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Effective capillary interaction of spherical particles at fluid interfaces
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We present a detailed analysis of the effective force between two smooth spherical colloids floating at a fluid
interface due to deformations of the interface in an inhomogeneous pressure field. The results hold in general
and are applicable independently of the source of the deformation provided the capillary deformations are
small so that a superposition approximation for the deformations is valid. We conclude that an effective
long-ranged attraction is possible if the net force on the system does not vanish. Otherwise, the interaction is
short ranged and cannot be computed reliably based on the superposition approximation. As an application, we
consider the case of like-charged, smooth nanoparticles and electrostatically induced capillary deformation.
The resulting long-ranged capillary attraction can be easily tuned by a relatively small external electrostatic
field, but it cannot explain recent experimental observations of attraction if these experimental systems were
indeed isolated.
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I. INTRODUCTION methacrylate (PMMA) spheres with radiusR=0.75um
In view of various applications such as the study of two-ere rapped at the interface of water droplets immersed in
dimensional meltind1], investigations of mesoscale struc- il Here, the secondary minimum has been measured at a
ture formation[2] or engineering of colloidal crystals on dlstanced/'R:7.6 and IS reported to b.e surprlsmgly steep.
spherical surfacef3], the self-assembly of sub-micrometer | "€ tentative explanation of these findings given in iRE2]

colloidal particles at water-air or water-oil interfaces has

invokes an analog of long-ranged flotation or capilllary
gained much interest in recent years. These particles aﬂ‘grces which decay<1/d. This interpretation was criticized
trapped at the interface if the colloid is only partially wetted

in Ref.[13] (with which the authors of Ref12] agreed 14])

by both the water and the oil. This configuration is stableanrge'g ﬁﬂgﬂgﬂ gghmcﬁcnﬁI;'ﬁgr?et??;np;;c?'?{lg_?agﬂ![ary
:gﬁ:lri]tsm:iutrnersq]aat:a ﬂ:Zuijﬁgogsbsae?segpgfa;th]zn?;" tht%agtll?ﬁ e autho.rs of these references disagree with respect to the

qurtibriu e P y eS|gn of this shorter-ranged force. In yet another twist of the
poIIO|ds immersed in the bulk phases are attrac?ed to thgtory, after completion of our work we encountered the very
interface[1] (see also Sec. )l The mutual interaction be- ocant Ref[16] in which the authors claim that long-ranged
tween the trapped colloids at distances close to contact, i-€gqpjillary forces=1/d caused by the colloidal charges persist
within the range of molecular forces, is dominated by strongtor submicrometer particles. This conclusion is based on
van der Wa.a.IS attraction. In Order to aVOid Coagulation due t%easurements of the meniscus Shape around Sing|e g|ass
this attraction, the colloids can be stabilized sterically withspheres with radii 200-300 um floating at water-oil and
polymers or with charges such that the colloids repel eackyater-air interfaces.
other. Variants of charge stabilization may include the cover- Motivated by the experimental data summarized above
age with ionizable molecules which dissociate in water, orand the still incomplete theoretical understanding, here we
the labeling of colloids with charged fluorescent markersundertake a quite general analysis of capillary interactions
For charge-stabilized colloids at large distances, the resultingetween two spherical colloids trapped at fluid interfaces.
repulsive force at water interfaces stems from a dipole-dipolé@Imost all previous studies have focused on the case of a
interaction as shown theoretically for point charges on sureonstant pressure difference across the interfd@g Our
faces[4] and verified experimentally for polystyren®9 study generalizes the results for the capillary force by taking
spheres on water-oil interfacgs]. into account the effect of a spatially varying stress field act-

Nonetheless, charged colloids at interfaces also show airg on the interface; it also complements or corrects recent

tractions far beyond the range of van der Waals forces. Thetudies in the same directidi5,16. We characterize the
corresponding experimental evidence can be roughly classsystem by a general stress field, e.g., due to a discontinuous
fied as follows.(i) According to Refs[6-10], PS spheres electrostatic field at the interface, and by a net force on the
(radii R=0.25--2.5 um) on flat water-air interfaces using colloid, e.g., of gravitational or electrostatic origin. In Sec. I
highly deionized water exhibit spontaneous formation ofwe present a free energy model for a single colloid trapped at
complicated metastable mesostructures. They are consisteant interface in the limit of small stresses and forces. The
with the presence of an attractive, secondary minimum in thgeneral solution for the interface deformation will be used in
intercolloidal potential at distanced/R=3---10 with a  Sec. lll in order to determine the effective potential between
depth of a fewkgT. The use of water slightly contaminated two colloids within the superposition approximation. In view
by ions seems to move the minimum further out and to reof the differing theoretical results in the literature, the deri-
duce its depth[10,11. (ii) In Ref. [12], poly(methyl-  vation of the interface deformation and the resulting effective
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FIG. 2. Description of deviations from the reference state)
FIG. 1. Geometry of the reference state. The equilibrium contacts the meniscus profile arftis the height of the colloid center. The
angle 6 fixes the heighth,=-Rcos# of the colloid center, the angle& and the radiusy,=Rsin ¢ of the three-phase contact line are
contact radius =Rsin 6, and the auxiliary angular variablg,; ~ auxiliary variables, which depend arfr) andh through the geo-
=6. metrical relationshign=u(ry) —R cosé. In this mesoscopic descrip-
tion rq is defined as the position where the meniscus profile inter-
esects the surface of the sphefg.is the surface area of the colloid

potential is presented in detail in order to reveal properly th 2xpose d to phase

subtleties involved. The presence of a long-ranged attractiv
capillary forcex1/d is possible only if the system is not
mechanically isolated, in which case the role of a restoringus profileu(r) relative to the planar configuration and by the
force fixing the interface, e.g., due to gravity or interfaceheighth of the colloid center. In the reference configuration,
pinning, is essential. In Sec. IV we apply the results to thethe charge distribution is assumed to be already in equilib-
case of charged polymeric spheres on water interfaces. [tum. In the following we do not consider the degree of
turns out that the constraint of approximate mechanical isofrfeedom “charge density field” explicitly but take it to be
lation of the experimental systems renders the capillary infixed to that of the reference configuration. This amounts to
teraction basically short ranged. In the context of our modelneglecting the feedback of the interface displacement on the
long-ranged attractive forcesl/d only arise in the presence charge distribution. It turns out to be useful to introduce the
of an external electric field. We shall discuss the relation tgadiusrq of the three-phase contact line and the angkes
previous theoretical results, especially in view of the experi-auxiliary variablessee Fig. 2

mental results reported in Refisl2,16. Directions for fur-
ther research will be pointed out. In Sec. V we summarize

our results. A. The free energy

In this subsection we formulate a free energy functional
for the degrees of freedow(r) andh. As shown later, for the
IIl. EQUILIBRIUM STATE OF A SINGLE COLLOID cases of interest here the deviations from the reference con-
nfiguration are small enough to justify a perturbative treat-

state of a single colloid of radit® at the interface between MeNt and the free energy can be expanded up to quadratic

two fluid phases denoted as 1 and 2. The contact angl@der inAh:=h—handu(r). We denote witlI(r) the ver-
formed by the interface and the colloid surface is given bytic@l force per unit area acting on the meniscus surface in the
Young's law reference configuration. In the case of a charged colloid,

I1(r) is given by thezz component of the difference of the
Maxwell stress tensor right above and below the meniscus,
plus the pressure difference acting across the menigous
) ] cluding an imbalance in osmotic pressure due to the different
wherey is the surface tension between phases 1 and 2yand concentration of ions just above and below the meniscus

is the surface tension between the colloid and phass a  [15 1§. We introduce the following dimensionless parameter
reference state, with respect to which changes in free energy measure the relative strength of this force:

will be measured, we take a planar meniscus configuration
with the colloid at such a height, that Young’s law is
satisfied(Fig. 1). This corresponds to the equilibrium con- 1 _ ”
figuration of an uncharged colloid at the interface if its o= mf dAIT = W J drrTi(r), (2)

