (m.,x) in the finite elements as follows:
malization propertie$a) and (b). We shall limit ourselves to
the case when the coefficierdg as, andag are constants—
i.e., independent d® and of the invariants,, 15. Substituting ME(m,x) = ME(x) + E e, (ML, (C3)
the data for the two strong flows into express{B®) we find

n rametri f solutions:
one parametric set of solutions where ME(m,x) =MM(m,,x,)/geqx,) and M[‘” (x) is the

4 1 value of the functionM(m,x) at equmbrlum M[4](x)
4= 3~ g% =M (meg, ), or, explicitly,
ML :—geq<x>s4 85).
1
3=-1-Ca. ,
In the rest of the calculations we follow the standard

_ N o _ Galerkin method with averaging given Hy)eq=J3°dXgeq;
Our choice for coefficient choice &=6 which leads to the  g_ s the equilibrium correlation function. We arrive at the

solution following system of equations:

a,=1, as=-2, ag=6. (B4) > U= Pew - my—my - )]

k

This choice ofag is dictated by the restrictiofd ii) (which _
implies a;>0) and by requiring that the part of the closure = Pen,D + Pe{% Qi D + Ek: Fak(D - M+ my - D
(34), including terms up to the second polynomial order with
respect toM (the caseas=0 andag=0), represent also a - Zwk:D)] - > Qume— 2 Ty, (C4)
valid closure relation. By a valid closure we mean a closure k k

that satisfies the requiremenfa)—(d), matches the near-

L2 i " with the coefficients
equilibrium solution, and matches one strong flow limit:

namely, the uniaxial compression flow. Unk = (€r8eqp
APPENDIX C: FINITE-ELEMENT METHOD Q= <2e " Xﬂ;en>( _ 1)ek
FOR SOLVING THE MS EQUATION nk Tk ) o
In this appendix we discuss the finite-element method that f = (el - 1))
we use to solve Eq932)—(34). The first problem that we nk = (€L = M2)Jeq:
have to tackle is the unboundedness of the domaiR. df/e
solve it by introducing a new variablkeby R—x=1/R. The Q= x201<2en + x%> <2€.k + Xa—ek) ,
variablex has now a bounded domairskx<1/2. Under the X IX/ [ eq
transformationrR— x=1/R, Eq. (33) becomes the following
partial differential equation: = 6<enX2ffzek>eq,
m_p w-m—m-w—xzix‘lR(,ul—l)M[“]:D h = 2 x%e.| 3( ) - x%— (9Un|(1 )
at IX n— 15 n| OlM1~ M2 ox M1 o
d 4
+(1-u)(D-m+m- D—2|\/|[4];D)} +X2&_Ulgeq +— [geq(Ml— 1en]lye1/o- (C5)
X 15
xim — 602 (C1) The boundary conditiot6) is accounted for by requiring that
axgeq AR all finite-element functions, take zero value at the boundary

x=0—i.e.,g(0)=0, k=0, ... N. The second boundary con-
In order to solve it, we introduce the finite-element approxi-dition (9) is anatural boundary condition for the partial dif-
mation of m(x): ferential equatiofCl). It is incorporated via boundary terms
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emerging in by part integratiofghe last term in the expres- To solve the linear response equati(88) we use the
sion forh,, in Eq. (C5)]. The matriced) andI" are symmet- linearized version of the same finite-element method. With
ric and positive definite due to our choice of integrationthe finite-element approximation
weightse, and finite-element functiong.£.. Consequently,
it is the choice of the finite-element approximati@@?) and
of the integration weights that provides us with the required
dissipative properties of the finite-element form of the irre- f=2 e fn, (C7)
versible part of the time evolution equations. :
In our subsequent calculations we choose the finite-
element functionsg, to be a standard linear elemen0]
which are associated with the partition of the intervalwe are led to the following algebraic equation:
[0,1/2] by a set of pointsg<<x; < - -+ <Xy, Wherex,=0 and

xn=1/2.
After solving Eg. (C1), we compute the stress tensor w7 +i _
which, in the the finite-element approximation, becomes (@it P+ il fic =, (€8
B 5 40542
o=-\1+3¢D+ 75320 haMy, (€O  \ith the matrices);;, T;, andL;; and the vectoh given in
" Eqgs.(C5). We note that Eq(C8) has to be solved for real and
whereh, are taken from Eq(C5). imaginary parts of the coefficienfs.
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