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Yang-Yang anomalies and coexistence diameters: Simulation of asymmetric fluids
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A general method for estimating the Yang-Yang rai,, of a model fluid via Monte Carlo simulations is
presented on the basis of data for a hard-core squaretW€IEW) fluid and the restricted primitive model
(RPM) electrolyte. The isothermal minima o;fLE(mZ>EI<m4>|_ are evaluated af. in anL X L X L box where
m=p—(p)_ is the density fluctuation. The “complete” finite-size scaling theory forQhg(T.;L) incorporates
pressure mixing in the scaling fields, thereby allowing for a Yang-Yang anomaly. It yields a dominant term in
the asymmetryQ’. —Qr..,, varying asL™?” with an amplitude proportional to the crucial pressure-mixing
coefficient,j,. The reliably known critical order-parameter distribution f{d=3) Ising systems then enables
one to estimatg,, thereby yieldingR ,, from the Q minima together with information on the nonuniversal
amplitudes for the order parameter and the susceptibility. The detailed analysis needed to ¢stionede
HCSW fluid and the RPM is presented. Furthermore Qh@inima belowT, can also provide theoexistence-
curve diameter,Spdiam(T)E%(p++p‘), very close toT, for both models: herg*(T) are the densities of the
coexisting liquid and gas phases. The recently developed recursive scaling algoritm, (@) =p*—p~ is
adapted to investigate the corresponding universal scaling functions. The two extremal forms of these scaling
functions are computed with the aid of the exactly soluble decorated lattice-gas model. The critical densities for
the RPM and HCSW fluid found via this route are consistent with previous estimates obtained from the data
aboveT,; the magnitudes of the leading—Tg** and|T-TJ*™ corrections topgi,{T) are estimated.
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I. INTRODUCTION Panagiotopoulof5] performed grand canonical Monte Carlo
simulations on a hard-core square-w@liCSW) model fluid
The presence of a Yang-Yang anomaly means that thand concluded that this model probably exhibits a negative
chemical potentialu,(T), on a phase boundary separatingbut small Yang-Yang anomaly quantified by a Yang-Yang
liquid and vapor exhibits a divergence of the second temratio (see below R ,,=-0.08+0.12; however, they could not
perature derivatived®u,(T)/dT?, when the critical tempera- rule out the possibility that a Yang-Yang anomaly was ab-
ture T, of the fluid is approached from below in the samesent. Thus one might ask: How might one measure a Yang-
fashion as the constant-volume specific h€{T;p.). This  Yang anomaly precisely from simulations on model fluids?
possibility was first proposed by Yang and Ydrig 40 years To account for a Yang-Yang anomaly, it is necessary to
ago on the basis of a simple thermodynamic relation theynix the pressure deviatiop,-p,, into the asymptotic scaling
derived (referred to later as the Yang-Yang equajiavhich  fields. More specifically, the full thermodynamics of a one-
connects the specific heat to the pressure and chemical poemponent fluid near the bulk critical poify., T, xc) can
tential derivatives. It was only more recently, however, thatbe described with three relevant scaling fidids/], namely,
the Yang-Yang anomaly in fluid criticality was seriously in-

vestigated by Fisher and co-workd2,3]. They analyzed P=p—kot=loft+ -, (1)
carefully experimental data for the two-phase heat-capacity
of propang(C3Hg) and CQ in the critical region and showed T=t-l—j.p+ -, (2

that d’u,,/dT? indeeddiverges like the specific heat at criti-
cality. Further study of the experimental data for propane
showed that impurities in the system can have significant
effects on the heat-capacity d4tl; however, the existence where the dimensionless deviations of the thermodynamic
of Yang-Yang anomalies was not ruled out. Nonetheless, furfields from their critical values are
ther careful, experimental investigations are desirgble

Recently computer simulations have become an efficient t= . b= P~ P r= '“C, (4)
tool to study the behavior of fluids and complex fluids and, T. pckeTe KgTe

in particular, to enhance our understanding of their criticaIWhilej ik, ... are nonuniversal mixing coefficients apg
112y y e

behavior. Investigating a Yang-Yang anomaly in fluid criti- . . ) )
cality can thus be aided by simulations for model fluids:f2 t751e critical density. The scaling hypothesis then asserts

since impurities are absent in such models; but such simul

tions pose a serious chal_lenge. Spec_ifically, any sharp_ diver- P~ sz—awi(u'ﬁ/mA), fort=0, (5)
gence of a thermodynamic quantity will be rounded owing to

finite-size effects. These arise from the divergence of thevheree is the critical exponent for the specific heat while
correlation length at criticality. In fact, Orkoulas, Fisher, andis the gap exponent satisfying the relatiar 8+y. Here 8

h=j -kt —jp+ -, (3
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and vy are the critical exponents for the order parameter and TABLE I. Preferred values for the universal Isinig3 critical
the susceptibility/compressibility, respectively. In this formu- exponents adopted hef26].

lation W,.(x) represents two branches of a universal scaling
function whileQ andU are nonuniversal amplitudes depend- « B Y 6 A v &

ing on microscopic details of the system undgr stgdy. Note, 0109 0326 1239 480 1565 0630 052
however, that we have neglected here, for simplicity, both
corrections to scaling and higher order nonlinear mixing®From Ref.[28].

terms[7,8].

The strength of a Yang—Y.an.g_ anoma!y is conveniently Boin(TiL) = (0 + praie = 20aiam) (0 = prie) . (10)
measured by R,, the limiting ratio of C,(T)
=-T(d?u,/dT? to the constant-volume specific heat
Cu(T,p=p.) (Wherep is the number densijylt then follows
that the Yang-Yang rati® , is related[7,8] to the pressure-
mixing coefficientj, via

" It is obvious that these quantities vanish identically for sym-
metric systems. For asymmetric situations, however, both ex-
hibit leading finite-size correction terms varying &s°”
which are proportional tg,, while a nonvanishindl;+j;)

R, =—jl(1-]). (6) combination induces_ a further Correcti_on term decaying as
poo32 2 L-4-D/»: see below in Sec. Ill. Here is the correlation-

To measure the Yang-Yang rati® ,, quantitatively via length exponent. Note that for thel=3)-dimensional Ising
simulations, the first question is as follows: What thermody-universality class to which fluid criticality is believed to be-
namic or other quantities should be studied? The answer i®ng, we haves/v=0.517 and(A-1)/v=0.897: see Table
not obvious since a direct attemiﬁ] to Studya’u(T)' etc. I It WI” be shown in Sec. lll thaj[ the amplitudes of th_ese
proves not effective. Here we show that the desired informaleading terms can be expressed in terms of the nonuniversal
tion can be obtained by carefully investigating the finite-Order-parameter and susceptibility amplitudeshich, in

size-system paramet€;, defined by[9-11] principle, can be measured from simulatiprand certain
universalconstants. This then raises the hope of measysing
QUTip)) = (M)Km, m=p=(p)y,  (7) (orR,) via simulations.

Indeed, it is shown below that the critical order-parameter
where(-) is the grand canonical average at fixécand u  distribution function for Ising systems and the estimated
chosen to yield the desired mean density. In the thermodyaonuniversal amplitude® and C*, for the density disconti-
namic limit (L— o), the paramete®, then exhibits surpris- nuity and the susceptibility, provide precise estimates for the
ing, singular behavior on the two sides of the coexistencgressure-mixing coefficienj,, and, thereby vig6) for the
curve[12-14; namely, itvanisheson the coexistence curve Yang-Yang ratioR,. One should notice, however, that mea-
boundaryp=p*(T) and p=p (T), wherep*(T) are the densi- suringj, requires precise knowledge ©f andp. which must
ties of the coexisting liquid and gas states in the two-phasélso be found by well designed simulations utilizing finite-
region. However, in the one-phase regi@, remains; but ~ Size scaling theory11,14. S
drops discontinuously to zero at the phase boundary when Among the consequences of pressure mixing in the scal-
the two-phase region is entered: it then rises continuously t#d fields (beyond the divergence afu,,/dT? at criticality)
unity as the mean density approaches the coexistence-cur@ée the appearance of a complex spectrum of singular correc-

diameter[14], namely, tion exponents in various thermodynamic propertigs]. In
particular, the pressure-mixing coefficigptinduces a lead-
paiam(T) = 3(p* + p)). (8) ing singular term varying a|? in the coexistence-curve

] o ) o diameter,pgiar(T) [7]. This term then dominates the previ-

Of course in a finite system, these dlscontan|t|_e§ becomgus|y known|t|*™ term [16]. Hence the nonvanishing ¢
rounded. ThUSQL(me) exhibits two isothermal minima of - may ‘affect the shape of the diameter strongly near criticality,
magnitudes, sa@y,,(T;L), at densitiesp;,(T;L), near the  ang this inevitably hampers the precise estimation of the
coexistence curve boundal¥4,15. (See also Fig. 1 beloW. critical density.