. . . . Jrefd Span ref 0,refy rq ref
weight can be neglected—which for generic cases is a safe ' ’
approximation forR=1 um [17] (see also Sec. IV We
model the colloid as a smooth sphere so that the system ighere the integral extends over the flat menisgys, r.¢(the
invariant under rotations around the colloid axis perpendicuplanez=0 with a circular hole of radius, ). We assume
lar to the reference planar meniscus. The presence of chargblr — ) ~r™ with n>2, so that the integral converges. In
induces a shift of the systerttolloid and interface with  the same spirit we introduce the total vertical fofee Fe,
respect to the reference state. Here we neglect correspondiagting on the charged colloid in the flat reference configura-
changes in the surface tensiopsnd y;; this approximation tion, which includes gravity, the electrostatic force, and the
is expected to be valid provided the concentration of chargetotal (i.e., hydrostatic and osmojipressure exerted by the
is sufficiently small. This shift is characterized by the menis-fluids. This leads to the definition

In this section we consider as a first step the equilibriu

cosg= 22— 72

@
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F that the mass density of phase 2 is larger than the one of
A (3 phase 1, i.e.0,> 01, and define the capillary length
These two dimensionless parameters will appear naturally in %
the course of the calculations. #f; and e vanish, the ref- A= (p2— p1)g (9)

erence configuratiois the equilibrium state; it is the global

minimum of the free energy functional given in E¢é) and  in terms of the acceleratiog of gravity. This leads tdsee
(13) below if II=0, F=0. The aforementioned perturbative Fig. 2):

expansion of the free energy can be rephrased as an expan-

sion in terms of the small parameters and eg. 1 u(r) o u(r)
The free energyF of the colloid expressed relative to the Fuol = EYJ dA 2 va drr?, (10
reference configuration consists of five terms: Smen, ref ro,ref
F=Feontt Fment Fuol + Finter + Feoll- (4) plus corrections of third order iay, er stemming from the
fluid contained in the small volume~rq fu(rg ed||ro

In the following we discuss each contribution. T rel-
Fluid contact pf the_ coI_I0|_dW|th A der_10t|ng t_he surface As it will be shown in Sec. Il C, the precise form &,

area of the colloid which is in contact with phaisehe sur- 5 jrrelevant in the limith —o (A =1 mm, which is much

face free energy of the colloid due to its exposure 10 thqgrger than any other relevant length scale in the systems we

phases 1 and 2 is intend to study. Indeed, one can consider the functional
T = A+ vl — (ViAo VoA ) 5 form (10) just as the simplest mathematical way to achieve

cont= 11A1 ¥ oo~ (1ALt ¥2Ro e ®) that the reference meniscus configuratign =0 is well de-
In Appendix A we express this contribution as a function offined and stable whes;=g-=0.
Ah and u(r). The final result, valid up to corrections of at  Force on the fluid interfaceThe aforementioned surface

least third order irep; or gf, reads force densityll(r) acts on the fluid interface between phases
1 and 2. The free energy change due to the ensuing displace-
Feont= 77'7’[u(r0,ref) - Ah]z + 777(r(2) - r(2),ref)' (6) ments of the meniscus is

Change of the meniscus areahe free energy contribu-
tion due to variations in the meniscus area relative to the Forver = _f dATTU = _f dAITu
reference state reads S,

en en,ref

Fmen= yf dAVL+|Vu?- yf dA, ) =- 2wf drrII(ru(r). (12)
Sﬂen Smen,ref rO,ref

where§,q,is the surface of the fluid interface projected ontoHereIl(r) is the surface force in theeferenceconfiguration

the planez=0 (in which the reference interface is located (I1>0 corresponds to a force pointing upwar@hanges in

andV is the gradient operator on the flat reference interfacethe force induced by meniscus deformations and colloidal

For small slopeg|Vu|<1) one obtains displacements contribute terms of higher ordersjnor e¢
in Eq. (11). The replacement 08en bY Spenrefin EQ. (11)
Fonen= yf dA+ %yJ dA V uf? introduces terms of higher order, too.
SmenSmen ref on Contribution from the colloidThe free energy change due

to a vertical displacement of the colloid is

2 2,1 2
= Y -r + = d V u|-. 8
Yrorer= o) 27Lmen’ref AV ®) Feon =— FAh, (12

Since theu-dependent term is of second ordeninwe have  whereF is the vertical force on the colloid in theference
approximated the integration doméaife, by Snen ref the cor-  configuration. Like forF;,, changes of due to deviations
rections are at least of third order in the small parameigrs from the reference configuration contribute to higher order
or gg. The first term in this expression represents the changterms.
in the area of the meniscus which is cut out by the colloid, In conclusion, by adding Eq$6), (8), and (10)—(12) we
and in Eq.(4) it cancels the second term of E@®). obtain the following approximate expression for the total

Volume forces on the fluidsVe consider the case that the free energy, which is correct up to second ordegnor g,
only volume force acting on the fluid phases is gravity. Theand which is a function oAh and a functional ofu(r):
electrostatic forces are active only at the surfaces, where a
net charge can accumulate. First, there is a contribution due fm q {1<du)2 u?

rr
To,ref

2

1
to the vertical displacementh of the colloid; this contribu- 7+ = 27y ar) T ;HU] + my{Up— AhJ?

+
tion is contained inF,, [see Eq(12) below], since the total 2\
force F includes the buoyancy force. Second, there is the - FAh, (13
change in gravitational potential energy relative to the refer-
ence state due to the meniscus deformatign. We assume  whereuy=u(fq rep-
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B. Minimization of the free energy 0.05
The equilibrium configuration of the system minimizes 0.04
the free energy expressi@th3). The minimization proceeds N
in two stages. First we seek the minimum with respecilito .. 0.03 ™ X
at fixed u(r): 5
io 0.02 \\
o0 an (14) - X
= = Ug — &rlo refs !
&(Ah) 0 F' O,ref 0.01 ‘\\\\

. . 0 \\\
where we have used the definiti¢d). Using repeatedly the ~
definitions ofh andr, in terms of the auxiliary anglé (Fig. 0.01 0.1 1
2) we can compute the change of the contact radius, r/ A

Arg=ry—rq o= R(siN&-sin 6) FIG. 3. The meniscus solution for the parameter choice

Mro =107 ep=102 and a dipolelike stress fieldy d1(r)/y
=0.08rg e/ 1)® (ey=2-10?). The solid line represents the solution
u(r) given by Eg. (19). The dashed line is the intermediate
asymptotic solution given by E¢R0). Note that the capillary length
plus corrections of second orderdq, e¢. In the second step,  is typically of O(1 mm). In the present context we focus on the
we minimize Eq(13) with respect tau(r) at fixedAh. Thisis  length scalerg er,r <\, for which Eq.(20) holds.

a problem of variations with a free boundary conditiorr at

=Torer [19]. Variation with respect tau(r #rq ) yields a C. Asymptotic behavior in the limit A — o
second-order ordinary differential equation

Ah-u
= (0—&her= Ohref: — eghyey, (15
F'o,ref

For typical values of the parameteisjs of the order of
du 1du 1 1 millimeters and therefore much larger than any other length
dr? + rdr p“ = ;H(r), (16) scale occurring for experiments with submicrometer colloids.

