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Morphological transition between diffusion-limited and ballistic aggregation growth patterns
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In this work, the transition between diffusion-limité®LA) and ballistic aggregatioBA) models was
reconsidered using a model in which biased random walks simulate the particle trajectories. The bias is
controlled by a parameteyr, which assumes the value=0 (1) for the ballistic(diffusion-limited) aggregation
model. Patterns growing from a single seed were considered. In order to simulate large clusters, an efficient
algorithm was developed. Far# 0, the patterns are fractal on small length scales, but homogeneous on large
ones. We evaluated the mean density of partiplasthe region defined by a circle of radiusentered at the
initial seed. As a function of , p reaches the asymptotic valpg(\) following a power lawp=pg+Ar~? with
a universal exponeng=0.462), independent ok. The asymptotic value has the behavigr|1-\|#, where
B=0.261). The characteristic crossover length that determines the transition from DLA- to BA-like scaling
regimes is given by~ |1 —-\|"%, wherer=0.61(1), while the cluster mass at the crossover follows a power law
M§~|l—)\|‘“, where «=0.9712). We deduce the scaling relation3=vy and B=2v-a between these

exponents.
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I. INTRODUCTION const ifx<1,
Lo _ . f(x) ~ 2
The pattern formation in nonequilibrium processes is a ( XA if x> 1. @

longstanding problem in statistical physids-3|. In particu-

lar, the diffusion-limited aggregatio(DLA) model[4] is @  Here,d is the space dimensiod; is the DLA fractal dimen-
noteworthy example in which a very simple algorithm gen-sjon, and¢ is the crossover radius from DLA- to BA-like
erates disorderly fractal clusters. This model was related t@caling regimes. This idea was first considered by Meakin
several physical and biological applications, such as eleq11]. In his model, the simulations start with a single seed at
trodeposition[5], viscous fingering[6], bacterial colonies the center of a square lattice and the drift of all trajectories is
[7], and neurite formatio8]. In the DLA model, particles in a fixed lattice direction. Along the walk, the particle is
released at a point distant from the cluster execute randofoved one lattice unit in the drift direction with probability
walks until they find a neighbor site of the cluster and irre- P, or moves to one of its four next-neighbor sites with prob-
VerSibly stick at this site. If the random walks are replaced byab|||ty 1-P. The model generates patterns with a growth
ballistic trajectories at random directions, we have the ballistendency in the opposite direction of the drift. The author
tic aggregatior(BA) model[9]. In contrast to DLA, the BA  argues that the crossover from the DLA-like structure on
model generates disordered nonfractal clusters with nonshort length scales to a compact structure on longer ones is
trivial scaling propertie$2,10]. characterized by a length~ P~1. However, using a renor-
Due to its importance as a fundamental model, severahalization group approach, Nagatani fourd-P~2/d-d»
generalizations of the DLA model were propoddd?]. In [17]. Kim et al.[12,13 studied lattice models with a global
particular, those models in which the particle trajectories argyrift to the seed, in which the particles have a higher prob-
biased random walks were investigatetl-16. In these  apility to move to the nearest neighbor representing the
models, on short length scales the particle trajectories argnortest distance away from the seed. The pattern morpholo-
common random walks with fractal dimension 2.0, whereagjies are ruled by the lattice anisotropy and their fractal di-
on longer length scales the bias becomes dominant and thgension is 1. Nagatafi4] considered the effects of positive
dimensionality of the walk is 1.0. Clusters grown using thisand negative radial drifts in the DLA model. In the positive
type of walk must behave like the DLA model on short case the cluster fractal dimension is asymptotically 2, while
length scales, while nonfractal patterns are observed Ogccentric patterns with dimension 1 were found for the nega-
longer ones. Consequently, the mass of a cluster oflsge tive case. Other modell5,16 consist of deposition pro-

given by cesses on d-dimensional substrate in which the walk drift is
M(1) = 19(1/8), (1)  inthe substrate direction. . . N