For symmetric systems such as Ising models or lattice gas A conventional way of estimating the coexisting liquid
models, the two minimeQ;;,(T;L), have equal height while and gas densitieg*(T), is to observe the grand canonical
their corresponding densitieg;;(T;L), are located sym- equilibrium distribution function;P,(p), of the density,p,
metrically about the critical density=p.. However, as soon  pelow the critical temperaturel,. In a finite geometry of
as mixing enters in the scaling fieldlandh [see(2) and(3)], dimensions.9 with periodic boundary conditions the distri-
one finds thaQ, ((p),) becomes asymmetric. In fact, accord- bution function generally exhibits two peaks negif(T)
ing to thecompletefinite-size scaling theorjan extension of ~whenL>a wherea measures the size of particlgg15,17.

(5) to finite systemg14]], the minima,Qy,,,, and their loca-  For sufficiently largeL, these peaks can be represented by
tions, pz,,,, exhibit leading asymmetric contributions arising two Gaussians clearly distinguished from each other. Ob-
from the pressure-mixing coefficiept More specifically, let ~ serving these peaks then provides direct estimatgs @)
us define normalizedsymmetry factorsf the minima via whenT is sufficiently low; for fluids which exhibit no “ob-
vious symmetry,” the equal-weight prescription has been
Amin(T:L) = (Qi = Qi) (Qrrin + Qi) (9)  widely accepted to estimaje(T) from P (p) [15,17. This
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approach has yielded reasonable estimateg®*0F) for the ~ RPM by using the critical order-parameter distribution of the
HCSW fluid[6] and for the RPM electrolytgl 8] but only up  Ising model and estimated nonuniversal amplitudes. Our best
to 1-2 % belowT.. However, whenT approache§, more  estimates fofR , are given in Eqs(92) and(95). In Sec. V
closely, finite-size effects blur the distinction between thethe scaling algorithm for estimating the coexistence-curve
coexisting liquid and gas states for most computationally acdiameter is presented. In Sec. VI an exactly soluble deco-
cessible system sizes thereby seriously hampering the reliated lattice gas model is considered to construct one limiting
able estimation of the coexistence curve. FurtherniBrép)  case of the universal scaling function for the diameter. In
at criticality for finite L still exhibits two well-separated Sec. VII we estimate the diameters of the HCSW fluid and
maxima; on the other hang?(T) should(for 3>0) merge the RPM electrolyte and compare them with previous results.
precisely at the critical density).. Hence, unless one can Section VIII summarizes the article and provides a brief dis-
simulate sufficiently large system sizes which exceed th&ussion.
correlation length, it is almost impossible to obtain reliable
estimates op*(T) in the critical region via this route; to do ll. FINITE-SIZE SCALING THEORIES
so would require a rather full understanding of finite-size |0 this section we derive the scaling behavior of
effects on the distribution function. _ Q.(T,{p))) in order to provide the necessary theoretical
To meet this challenge, a scaling algorithm has been deésackground for estimating the Yang-Yang ratio,, and the
veloped re+cently for estimating the liquid and gas coexistinggexistence-curve diametery,,(T). First, we consider the
de_nS|t|eSp—(T), of model fluids from grand cappmcal SiMU- |arge L behavior where one can obta@) (T, {p),) explicitly
lation data [11,19. The algorithm utiizes data o 'the pasis of the double-Gaussian approximation. We then
{Qmin(T:L), pin(T; L)} for the Q minima and derives the g4,y (T,(p),) in the critical region belowT, via the com-
density discontinuity, plete finite-size scaling theofyL4].

Ap(T)=(p"-p), (1) A. Double-Gaussian limit

by constructing an appropriate universal finite-size scaling For sufficiently large L below T, we may study
function. By this route precise estimates fop..(T) for the  Q.(T,{(p).) in the two-phase region on the basis of the two-
HCSW fluid and the RPM electrolyte were obtained up toGaussian approximation for the probability distribution,
temperatures only 0.01-0.1 % beldw[11,19. On the other P (p;T,w), of the densityp (at a fixedT and x). This may
hand, estimating the diametek;.(T), turns out to be more be written

complicated as will be demonstrated in the second part of

this article. Pupi T, ) =~ C{x="?exd - (p— p)LY2kg Tx-]
In order to calculate the coexistence-curve diameter, we + v Y2exd = (0= oMLY 2kaT
will compare the ratio o3, to Ai—see(9) and(10)—to A i (e ’: ) sTxl}
the average of theQ minima, Q,(T;L). As mentioned xXexpdp(p = e LkgT], (12

above, Ay, and By, vanish identically in the absence of the \\herec (11, T) is a normalization constant while the.(T)
mixing coefficients, making the ratio ill-defined. On the 5.0 b infinite-volume susceptibilitie§defined via x
other hand, when the system is asymmetric the ratio exhlbltg(ap/(m)ﬂ at p=p*(T)+. It is then straightforward to calcu-
rather complex finite-size corrections in which both,, and late the mean densit{p),, and various momentém, , with
Bmin CONtain terms varying als™#”, L-4V" etc. One real- ST/ ) b
izes, therefore, that there is nmiversalfinite-size scaling m—p—<p>|__, fork=2,3,..., as f_unct|ons off an_d,u._ .
function which yields the diameter in a unique fashion—in Following Ref.[14], let us introduce, for simplicity, the
contrast to the case of the density discontinulty,(T)  2verage and difference susceptibilities
[11,19. However, we demonstrate here that there are two XD =30+x) and xoM=3(x-xJ), (19
extremal or limiting cases which yieldffective universal
scaling functions: The first arises when the pressure mixin@nd a convenient parametgelated to the ordering field
is absent or so small as to be negligible: §® below. The o 1
HCSW fluid belongs to this category as demonstrated in Sec. I(ThiL) = tanl{h(po * EXOh)Ld]' (14)
VIIA. TheT second case is founq When the pressure-rn.ixing,\,here pO(T):%pr(T) [see(11)] and the reduced field or
term dominates over other contributions. An example will be.yemical potential is defined via
the RPM electrolyte which then provides us with the other
limiting scaling function: se€67) and Sec. VII B. Further- h=[u— u,(T)/kgT. (15)
more, as for the density discontinuityp..(T) [19], these lim-
iting scaling functions are analytically represented104)
and (107).

The balance of this article is organized as follows: In Sec.  x(L,T) = Y(T)kBT/ngd, Xo(L, T) = XO(T)kBT/p(Z)Ld-
Il the scaling behavior of th€, ({p),) is presented on the (16)
basis of finite-size scaling theories. In Sec. Il the analysis of
the Q minima is presented. Section 1V is devoted to estima-Note thatX andX, approach zero wheln— o sincey andy,
tion of the Yang-Yang ratios for the HCSW fluid and the are finite belowT..

The reduced dimensionless average and difference suscepti-
bilities are then defined by
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After integrating(12) multiplied by p, one may write the
mean density as

()L = paiam(T) + xh + [po(T) + xoh] 7.

The expression fo@, can then be written as a ratio of two
polynomials of fourth order idp), as presented in Refl14]:
see(4.19—4.25.

In the thermodynamic limifL — «), Q,(T,{p),) becomes
zero at the coexistence curve boundéary,+ 1. For large but
finite L, however, we exped, (T,{p).) to exhibit two iso-
thermal minima close to zero @ =+1+A7,. To findA7Z; in
terms of X and X,, we use(17) to expandQ, in terms ofy
o« X and xp Xo up to linear order to obtain

[2AT, £ X+ X+ -+ J?
AAT[2+3XF Xg) + -+ ]

Solving the equation(dQ, /d7)=0 for A7, then yields the
minima at

17)

QUTAp) = (18)

AT, = £5(X£Xp) + 0, (19)

where O, represents terms of orded"xg with i+j=2. On
substituting this intq18), one finds

Qhin =Xz Xy + O, (20

Note that for the symmetric cagee., X,=0) these results
agree with those given in Ref14] up to linear order inX.
For the corresponding densities of these minima, we follo
[11,19 and define the reduced density deviation by

Y(T;p) = 2[p = paiard TV Apo(T), (21)

where pgiar(T) is the diameter whileAp..(T) is defined in
(11); here and below we useto represent the mean density,
{p)., unless undesirable ambiguity arises. Note tha&akes
the values =1 ap=p*(T). Using (17) and(19) yields, after
some algebra,

yﬁ'lin: * [1 + %X In(4/eX) = %XO |n(4/e2)():| + 0. (22)

