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Triple-line decoration and line tension in simple three-dimensional foam clusters
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We show that if the triple line around a three-dimensional double bubble or lens bubble is decorated with
another bubble or with a Plateau border, then the film prolongations into the decoration no longer meet at
27/3. These deviations can be accounted for in terms of a line tension that equals half the excess surface
energy associated with the decoration.
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I. INTRODUCTION found by Géminardet al. [8], who interpreted their result in

A liquid foam is an assembly of gas bubbles bounded byterms of a(negative line tension associated with the PB. A

liquid films. The behavior of a foam with a low-viscosity S|m|la}[r ;Jiwaglog _fror;tth(la[g% foam quLlnllplrll_umtang!es was
liquid phase(e.g., an aqueous foam or a metal foam, as op_repor ed by Rodriguest al. or a small(millimeter-sized

posed to a polymeric foanis dominated by surface tension. "émispherical bubble on a plate, which was also explained
Such foams thus serve as models for systems in which th&ith resort to a line tension associated with the PB at the
interfacial aredin three dimension¢3D)] or the perimeter ~Plate-film junction. Likewise, Srinivasaet al.’q4] atomistic
[in two dimensions(2D)] is minimized at equilibrium. Be- simulation 9_f grain boundaries yielded a negative excess en-
sides this fundamental usefulness, foams have many impofdy of a trijunction.
tant practical applications, which include food and bever- Here we expand on the above works by investigating how
ages, toiletries, cleaning products, fire fighting, oil recoverythe geometry of a wet 3D foam differs from that of a dry 3D
mixture fractionation, the manufacture of cellular materials,foam, and in particular how a wet 3D foam can be mimicked
and ore purification by flotatiofil]. by an “equivalent” dry 3D foam endowed with a line tension.
The theoretical analysis of foams usually starts from theThis is useful because many rigorous and quasirigorous re-
model of a dry, or mathematical, foam. This consists of filmssults are known that apply only to dry foams. We choose to
of zero thicknesgwhich can be regarded as mathematicalconcentrate on two simple 3D bubble clusters, as their
surfacey, endowed with a contractile tendency that is de-shapes can be calculated numerically to great accuracy. We
scribed by a film tension, denoted(a free energy per unit are thus able to show that deviations from the dry foam equi-
length of a 2D film, or per unit area of a 3D fijrFilms join  librium angles occur as a consequence of PBs or bubbles
along edges and at vertices, in such a way that the resultindecorating the three-film junctions. Furthermore, we relate
cells (bubbles fill a region of 2D or 3D space without any the line tension to the excess energy of these decorations.
gaps. This paper is organized as follows: in Sec. Il we review
At equilibrium, a fully dry foam satisfies Plateau’s laws the properties of PBs in 2D foams. In Sec. Ill we consider
[2]: films of constant mean curvature meet at/3 angles at the decoration of the contact line of a 3D double bubble by
triple lines, and different pressures in the bubbles equilibrateither a third, toroidal bubble, or a liquid PB; as well as the
the contractile forces on the films. The energy of such a foandecoration by an extra bubble or a PB of the contact line
is just the energy of its films. In actual fairly dry foams around a lens bubble. We integrate Laplace’s equation to get
(liquid content below about 5% we may still neglect the the shape of the decorations. In Sec. IV we define and com-
film thickness, but the triple lines are “decorated” with re- pute the excess energy per unit lengthssociated with the
gions called Plateau bordefBs, where most of the liquid decorated double bubble and lens bubble of the preceding
resides. How the wetness of real physical foams modifiesection, and compare them with those of the corresponding
their geometry and energy has been a subject of interest i2D decorations. In Sec. V we perform a direct minimization
the past few years. The properties of 2D PBs, including theifat constant volumeof the energy of an undecorated double
(negative excess energy relative to the dry film junctions, bubble and of a lens bubble with triple-line tensienand
have been discussed by Krotov and Rusaf®land by show that it leads to the same results as balancing the film
Srinivasanet al. [4] for equilateral triangular PBs, and by and triple-line tensions. Finally, in Sec. VI we check that our
ourselves for general three- and four-sided HBfF The  numerical calculation satisfies the relationship betweand
mathematical modeling of triple junctions has been surveyed obtained earlier by Géminard and co-workg8 the line
by Taylor [6]. The effect of PBs on the energy and sheartension required to reproduce the calculated angles between
modulus of 3D foams in the dry limit has been analyzed byfilm prolongations is half the decoration excess energy; i.e.,
Kern and Weair¢7]. Very recently, a deviation from2/3 of  7=€/2. Our results are summarized and discussed in
the angles between films meeting at a PB was experimentallgec. VII.
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[l. PLATEAU BORDERS IN TWO-DIMENSIONAL FOAMS along a circular triple line, as follows from equilibrium of the
AND THE DECORATION THEOREM film tensionsy. The triple line decoration is a toroidal region
bounded by three surfaces of tensigy which equalsy in