. _ In the present paper, we are interested in the transition

in which from DLA to BA models when the random or ballistic tra-

jectories of DLA and BA models, respectively, are replaced
by biased random walks with a random drift direction. The
*Electronic address: silviojr@ufv.br central concern of this work is the fact that all real fractals
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FIG. 1. Schematic representation of the model. FIG. 2. Angle distributions for biased random walkers with

preferential directiorp=0 and the correspondent Gaussian fits. The

o . o curves correspond ta=0.99 andRs=200 (squares A=0.99 and
exh|b|_t sgallng onl)_/ on limited ranges and, co_nsequ_ently, &R.=1000 (triangles, andA=0.90 andR.=200 (circles. Other pa-
quantitative analysis of both experiments and simulations dex,meter sets used in the simulations provide fits better than those
mands a deep understanding of these crossovers. The outliggown in this figure. For all couples and R; used in the simula-
of the paper is the following. In Sec. II, the model and thetjons a correlation coefficien?=0.999 was required.
respective computational algorithm are described. In Sec. I,

the simulational results are presented and discussed. Finally, The previously introduced variabl¢R, and R,) must be
some conclusions are drawn in Sec. IV. as large as possible. However, computational limitations re-
strict the use oR, andR, values. We define® =R+ Ro,
whereR,,,, IS the maximum distance from the center of the
Il. MODELS AND METHODS lattice of a particle belonging to the cluster. For DLA and BA
. - .. modelsR, can be of the order of some lattice unjts,2].
As in the original DLA and BA models, at the beginning However, for the model with biased random walks the pat-

of the simulations a unique seed localized in the center of th'taern morphologies are strongly dependent on this value. Our
lattice constitutes the cluster. Then, particles are sequential%sts suggest that the patterns become insensitiRg Waria--
released on a circle distant from the cluster and execute bhons whenR,> 300, in agreement with the values adopted
ased random walks. The distance between the center of tfbe '

. . . X . y Kim [16] for a model of deposition of biased random
lattice and thg launching circle is denoted Ry The biased walks on a substrate. ThuBy=400 was used in all simula-
walks are defined by

tions. The killing radiuR, must be 10 to 100 timeR,,,, for

X1 = Xn + COL@ + N 6,), very large DLA cluster$1] whereas arR, only some lattice
units larger tharR,« is hecessary for the BA model. Due to
Yoe1 = Yo+ SiN(@ + N6,), (3y  the bias present in the random walks, we used the same

strategy adopted by Kirfil6], i.e., R¢=2Rna+Ro. Figure 1
wherex, andy, are the particle coordinates at thitn step of  llustrates two tentatives, one successful and the other frus-
the walk, ¢ is a random angle that defines the bias directiontrated, to add a new particle to the cluster.

N €[0,1] is the parameter that controls the random compo- To analyze the transition between BA and DLA it is nec-
nent of the trajectories, ané, is a random direction. The essary to simulate large clusters using lattices containing up
variablese and ¢, are in the rangé-,]. Notice thate is  to 10*x 10* sites, especially wheh <1. Consequently, the
defined at the beginning of the walks, wheregsassumes computational time becomes prohibitive and an efficient al-
random values for each walk step. One can see that the pagerithm is necessary. A technigue commonly used to simu-
ticular cases\=0 and 1 recover the BA and DLA models, late large DLA and related models is to allow the particles to
respectively. If the particle visits a site neighboring the clus-execute long steps in random directions if they are far from
ter it irreversibly joins this site. However, if the distance the cluster[18—21. This procedure is correct because the
between the particle and the cluster is too large, i.e., larggprobability that a random walker crosses the circle centered
than a killing radiusRy, the particle is excluded and a new on its initial position in a given anglé is uniformly distrib-

one is released at the launching circle. In order to determinated in the interval-, 7]. However, for the biased random
when a walker is neighboring a cluster site, its lattice posiwalkers this is not true. Indeed, the probability density dis-
tion was defined as the next integer value of its real coordiiributions are concentrated around the directioriFor A not
nates defined by Eq3). The majority of the results pre- very close to unity or for large steps, the probability distri-
sented in this work refer to the square lattice version of theébutions are very well fitted by Gaussian curves centered at
model. as illustrated in Fig. 2. Using this fact, the following proce-
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TABLE |. o values determined with the Gaussian least squares
fits.