By taking the mean i§20) and the difference i(22), we
obtain thescaling relation

Aymin = %(y;ﬂn - y;ﬂn) =1+ %q Ty (23)
where
0= Quin IN[4/€Quin]  With Quin = 3(Qprin*+ Q) -

(24)

Similarly, from (9), (10), (20), and(22) one obtains

D _ Bmin _ l_+
min = -Amin -2 )

HE 6min In[4/926min] =q- amin- (25)

Notice that these relations armiversalup to the leading

order inq (or ) and are asymptotically exact whedy,,
—0 (or L—0),
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B. Finite-size scaling closer to criticality

To understand the behavior @ (T, p) near criticality, we
employ the complete scaling theof¥)—(5) which has been
extended recently to finite systems of dimensidfswith
periodic boundary conditiorj44]. The finite-size scaling an-
satz assertgl4,2Q

pP~L%(x,2, x=DILY, z=UnhLY" (26)

in which Y(x,z) is the basic scaling function while we have
imposed the hyperscaling relatioiv=2 -« (valid for d<4)
and, for simplicity, neglected corrections to scaling. Herg
the critical exponent for the correlation length, whide and
U, are nonuniversalamplitudes of dimensions ™" and
L™4", respectively, which depend on the details of the system
under consideration: see below. The scaling funci¢x,z)
is universaland thus independent of microscopic details of
the system; but it depends on the geometry and the boundary
conditions imposed. According to the underlying symmetry,
Y(x,2) is an even function of.
Since the finite-size scaling functioiv(x,z), is analytic
and even irg, one can expand it as
Y(X,2) = Yoo+ YioX+ Yool + Y39 + -+ Z(Yop+ Y1 X
+ Yo+ Yol o0 ) + 22 (Yoa+ YigX + YoulP
+YapCH )

(27)

One may further normaliz&¥(x,z) by choosing the nonuni-

Wersal amplitudesD, and U, so that one ha¥p=Yy,=1.

The conditionYy,=1, in particular, will be used later for
estimating the Yang-Yang rati® .

To recover the bulk limit of the scaling forii®), one may
setL=1/|Df|* and formally letL — . This yields(5) with
the identifications

Q=|D*/p. andU=U/|D*,

(28)

W, (2) =Y(¢1,2). (29)

In the two-phase regiof<0), the scaling function\V_(z)
then has the expansion

W_(2) = W_g+W_q|z] + W_,Z° + - - (30)

This ensures the density discontinuity at the phase boundary.
The reduced dimensionless number density and suscepti-
bility are conveniently defined by

p=plpe= (Plof),  nn=(FPIOE2).  (31)
Similarly one may define the generalized susceptibilities,
xnk= (Pl p), k=3,4...., which will be used in the follow-
ing section.

C. Finite-size scaling behavior ofQ_
To obtain Q,(T,p) in terms of the scaling variables

oI andzohL2'*, we may notice tha®, can be expressed

in terms of the generalized susceptibilitiggk; namely,Q,

is equivalent tg.V(xnn)?/ xne WhereV is the volume of the
system. These susceptibilities then require the derivatives of
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the pressurep, with respect to the chemical potential, at
fixed T.

In order to compute the susceptibilities in terms of the

scaling functionY(x,2z) in (26), we may, first, obtain the
reduced density by differentiating(26) with respect tqu at
fixed T. Using the scaling field§l)—(3) yields[14]
p=1+eALT(0,Y) — AL T(3,Y)? - ALNGY) + -],
(32)
where, settindo=1[7], the exponents and nonuniversal am-
plitudes ard21]

ei=1-j, «k=plv, AN=(A-Dlv, (33
A =Ulp, A=(1+j)D/eU,

while, for simplicity, we have adopted the notations

(Y) = (6PY19x?), (35)

Differentiating (32) with respect tou then yields the sus-
ceptibility yyn as

(34)

(a,Y) = (aYlax), etc.

X = EpAL(2Y) = 3,ALT(3,Y)(2Y)

= 2ALMaa,Y) + -+ 1. (36)
Finally, the fourth-order susceptibility is
X = EpATL VM (7Y = Bl AL
X{(aY)(AY) + 2(EY)(3Y)}
— ALY + -+ ]. (37)

The desired scaling form foR, in the grand canonical
representatiofpresented in Refl11] without any derivatioh
is then readily obtained fronB6) and (37). After some al-
gebra, we find the central result

QL(T,p;L) = Qo(x,2)[1 +]ALTQ;(x,2)
+ALQ(x2) + -], (39)

where theuniversalscaling functions are given explicitly by

Qo(x,2) = (B AY), (39)
Qi(%,2) == (d,Y) + LAEY)(EY)(Y), (40)
Q\(x,2) = AL(BENNEY) = (I, (4D

Hence, the symmetry of(x,z) implies thatQq(x,2) is even
in zwhile Qj(x,2) and Q,(x,2) are odd. The pressure-mixing
coefficient j, thus vyields the leading antisymmetric
L-dependent correction term with a decay exponenp/ v.

D. Finite-size scaling behavior of the reduced density
deviation, y

PHYSICAL REVIEW E 71, 051501(2009

po(Mlpe=Bolt)f + -+, (42)
paiar( DIpe =1+ Agglt]?F + A Jt| 0+ - (43)
where the amplitudes are explicitly given by
Bo = e QUW_ 4|7,
Agp==Be;, A= (2-a)(ly+])QW o7,

(44)

in which we have introduced the mixing factiot]
7=1-Kil; = (ko + k) (j1 +jal /ey, (45

while Q and U are related tdJ, and D, via the relations
presented in28), and W_, and W_; are expansion coeffi-
cients of W_(2): see(30). Note that, for simplicity, we have
neglected many higher order terms including corrections to
scaling[7].

On using(32), (42—44) one finds, after some algebra,
that the reduced density deviati¢2l) has the expansion

Y(T.p;L) = V(x,2[1 +j,ALYi(x,2) + ALV (%,2) + -+ ],
(46)

where theuniversalauxiliary scaling functions are
V(%,2) = (3,Y)W_|x|, (47)
Vi(%,2) == (3,Y) + W2, X|2P1(4,Y), (48)
N(%,2) = ={(AY) + (2 = )W_oX*"H(2,Y).  (49)

Notice that in contrast to the scaling functiong, Q;, and
Q) in (39—(41), V(x,2), Vj(x,2) and))(x,2) are singular at
x=0. Furthermore)/(x,z) diverges agx|# whenx—0.

So far we have derived the scaling behaviofpfT,p;L)

andy(T,p;L) in terms ofx=TLY"” andzehLA"” near critical-

ity. However, our goal is to obtain th® minima and their
locations, Q,(T;L) and p;,(T;L), and to derive scaling
relations between them. These expressions will then serve to
estimatej, quantitatively and, likewise, the diameter near
criticality.

I1l. ANALYSIS OF THE Q MINIMA
A. Q minima and their locations

From the observations of simulation ddtdl,14,13 and
as borne out in the thermodynamic limiting for@,(T,p;L)
is expected to exhibit two isothermal minima near the
coexistence-curve boundary. For symmetric ca@es, |4
=j1=j2=0), itis then obvious tha@q(x,2) in (39) must have
equiheight minima at some value nfsay #z,(x), for fixed
x. Owing to the analyticity of the finite-size scaling function

To derive the scaling form for the scale-free density de-Y(x,z), the functionz,(x) is also analytic irx.

viation y(T;L), as defined in(21), we first note that the
infinite-volume half-discontinuitypo(T):%Apx(T), and the
coexistence-curve diameter vary asymptotically as

Now we expand the scaling functiorix,z) about these
minima at #z,,(x) and, by virtue of the symmetry of(x, z),
obtain
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Y(x,2) =2 (£)'a(0[z F zy(x)], (50)
i=0

where thea;(x) are universal expansion coefficients oY.
Since Y(x,2) is analytic everywhere for finitd, the a(x)
must be also analytic and have theiversalexpansions

ai(X) = &gt X+ aC+ o (51)

From (38) and(39), in the symmetric case, we then find
Qﬁnin(Ti L) = Qinl1 + (2851 — au)x+ -+ 1= On(x),

(52

where QS =a3,/ay is a universal constant.
In the presence of the mixing coefficietisj,, andj,, the

PHYSICAL REVIEW E 71, 051501(2005

Vm(X) = al(X)/|X|'8W—1a (62
by | WAIx%
dj(x):—a1+m+i, (63)
aibg a
3y . agh, W—0|X|1_Ck
dgxX)=-——+—-2-a)————, 64
1(X) a, + ab (2-a) a (64)

while the b;(x) are defined in(54)—(56). Note that),(x)
diverges at criticality a$x|? while d]!(x) andd,(x) approach
constants singularly a|?# and |x|*™¢, respectively, when
X—0.