In order to study the intermediate asymptoticg s, <\)
while variation with respect tog provides a boundary con- of u(r) as given by Eq(19), we insert the asymptotic expan-

dition, sions of the Bessel functiod80] as\ — ~ and retain those
terms which do not vanish in this limit. Assuming tHdtr
up = du _ Y~ Ah =&, (17) —oo0) decays sufficiently fast, Eq19) reduces to
dr =0, ref I’O,ref
. Cn 1 f e s
where the last equality follows from E@14). The second u(r) =rorefen —ep)in — — — dsdI(s)in =, (20)
boundary condition one has to impose on ELp) follows rvh r
from the requirement that the meniscus is asymptotically flat
far from the colloid(assuming thatl(r — 0)=0): where C=2e"%=1.12 andyg is Euler's constant. In Eq.
(20), we have expressed the integration consfaappearing
lim u(r) =0. (18)  in Eq. (19) in terms ofer by using the boundary condition

r—ow

(17). The first term in Eq(20) is a solution of the homoge-

Equation(16) describes mechanical equilibrium of the inter- N€0Us part of Eq(16) (with A™'=0 in the equatio)) demon-
face such that the Laplace pressure balances the forces actiﬁ%at'”g that the limit — << is singular as long asy; # e¢.

on the interface. The boundary condititi¥’) expresses me- The second term corresponds to a particular solution of the
chanical equilibrium of the colloidal particle: At the contact INhomogeneous differential equation. If the surface force
line (i.e., the circle with radius, at z=up) the interface ex-  LI(r) gscgys algebraicallylI(r — o) >r™, this term decays
erts a force onto the colloid which has a nonvanishing conlike =" (since we have assumed- 2), so that the logarith-
tributon only in z directon with the magnitude Mic contribution is dominant. <2, the asymptotic behav-

2myro sinfarctarfug)]= 27y 15, This contact line force is 10 is no longer given by E¢(20) but a different dependence

balanced by the total force. on A arises. _ _
The solution of Eqs(16)—(18) can be written in terms of At distances of the order ofi, the expressio(20) is not
the modified Bessel functions of zeroth order valid and a crossover to the exact solutid®) takes place in
order to satisfy the boundary condition at infinféq. (18)].
1 (r\(” s Figure 3 sketches the behavior of the meniscus prafile
u(r) = _IO(_)L dSSH(S)KO(X) As can be checked directly in the differential Ha6), one

hasu(r) ~ (\2/ y)I1(r) =< r " asymptotically ag — +o°, which
1 r ' s expresses the balance between the surface fd(ceon the
* _KO( )lA+f dssl'[(s)l()(X)] (19 meniscus and the gravitational force. There is, however, an-
' other intermediate regime>\ but not too large, in which
where the integration constaAtis determined by the bound- u(r) decaysxexp(-r/\) and which corresponds to the solu-
ary condition(17). tion of Eq. (16) with II set to zero, i.e., when gravity is

0,ref
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tion for u(r) are presented in Appendix B. Here we quote
only the intermediate asymptotic behavio rer I < Ryrop
. e whereRy,q, is the radius of the undeformed droplet

E 1 +o0
u(r) =g refen — ep)In %9— —j dsd1(s)In ?
YJy

(24)

with C a numerical constant given by E@23). Again Eq.
(24) closely resembles Eq§20) and (23).

™~ The physical reason for the occurrence of the singularity
phase 1 RS in the limit X, L, Ryop— + is that a “restoring force” far
rom the particle is required to yield a well-defined unper-
urbed interface which allows one to determine the deforma-
tion u(r) unambiguously. For example, if one takes the limit
A — +o in the Young-Laplace Eq.16), it is inconsistent to
impose the boundary conditiomr — +)=0 in the corre-
balanced by the Laplace pressure induced by the menisciht ot T e e e e, the

curvature. . . comparison of Eq9420), (23), and(24) demonstrates that the
These conclusions, as well as the functional depen_den%nctional form of the intermediate asymptotic behavior is

of u(r) on 1(r), are _rqbust and independent of the deta||_s Ofindependent of how the restoring force is implemented. This

the boundary condition at—-. In order to support this ., resnonds to the so-called intermediate asymptotic behav-

statement, we consider two cases which implement the digg, of the second kind21], characterized by the following
tant boundary condition differently. features.

Pinned interfaceln the absence of gravity the interface is (1) There is a length scak\, L, or Ryp Which is much
y b ro

assumed to be pinned at a_fligite'distancieom the colloid. 5,46y than the other length scales of the system under con-
This corresponds to setting~=0 in Eq.(16) and replacing  gigeration and which seems—at first sight—to be irrelevant.

Eq. (18) by the boundary condition(L)=0. In this case the (2) Nevertheless, this length scale determines the domi-

FIG. 4. Colloid at the surface of a droplet of phase 2 immersec{
into phase 1. The radiuRy., of the droplet, which is spherical
without the colloid, is usually much larger than the colloid radRus
(The deformation of the droplet has been exaggerated.

solution of Eq.(16) is given by nant logarithmic(or more generally, the power lawdepen-
L 1(t s dence.
u(r) =roefen —ep)in — = — f dsdl(s)in =, (21) (3) The detailed physical origin of this length scéile the
rovh r examples we have considered, gravity, pinning of a reference
where flat or curved interfacedoes not matter.
Well known examples of this kind of asymptotic behavior
~ 1 - drrll 22 are critical phenomena in phase transitif22]. In that case,
en = Yo ref rrII(r), (22) it is the microscopic length scale given by the amplitude of

Foref the correlation length which cannot be set to zero although it

in analogy to Eq(2). In the intermediate asymptotic regime is much smaller than the correlation length itself. This mi-
(rorenr <L), the meniscus profile is then given by croscopic length scale is required to formulate the power-law
oo behavior of certain properties of the system, but its detailed
dsdlI(s)In §, (23) physical origin is unimportant for the universal decay expo-
r nents of the power laws.

L 1
u(r) = rO,rei(“:l'l —eg)ln — - _f
rv

r

assuming thatl(r) decays sufficiently fast so that the inte-
grals in Eqs(21) and(22) converge as — <. Equation(23) lll. EFFECTIVE INTERACTION POTENTIAL OF TWO
rese_mbles Eq20) with CA replaced byL. _ FLOATING COLLOIDS

Pinned curved reference interfackn some experiments
the interface between phases 1 and 2 is in fact closed, so that In this section we consider the equilibrium state of two
the colloidal particle lies at the surface of a large nonvolatileidentical colloids floating at the interface at a fixed lateral
spherical droplet of phase 2 which is immersed in phase #listanced and compute the effective interaction potential
[12] (Fig. 4 and fixed by certain mean®.g., by a glass Vned{d) generated by the meniscus. The free energy can be
plate. The free energy function#l3) has to be modified to derived along the same lines leading to E#R3), but with
account for the curvature of the reference interface as well adue account for the fact that in the presence of two colloids
for the constraint that the droplet volume remains unchangethe meniscus slope no longer exhibits rotational symmetry.
under deformation. To determine the interface deformationNonetheles¥,.,depends only on the distanddetween the
we minimize the functional and employ the boundary condi-centers of the two spheres. The reference configuration is
tion that the droplet is fixed at some point far from the col-that of two colloids floating on a planar interface with the
loid. The mathematical details and the corresponding solueorresponding reference free energy being independeht of
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y is the mean height of the contact line. In the next step, we

minimize with respect tdi at fixed Aﬁa. Variation in the
interior of the domainkR?\(S,US,) provides a second-order
To, et To et partial differential equation

2 )\ 7

while variation at the boundaryS, U S, provides the fol-
lowing transversality condition§19]:

FIG. 5. Top view(projection onto the plane=0) of the refer- o
ence configuration with two colloidsl is the distance between the au(r)y a(r) - Aﬁa ar)-a,
= —ert+ —m7M8MMm

colloid centersS, andS, are disks of radiusg ¢, the correspond- n ; ; . r=(xy) €dS,,
ing circumference¢counterclockwispare dS; anddS,. The projec- @ 0.ref 0.ref
tion of the interface iSyen e R2\(SLUS). (29