A o(Rs=200 o(Rs=1000
0.100 0.02585 0.01202
0.300 0.07591 0.03413
0.500 0.12535 0.05613
0.700 0.18206 0.08139
0.900 0.31933 0.14216
0.950 0.45109 0.20057
0.990 1.03575 0.45130
0.995 1.53278 0.63451

dure was adopted. If the distance between the random walke
and the cluster is larger than a valgr 6, it executes a jump

of length R;. Thus, a long jump cannot lead the walker a
distance smaller tha@. The jump direction is¢= @+ ¢y,
where ¢, is a random number betweenr-and 7 selected
from a Gaussian distribution

FIG. 3. Two clusters generatdd) using or(b) not using the
1 qﬁz optimization. In these simulations, lattices of sike1000 and
P(eg) = ——=ex _202 : (4 \=0.99 were used.
o\ml2

In order to obtain the Gaussian widthfor each couple.  of the clusters shown in Fig. 3 without the optimization takes
andR;, a large number of biased random walk€’~10')  apou 1 h in a 3 GHzpentium IV, but the same simulation is
were simulated and a histogram of the probabilities builtdone in 10 min using the optimization. Therefore, even for
(Fig. 2. Then theo value can be determined using leastsmall lattices the simulation performance is greatly improved
squares Gaussian fits. The quality of fits is improved asvhen our optimized algorithm is used.

largerRs values and smallex values are used. Therefore, the  Figure 4 shows growth patterns for distinkt values.

R values should be sufficiently large to reproduce good fitSThese patterns were generated with the optimization at lat-
in particular forn < 1. Furthermore, severﬁis values can be tices Containing 19X 10° sites. The simulations Stopped
used in the same simulation improving the algorithm effi-when the aggregate reaches the lattice edge. A continuous
cacy. We used two value®=200 and 1000. The values transition from disordered and dense to ramified clusters is
used in the simulations are shown in Table I. Al§s,20 was  observed. For smalk values the patterns are essentially
used. All tests show that the growth patterns are not sensitivBA-like but the patterns become very similar to the DLA
to the & value. It is worth noting that the Gaussian distribu- clusters as\—1. Indeed, the cluster generated with

tion is not normalized in the intervé-, 7] and, obviously, =0.995 is characterized by the square lattice anisotropy, a
this is not the actual angle distribution for the present probsignature of the DLA moddll,2]. However, one expects that
lem. However, the very good fits to the angle distributionsall patterns become asymptotically homogeneous with a fi-

justify the use of the Gaussian functions. nite characteristic size for the empty regions.
In order to quantify the DLA to BA morphology transi-
IIl. RESULTS AND DISCUSSION tion, the mean particle density in the inner regions of the

cluster was evaluated. This mean dengity) is defined as

The first stage of the present work was to confirm thethe ratio between the number of occupied sites and the total
validity of the previous defined algorithm. We simulate rela-number of sites in a region delimited by a circle of radius
tively small lattices containing £0< 10° sites with and with-  centered at the initial seed. Since one expects asymptotically
out the optimization foh=0.99. In Fig. 3, comparisons be- nonfractal clusters, the density must reach a finite vajias
tween clusters generated wittop) and without(bottom the  r — . Nevertheless, the approach to the constant density is
optimization are shown. Comparing the patterns, one can segry slow and takes a scale invariant form
that they are statistically indistinguishable. Using the mass-
ratio method, the fractal dimensions of the patterns generated — -
with and without the algorithm werel;=1.70+0.02 and p(r)=po+ArY. (5
1.72+0.02, respectively, and the exponents of the radius of
gyration, defined byg~n5 (n is the number of cluster par- Here, y is a correction to the fractal dimension aAda
ticles) [2], were {=0.560+0.003 and 0.561+0.002, respec-constant. This scaling hypothesis was also used by Liang and
tively. These exponents reinforce the algorithm validity. Con-Kadanoff [10] to study the driven ballistic aggregation, in
cerning the computational time, a single run to generate onwhich the particles trajectories are in a single direction. They
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FIG. 4. Morphology transition
between BA and DLA growth pat-
terns. The number of aggregated
particles varies from 2%1C°
(A=0.1) to 5x 10* (A=0.995.

conclude that they exponent is nonuniversal, i.e., dependsThe error indicated in the value was evaluated through an
on the lattice structure. average over the data of Fig(b3.