B. Universal relations for the Q minima

locations of the minima will be shifted by amounts, say The scaling algorithni11,19], which was used to estimate
Az(x). To find these shifts, we solve the equationthe density discontinuityMp..(T), requires a scaling relation

(0QL/9z)=0 for Az, perturbatively. After some algebra, one petweenAy,,,, and Q... From (57) and(61), one has

obtains
Az,(X) = [[ ALy (X) + AL™Do(X) 1/bg(X) + =+, (53)

wherex, \, Aj, andA, were introduced irt33) and(34) while
the universal scaling functions are

_a0 agx) (as(X) )2
P0= 200 a0 Aa) Y
by (x) = — 9a,(x) + 10(as(x))%/ay(x), (55)
bz(x):4{a—é—a—"‘—i?3+2@] (56)
s a a,ay

in which &/ (x) =da;/dx.
Substituting these int¢38)—(41) via (50) finally yields

Qmin(TiL) = QL £ A (L™ £ Ag()L™ + ---],

(57)

where the auxiliary scaling functions, again universal, are
¢j(X) = — ay(x) + 10ax(x)ag(x)/ay(x), (58)
ci(x) = 4l ag(x)/as(x) — a;(x)/ax(x)]. (59)

Note that theb;(x) in (54)—(56) do not enter here. The basic

asymmetry factorA,, defined in(9) is thus given explic-
itly by

Amin(T;L) = A GIL* + Ag ()L™ + -+ . (60)

As mentioned in the Introduction, we see that the dominant
contribution to A, arises from the pressure-mixing coeffi-

cientj, with a decay exponent=pg/v.

On the other hand, the locations of the minirig,,(T;L),
can be obtained similarly by using6)—49) and(53). This
yields

Yinin(T5L) = £ V([ £ oA 0L £ AL ™ + -+ ],
(61)

where the scaling functions are

. Quin=CQnm()+ . (65
By formally solving forx in terms ofamin using (52) and
substituting into the first member ¢5), one obtains a func-

tion Aymin(amin). Note that its asymptotic behavior for

Qmin— 0 follows from (23).

The coexistence-curve diametery,(T), can be esti-
mated similarly via the scaling algorithm. For this purpose,
we considerD,,,, defined in(25), since B, contains the
diameter only. One should, however, notice thgf;, is de-
fined only forasymmetriccases. Using57) and (61) then
yields

Aymin = ym(x) + -

AL+ A (LN + -
min = jzAjCj(X)L_K + A|C|(X)L_)\ oo

(66)

Unlike Ay, Dimin has a complicated structure of finite-size
terms due to the mixing coefficients. One can clearly identify
two limiting cases. First, when pressure mixing is dominant,
one simply has

D= A9 O(L™%) = g(x). (67)

min — Cj(X)
Eliminating x between this relation an@®2) and(65) as be-
fore then yields an asymptotically universal relation between

Dinin @nd Qpin- On the other hand, if pressure mixing is ab-
sent or can be neglected, the fof66) reduces to

G4
min C|(X)

These results will play the central role in the subsequent

analysis. Note, however, that wh@mnﬂo one recaptures
the universal relatio25) regardless of the particular mixing
situation.

D - = g(x). (68)

IV. DETECTING YANG-YANG ANOMALIES

In the previous section, the asymmetry factdp,i,(T;L),
derived from theQ minima was analyzed and it was shown
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that the pressure-mixing coefficiefy provides a leading 08— T T T
term varying ad_"#* which dominates over other contribu- [ T="T,
tions: see Table | for the Ising values for the universal expo- Q0(0, 2)
nents used in the following sections. In particular, at critical-
ity (xTLY*=0) the result(60) leads to

Afin = IAGL™ + AgL™ + -+, (69)
where the universal constants are

Cj =~ a0+ 108x0@s0/a0, (70

€ =~ 4ayy/ay+ 4ag/ag. (71

in which a; are the coefficients okl in the expansion of
Y(x,z) at the minima,z=z,: see(51) above. On the other
hand,A; is anonuniversakonstant introduced it84), while
Acc(l4+j1)/(1-j,). Thus to measure, in particular, the
pressure-mixing coefficientj,, one requires not only the
simulation data fotAg,,, but alsoinformation concerning the
universal constant; and the nonuniversal amplitude.

FIG. 1. Plot of the universal critical-point scaling function
QuU(Tei{p)) = Qn(0,2) vs z=U_hLY"" for the (d=3) Ising model
obtained numerically fron{73) [22]. The dashed lines locate the
minima at £, = +2.2395.

A. Estimation of the universal constantc; f(w) =[(wiwg)? - 11 a(w/wp)® +c]. (74

To determine the constaif as given by(70), one must wherew,, a andc are constants estimated via the simulations
determine the expansion coefficierds, of the scaling func-  as
tion Y(_x,z) atx=0 about i.ts minim.a: se€s0). [nvoking uni- - Wo=1.1344), a=0.1582), c=0.7762), (75
versality, we thus consider a simple cubic ferromagnetic
Ising model, to which universality class normal fluids arewhere the uncertainties in parentheses refer to the last deci-
believed to belong. In this case the “pressure fiefg, in ~ mal place quoted22]. Furthermore, the condition of unit
(26) corresponds to the reduced free energy density for ¥ariance yieldsA_=0.802.

system of volume.? while the ordering fielch corresponds Using theske forkms, one may calculate t_he derivatives of
to the reduced dimensionless magnetic field. If we now deY(O’Z)' L.e.,(7Y/ 9z _)' numerlcally_by computing thieth mo-

fine a scaled fluctuating magnetization density by Ments of w. t is then straightforward to calculate
= A_mLA"” (wherem corresponds to the fluctuating reduced Qu(Tc:{p)L) @s a function ofz: see Fig. 1. It exhibits two

magnetization densilywith the identificationA =1/U,, we  Symmetric minima, ag=+z, where

find from (26) that Q¢,,=0.117815) and2, = 2.243). (76)
(WX = ((ALmLE) = (64Y102Y). (72 Note, however, tha@t,;, is about 7% higher than the value

) o ) (=0.1107 found for the HCSW fluid via grand canonical

Thus the expansion coefficiera can be obtained from the  gimylations[11,23. The universal constan@®, at criticality
jth mom_ent of the scalgd magnetization de.nsny at Cl‘ltl(.:ahty.(i.e” z=0) agrees with the estimated value for the Ising uni-

Now in order to estimate thén ) numerically, we will versality classQ°=0.6236[10,24). Calculating(w*) at the
utilize the most reliable and precise estimate available for theninimum, z=7°, then yields the desired expansion coeffi-
universal probability distribution function,Pf(m), of the  ijents as
magnetization densitymn, at criticality: this has been ob-
tained numerically from careful simulatiofi2]. This func- A= 12213, ay=0.1751, ag=-0.1271,
tion may be written in scaling form as

as=0.2603, ag= 0.9878. (77)
Pi(m) =Cexpl- f(w) +wz, w=AmL¥", (73  Notice thatin(52) one obtaingt,, =a,/as~0.1178 which

is fully consistent with the estimat@6). Finally, the univer-

where the nonuniversal amplitudg is chosen so that the constanFj in (70) is found to be

distribution has unit variance iw, while C is a normaliza- N
tion constant; but one should notice fra@i7) and(72) that ¢y =—2.077. (78)

this is equivalent to the normalization cgnditidfazzl for In reality the distribution of the magnetizatioRS(m),
Y(x,2): see Sec. IIB. Recall thag=U hLY” with U_  should behave like expc,/m|?*Y) for large m with 6=A/B