In this case one has for the free energy relative to that of thwhere the last equality follows from E6). In this expres-
reference configuration a contributiotF et Fuoit Finer ~ SION: 9/ dN, is the derivative in the outward normal direction
from the meniscus and a contribution of the forf,, Of 9S. [In this way, the triad(e, &€, is right-handed,
+ Fo from each colloid(The total free energy includes also Wheree, is the unit vector in the outward normal directies,
the direct interaction between the colloids; this contributionis the unit vector in the counterclockwise tangent direction,
will be considered in Sec. IV B From Egs.(A7), (8), and andeg, is the unit vector in the positive direction] When
(10—(12) one obtains applying the transversality condition, in the context of
Gauss’ theorem one must keep in mind that the boundary of
. 1 P2 1 the regionR?\(S,U'S,) consists of the contouiS, traced in
F= Yf dA §| Vﬁ|z+ﬁ——ﬂﬁ clockwise directionwith the normals directed towards the
RASUS) Y interior of S,. [The boundary at —o does not contribute
y . SN due to Eq.(30).] In the special case of a single colloid, ro-
+ > 5 3€ d¢[Ah, - 0]*~F,Ah, . (25)  tational invariance reduces E@9) to Eq.(17). Finally, one
a=12 | “Toref) 53, has the additional boundary condition

Here, U is the meniscus profile in the presence of two col- lim G(r) =0, (30)

loids, Ah, are the corresponding heightd, is the vertical r—w
force per unit area on the meniscus in the reference configu-
ration, andF, is the force on each colloid. By symmetry, one The solution of Eq(28) with the boundary conditions given
hasAh,=Ah, andF,=F,. S, are the circular disks delimited PY Eas:(29) and(30) is a difficult task[\We are only aware
by the contact lines of the colloids in the reference configu®f the—already very involved—solution of the homoge-
ration, S, are the contact lines, with the convention that weneous Eq(28), i.e.,I1=0, with the simplified boundary con-
trace them counterclockwise, aen e=R2\(S;US,) (see  dition d0/on,=e¢ [23].] For the present purpose, one can use
Fig. 5). the so-calledsuperposition approximatiof25,24,24, which
yields the correct solution in the asymptotic limit of large
separationd>R between the colloids. Leti, denote the
equilibrium meniscus profile as if colloid was alone, with
IT, andF, denoting the corresponding forces. The superpo-
The equilibrium configuration is the minimum of the free Sition approximation then reads
energy given by Eq(25). The minimization procedure fol-

lows closely Sec. Il B. First, minimizing with respect Adn,, U=u;+uy,
at fixed meniscus heiglitleads to the height of the colloids,

A. Minimization of the free energy within the superposition
approximation

o o I =TI, + 11, (31
= 0 D Aha = Ua - 8|A:r01refy (26)

F=F =F,.
where 172
B 1 Notice that the fieldsu,(r) and Il (r) are defined in the

G,: j[; ded (27)  domainR?\S,, while the fieldsli(r) andIl(r) are defined in

ISy the smaller domai?\ (S, U S,). Equationg28) and(30) are
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fulfilled by this approximate solution, but the boundary con-out some analytic manipulations one finds the following ex-
dition (29) is violated: using Eqgs(31) and the boundary pression for the effective potential:
condition in Eq.(17) for the single-colloid solution, one ob-

s Vo) = | dA[ YTu) - (Vi) + Fuyu, - znluz]
— RA(S,US)) A
[&ﬁ(r)_sA_ﬂ(r)—ﬁl] o
oy F Foret lress, - fsl dA| 7| V uy*+ Fuz - 2I1,u,
Auy(r) 1 1 jg
= - uy(r) = déu : 4 S p—
|: any royref{ 2 27T|'0’ref S5 2 reds, + o ref%ﬁg]- de[u_ Uz] 2Fu. (37)
(32)

The first integral accounts for the change in surface energy,

and a similar expression for the other colloid with the indicesgra\/italtional potential energy, and surface-stress potential

. ; . energy of the meniscus due to the overlap of the meniscus
1 and 2 interchanged. In general, this expression does Neformations caused by the two colloids. The second integral
vanish as required by E@29). If d is large, Eq.(32) can be y ; g

evaluated by expanding, into a Taylor series around the is the corresponding change due to the fact that the interface

center of colloid 1, yielding to lowest ordde; is the out- Is reduced by an amour$; compared to the smglt_e—collmd .
, . case because of the presence of the second colloid. The third
ward directed normal unit vector @fS))

integral is the change in surface free energy of one colloid
due to the extra meniscus deformation induced by the second
] colloid. The last term is the change in energy due to the
redS;

{aﬂ(r) 0(r) - 0y

any TR Fo.ref vertical displacement of one colloid by this extra meniscus
1 deformation.
For the mathematical manipulations to follow, it is suit-
= “ro €81 V V Uy(d) + V2uy(d 33 _ bt ;
4 orel €181 o(0) Ue(d)] (33 able to rewrite Eq(37) by applying Gauss’ theorem to the

integrals involvingVu and by using the fact that the func-
in dyadic notation. Inserting the single-colloid solution giventions u, fulfill Eq. (16) individually, e.g.,

in Eqg. (20), one finds that this expression decays Iik8 if

er 7 eq, and likell(d)~d™ if ex=eyy. . Yj dA(Vuy) - (Vuyp)
The superposition solution can be used to determine the Jr2 s us,

vertical displacement according to EQ6):

= VJ dA[V - (u;Vuy) - u2V2u1]
RA(S,US))

Ah, = Ah+T, (34)
whereAh is the relative vertical displacement of an isolated - ng deM +J dA|:H1u2 - lzu1u2:| )
colloid [Eq. (14)] and 95 any RA(S,US,) A
1 (39
U:= dfu (35) ; .
27Tro,ref£sl 2 Thus one obtains from Eq37):
is the average of the single-colloid meniscus height at the Viner(d) = —J dAH1u2+f dAILu,
contact line of the other colloid. RA(SUS,) S
Auuy) 1 fﬁ au3
Ve i ; i - dl——=-—-y® dt—=
B. Effective interaction potential jgasl an, 2" ), I
The meniscus-induced effective potential between the two
colloids (without their direct interactionis defined as + 3€ d¢[u-u,]?- 2Fu. (39
I'O,ref ISy
Vinedd) := F = Fy = Fp, (36)  In this form all the integrals, except the first one, are per-

. formed over bounded domains. This allows one to carry out
where F is the free energy of the two-colloid equilibrium a Taylor expansion which vyields a uniformly valid
configuration[Eq. (25)] while F;=F, is the single-colloid asymptotic expansions of the termsdas: . In the follow-
equilibrium free energyEq. (13)]. As noted before the en- ing calculations, the integrals are evaluated in polar coordi-
ergy of the reference configuration is independent of thenates with the origin at the center 8f andr , is the position
separationd and drops out from Eq(36). We insert Egs. vector with respect to this origin. In particulap=de, is the
(31), (34), and(35) into Eq. (36) and exploit the invariance center of colloid 1 with respect to the center of colloid 2, and
of the free energy under exchange of the colloids, i.e., the;=-de, is the center of colloid 2 with respect to the center
symmetry under exchanging indices=12. After carrying of colloid 1 (Fig. 5 so that, e.g.u,=u(|r ).
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(1) In order to compute the leading asymptotic behaviorWe can simplify the result further by evaluating the last in-
of the first term in Eq.(39) as d—o we distinguish two tegral by repeated partial integration with the explicit solu-
cases. tion for u given in Eq.(20):

(@) en#eg: In this case,u~logr [Eq. (20)] while II
~r " (n>2) asr —o. Asymptotically the main contribution

stems from the region ne&; and 1 2u
f dAUry) = Ewrg,refl e~ 0
RAS, Fo,ref
f dAH]_Uz = U(d) dAHl = 27T‘yr0’re]€[[u(d), _ 1 f drr?’H(r) ] (42)
RA(S,USy RAS Vet 1o e

(40)

employing the definition(2). It will turn out that there is no One finally obtains
need to compute also the next-to-leading term in order to
obtain V,.{d— ), as the leading term will be part of the

leading contribution td/,,¢, and it will not be cancelled by f dAIT U, = 27yr g eeu(d) + [zf dAUr,)
other contributions. RA(S,US)) ' RAS,

(b) en=eg: In this caseu~r2™" if TI(r—»)~r™. The 1 U
regions contributing mainly to the integral are the neighbor- - = re<8n - =0 )}H(d) T
hoods ofS; and S,. We employ the Taylor expansion of the 2 Fo,ref
integrand(which is valid up to a maximum order depending (43)

on how fastll decay$ to evaluate the leading and the next-

to-leading contributions ih>4 (using dyadic notation ) o
where we have employed E®8) (with A\™*=0 for simplic-

ity). Convergence of the integral afimposes the more strin-
_ gent constrainh>4 on the decay ofl [see Eq.(42)].