) i al ; the case of a decoration bubble, ¢f2 in the case of a
lar) regions connected by films of negligible thickness. Theydecoration PB. In either decorated cluster, each of the films

[ngsl%allp th;ﬁ?];fg E{Eﬁgﬁ”&glgﬁ;ﬁg& %r?:)l(m;h;gr\?g:ﬂ_ meets two of the surfaces bounding the decoration along a
ces’ aré rolonged into the PB, then at equilibrium the in—CirCle; there are thus three such circles.
P 9 ’ q y In what follows we first describe in detail the calculations

ﬁglrgfgr'?(atxacs;ggtﬁ 82?;;;2%3\/\%]9;6; iaigz\llaerr;eé)flégtﬂgr?e_ performed for the_double bubble and then indica;e how the

infinite family of triangular PBsat equilibrium Without,dis- same can be_stra|ghtf01_'wardly gdapted to deal v_wth t_he lens

turbing the films (although the bubble areas obviously bubble. The films remain spherical after decoration; indeed,
the equilibrium conditions are satisfied with spherical films.

change. i -
For 2D triangular PBs we can then define an excess en- In the double bubble, the films and the bounding surfaces

ergy e, as the difference between the energy of the PB sur9f the decoration are surfaces of revolgtion around the axis
faces(gof tensiony,, equal to that of the free surface of the of symr_ne_try[see F|g_s. @) and 1b)], WhICh. we take as the_
bulk liquid) and thLa,t of the film prolongation®f tensiony) z-axis: it IS pe_rpend|cular o the planar film 0 and has its
[5]. (It should be noted tha, andy are here understoo)(/j 1o Ongin at this film’'s center. The;e surfaces all have constant
be.energiesper unit length) Irli a separate papéB] we stud- mean curvatures: R for the f|Ims.andb1 and b, for the.

' decoration surfaces, where subscript 1 refers to the two iden-

ied the properties .Of these PB.S |n. .the case wherein theirical surfacegbetween the decoration and either bublaled
surfaces meet the films tangentially; i.e., fgr="y/2. It was

found that the(negative excess energy, is approximately subscript 2 refers to the remaining surfadgetween the
3 ) . ; .
related to the PB area, by decoration and the outside gdsee Fig. 1 Each decoration

surface has equatiox=x(z), wherex is the distance to the

In fairly dry 2D foams, PBs are three-sidéce., triangu-

12 -axis; it i lution of the Laplace equation for axiall
€ T 12 z-axis; it is a solu p q y
v [(_ 5F \’3)A3} == 0.402;", (1) symmetric interfaces:
which holds exactly forregular three-sided PBs. Alterna- 1 +)-(2)—3/2<_ %+ 1+x +X2) = Ap =2b, 3)
tively, a threefold vertex in a 2D dry foam can be decorated X y g