=1/A.. Heref(w) corresponds to a universeanonicalscal-  =4.8 for (d=3) Ising universality class: see Table I. Hence,
ing function. Tsypin and BI6tg22] present this function ap- the approximate forn474) does not describe the behavior of
proximately in the form the distribution properly for largan, even thoughé+1
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=5.8 is close to the exponent 6 embodied in this form. One

can improve the approximation of Tsypin and Blote in order 0.06 | (a) HCSW ]
to capture the correct behavior of large However, we find ' ]
that appropriate modifications leave the central estir(i&ge L A (L ]
for ¢; unchanged. 0.04 [Ana(E) .
B. Nonuniversal amplitude U, 0.02 ]
The nonuniversal amplitudg, determining the value of ]
A, via (34) depends on the microscopic details of the system. 0
Unlike the universal constaef obtained in the previous sec- y . : :
X . 0 0.05 0.1 0.15 0.2
tion, one must estimatd, separately for each model. Here [—(A-D/v
we present a method for evaluatity from knowledge of —————————————————
the leading nonuniversal critical amplitudes for bulk thermo- [ (b) RPM (¢ =5) ]
dynamic quantities. 06 | .
In bulk near-critical systems, the susceptibility abdve [ ]
and the order parameter beldly vary as[25,26| LA (L) ]
0.4 -
M(T) = (dpldu) =~ BJt|?, (79 ]
— (252 -y 02 r ]
xnn(T) = (d°plaps) = Ct7, (80) 1
with p=p/kgT and w=u/ksT, where the nonuniversal am- 0 . . .
plitudes can be obtained from the scaling formulatibnas 0 0.1 _0[-32/1/ 0.3 0.4
[7] L
c .
B= p.Bn=(1—i UW._| 78 1 FIG. 2. Plots of the asymmetry factorsl,; (L), as obtained
PcBo=(1-]2PQ 7, (8D from simulations for(a) the HCSW fluid(vs L=3~Y"») and (b) for
. - , ~ the RPM(vs L~#'*) with the exponent values listed in Table I. The
C" =(1-]j2)°pQUW,,|777, (82)  solid curves are fits of the data (69).

while 7 is defined in(45). Note that these amplitudes have

dimensionsL ™. Recall thatw_, andW,, are expansion co- C. Estimation of the Yang-Yang ratios

efficients of the scaling functiond/,(z): see(29) and (30). In this section we finally obtain estimates for the pressure-
Thus they are universal. Likewise note tf@tand U are  mixing coefficients,, and thereby the Yang-Yang ratids,,,
related to the finite-size amplitude®, andU,, via (28). for the HCSW fluid and the RPM by utilizing the results
Now we may combinég81) and(82) in order to solve for obtained. In Fig. 2 the asymmetry factos,,,(L; T.), at the
U, in terms of B and C"*. After some algebra, one finds critical temperature for the two models are presented as func-
A - _ tions of L™4V» and L™, respectively. If a Yang-Yang
UL=UD =K[BY(C)FI*“ 1 -, (83)  anomaly is present, the data should decay asymptotically as

L=A"» whenL — . The plot for the RPM clearly suggests that
this highly asymmetric model has a nonvanishing Yang-Yang

K = (szlwfz)—ll(Z—a)’ (84) anomaly. On the other hand, the HCSW fluid would seem to

have a quite small, if any, Yang-Yang anomaly. The solid

which can be obtained numerically from the well-studiedlines are fits of the data to the formu(é9) neglecting the
Ising model. As mentioned above, we first notice that thehigher order termg.See(91) and(94) below,] Note that the
condition of unit variance and the numerical simulatip22] fit for the HCSW fluid exhibits a small negative leading am-
yield U =1/A, =1/0.802 for the(d=3) nearest-neighbor plitude. Based on these data—the origin of which we first
simple cubic(so Ising model[22]: see(73). The amplitudes review briefly—and the resulting fits we now describe the
B andC* for this model have been studied and are given byprocedures used to estimate the Yang-Yang rafgs,quan-
[25,27 titatively.

whereK is a universal constant given by

B=1.663), =1.09810. (85) 1. Details of simulations

From (83) and (85) together with the exponent values in  The asymmetry factors presented in Fig. 2 and all the
Table I, one then obtains simulation data in the subsequent figures have been obtained
_ via grand canonical Monte Carl@&GCMC) simulations in a
K=0.88112). (86) cubic box of volumevV=L3. In GCMC one performs a simu-
Now, one clearly sees frort83) that to estimatdJ, for lation at a thermodynamic state poii®P characterized by a
model fluids, information concerning the amplitud®sand  given value of the temperatur€, and the chemical potential,
C* is crucial. . In order to capitalize on the widely used multihistogram
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reweighting techniqug30], one measures the joint histogram 0.10 T T T

of the fluctuating energy and the number of particlé$ for (a) HCSW

different SP46,24]. This approach enables one to extract the

maximum amount of information from the simulations. 0.09
To obtain sufficiently accurate simulation data for the xant?

HCSW fluid, each simulation was performed for a total run

length in the range af20—80 x 10° MC steps, depending on 0.08 |

the particular system size under investigatiéh A total of

30-100 SPswhich broadly cover the critical region and the

coexistence curyehave been used in the computations. Sta- 0.07

tistical uncertainties for the densip=N/V and for the lead-

ing moments for each histogram are found to be less than

2%. On the other hand, for the RPM the total run length 0.06 ¢ Sor 508 XD
needed for each simulation is considerably larger owing to 0.13 . .
the much lower critical temperature, and to the great number (b) RPM (¢ = 5)

of SPs necessary to ensure accurate data. For example, a total
of 167 SPs were used fdr=12a (wherea is the particle
diametey, in which a typical SP has @-10 x 10* indepen-
dent samples amounting to~10*® MC steps [24]. For 0.11
smaller systems, the number of independent samples em- xnnt”
ployed is generally larger by factors of 10-50. For each SP,
the statistical uncertainties of the raw data are less than
1-2 %.

We know of no definitive or systematic study concerning 0.09 /

012 |

0.10 |

the propagation of errors in the multihistogram reweighting
process. However, experience shows that when the SPs are 0.08
closely spaced in regions of rapid changes in the computed
quantities that encompass desired valuesT adind u, the A¢t¢
systematic uncertainties in the leading moments do not ex- o o .
ceed and may well be appropriately less than the statistical FIG. 3. Plot for estlma_tt.mg the susceptibility amplitu@é from
uncertainties that characterize each SP. Hence, we belief@@ for xyn on the critical isochore{6,24. Note that t=(T
that the errors associated with the data presented in Fig. 2'¢)/Tc while the values)=1 (solid lines andy=6=0.52 (dotted
and the subsequent figures are no larger than the symb trgzsgt::yivﬁﬁeguir;%sigrlera:l; ";‘X;;:gerigi:gio?iognzxgonent
sizes(or, in plots like Fig. 3, no more than a couple of line * ‘ ) 1 0
thicknesses Furthermore, the confirmation of a smooth and_ 2 0-8: For (8 the HCSW fluid andb) the RPM electrolyte, the

. . o L - estimated critical densities apge=p.a°=0.3206 and 0.079, respec-
systematic variation of specific plots V\_/lth increasing valuesgvely‘ while L"=1/a=9.10.5.12.13.5 for the HCSW fluid, and
of L, as seen in Fig. _3’ serveg as, an important cross-chec ;8,9,10,12 for the RPM. The dashed lines represent approximate
When apparent erratic behavior is seen, larger runs a”d/%per and lower extremal estimates @oF.

further SPs have been employed as a check.

2. Hard-core square-well fluid

The HCSW fluid investigated here consists of hard
spheres of diametex with an attractive square well of depth
€ in the rangea<r <1.5a, wherer is the interparticle dis-

tance. Previously Orkoulzt al.[6] tried to estimateR,, via where 6 is the leading correction-to-scaling exponent. For

Monte Carlp(MC) simulations.by compgting directly the gd:3) Ising criticality one ha®)=0.52[28], while b, andc,
second derivative of the chemical potential along the phas re nonuniversal amplitudes. Recent precise simulation of
boundary; they concluded that there was a negative butsmat e coexisting densities for this HCSW fluid via the

Yang-yang ratio,R,,=~0.08. Owing to the finite-size ef- Q-minima scaling algorithnisee belowyields a reliable es-
fects, however, they could not rule out a vanishiig, Here timate forB: see Fig. 1 in Ref[11]. On the other hand, to

we use the asymmetry factodny, at criticality as illustrated determineC*, we have computed the finite-size susceptibility

in Fig. 2 to calculateR, more precisely. In doing so, as . . L
X . . T;L) by simulations on the critical isochope=p.. In the
mentioned above, one needs to computewhich requires X T ¢
AU 9 bulk limit y\n(T)[t|” should then approact® whent— 0:

knowledge of the order parametefor density-half- ) - . .
discontinuity, pe(T), and the susceptibilityxy(T), above see Fig. 8a). For finite systems, hpweyer, th!s product will
T approach zero wheti— 0, as seen in Fig. 3, singgy(T;L)

¢ is always bounded fok <. Nevertheless, we can estimate
C* reasonably well by extrapolating the dataltf] to t=0.

po(T) =BJt/A[1 +bgt|?+ -], (87)  We conclude

XNN(T) = C+t_7[1 + Cﬁto + - ], (88)

Near criticality the appropriate expansions are
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Ba®=0.612+0.005, C'a®=0.076+0.005 (HCSW). Ising fit to the precise data for the coexistence cuiig can
(89) also be well achieved. Thence we find
Furthermore, the Ising fit to the)(T) for the HCSW fluid via B=0.284+0.01, C"=0.087+0.005 (RPM), (93)
(87) with a further correction term varying 4?° [7] yields  with b,~-1.17 in(87).
the leading correction-to-scaling amplitude bg=-1.04. As seen in Fig. 2, grand canonical MC simulations for the
Using (83) and(86) now yields the HCSW nonuniversal am- RPM yield strong asymmetry values. The fit of the
plitude as AL in(Te; L) data to(69) provides the amplitudes
U1 -jza*"=0.410+0.012, (90) JAC=1644, AG=0395 (RPM). (94

The fit of the A, data to(69), illustrated in Fig. 2, yields |t is remarkable thaj,A; has the opposite sign to that for the
A= —_ HCSW fluid while the amplitude combination is alsel4
J2AG; =~ 0.117, AG=0570 (HCSW),  (91) times larger. Together with the critical density estimate,

where the two amplitudes have opposite signs. Finally by.a3=0.079[24], we thus find

using (34), (78), (90), and (91) and the estimatep.a® .