JRZ\(Slusz) dAlT U, = Lﬁ\sl dALL (U + 1y - (VW) The validity of formulas(40) and (43) has been checked
L explicitly by comparing their predictions with the numerical

+5rr:(VVu),+ "']fz=dex evaluation of the integral for a surface stress of the féfm

oor™ with n>4,

+f dAW[TT + T — e ~ (2) The second term in Eq39) can be estimated in the

RAS, limit d—c0 by expanding the integrand into a Taylor series,

which is uniformly valid in the integration domain
= 2777r0,re16Hu(d) y g

+2avau(d) [ dreII(r) f dAIT,u, = f dATT Uy + -+ ]~
To,ref S S
= g3 AI(d)u(d) + - . 44
+11(d) dAL+ . (41) o red (A U(d) (44
RAS, (3) The third term in Eq(39) reads

I(uqUp) 2 2 1
jg dt——==| delr;- V)l =, ~| de{(ri- V)yuyup+ry-(Vup+orirgi(VVU,+ -
s M 0 < Jo 2 r,=de,

"170,ref

(45)

du
dr

d(r?u)
dr

T 2u
= 271'rO,reF‘/‘Fu(d) - _rg,re(sF + ] £ )H(d) +--

= Zwro,reﬂ(d) 5
Y 0,ref

ar
2
+ _rO,rer U(d)
r=r 2
0,ref

"=Fo ref

(46)
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using the boundary condition farin Eq. (17).

(4) The fourth term in Eq(39) is evaluated analogously:

auZ 2
35 de =2 = f delry- Vo . (47)
i I Jo ’

27
= f defry - [(VUZ)z

0
try- (V v U2)2 + :lrzzdex}rlzro‘ref
= 7 V2UAd) + - (48)
(5) The fifth term in Eq.(39) is given by

1 2
35 df[u,—-ul?= J dou3 - 272
I’O,ref S, 0
= 375 of V2UA(d) - 2uV2u(d)] + -+
2
= %mg’ref[Vzuz(d) + ;H(d)u(d)

o (49

(6) In order to evaluate the sixth term in E9), we
expandus, in the definition given by Eq(35):

_ 1 3€
u= deu,
271'rO,ref S,

1
= u(d) + ngv,efvzu(d) + o

= u(d) - %yrgvrefn(d) +oee (50)

PHYSICAL REVIEW E 71, 051401(2009

Vmer(d) = — 211(d) dAu, (R<d<)\). (52
RAS

This correspond to a shorter-ranged effective interaction,
which in principle can be either attractive or repulsive de-
pending on the precise form of the functidi(r). In the
particular case thdil(r) decays monotonically to zero, e.g.,
IT(r)cr™, it is easy to check tha¥,,., amounts to a repul-
sive force, because the signwfs opposite to the sign dfl.

We have seen that the error committed by the superposi-
tion approximation in satisfying one of the boundary condi-
tions, Eq.(33), decays likell(d), too. This suggests that the
corrections to the superposition approximation could modify
the precise value of the constant factor acting as an ampli-
tude in Eq.(52), anda priori it cannot be excluded that there
are cancellations leading to a vanishing amplitude, and there-
fore to an even faster decay for lardeThus the superposi-
tion approximation might not be reliable enough for calcu-
lating Viyen if ep=eg.

If one traces back the origin of the dominant contributions
to Vmen ONe finds that in both cases only the first, third, and
sixth term in Eq.(39) are relevant. They correspond physi-
cally to the effect of the overlap of the two single-colloid
meniscus profiles and the change of the colloid hejjht
integral and the term R in Eq. (37), respectively.

IV. APPLICATIONS AND DISCUSSION

Equations(51) and(52) describe the asymptotic behavior
of the meniscus-induced effective intercolloidal potential and
thus represent a central result of our analysis. They provide
the explicit functional dependence on an arbitrary stress field
I1(r) which decays sufficiently fast. The assumptions enter-
ing their derivation aréi) that the deviations of the meniscus
profile from the reference configuration are small, allowing
one to confine the analysis to a free energy expression which
is quadratic in the deviations, ariil) the superposition ap-

The asymptotic behavior of the effective potential is finally proximation, which expresses the two-colloid equilibrium

obtained from Eq(39) by collecting all terms. There are two state in terms of the single-colloid state. The analysis shows

qualitatively different cases. that the limit A — +o is nonsingular only in the caser
en # ep: The limit A — o is singular and the single-colloid =g;.

meniscus profile exhibits a logarithmic dependence. One

finds that the leading contribution is provided by the terms A Flotafi

. . Flotation force

proportional tou(d):

Equation(51) can be used to determine the flotation force.
There are no stresses acting at the meniddus0, while the
forceF on the colloids is due to their weight corrected by the
buoyancy force. Accordingly, Eq51) reduces to the flota-
tion potential

Vmer{d) = 2777r0,re1(8F - SH)u(d)
C\
== 2myefer—en)’In =, (R<d <)),

51

B V@ = 2mrg e = 2mQ2in S Reden,

which represents a long-ranged attractive effective potential, (53)

irrespective of the sign of the forcésandIl acting on the

system. whereQ:=ggrg of IS known as the capillary chargé7], by
e=eg: The single-colloid meniscus profile decays like analogy with two-dimensional electrostatics. The asymptotic

u(d) ~d?™if TI(d) ~d™. The leading contribution is propor- form for d<\ originates from a potential proportional to the

tional tol1(d), because the terms proportionalu@) cancel  modified Bessel functioy(d/\) [see Eq(19)][24,26]. The

each other. order of magnitude of the capillary charge i
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ented surface, i.e., the side the arrows in Fig. 6 poir{tito
not point tg]

s, |
i S men,ref %
: S

dA-T=f dV(V - T)
V1UV,UV,

ot

+ f dA - (T*-T7)
Sﬂen,repslusz

:J av(v -T)+f dA -(T*-T))
VUV,

FIG. 6. (Color onling In the reference configuration the whole Stenref

system is divided into volumeg,, V,, andV,. VolumeV; (enclosed
by the upper dashed cunvimcludes phase 1, volumé, (enclosed +
by the lower dashed curyéncludes phase 2, and volumé in- v
cludes the interior of the colloid. The arrows indicate the direction J

S

dv(V -T) + f dA - (T —T‘)}

3 SUS,

dAlle, + Fe,. (56)

en,ref

in which the surfacegéincluding the infinitesimally displaced ones =
are orientedS; encloses the whole systeye, refis the interface
between phase 1 and phase 2, &g, denotes the interface be- | the first line, we have applied Gauss’ theorem with due
tween the colloid and phasé2). account of the possible discontinuities of the ten§oac-
cross the interfaces. In the second live,T =0 in the fluid
~ToefR/IN)? For a typical valuey=0.05 N nT! at room phases/; andV,, because the counterion distribution of the
temperature and for colloids with a mass density of the ordereference configuration is the equilibrium distribution and
of 1 g cni®, the prefactor of the logarithm can be estimatedthus locally force free. This distribution is considered to be

as fixed. The second term in the second line is the total force on
6 the meniscugwhich can have only a normal compongnt
2 R while the terms in square brackets sum up to the fd¥ce
2myQ? ~ | —— | kgT. (54) , Sq p
10 um acting on the colloid.