with an additional bubble, of film tensiom; an associated
excess energy can then be defined as for a decoration PB.
such a bubble is reguldi.e., equilatergland has areAp, its
(positive) excess energy is

ere the dots denote differentiation with respeciztand
p; is the pressure difference across surfageositive if the
pressure is higher on the side of thaxis. For a Plateau
border,b; >0 andb, can have either sign; for a decoration
€ = 112 12 bubble,b; <0 andb,>0.
7 =[2(m = \3)Ap] "= 1.67TA". ) Let po, Pp, andpg be the pressures of the outside gas, in
the decoration, and in the twin bubbles, respectively. Equi-
At high liquid fractions, a 2D foam contains PBs with librium of pressures requires that
more than three sides, to which the decoration theorem does

not in general apply. One cannot then define an excess free P~ Pp = 2ypby, (4)
energy as for three-sided PBs. In 3D foams, the decoration

theorem in general does not hold, in the sense that, as we Po — Po = 2ypby, (5)
shall show, film prolongations do not meet at the equilibrium

angles. Indeed, it is not even known whether film prolonga- 2y

tions (assuming that they can be unambiguously defined P~ Po= R’ (6)

meet along a single line. Conversely, a general triple film

junction cannot be decorated without disturbing the film ge-whence

ometry. Exceptions are the two 3D bubble clusters discussed

in the next sections: the double bubble and the lens bubble, by +b,= ll_ 7)
in which all films are spherical or planar. We will, however, wR

show that, even in these cases where the film prolongatioq
do meet along a single line, they do not do so at the equilib
rium 27/3 angles as in 2D.

M addition to equilibrium of pressures, there must be equi-
librium of the decoration surface and film tensions, and
v, respectively, at the decoration triple lines. At the 011 triple

line (i.e., where films 0, 1, and 1 meehis implies that
IIl. TRIPLE-LINE DECORATION OF A DOUBLE BUBBLE

AND OF A LENS BUBBLE cosay = ZL’ 8)

Figures 1 and 2 show a double bubble and a lens bubble, Yo
respectively. In their fully dry equilibrium states, each com-where«; is the angle between films 0 and dee Fig. 1c)]:
prises two spherical films and a flat film, and has axial sym-equilibrium thus requiregp= y/2. At the 012 triple junc-
metry. At equilibrium, the three films meet air23 angles tions, ¥ must bisect the angle between the tyg. Introduc-
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o=ct; on film 1
0=0l, on film 2

X1 le{

(e}

\

o2 z ‘ .

7

FIG. 1. The decorated double bubb(a). With a decoration bubbldb) With a decoration PB(c) Geometrical quantities pertaining to the
decoration(d) Boundary conditions for integration of Eqa.5)—(17). (e) Geometrical quantities for calculating the angle between prolon-
gations and the surface energy of the decoration: the prolongations interg¢ect, at(f) The undecorated double bubble with{ositive
triple-line tensionr.

ing 6, the angle betweery at this triple line and thex-axis v
[again, see Fig.(t)], we must have COSA = 270 (1)
al + oy =26, (9) then the equilibrium conditions for the surface tensigdags.

(8)<(10)] can be expressed more concisely as

where a; and a5 are the angles between surfaces 1 and 2,

=N\, 12

respectively, and thg-axis at this triple line. Equilibrium of “ (12
tensions at the @2 triple line further requires that

ay—a; =2\, (13

cog 0 a}) = 1. (10) :

Y 29 6-aj=\. (14)