~0.3067[6], we obtain ¢ j,=-0.35+£0.07, R,=0.26+0.04 (RPM). (95

j,=0.040+0.003, R, =-0.042+0.003 (HCSW). In contrast to the HCSW fluidR , for the RPM is positive
# and large which seems to reflect the strongly asymmetric
(92 nature of this model electrolyte. As for the HCSW data the

This is, in fact, consistent with the previous, less precisémcertam_t'es."(.95) (.jo not reflect those |(94);_hoyvever, as

estimate —0.08+0.1P6]. It should be noted that the agree- tN€ combination,A; is rather large and the fit in Fig. 2 rather

ment of the two, quite different procedures for estimatiig good fu_rther uncertainties of only, say 5 to 10%, seem likely

serves as an encouraging check on the overall validity of thI—‘,rom th|shsou|(rjce. ice that th died h .

scaling analysis. Note that the uncertainty quoted in this es- One shou not|_ce t "."tt € RPM stu. Ied here 1s, as men-

timate reflects the uncertainties onlyBy C* andp,, but not tioned above, a discretized version with the discretization

i Cc —_

in the fitting coefficients i91): because of the higher order Parametery=5 [24]. It has been shown, however, that the

terms it is hard to provide a realistic estimate of these unceiNiversal critical behavior is independentéo=4) [29]. Fur-

tainties. It is reasonable to believe, however, that they ar&1€rmore, the nonuniversal critical parametdisandpc, for

likely to be no more than 2030 %. (=5 are close to the continuum limits; tHE({=5) and
The amplituded, is proportional tol,+j,: see(34). One p(£=5) are on_ly 3% and 5% hllgher than the.colntlnuum

may then hope to estimatg+jl’ if not Separate'y, from the Values, r_eSpeCtlvely. Thus we believe tf%,];(§:5) IS ||ke|y

fit (91) via the same route. To do so, however, requires furio be quite close t&R ,({=).

ther information concerning the nonuniversal amplitui{e

and the universal constant see(34) and(71). The former V. SCALING ALGORITHM FOR THE COEXISTENCE-

can be obtained via the normalization conditdépa=1 in the CURVE DIAMETER

expansion27), as forU, ; but this requires knowledge of the

temperature dependence of the finite-size-scaling function EStimating the coexistence-curve diameter and, in particu-
Y(x,2). This is also the case for estimating the universal conlar, identifying its singular behavior near criticality has been

stanic; which containsay; andas,. Hence, further investiga- a major challenge for both experiment and simulation. As

tion is needed to obtain estimates for these subdominant mi€ntioned in the Introduction, the presence of a nonvanish-
ing coefficients. ing pressure-mixing coefficierjt yields a|t|? term in the

diameter, that dominates the previously anticipafis] |t|* ™
3. Restricted primitive model contribution. Here we present a scaling algorithm designed

The restricted primitive modéRPM) electrolyte consists to enhance the estimation of the diameter near criticality,

of an equal number of positive and negative ions, of charge@nd: thereby, to improve estimates of the critical dengity,
+q, and hard-core diameterinteracting with each other via 1€ recently developed algorithm for estimating the den-

the Coulomb potentiakp(r)=tq§/Dr, whereD is the dielec- sity discontinL_Jit_y,Apoo(T), u'FiIizes the_ scaling _reIaEions be-
tric constant of medium. For this model the Yang-Yang ratiot’V6€n theQ minima and their normalized locationgy,: see
R, has not previously been investigated seriously. ThdS7) and(61). The asymptotically exact expression for large
markedly asymmetric nature of the coexistence curve hints &t fixedT<Tc given in(23) provides the limiting guide to
thatR , might be large compared to the HCSW fluid. mdeed,construct a universal scaling functi¢®b) by finding opt|_mal
studies of the generalizddsusceptibility loci{14] have sug-  V&lues forAp.(T). The step-by-step procedure for imple-
gested thaR , might be positive and nonnegligible. menting the algorithm is presented in Rdfkl,19. Here we

To estimaltLeR for the RPM (at a ¢=5 fine-lattice dis- adapt the algorithm to derive the coexistence-curve diameter.
cretization leve[24]) we follow the procedure used for the FOr this purpose we consider the relation betw®gp, [con-
HCSW fluid. Thus Fig. &) presents the effective suscepti- 2iNNG paian(T) @s a variable: se€8)~(10) and (25] and
bility amplitude x\nt?, along the critical isochor@=p. as Q- This exhibits a rather complicated structure of finite-
obtained from grand canonical MC simulatiofid4]. An  size corrections owing to the various mixing coefficients: see
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(66); however, the relation achieves a universal fg&%) for (68) derived in the absence g§ can be obtained from an

large enoughL. Thus we may hope to construct a scalingexactly soluble decorated lattice gas model which is known

function from this limiting behavior via a scaling algorithm to exhibit a nonvanishing but has no pressure mixir@e.,

by optimally choosing values fqiy;,(T). Although the steps  j,=0). One may suspect that the HCSW fluid, which has

for the Ap..(T) algorithm are presented in detail it9], we  been seen to exhibit a rather small pressure-mixing coeffi-

recapitulate the main points in the present setting for the sakeient j, may be well approximated by this route. The other

of completeness. extremal case, i67), in which pressure mixing appears to
There are three main step@) Collect data sets of the strongly dominate, can be obtained by analysis of the RPM

minima of Q_ and their locations{Q},;,(T;L;),pmin(T;L))},  €lectrolyte.

for a range of box sizef ;}{, at fixed values off <T,. For

this purpose, multihistogram reweighting techniq[&0] VI. DECORATED LATTICE GAS MODEL
should be employed to generate the data at any desired tem- _ . _
perature for a given system size. In practiog;3 distinct Consider a decorated lattice gas model which can be

box sizes withL;=1.3_; may well suffice; to avoid the ef- solved exactly in terms of the solution of the associated Ising

fects of the corrections to scaling one finds that one needs &todel[31,32. The model exhibits an entropylike singularity,
leastL,/a= 8 (wherea measures the size of particeslow-  [t/'™ in the diameter but has no pressure mixing and so
ever, this guide will surely depend on the system under conserves as a guide to the extremal cé&® for the diameter.
sideration (ii) Choose a valu& =T, sufficiently low that the The decorated lattice gas we study here consists of pri-

two-peaked, double-Gaussian structureTpfTy;p) is well ~ mary cells centered on sites of a basic simple cubig
realized. In this cas@y is close to zero(For the HCSW lattice and secondary, decorating cells centered on the bonds

i , o : between the nearest neighbor pairs of sc lattice sites. All cells
fluid we obtainedQp,=0.03) Now note that in this region  paye equal volume, say, and do not overlap. Each cell can
the universal scaling relation betwe®n,;, andQ,, in (25  be empty or occupied by at most one particle. Particles in
is exact up to linear order. Hence, at this temperature weearest neighbor primary cells then interact with energy —

select a diameter estimate, spy/, independent of thé;,  while particles occupying neighboring primary and second-
which leads to the best fit of ary cells interact with energy xe. For simplicity we will
, o consider onlyx=1 which will suffice for our present pur-
Dt = {pm* P = 2071 (o = P Amin VS G5 = q(To; Ly) poses. Of course, one may consider a simpler version by

(96) only allowing the interaction between particles in nearest
primary and secondary cells. However, this will not change

to the relation(25). The valuepy_ can then be identified as an the significant results.

estimate forpg.(To). (iii) IncreaseT, by a small amount The grand c_anonical partition function of the moqlel can
AT, to T,=Ty+AT, and computeDy(T;:L) and ag) be expressed in terms of that of the ordinary lattice gas