Therefore, compared with the thermal energy, the flotation Thus the vertical component of the total force is

force is negligible for submicrometer-sized colloids.
e, dA - T =2myrq refl€n — €F).- (57)
S

B. Electrically charged colloids o

Another application is the case of electrically charged coI—:;c |t_\;an|§2§cs); d?r?glttcl)s éze(g%sfhfgri;r;ﬂ'izglﬁe; ?r)]/:telg:],gthen
loids. If one of the liquid phases is water, the charge of the !~ °F . ’ U . B
colloid is screened(?he Igebye length of pure w?ater is fanged logarithmic contribution t¥,,e, is absent and thus

~1 um and smaller in the presence of an electrlytnd the limit A — oo is regular. Physically this means that there is

the effective electric field is that of a dipole oriented perpen—no need for a restoring force acting on the fluid-fluid inter-

. o .~ face when the deformation is created by localized internal
dicularly to the fluid interfacé4,5,27-29. The electrostatic . ; X
field decays as~3 and the stress on the meniscus & stresses. Instead, according to EsR), one obtains a poten

- ) -~ tial Vipen*d® for the present case of a dipolar electric field
— o) 17°. Both t-he electrostatic stress and the osmth Ionl(‘(see at6)ov)e This shorter-ranged potential cannot counterbal-
pressure decay in the same manfiiéf]. Thus the total inter- 506 the direct electrostatic dipolar repulsied=3. Such a
colloidal potential at intermediate distances is counterbalance would be needed for a straightforward expla-

keT nation of the aforementioned experimentally observed attrac-
F +Vmen (@>0). (59 tions.

The line of argument to explain the absence of the loga-

If gravity is neglected both as a force on the colloid and as dithmic contribution toV,,.,was already put forward in Refs.
restoring force for the interfad@ — ), then one can indeed [13,15, where exclusively the cadd(r)«r=® has been ad-
show that the ensuing condition of mechanical isolatiom  dressed. Our detailed analysis complements and generalizes
net force on the systenieads tos;;=¢f, i.e., precisely the these contributions. In Relf13], Vi, {(d) is estimated by tak-
situation for which the limitA — is nonsingular. To see ing into account only the degree of freedom “meniscus pro-
this, we consider the total stress ten3owhich consists of file,” u(r), and considering only the change in meniscus area
the Maxwell stress tensdédue to the electrostatic fieldnd a  due to the superposition of the dimples. This corresponds to
diagonal osmotic pressure tens@ue to the electrolyt¢s retaining only the terme<(Vu,)-(Vu,) in expression(37).
[18,30. At interfacesT can be discontinuous. The total vol- Although the type ofl dependence obtained that way is cor-
umeV of the system is divided into volumas, V,, andV; rect, the sign of the force turns out to be wrofajtraction
(see Fig. 6 for the explanation of the notation in the follow-instead of repulsion The reason is that the contributions
ing equation. The total force readithe superscript™™ de-  «II,u, and «Fu in Eq. (37) are equally important as the
notes evaluation on the positiveegative side of the ori- retained term. This is taken into account in the more detailed

Vigt=2a
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analysis of Ref[15], where the limiting cas&k=0 (point Vi (dyin) = 12.94sT/R% With regard to the latter value we
particle is considered from the outset, so that “height of theremark that systematic corrections can be estimated to lower
colloid” is not an independent degree of freedom, ite., Vi by a factor 2-3. These systematic corrections incliife
=u(0). CorrespondinglyF is set to zerdeg=0), and its ef-  multiparticle effects andii) center-of-mass movement of the
fect is modelled by a Dirad contribution to the stresH(r)  droplet. We have estimated the effect(of by carrying out
such thate;;=0. The potentiaV,{d) calculated this way Langevin simulations of the seven particle system using the
corresponds to keeping the three terms mentioned abovetercolloidal potential Eq(59) below. As for the effect of
which are relevanithe first and third term in the first integral (i), any shape deformation induced by the moving colloids
of Eqg. (37) and the last term of Eq37)] and to setting\ changes the center-of-mass position of the droplet since the
— o0, since this limit is regular whea==g;=0. Our analysis droplet is fixed to the upper glass plate. The corresponding
has shown that the terms which are dropped in the IRniit change in the gravitational energy of the droplet translates
—0 [second and third integral in E437), second, fourth, into a weak confining potential for the colloids which limits
and fifth terms in Eq(39)] yield indeed a subdominant con- the stochastic movement of the center-of-mass of the seven

ot

tribution to Eg.(52). However, the integral appearing as a colloids. This effect might be part of an explanation for the
expected to be of the order &&. The precise value o&  tential in an external field is
yields a=rg e o d
argumenf{ Eq. (56)] can be easily generalized to include the min
reported in Ref[12] using colloids trapped at the interface of mentioned above. Furthermore, from E§1) we deduceb
[see EQ.(20)] is on the scale of nanometers. The short-

whereg, is the radial unit vector of the unperturbed sphericalrough estimate oty;, we consider the colloid charge to be
panded for small angles in the linfRy,,— . This leads to  [4,15]. If we assume this form of the stress tensor to hold for
the details of the implementation of the distant boundanjustifies the perturbative approach which we have adopted.
(colloid size/system lengjfy, which seems nevertheless too andy as given above we find

Mechanical isolation is violated in the presence of an ex{elatively small electric fieldE~1.8x 10* V m™, indicating
external field may have distorted the measurem¢8fd.  the meniscus-induced logarithmic potential to have a depth
the case of an external field in more detail. In this experimento manipulate the structures formed by the colloids at the
droplet immersed in Oanrop” 32R=24 um). The latter was 2. The experiment and analysis reported in Ref. [16]
sidual charges might have resided on the upper giaig at water-air or water-oil interfaces are reported. The data for

prefactor in Eq.(52) is divergent forR— 0, so that in Ref. absence of center-of-mass movement observed in[R2F.
[15] a short-distance cutofi has been introduced which is According to Eqs(51) and(55), the total intercolloidal po-
depends on the details of the implementation of this cutoff; T CA
for the example used in R€f15], the application of E¢(52) Viot = al _pln—= (a,b>0). (59)
In the presence of gravity mechanical isolation is violated, ;, ; ;
" 2 g the aforementioned experimental data df, and
and as we have showay—sg| = (R/\)?. (The force-balance V2. (dhyr), ONe obtains from Eq59) b= 24%sT, a~83d3
|~ and Vio(dmin) = =275 T which is surprisingly deep, even if
effect of the gravitational volume forgeln the case of & oy caq by a factor 2-3 due to the systematic corrections
curved reference interfageorresponding to the experiment
: ; =27y fen—ep)? and with y=~0.05 N/m we find ey
water droplets in ol Eq. (56) is replaced by —&p|=(2 nm/1y ). The long-ranged meniscus deformation
3€ dA - T :f dAlle; + Fe,, (58)  ranged meniscus deformation near the colloid can only be
S Smen,ref evaluated with a specific microscopic model fdr). For a
droplet. Force balance in the vertical direction yields a factoiconcentrated on the surface. The asymptotic behavior of the
e -e,=cosy (see Fig. 4 in the integral, which can be ex- stress tensor in this case is given byr)=(akgT)/(4r°)
a curvature-induced correctiday —eg| < (Ig ef/ Rarop? €ven — all r, we findep = 1074/sire 6 for the values ofy anda given
for mechanical isolation. Thus we see that independently o#bove. For not too small contact angles, thiposteriori
conditions the logarithmic term in the potentie},s, [Eq. If the system has a net charge then |qE|=27yr efen
(51)] has a strength which is proportional to —eg|=v2myb[see Eqs(57) and(51)]. Using the values fob
weak to explain the reported attractive total interaction. IqE| = 3.6 10° eV 'L, (60)