In order to integrate Eq3), we introduce the arc length

If we now define an angla (0<\ < =/2) such that alongx(z) from a chosen origin. Equatidi®) for x(z) is then
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FIG. 2. Decorated lens bubble on a flat fil(a) Definition of /;/’//
key quantities.(b) The undecorated lens bubble with(regative 10 i , , , ,
triple-line tensionr. 0.0 0.1 0.2 0.3 0.4 0.5
z
equivalent to the following set of first-order differential (b)
equations: 1.70 . . . . . .
dx b, — X
== 160 b P P S T
ds coSa, (15) 3 F-——— =
—/’/
q 1.50 | . .
z . Rl
—=sina, (16) o by
ds 1.40 b / 1
’/
x ,/
i /
d_a: i_sma' (17 130, _
ds X
wherea (0= a=< ) is the angle between the tangent to the — b-100] |
X=X(z) curve and the positive-axis[see inset in Fig. )]: ——- b=5.0
tana=dz/dx. O I
For a givenh [i.e., a giveny/ yp ratio, see Eq(11)], and LHRL

1t . Vi 00 1 1 1
once the boundary condition has been &eg., by fixing ) 0 o430 o0 080 o040 o050 oe0  ovo

Xo=1), Egs.(15—(17) define a one-parameter family of so- z
lutions for the decoration surfaces. We chobsges the pa- .
rameter and start by integrating E¢s5)—(17) for decoration FIG. 3. Calculated shapes @ decoration bubbles an@) PBs

surface 1, starting at=x,=1, z=0, @=a; [from Eq.(8)], up around a double bubble oriented as in Fig. 1, fpras given(see
to a tenta,tivex—xl 7=2, a_’ar F;)r thisx,, we then fin,da’ also Tables | and JI The origin of coordinates is at the center of the
- y &7 & -1 ’ 2

from Eq.(13) and§ from Eq.(14). Usingx, and 6, the radius ~ P'anar interbubble film.

R of the spherical films can be calculated frosee Fig. 1e)]
The prolongations of the planar and spherical filRgnd

P’, respectivelyfdashed in Figs.(®), 1(b), and 1c)], meet at

a geometrical line—a circle of radiug. As pointed out

) ) ) above, this is a special situation: in general, it is uncertain
andb, from Eq. (7). With thisb, we integrate Eq¥15<17)  \yhether the prolongations of these surfaces of constant mean
for d?COI‘atIOH surface 2, with initial conditions=xy, 2=z, cyrvature into a decoration will all intersect at a single line.
a=a,. The resulting profile must reaeh= /2 for z=0. This The angleg between the prolongations of the two spheri-

will happenonly for a particularx; that has to be found by -5 fims o [see Fig. 18)] can be obtained from
trial and error. Figure 3 shows examples of calculated deco-

rations of a double bubble for, =7 (decoration bubb)eand

vp=17/2 (Plateau border for differentb;. In the former case

the decoration surfaces meet the films at/2 angles, L= R(COSE - cosa). (19)
whereas in the latter they do so tangentially. The correspond-

ing geometrical parameters are collected in Tables | and Il

All lengths are in units ok, the radius of the planar film O For each solution, we also found the radiysof the line
(which equals the radius of the 011 triple ljne where the film prolongations intersect:

X
R= ——, (18)
sin @
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TABLE 1. Geometrical parameters pertaining to the double

(al)

. . ) 0.00 . :
bubble with decoration bubble of Fig(8: yp/y=1, X,=1.0. We
fix by.
-0.02 - Slope: -0.320 1
by b, X1 Xo X R
-0.04 _
-10.0 10.8345 1.042 1.0487 1.0279 1.1983
-5.0 5.8055 1.082 1.0950 1.0541 12420 ¢ -0.06 - .
ol
-2.0 2.7303 1.194 1.2239 1.1259 1.3693 &
-1.0 1.6412 1.360 1.4136 1.2300 1.5597 ° -0.08 | 1
-0.10 t .
X = Rsin?, (20 042 b * ]
as v_veII as the areAp of the decoration cross section, which -0.14.5 01 02 03 04
is given by A%,
X1 X2 (b)
Ap = 2(] z dx+f z dx). (21) 0.024
%o ! 0.022 * .