— 2 . o model[31]. Let N be the number of primary cells amgthe
=q(T1;Ly)- In doing so, it 'ﬁ ?ecessary to choos% small coordination numbefwith g=6 for the sc latticeso that the
eni())ugh that the new setf] =1 Overlaps the previous oneé tota| number of cells ifNy=(q+2)N/2. The dimensionless
{d }iz1- Note thaig increases witfT, approaching the critical  activity of molecules in the decorated lattice gas zs
valueq. at T.. When the new data set is obtained, we choose:UOA;S exp(u/kgT), whereAr is the de Broglie wavelength
as before, a new valugy,, so that the new data set collapsesgng ,, is the chemical potentia33], and we write K
optimally onto the previous one; this procedure then extends: ¢/ kT for the coupling constant of the decorated lattice gas
the previously computed scaling function to larger values ofmodel. Then the grand canonical partition function can be
d. Again, the new valugr can be regarded as an estimatewritten as

for pgian(T1). These steps are repeated iteratively by increas-

ing the temperaturd; to Tj,;=T;+AT,. This extends the E(z,K) = (1 +2MN2E(ZK), (97)
scaling function further and generates successive estimates o
for pgian(Tj) for j=2, 3,... . When criticality is approached, whereZ is the corresponding partition function of the ordi-

smaller increment\T; are needed and high quality data nary lattice gas as a function of the transformed activity and
prove essential. For graphical illustrations of these proceeoupling constant
dures, see Fig. 2 of Reff19].

One should note that owing to the competitive nature of — (1 +zaK\a
the singular terms i66), with x=0.517 and\ =0.897, e T (98)
there isno leading universal functiothat will, in general,
yield the diameter. This is in contrast to the case of the den- 2K
sity discontinuity where there is a universal scaling function K=K+ In{ (1+2)(1+2z )] (99)
which provides an easier and faster algorithm to estimate (1 +z8K)?

Ap(T): see[19]. It is therefore necessary to approach the N ) -
problem case by case. In the following sections, we study théne critical point valuesK; and z, follow by substituting
two extremal limits and compute two distinct universal scal-K.=4K! andz.=exp(—2qK¥) whereK is the critical cou-
ing functions: seg67) and (68). First, the scaling relation pling of associated sc Ising model.
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The coexistence curve of the decorated gas can be simi- T T T T T
larly obtained from that for the Ising model. The number I %'hbw\
density in the decorated gas is given by os b - ]
Tt A -1/8 “:1.\ ]
p= lim Ng(dInE/dInz) [ (AYm) N
Niot— 0.6 [ LY ]
qz L2 [ ‘\ ]
= Q
i v,
(q+2)(1+2) q+2 i % ]
—alnz __— JK - @
X| p(z,K +w(z,K)— |, 100 - a ]
H_)alnz (_)ﬁlnz (100 02 L S
3 v L
wherep and w are the number density and the energy per [ &;._
site of the ordinary lattice gas, which can be written on the 0 0 005 o1 015 02 o025 03
phase boundary as q

— =1 wo=1(1 — _
p:=3(1+Mo), W, = 4(2q tu 6M0)’ (10D FIG. 4. Scaling plot of(Aymin) ™ vs q=Qumin IN(4/€Qmin)

d(with B=0.326 for the coexistence curve of the decorated lattice

in which Mo and u are the spontaneous magnetization an gas model. The various symbols depict results generated from simu-

the energy .depSIty of the I,Smg model beldy here + rep- lations at increasing temperatures with system sizés8, 9, 10,
resent the liquid and gas sides of the phase boundary, respeg;y 11, For comparison, the universal scaling curve obtained pre-
tively. Note that the phase boundary in the activity-couplingyoysly, and represented analytically in EQ.2) of [19], is pre-
plane is given byz(K)=exp(—qK/2). Liu and Fisher[25] sented as a dashed curve.

give approximate forms for the spontaneous magnetization

and the specific heat belo¥ as VIl. NUMERICAL ESTIMATES FOR THE DIAMETERS

Mo(T) = BJt|A(1 — aggt|*?), Following the procedures explained we now report ex-
plicit results for the HCSW fluid and the RPM.

C(M = ATt _aeff|t|1/2) + Detr, (102 A. Hard-core square-well fluid
which are valid through the whole temperature range. It is To derive the diameter for the HCSW fluid, we start from
worth mentioning that one can calculajeexactly, while the  the temperatur&,=kgT/e=1.10 at which, as for the density
pressure-mixing coefficients; and j,, are identically zero; discontinuity[19], the double-peak Gaussian for the density
but computingl, is not relevant here. distribution is quite accurate. At this temperature, we deter-

Now using (100 and (101, and the precise numerical mine thatpgiar{To) which leads to the best fit @Ppy(To;L)
results for the spontaneous magnetizatibiy(T), and spe- Vs ((Tp;L) to the asymptotically exact two-Gaussian limit
cific heat for the Ising model obtained via the fitting formu-
las (102 together with the amplitude values [ig5], we can y y T
obtain the coexistence curveg®(T), for the decorated lattice 0.4
gas model vig100. Thus we can construct the scaling func-
tion for Ay, presented in Fig. 4 as symbols. One should
note, however, that, although the coexistence curve for the 0.3
decorated gas is exactly known, building the scaling function
for Aymin requires information concerning th@ minima; min
these are finite-size quantities, which are not known exactly. 0.2
Thus, to obtain theQ minima and their locations,
{Qmin(T:L), pmin(T; L)}, for the decorated gas model, we
have performed grand canonical MC simulations on lattices 0.1
of dimensionsL X L X L with periodic boundary conditions.
The resulting scaling curve in Fig. 4 is indistinguishable
from that of the HCSW fluid19]—see the dashed curve— 0 0
built via the recursive scaling algorithm, thus confirming our =
iterative scaling approach for constructidg..(T). We then
build a scaling plot forg(x)—see(68)—by using the exact FIG. 5. Plot of the(subdominant scaling functiong(x) vs q
diameter of the decorated lattice gas. This curve, presented i8Q, .. In(4/€?Q,,) for the diameter of the decorated lattice gas
Fig. 5, should represent the case whgr0 and |, +#0, model withA =1. The dashed line represents the two-Gaussian limit

namely, Dn,in=c¢//d. We expect that an effective scaling (25) which is asymptotically exact to linear order @ while the
curve for the HCSW fluid should be close to this one. solid curve is a fit to(104).
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' ' ' ] =0.—Q%,,=0.175 aslq—q/*™. From (59), (64), (68), and

min

0.4 [(a) HCSW ) (72), this constanC; is given by
] _ _ Y o
03t P C|:C|/d|(0):C|[‘ﬁl+M] : (103
! ] a;p  a0boo
D, |~ e(x) L]
oo b i ] wherebgg and b, can also be expressed in terms of tge
i via (54) and (56). ComputingC,, however, requires values
/ : 1 for agy, @11, andag;, which can be obtained from the tem-
01 i perature dependence of the finite-size scaling function
_______________ | ] Y(x,2); but, at this stage these values are not known. Never-
el T ] theless, we have estimatdd| via extrapolation from the
0 0 0.05 o o5 T o2 HCSW data and obtaine@, =0.418. Using this value, we
. i ' can then fit the scaling curve to the approximant
0.8 | (b) RPM _ 1-q' (1-a) 1+s.0 + 12
L] a0 =G, 1_( q) (, 1q,zszq ) (104
P 1+1,0"+1tq
06T : ] whereq’ =q/q. while we sett;=s,-1+a+q./2C, in order
D [=~e (m) ;i 1 to ensure the smadi-limiting behavior(25). The values fol-
A o] lowing from this fit are shown in both parts of Fig. 6 as solid

curves: the fitted coefficients arg=4.53, s,=-6.61, s;
=1.20,t;=3.85,t,=-9.08, and;=4.24. Note the singular

0.2 . behavior afT, whenq’ — 1 implied by the(1-q’)™ factor
in (104) which yields a vertical tangent in the plot.
-------------------- T Figure Ta) presents the diameteiy,(T), for the HCSW
%5 Y Y YTy fluid obtained via the scaling algorithm: see solid circles. For
q comparison, previous estimates obtained directly from the

simulated probability distribution function of the density are
FIG. 6. Plot of scaling functions for the coexistence-curve di-Presentedas crosses In the temperature range where the
ameters V&= q-Qu;, for (a) the HCSW fluid andb) the RPM equal-weight prescription works well, the estimates from the
- min . . . . .
The symbols represent data at different temperatures while th[eWO methods agreg within thFj' qncertalntles. On the cher
dashed lines represent the exact, two-Gaussian limiting behavidt@nd, the equal-weight prescription cannot provide reliable
(25). For comparison, the plots display, as solid and dotted curvesralues for the diameter in the near-critical region. The cur-

fits to the extremal scaling curves(x) ande;(x), using(104 and ~ 'ent approach, however, givegan(T) far closer to thel. A
(107. fit to the asymptotic expansidr]