In Fig. 5, the double-logarithm plots pf-p, as a function In order to test the universality of thgand 8 exponents
of r for distinct A values are shown. The densipy was we studied two versions of the present model. In the first
obtained by searching for the best linear fit in the largerone, we use square lattices, but the walkers stick to the clus-
linear region. To avoid the active region, we limited the fitster if they reach a nearest or a next-nearest empty neighbor
to those data corresponding to a half of the cluster sizef an occupied site. In the second one, we use a hexagonal

Depending on thex value, lattices with linear sizé =5

approach to the stationary value obeys &j. In Fig. 6, the
asymptotic density, and they exponent are shown as func- conclude that these exponents are universal.
tions of 1-\, the distance from the transition poimpiy acts
as an order parameter, which vanishes at the critical poirgls was also characterized by the crossover raglidsfined
following a relation py~|1-\|%. The exponent obtained in Egs.(1) and(2). The number of particle#1(r) inside a
region delimited by a circle of radiuscentered at origin was
evaluated. ThéM vsr curves exhibit tenuous crossovers de-

from the data of Fig. @ was £=0.2711), whereas the ex-

ponents obtained fdr=2x 10° and 16 were 3=0.282) and

lattice. Lattices with sizé =2000 were used. The exponents
X 10° or L=10% and 10-20 independent runs were used. Ondor the first modified version wergg=0.27+0.02 andy
can observe a power law regime fior 10 showing that the

=0.49+0.03, and the exponents for hexagonal lattice were
B£=0.28£0.02 andy=0.49+0.03. These results lead us to

The morphological transition between BA and DLA mod-

0.261), respectively. The numbers in parentheses represetgrmining the transition between DLA- and BA-like scaling
regimes. In Fig. 7@, an example of this crossover is shown.

the uncertainties. In Fig.(B), the v exponents for distinck
values are shown. One can observe thdluctuates around
the value 0.46. The smaller value found was 0.43 and the

Since the growth patterns scale as DIBA) for small

larger oney=0.48. Our simulations suggests that thex- . . . 1.0 . . .
ponent is independent of and its value isy=0.46+0.02. ,’(
' ' 0.8 s
//
,1 / 0.6 - 1
10 @ ]
h a QO &= Iy [ Y
o S 0.4 .
S - . /
o 101 | 0.2 .
o O 1 / |
] a b
P ey ----(-.) 0.0 . . (. )
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FIG. 5. Double-logarithm plots op—p, againstr for A=0.3
(squares and 0.99(circles. The dashed line corresponds to the Eg. (5) as a function of the distance from the transition point. The
slope —0.46. The linear fits of the data provige-0.45 forA=0.3,

and y=0.47 forA=0.99.

FIG. 6. (a) Stationary densityy and(b) y exponent defined

lattice size used wak=5x 10° and simulation stopped when
cluster reaches the lattice edge.
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ey B=vy and B=2v-a. 9

In agreement with the scaling relatiagf), the number of
independent exponents is reduced from 4 to 2. Using the
exponents measured for systems with slze5000, we
Ne | found 1y=0.282) and 2-@=0.253), in addition to 3
\ =0.271). The difference between these values is inside the
AN ] error margins indicated in the parentheses. The large uncer-
\\ X tainties obtained in the exponeri&—10% originate in the

. b\ E difficulty in determination of the exact crossover points.

"

~ IV. CONCLUSIONS

10" 10° In the present work, we studied the transition between
1-% diffusion-limited aggregation and ballistic aggregation mod-
o els. We used a model in which the random walks in the DLA
FIG. 7. (a) Determination of the crossover between DLA- and model are replaced by biased random walks with a drift in a
BA-like scaling regimes fok=0.90. The straight lines represent the random direction. The drift is controlled by a parameter
slopes 1.71 and 2, i.e., the fractal dimensions for DLA and BAe[O,l] that leads the model from BA\=0) to DLA (A
models, regpectivelygb) The crossovgr Iengtlﬁsqgare}: and the =1) [see Eq(3)]. Also, an efficient algorithm, which allows
corresponding maggircles as a function of the distance from the large scaling analysis of the growth patterns, was introduced
transition point. These results were obtainedlfer5x 10°, For any bias, the clusters are frac(mLA-,Iike) on the ’
] short length scales whereas nonfractal patterns are obtained
(large) length scales, in order to evaluage the cross@gwee  on the large ones. The transition between DLA- and BA-like
fitted the curves by power lawsi(r) ~r, whered;=1.71  scaling regimes is determined by a characteristic lerigth
and 2 were used for the initial and the final curve regionsihat diverges as — 1 following a power lawé~ |1-\[77,
respectively. The crossover lengths obtained through thighere »=0.61(1), while the cluster mass at the crossover
method are drawn as a function of the distance from th&g|lows the relationM .~ |1-\|"®, where «=0.972). This
transition point in Fig. ®). The |er_‘9th§ diverges a\=1  crossover was not numerically determined in similar previ-
following a power law §~|1‘_)}| , where v=0.611).  oys work. The density in the inner regions of the cluster
Moreover, the mass at the critical point diverges Ms  reaches an asymptotic valpg~|1-\|%, where 3=0.261).
~|1-A|", wherea=0.972). However, this approach is slow and follows a power law
As discussed in Sec. |, these crossovers between fractgbcay with a universal exponent=0.462) independent of