[Note that the second integral in the above equation is posi- 90-020
tive in the case of a decoration bubl§le >x;) and negative 0.018 |
in the case of a PBx,<x;). The factor 2 comes from the 0.016 |
fact that because of symmetry we only actually calculate half

the deCOI’atiOﬂ.AgZ/X| is a measure of the size of the deco- § 0.0t

ration relative to that of the bubblém the case of a PB, itis & '?[ 1
a measure of the liquid fractionin Fig. 4 we plot the de- 0.010 ]
viation A¢ of ¢ in a double bubble from its value in the 0.008 - .
absence of a decorationsr23, vsAL?/x,. It is negative(and 0.006 - Slope: 0.075 ]
largen for decoration bubbles, and positiv@nd smaller for 0.004 L o ]

PBs.
Similar results are obtained for the lens bubble, to which 9092
Eq. (7) for the equilibrium of pressures still applies. In this ~ 0.000 ' ' :
. 0.0 0.1 0.2 0.3 0.4
equation,b; and b, are the(constant mean curvatures of AT
decoration surfaces 1 and 2, respectielge Figs. (a) and
2(a)], andR (>0) is the radius of the spherical films making  FIG. 4. Deviation of¢, the angle between spherical film pro-
up the bubble. As in the case of the double bubble, filhs Olongations into the decoration of a double bubble, from its value in
and the decoration surfaces are surfaces of revolution arouribe absence of a decorations/3, vs decoration siza3%/x, for (a)
the axis of symmetrysee Fig. 2a)], which we again take as decoration bubbles ar{®h) PBs. The solid lines are linear fits going
the z-axis: it is perpendicular to the planar film 0 and has itsthrough the origin; slopes are given in each case.
origin at the center of the circular hole in this film, which is
occupied by the lens bubble. Notice that the roles of surfaceshape of the decoration bubble and PB around a lens bubble;
1 and 2 are reversed: now subscript 1 refers to the two identhe geometrical parameters pertaining to these curves are col-
tical surfaces(between the decoration and the outside)gasiected in Tables Il and IV, respectively. In Fig. 6 we plot the
and subscript 2 refers to the remaining surfdoetween the  deviationA ¢ of ¢, the angle between the two spherical films
decoration and the bubbleFigure 5 shows the calculated [see Fig. 2b)], from its value in the absence of a decoration,
2713, vs AY?/x. Note thatA¢ has opposite signs for the
TABLE Il. Geometrical parameters pertaining to the dubbledouble and lens bubbles. Experimentallyy for the PB
bubble with decoration PB of Fig.(B): yp/y=0.5,%xy=1.0. We fix ~ decorating the triple line of a flat circular film suspended by

b;. two catenoidal films can be as large as 2[Bj, giving
¢l 7-2/3~0.014; this is of the order of what we predict
b, b, X1 Xo X R [see Figs. t) and §.

100 -8.3142 1.045 1.0382 1.0300 1.1864 IV. EXCESS ENERGY OF DECORATION: DEFINITION
5.0 -3.3548 1.094 1.0809 1.0620 1.2156 AND DERIVATION

2.0 -0.5115 1.262 1.2283 1.1743 1.3437
1.0 0.2332 1.615 1.5884 1.4314 1.6218 We next proceed to calculate the excess energy of a deco-

ration, defined as the excess surface enépgy unit length
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14 (a) TABLE Ill. Geometrical parameters pertaining to the lens
' ' ' ' ' bubble with decoration bubble of Fig(#: yp/y=1, X,=1.0. Note
—— b,=-10.0 that now we fixb,.
Xs ——- b,=-5.0
1.3 N e b,=-2.0 7 b b X X X R
\\\ o b§=—1.0 2 1 1 2 I
\‘\ b, -10.0 10.8586 1.0063 1.0472 1.0197 1.1647
12 ¢ \\ i -5.0 5.8510 1.0118 1.0893 1.0370 1.1751
'\'\\ \\ -2.0 2.8343 1.0251 1.1929 1.0780 1.1986
~ , '\‘ -1.0 1.8154 1.0401 1.3148 1.1239 1.2264
\ \ _
!
I x
N .
| S = w(RZ sng —x(z)) (23
Finally, each spherical film prolongatioR’ is a slice of
heightz, of a sphere of radiuR; its area is 2rRz or, using