. ~ + 2B+ 1—a+
given in (25): see the dashed straight line in Figa Since paaniT) = pd 1 AZBM Aa-alt Adl. (109
Dpin depends on asymmetry, high quality data are requiregields the critical density asp,= p.a®=0.3072+0.0005
as stressed before. As seen in Fig)6the data exhibit rela- which agrees with the previous central estimfggg within
tively noisy behavior at low temperaturgsossibly owing to  the uncertainties, while the amplitudes #g,=0.37,A1-,
the lack of enough histograms covering the whole range o0& -2.14, andA,=-2.52. Note that the magnitude Bh; is
the two-phase region at this temperajuiiéhe scatter may be almost an order smaller than that Af_,. The sharp curva-
compared to the analysis of the density discontindége ture for the diameter very close @, reflects thelt|*™ sin-
Refs.[11,19) where the cancellation of the uncertainties ongularity. The magnitude seems surprisingly large but appears
the two sides of the coexistence region, when the average & an inescapable conclusion of our analysis: its validity
taken, evidently results in smoother behavior. Despite thenight benefit from further investigations and, indeed, experi-
scatter in Fig. 68 we can estimate the diameter B to ments.
within about +0.2% relative t@.. Following the procedure As discussed above, we anticipate that whian,(q) is
in Sec. V, we then build up a scaling function numerically by constructed from data for the HCSW fluid in moderately
increasing the temperaturg, and finding optimal values for  small systems, it will match the scaling fori®8); of course,
Pagian(Tj). The function constructed this way for the HCSW whenj, is not identically zero, it should eventually reveal the
fluid is presented in Fig.(@); it should approximate the ex- limiting form (67) whenL — . In fact, this is confirmed by
tremal scaling limit—seeg(x) in (68—in which pressure comparing Figs. 5 and(8), where the scaling curve for the
mixing is considered negligible. HCSW fluid (solid curve is seen to be in good agreement

The scaling analysis of th&€ minima indicates that with that of the decorated lattice gas model. On the other
Dmin(X) =&(x)=d|(x)/c/(x) in (68) converges to a universal hand, for the RPM a strong™?” term arises fronj,; in this
constant, sayC,, whenq approaches the critical valug.  case the behavior of th®,,, scaling function should ap-
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0820 T ' ' ing curve to the further approximant, as for the HCSW fluid,
L 000 | ¢ -..... ] (1 _qr)ZB(l +5,q + quIZ)
F . . \ ej(X) = CJ 1- ; 12 ’ (107)
0315 [ ><.>< 0.3075 [ \ ] 1 +th + t2q
| X a e with t;=s,-28+0./2C;. We obtains; ~-1.871,s,~1.050,
" ¥R e izm s3=-0.169,t; ~—2.422,t,~1.952, andz~-0.529. The fit
Piam | *x % T is presented in Fig. 6 as dotted curves. As one might expect
0.310 [ (a) HCSW X, : ] from' thg exponent valueg this plot.rises more sharply to
| oo the limiting constant than does(x) with exponent 1.
. \ In Fig. 7(b) we display the present estimatésolid
Pe | circles for pgian(T) for the RPM (at a fine discretization
[ . . L level {=5 [24]) along with the previous valugsrosses[18]
0.305 . L ) .
1.15 1.17 1.19 1.21 1.23 estimated from the density distribution via the equal-weight
0.17 T : prescription. The agreement is good within the uncertainties;
[ but, as anticipated, the current approach vyields reliable esti-
015 L A mates much closer to the critical point. Extrapolation pro-
'K*x* 0os | : ] vides the critical density estimaté = p.a3=0.0783) in ex-
[ x*x* ° cellent agreement with the previous estimatp::
i "*xk 007 L — ~0.079025) [24]. Furthermore, a fit to(105) yields Ay,
P | *, o ' =-2.03,A,_,=28.3, andA;=-23.5. It is interesting that
011 L ’z” Ty J although 2=0.65 is less than 1«#=0.89 the numerical
[ (b) RPM o | behavior of the RPM diameter a& approachesl, seems
(¢ =5) "\.,. ! smoother than for the HCSW fluid: note, however, that the
0.09 | N\ 1 estimates for the RPM approach only [t~ 1073 whereas
- Py ' those for the HCSW fluid show sharp behavior almost a de-
0.07 L 1 - cade closer td..
0.045 0.047 0.049 0.051
T*
. VIIl. SUMMARY
FIG. 7. Plots of the coexistence curve diametgs§,(T") .
= pgiar@® Obtained via the scaling algorithm: solid circléa) The In summary we have provided a general method for de-

HCSW fluid with T =kgT/ € and (b) the RPM(at a fine discretiza- termining the strength of the Yang-Yang anomaly from simu-
tion level (=5 [24]) with T*:kBTDa/qS_ The crosses are previous lations of model fluids. Specifically, we have studied the iso-
estimateq6,18] obtained from data for the two-peak structure of thermal minima of the fourth-order fluctuation parameter,
the density distribution via an equal-weight prescription. The operQ,(T;p), in detail on the basis of the two-Gaussian approxi-
circles in the insets are the estimates of the critical pdift, p,). mation, that is exact well below,, and of the complete
finite-size scaling theory near criticalifl4]. It was shown

proache;(x) identified in the asymptotic forrt67). To check ~ that the asymmetry factotd min> (Qpin=Qmin), exhibits a

this, we move on to the calculation of the diameter for theleading term decaying ds#* and of magnitude set by the
RPM. pressure-mixing coefficieng,, followed by aL=*~V"” term

arising from the combination of the mixing coefficierits

B. Restricted primitive model andj,: see(60). We then showed that precise finite-size data
for A, at T, provide a quantitative route to estimating the

ressure-mixing coefficieng,, and thereby the Yang-Yang
ratio, R,. By using universal information for the critical
order-parameter distribution ¢éi=3) Ising systems and the
specific critical amplitudes of the order-parameter and the
susceptibility abové; for the model fluids under study, one
can estimatg, rather precisely. This method was applied to
the HCSW fluid with range-to-core ratio 1.5 and the RPM
electrolyte, leading t&? ,=-0.042 and +0.26, respectively:
see Sec. IV C. The approach can be applied readily to any
model fluid system: it will be a challenge to understand
which features of a system govern the sign and magnitude
apdhio | Of R . . . .
i (106) ~ We have also presented in detail a recursive scaling algo-

10~00 rithm using theQ minima which enables one to estimate
where byy=by(0) and b;p=b;(0). Using (77) and (78) via  precisely the liquid-gas coexisting densitigs;(T), very
(54) and(55), we haveC;=0.87. One may then fit the scal- close toT.. Corresponding universal scaling functions which,

No changes in the previous procedures are needed to d
rive the diameter for the RPM. Using the data set of @he
minima employed if11,19, we construct the scaling func-
tion for D, starting from the low temperaturel”
=kgT/(g3/Da)=0.0426=0.84T,. The scaling function so
constructed is presented in Figlb® it clearly differs from
that for the HCSW fluid. As argued, this is simply due to the
relatively large pressure-mixing coefficient of the RPM. The
scaling analysis yield®,,~g(x) in (67) which approaches
a universal constant, s&¥, as[q—q/* whenT— T.-. Just
as forC,, the constanC; can be written as

Cj =Ej/dj(0) =Ej|:— a10+
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in principle, can be derived from the probability distribution ~ This method is applicable to any model for which the
function, P(T; p), were investigated numerically via the al- order-parameter distribution can be reliably established at
gorithm by using grand canonical simulation data for thetemperatures well below the critical temperature. To obtain
HCSW fluid and for the RPM6,24]. The two leading ex- successful estimates, however, one needs high quality data
tremal universal scaling functions for the diameter were calfor the Q minima and their locations.

culated and represented analytically(if®4) and (107). The
algorithm vyields precise results fgry,(T) in a range of
temperature a decade or two closeiftdhan was previously
feasible: see Fig. 7. The new estimates for the critical tem- The author is greatly indebted to Michael E. Fisher for his
peratures and densities for both models agree well with theuggestions and a critical reading of this manuscript, and to
best previous estimates extrapolated from the data abgve Gerassimos Orkoulas and Erik Luijten for their assistance in
Furthermore, the behavior @f;,.(T) close toT, for the two  simulating the HCSW fluid and the RPM, respectively. The
models compares favorably with experimental data fog SFsupport of the National Science Foundatighrough Grant
and liquid metals, respectivel}34] . No. CHE 03-01101is much appreciated.
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