1. The experiment reported in Ref. [12] For the valueq~2x 10° e quoted in Ref[12], this yields a
ternal homogeneous electric fieltk,. For the experimental how sensitive the system can be to spurious external fields.
setup used in Ref.12] it cannot be ruled out that such an Alternatively, an electric fiel&E~10° V m~tis sufficient for
Since this is the only experiment which provides quantitativeof the orderb~1kgT. Thus the external field offers the pos-
information about the secondary minimum\ig,, we discuss  Sibility to tune easily the capillary long-ranged attraction and
position-recording measurements were performed on a hexaterface.
agonal configuration of seven trapped colloids on a water
confined between two glass plates and the droplet stuck on In Ref.[16], experimental results for the meniscus defor-
the upper glass plate with a contact angle closertdRe-  mation around glass particles of radii 2000 um trapped
The measurements yielded the position of the secondarjpe meniscus slope’(rg) at the contact circle implyEq.
minimum, d,i,=7.6R, and the curvature at the minimum, (17)] ex=0.2 (water-oil interfacg, about fifteen times larger
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than the corresponding: 4 caused by gravity alone. Further- the case of charged colloids. As we have shown the contri-
more, the reported meniscus shape for one sample containdations of the terms:I1,u, andeFu in Eg. (37) are relevant
logarithmic part which is consistent witlker—e;=0.1  and can change the qualitative behavionif.{d) even in
>ep 4 [Ssee Eq.(20)]. As in the experiment analyzed in the the limit of point colloids. It would be worthwhile to gener-
previous subsection, the experimental observations could bslize the analysis of Ref10] along the line of arguments
understood within the framework of the theoretical model wepresented here in order to assess the importance of surface
have developed in terms of an external electric field violatingroughness. This should be complemented by more precise
mechanical isolation. Yet independently of us, the authors oéxperimental information about the actual colloidal topogra-
Ref. [16] have developed a theoretical model based on thehy.

same physical hypotheses as our approach which, they claim, Recently, an explanation based on a contaminated inter-
explains the observed long-ranged meniscus deformatioface has been advocatgsP]. The air-water interface would
Here we would like to note two important errors which flaw be actually a two-dimensional emulsion consisting of hydro-
their analysis. phylic (watep patches and hydrophobisilicon oil) patches.

(1) Eq. (3.19 in Ref.[16], in terms of which they inter- The colloidal particleghydrophobic in character according
pret their observations, can be obtained by inserting théo Ref.[32]) would cluster in the hydrophobic patches. Thus,
large-distancér>r ) asymptotic behavior ofI(r) in our  confinement of the colloids by finite-size hydrophobic
Eqg. (20) [equivalent to their Eq(3.14 up to an additive patches would give the impression of an effective intercol-
constant both into the integral terrand into the definition of loidal attraction. At present, this explanation is only of quali-
enr [EQ- (2)]. Since the dominant contribution to the integral tative nature.
defining ey stems from points =rq o this procedure is Thermal fluctuations of the interface position around its
clearly inadmissible. As a consequence, they obtain a wrongnean valueau(r) also induce an effective interaction between
nonvanishing prefactor of the logarithm, in spite of their ex-the colloids which confine these fluctuatiofGasimir-like
plicit consideration of mechanical isolatidisee their Eq. force). Using a Gaussian model of the fluctuating interface in
(6.9)]. analogy to the procedure employed in R&3] for calculat-

(2) In order to calculate the intercolloidal effective poten-ing fluctuation-induced forces between rods in a membrane,
tial within the superposition approximation, the formula re-one finds for uncharged colloids a fluctuation-induced poten-
lating Vine(d) to the meniscus deformatiar(d) in the pres-  tial Vyy.=-kgT(rg efd)? which is too small and falls off
ence of gravity alonéi.e., Eq.(53)] is applied even though more rapidly than the intercolloidal dipole repulsion. Here,
IT#0. Thus, an additional term contributing to the leadingthe generalization to the charged case might give hints for
logarithm is not includedcompare their Eq(3.16) and our  the effective attractions betwesrry small particles trapped
Eq. (5D)]. at interfaces. Concerning particle sizes well below the Debye

In Ref. [16] also a numerical analysis is carried out. A length, one should modify our analysis to account for the
detailed study of the relation between the results of this nueverlap of the screening ionic cloufthis would affect, e.g.,
merical analysis and our theoretical predictions will be pub-the superposition approximation for the stress fiHIdEQq.
lished elsewhere. (3D)].

It may be possible that the presence of an external field is Finally, in Ref.[34] the attraction of particles trapped at a
consistent with the data from Refd2,16], as well as with  nematic-air interface is reported and an explanation in terms
the presence of the secondary potential minimum observedf a logarithmic meniscus deformation is proposed which
in the experiments using planar troughs, in particular in theparallels the explanation given in R¢L2]: in this case, the
caseddi,>10R, which fall into the intermediate asymptotic deformation would be caused by the elastic distortion in-
regime considered here. But this still remains as an opeduced by the particles on the nematic phf34]. Our de-
problem. tailed theoretical treatment shows that no long-rafigga-
rithmic) meniscus distortion can arise on an interface if the
system is mechanically isolated and the excess free energy of
the perturbed interface is correctly described by an expres-

Given that already nanometer distortions of the meniscusion like Eq.(13). Thus it appears that the simple explanation
produce noticeable attractions, the surface topography of cobf the observed colloidal attractions given in Rg4] is not
loids might be relevant. In Ref10], colloidal surface rough- correct. However, it is not clear whether the free energy of a
ness is proposed as an explanation of the attraction. Theistorted nematic-air interface is equivalent to that of a
meniscus contact line is assumed to be pinned at defects @imple fluid interface due to the long-ranged interactions in
the colloid surface caused by surface roughness. This imthe nematic bulk caused by defects. Thus, a generalization of
poses a different boundary condition for the meniscus at comsur theory to interfaces involving nematic phases would be
tact, which is then deformed even in the absence of electradesirable in order to assess the possibility of long-ranged
static forces. The corresponding analysis in R@f] is  colloidal attractions in more detail.
concerned only with the ters(Vu,):(Vu,) in the expres-
sion (37), leading to the conclusion that,.{d) decays as
d™*and corresponds to an attractive potential with a strength
of 10* kgT for meniscus deformations of the order of 50 nm.  We have analyzed the effective force induced by capillary
This conclusion, however, cannot be simply carried over tadeformation between two smooth spherical colloids floating

C. Outlook

V. SUMMARY
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at a fluid interface. The relevant degrees of freedom are the h=u(ro(¢),p) — Rcosé(e), (A2)

meniscus deformation and the height of the colldigig. 2), . . .
whose equilibrium values are given by minimization of aWhereu(ro(¢),¢) is the meniscus height at contact. The sur-

free energy functional. This functional was derived assumind@ce areas of the colloid in contact with phases 1 and 2 are
small deviations from a reference configuratidfig. 1). It 2m o) 2m
incorporates the surface tensions of the three interfaces in- A, = RZJ dqof dysing= RZJ de[1 - cosé(e)]
volved (“colloid-fluid phase 1,” “colloid-fluid phase 2,” and 0 0 0
“fluid phase 1-fluid phase 2’ the potential energy of the (A3)
colloids under the action of a fordg the potential energy of
the fluid interface in an arbitrary surface stress fitler), — and
and the potential energy due to a restoring force acting on the - 2 _
interface[Egs. (4)—(13)]. The effective intercolloidal poten- Ao = 4R Ay, (A4)
tial [Eq. (36)] was calculated in the limit of large separations respectively. The expression for the free energy in Bgis
by using the superposition approximatipgq. (31)]. We  based on these formulas for the special cagép)=6 (Fig.
have shown in this limit that the contribution to the effective 1) and on Young's lawEq. (1)]:
potential by the interfaces colloid-fluid phases is subdomi- o
nant. If the total force act!ng on the system, 90n5|st|ng of the Foont= szf de[cog 6 - cosd cosé(e)]
two colloids and the meniscus, does not vanish, the presence 0
of the restoring force acting on the fluid interface is om
essentlal—_although its precise form .doe.s not mat8sc. - % YR f de[cosé(¢) — cosb]?
Il C). In this case, the effective interaction is long-ranged and 0
attractive[Eq. (51)]. If the total force vanishes, the restoring o
force is irrelevant altogethgr, the effective |nteract|_0n is + % YR f de[co6 - cod &()]
shorter rangeflEq. (52)], and it cannot be computed reliably 0
within the superposition approximation. 2
As an apphcauon, we have.conS|dered the case of like- - %yf de{u(ro(¢), @) — Ah}2
charged, micrometer-sized particles when the capillary defor- 0
mation is due to the ensuing electrostatic field. We have dis- o
_cussed_ how one can tune _th_e long-ranged attractive : %yf d¢[rg((p) _ rg,ref]' (A5)
interaction by an external electric field, but we conclude that 0