0.0 0.1 0.2 0.3 0.4 0.5 Eqg. (19),
z
= 2| co?
(b) Spr =27R*| cos- — cosh|. (24)
16 T T T T T T T 2
Xl — b-100] | €, the excess energy per unit length of the decoration of total
' ——- b,=5.0 length 2mx,, is thus
e b,=3.0
14 —-— b,=2.0 | 1 € 1 |2y
\. —:2—[—D(sl+sz>—(sp+zsp/>} (25
13 _\‘ i Y )L Y
\\ In Fig. 7 we plot the dimensionless quantiy(yx,) versus
<A2p - AY?/x, for the double bubble decorated with a bubfifég.
\\ i 7(a)] or a PB[Fig. 7(b)] of cross-sectional aredy. As for
TP T 2D decorations, the excess energy of a decoration bubble is
. positive, whereas that of a PB is negative. Fitting straight
S\, 1 Iir_wes through the origin to the data in Figsiar and 7b)
SNy, gives
09 + b2 \X _
08 N N . . , €-1.693Y% (decoration bubble (26)
00 01 02 03 04 05 06 07 08 Y
z
€
FIG. 5. Calculated shapes () decoration bubbles an#) PBs - =-0.39%?, (PB), (27)
around a lens bubble oriented as in Fig. 2,lfgras given(see also Y
Tables Il and I\j. The origin of coordinates is at the center of the whose prefactors closely approximate those for 2D foams
lens bubble. [see Eqs(1) and(2)]. For a lens bubble we likewise have,
from Fig. 8,
of the line of radiusx,) of the decoration relative to the
surface energy of the film prolongations. A detailed deriva- £ _ 1.5950Y2  (decoration bubble (28)

tion is presented for the double bubble. The total area of the
decoration surfaces i3, +S,), wheresS, is the area of each
of decoration surfaces 1 arig is half the area of decoration TABLE IV. Geometrical parameters pertaining to the lens

surface Zsee Fig. 1d)]: bubble with decoration PB of Fig.(B): yp/y=0.5, x,=1.0. Note
that now we fixb,.

z d)q 2
S=27Tf X 1+(E) dz (i=12. (22 b, by X X, X R
0

10.0 -8.2841 0.9922 1.0383 1.0087 1.1655
5.0 -3.3072 0.9813 1.0943 1.0199 1.1815
The prolongatiorP of the planar interbubble film is a circu- 30  -1.3465 0.9593 1.1980 1.0408 1.2304
lar “crown” [i.e., the region between the two concentric 5,45 _g4277 09076 1.5152 1.0859 1.2721
circles of radiix;, given by Eq.(20), andx,] of area
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(@) (a)

0.14 : : : 0.6 . .
| 1.
012 t Slope: 0.304 - Slope: 1.693
05
0.10 | -
0.4
- 0.08 i
S ;
& €03
< 0.06 | - @
0.2
0.04 [ _
0.02 b _ 0.1
0.00 L L 1
0.0 0.1 0.2 03 0.4 0.0
ADT/Z/XI
{b)
0.000 e . . .
L 0.00
~0.002 [ ]
~0.004 ] 002 |
~0.006 - ]
~0.008 ] ~0.04 i
0010 | 1 005 |
1 -0012 | 1 _ -0
= =
< o014 | ] B
' -0.08 4
~0.016 ]
-0.018 F g _ 4
0.018 Slope: -0.068 0.10
~0.020 [ ]
_0.022 ] —0.12 _
~0.024 : :
0.0 0.1 0.2 0.3 0.4 —0.14 | | L
A, 0.0 0.1 0.2 0.3 0.4
1/2