and_homogeneo_us patterns occur due the crossover in thge drift. These exponents obey the scaling relatigrsy
particle trajectories. However, the crossover length of theng B=2v-a.

walker trajectories is given bfsee the Appendix It is worth stressing two main contributions of the present
. work. The first one is the development of an algorithm that
£,= 7\ _sin(m\) ' (6)  can be used to study other models with biased random walks
sin(a\) N\ as for example those related to deposition proceskagd g,

for which the determination of universality classes is hard

which diverges ag,~|1-\|"* for A=<1. Thus, although the \ork. The second one is the careful quantitative character-
transition between DLA and BA models is due to the transi-ization of the transition between DLA and BA growth mod-
tion in the walk dimensionality, the corresponding crossovells that, in our knowledge, was not previously done. The
lengths are not proportional. understanding of these crossovers can be an essential tool in

Notice that Eq.(5) describes the mean density behaviorthe analysis of real fractals, which always exhibit scaling in
whenr 2, & Moreover,p~r% 2 whenr < ¢ due to the cluster  |imited ranges.
fractality on this length scale. Thus, using E§), we found
that the mean density at the crossover can be written as
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Pe~ %f ~ |1 =\|Ze (8) APPENDIX: DEMONSTRATION OF EQ. (6)

For the sake of simplicity, we consider E&) with a drift
Comparing Egs(7) and(8), we have that they are consistent directiono=0 andxy=y,=0. Iterating Eq(3) for n steps, we
only if found
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(X = gnl (cogA &) (A1)

and
(0 = 21 ]21 (cog\G)cos\6). (A2)

But
(cog\8,)) = %T f: cog\p)do= % (A3)

and

(cosnB)cosN ) = [S"ff“}z(l -8

+ %[% + 1} 5”-, (A4)

where g; is the Kronecker delta function.
Substituting Eqs(A3) and (A4) in Egs. (Al) and (A2),

respectively, we found
sin(a\)
X =n (A5)
A
and
sin(2m\) sin(7\)

ne iz (22,

wherea?(n) =(x3—(x,)? is the variance of the coordinatg.
With a similar analysis, we obtained

(Y =0
1 sin(2m\)
n-|1-———|.

2 27\
Thus, the walk mean displacemerth)=+/(x,)?+(y,)* and
the variancer®(n)= o7+ 07, are given by

27N\ N

(A7)

and

aj(n) = (A8)

PHYSICAL REVIEW E 71, 051402(2005
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FIG. 8. Double-logarithm plot of the crossover lengih as a
function of 1-\. The solid line represents the data obtained from
Eqg. (A12) and the dashed line has a slope —1.

r(n) = nSiri:)\) (A9)
and
: 2| 12
a(n) = n1/2{ 1- {%:M] } . (A10)

The crossover of the walk dimensionalifg=2 for short
times andd=1 for long onesoccurs wher(n) ~ o(n). Mak-
ing equal Egs(A9) and (A10), we obtained an estimate of
the characteristic number of stefyjénecessary for the cross-

over,
an |?
N=|— -1 All
[Sln(w)\)} (ALD)
Thus, the characteristic crossover length is
TN sin(a\)
=r = - Al2
&u=rN) sin(a\) 7\ (AL2)

In Fig. 8, &, is plotted as a function of 1x. Expanding
Eqg. (A12) around\=1, we foundé, ~|1-\|"%
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