AL X

D T

FIG. 6. Deviation of¢, the angle between film prolongations ) )
into the decoration of a lens bubble, from its value in the absence of Fl'/cz':‘ 7. Dimensionless excess eneyyx) of a double bubble
a decoration, 2/3, vs decoration siz&L?/x,, for (a) decoration ~ VSAp /X for (a) decoration bubble an(h) PB. The solid lines are
bubbles andb) PBs. The solid lines are linear fits going through the lin€ar fits going through the origin; slopes are given in each case.
origin; slopes are given in each case.
bubble is then the sum of the surface enes@yof the dry
films meeting at the triple line of length, plus the energyL

5: -0.38\Y2  (PB), (29)  of that triple line:
whose agreement with the 2D result is somewhat less good E=vyS+7L. (30)

than for the double bubble. Note that Eq26)—(29) hold

even for decorations whose linear size is of the order of the ) )
triple-line radiusx. We shall relater to € in the next section. In the case of a

double bubbleS comprises the areas of the two spherical
films of radiusR and subtended angle#2=27- ¢, and that

V- DIRECT MINIMIZATION OF THE SURFACE ENERGY of the circular planar film of radiug =R sin ¢’ [cf. Eq.(20),

OF A DOUBLE BUBBLE WITH TRIPLE-LINE

TENSION see Fig. 16)]
We assign a line tensionto the triple line(of radiusx,) E r
of a dry (i.e., undecorateddouble bubble or lens bubble. —=7R¥5 -4 cos#’ —cog ') +2m7Rsing'—. (31)
This is defined as the contribution of the decoration to the Y Y

total energy of a unit length of triple line in thendecorated
cluster. The energi of the decorateddouble bubble or lens The volume of each bubble is
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(a)

0.6 T T T 0.00 T T T T
Hohxe * Numerical
Slope: 1.595 _0.02 - % Analytical J
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-0.04 - 4
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0.2 -0.10 + 1
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0.014 - * 4
<
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g -0.06 . & 0012 " 8
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-0.08 i 0.008 | .
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FIG. 8. Dimensionless excess energdyvyx,) of a lens bubble vs
AgzlxI for (a) decoration bubble antbh) PB. The solid lines are

FIG. 9. Deviation of¢, the angle between film prolongations
into the decoration of a double bubble, from its value in the the
absence of a decoration,;m23, vs dimensionless excess energy
linear fits going through the origin; slopes are given in each case.€/(yx), for (a) decoration bubbles anith) PBs. The solid lines are
the analytical result for/(yx), Eq. (34), with 7=€/2.

R ) )
V:T(2_3COSQ +cos 0'). (32) (2 cos%s—l)y:)(l, (34)
|

which is identical with Eq(33) since 8’ =7~ ¢/2. Either of

Minimizing E at fixedV yields these equations defingsas a function ofr/(yx,); for small
7/ (yx), this is

2T 2 7
-—— == 35
—-sin 0’(1+2c:os¢9’)=—;. (339 ¢ 3 V3 X (35)

Similar considerations apply to the lens bubble, for which

The equilibrium condition(33) can be derived directly Eq. (34) is replaced by

from balancing they and m/x, forces acting on théundeco-
rated triple line, wherefi is the principal normal to thécir-
culan triple line, pointing toward its center. The line tension
force acts to contract the triple line if positive, and to dilate it
if negative. From Fig. (f) we get

P -7
(20052 1)7— X (36)

where ¢ is defined in Fig. tb).
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(@ i.e., the workrdl performed by the line tension force equals

o1 ' ' ' ' the change in PB energgl(le). The lengthl of PB has vol-
ol | umelAp, which from Eq.(1) is proportional td €. If the PB
: H -1/2
volume is kept constant, thesw:| and Eq.(37) follows
from Eq. (39).
0-101- i In our theory, the functional dependence of the excess
energye of decorated double or lens bubbles on the cross-
e 0.08F 1 sectional area of their decorations is given by Eg6)—(29).
& Moreover, the film prolongations into the decorations in ei-
< 0061 1 ther cluster meet at a single line at an angl¢hat deviates
1 from 277/3. Our numerical calculations yieldee Figs. 9 and
0.04 * Numerical - 10)
Analytical |
0.02 1 ¢ 2 2w 1le
| 2cos,, -1 \’§(¢ 3 ) 2 (39
0.00 . . . ' :
0.0 0.1 0.2 0.3 0.4 0.5 0.6
e, which combined with Eq(36) recovers Eq(37).
(b)
0.000 ' - ' ' ' — VIl. CONCLUDING REMARKS
-0.002 * b
~0.004 | * Numerical ] We have discussed two 3D bubble clusters—the double
0006 | Analytical ] bubble and the lens bubble—which contain a single, closed,
triple line. This line can be decorated with a PB of triangular
~0.008 1 1 cross section or, alternatively, with a tubular bubble, in such
e 0010 ] a way that the prolongations of the two spherical films and of
L0012 | . the planar film meet at a single lirf@ circle, albeit not in
S ooia | ] general at the equilibriums2/3 angles as in 2D. Still, this is
0016 | ] the 3D equivalent of the decoration property of triangular
oots | 1 PBs in 2D, and it allows one to define an excess energy per
' unit length of the triple linee as the difference between the
-0.020 1 energy of the decoration surfaces and that of the film prolon-
-0.022 - . gations. The decorated cluster shapes and energies have been
-0.024 : - ' ' ' - found by numerical integration of Laplace’s equation.
-0.14 -012 -0.10 -0.08 -0.06 -0.04 -0.02 0.00

The deviation of the angles from their equilibrium values
in a dry foam can be accounted for by introducing a line

FIG. 10. Deviation of¢, the angle between film prolongations tension r associated with the triple line of the undecorated
into the decoration of a lens bubble, from its value in the the abtpple and requiring that the film tension foregsand that
sence of a decoration,723, vs dimensionless excess energy due to the line tensior(,r/p)ﬁ, balance at the triple line. We
€/ (-yx), for (a) decoration bubbles arith) PBs. The solid lines are )36 numerically verified that this line tension equals half
the analytical result for/ (yx), Eq. (36), with 7=e/2. the excess energy per unit length associated with the decora-
tion, as follows from the work of Géminaret al. [8].

X,

VI. EXCESS ENERGY AND LINE TENSION The excess energy is a function of the cross-sectional
In a recent paper, Géminard and co-worK@hobtained a area of the o!ecoratiomp. For bot_h bubble and PB decora-
relation betweere and 7 tions, the rat|06/(yA%)/2) is approximately the same for both
e double and lens bubbles and close to the values for the cor-
r=—. (37)  responding 2D decorations.
2 The two 3D clusters studied are special in that a decora-

Recall thate is the difference between the energy of the lion excess energy can be defined in the same manner as for
actual decorated cluster and that of an undecorated referend® clusters with triangular PBs. Generalization to arbitrary
cluster with the same raditR of the spherical films and the 3D triple junctions is, however, not straightforward. In par-
same radius, of the triple line, to which we may assign a ticular, it is not even known whether the film prolongations
line tension. To derive this, start by noting thatAL? ~ into & 3D decoration, if they can be unambiguously defined,
where A, is the PB cross-sectional area. Now consider slways meet at a single line; this could be investigated using,
lengthl of PB: it has energye. The line tension is, by defi- €9~ the Surface Evolver progrgit2]. Still, for the purpose

nition of estimating the energy of a 3D wet foam with PBs of
triangular cross-section, we may make use of an excess en-
_dde) ergy € related to the PB cross-sectional area bly
T= dl ’ (38) ~_0 4A1/2
- . D .
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