the experimentally observed attraction in an isolated system , , ,
cannot be explained within the present model. Possible dilne second term, which arises upon completing the square,

rections for future research such as colloidal surface roughePresents the change of the meniscus area which is cut out

ness and fluctuations of the interface have been discussedPY the colloid. Sincei andAh are already of first order iay
or gg, one can replacey(¢) by rg . in the first term and

obtains
2
ACKNOWLEDGMENTS Foom= 1y J de{U(ro res @) — ART?
We kindly acknowledge helpful discussions on the subject 0
of the manuscript with M. Nikolaides, A. Bausch, K. Danov, [P 5 5
and P. Kralchevsky. 2y . de[ro(¢) = 1o red (AB)

plus corrections of at least third order if; or er. In the
special case of rotational invariance, this expression reduces
to Eq. (6). For the purpose of Sec. Ill one can rewrite Eq.
(A6) as the line integral

APPENDIX A: FREE ENERGY OF COLLOID-FLUID
CONTACT

In this appendix we determine the contribution to the free
energy due to the exposure of the colloid to the two fluid Feont=
phases. Here we consider the general case of no rotational
invariance, so that the meniscus heigiit, ¢) depends on \yhereSis a circular disk of radius, ,; here centered at the
the distance from the axis through the colloid center and on gyigin, andJS denotes its circumference.
the angle of revolutionp around this axigFig. 7). Accord-
ingly, the auxiliary variablesy(¢) and & ¢) also depend on
the revolution angle and one has

S1¢ defu-AnP -l (A7)
210 ref) 55

APPENDIX B: DEFORMATION OF A SPHERICAL
REFERENCE INTERFACE

ro(e) =Rsin&(e) (A1) In this appendix we calculate the deformation of the in-
terface of a spherical droplet due to a floating colloidal par-
and ticle. The reference configuration corresponds to a colloid
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i

Fmen= Vw(rg,ref_ r(2)) + 277')/] dy
Yo

2
Xsin 1/1{%(3—;) +u2+2Rdr0pu}, (B2)

(@) z

where we have neglected terms evaluatediathich vanish
in the limit Ry,op— c°.
The termF . In Eq. (11) has to be amended by the extra

r= work upon deformation which is caused by the pressure dif-
ference in the reference configuration between the interior
(b) y and the exterior of the dropleAP=2y/Ryp
/"',‘ ~~~~\ "
;" % “\ Finter= _f dA RﬁropHLH' (Ap)fo Cm(Rdrop"'u)2
s ! : " RS
H I = - ZWyJ dyrsin | —PIIu + (2Rgpod + 2u°) |.
R ! Yo Y
R (B3)
S I g SinceAP is of orders®, we have to keep also termsi? in

this expression for consistency. For simplicity we have ne-
FIG. 7. Geometric description of the three-phase contact lingglected the contribution due to the changeSgf,, during the

between the fluid-fluid interface and the surface of the colloid. Sidegeformation. Such a term would affect the behavior of the

view (a): The auxiliary variableso(¢) and£(¢) in general depend  meniscus only nea#y, and vanishes in the limRy,q,— .

on the angle of revolutiow. ¢ denotes the polar angle of pointson  The change in volume of the perturbed droplet reads

the colloid spherical surface. Top viefh): The dashed line is the

circumference of radiuR of the spherical colloid. The solid line is
the projection of a noncircular contact line. AV= J dA%(Rdmp+ w3 —f dA%R§r0p+ S,
en S:‘men,ref
floating at the surface of the spherical droplet such that Eq. (B4)

(1) is fulfilled. Here we will consider only axially symmetric
configurations(see Fig. 4 In terms of the polar angley ~ Whered is a contribution due to the spherical shape of the

e[0,], the distancer measured along the unperturbed colloid; it depends orAh and Arg but can be safely ne-
spherical droplet surface is=Ryo/. [Note that in this ap- glect_ed.[Thls is the same kind of term encountered in cal-
pendix we considen(-) andI1(-) as functions ofy instead of ~ culating 7, see Eq(10).] ExpandingAV for small defor-

r.] We definey:=r e Rarop @nd we introduce the anglg, ~ Mationsu up to linear order yields

with 77> ¢, > iy at which another boundary conditi¢to be "

specified below holds reflecting the fact that the droplet is _ 2 :

fixed in space. With this additional boundary condition we AV= ZWR"’OF’LO digsin gu. (B5)
model closely the actual experimental setup of Réf],

where the droplet was attached to a glass plate with a contapthysically, the deformation of the interface occurs under the

angle less thanr [31]. constraint that the droplet volume remains unchanged be-
For the present case the free energy given by B8  cause incompressibility is assumed. This constraii=0)
must be modified in several ways: will be implemented in the free energy functional by means
In spherical coordinatest,e, reads of a Lagrange multipliex which itself turns out to be linear
in the parameters;; andeg. This justifies keeping only the
vu |2 linear term in Eq(B5).
Fmen= Yf dA(Rgrop+ U)? /1 + N The contributionF,, [see Eq.(6)] is concerned only
en Rirop* U with quantities atyy, the colloid surface, and thus in the limit
of large droplet radii this contribution is the same as in the
- )/f dA'%rop, (B1)  planar case. The free energy related to the work done upon
Smen,ref moving the colloid, F. [see Eq.(12)], remains also un-

changed. For simplicity we also neglect gravity and)sét
wheredA=27 sin ydys is the differential of the solid angle, =0. In conclusion, the free energy functional to be mini-
andV=e,(d/dy) is the gradient operator on the unit sphere.mized is the Sunfconct Fment Fintert Feon PIUS the constraint
As before, this functional is now expanded for small devia-term(2my/Ryo) uAV (Wherew is a dimensionless Lagrange
tions from the reference configuration, and we obtain multiplier):
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21 1(du)? R Rérop "
]-‘:Zwyj dysing] —| — | = U2+ uRyrogd = — 11U s,:Rd,Op:AP’0+BQ’0+—r°9J do sin oW(o)11 (o),
Yo 2\dy 4 Y Jy
+ 7 ug — Ah]?> = FAh. (B6) (B14)

The quantity -yu/Ryep can be interpreted as a homogeneousyhere we have defined the auxiliary function
pressure field enforcing the constant-volume constraint. We

note that the terms linear im present in Eqs(B2) and (B3)
have cancelled in the total free energy. Minimization with
respect toAh yields the same result as in E@.4). Subse-
quent minimization with respect ta(y) leads to

W(o) = [P(0)Qp =~ PoQ(a)]. (B15)

Finally, in order to impose the integral constraif®9) we
employ the following identities:

singdy\ " dy

d d 3
(sin ¢—”> +ou=- B[, R (BY)
7 J
and[compare with Eq(17)]

n U
disin el/f do sin o[ P(0)Q(¢) — P(4)Q(a)]11(0)
o v

i o
d :fdsinH) dirsin Y P(o)Q(y)
a; ) :SFRdrop- (B8) o 7 ot o v P
’ -~ P($)Q(0)]
The solution must satisfy the constant-volume constraint " 1 W(o)
s =—f do'Sina'H(O')—[l——]. (B16)
1 . _ W 2 Wo
f dysinyu(y) = 0. (B9) 0

7
’ The first equality follows from interchanging the order of

Finally, the second boundary condition mentioned at the beintegration. The last equality follows most easily by noticing
ginning expresses the physical requirement that the droplet i) that they integral in the second line is, as a functionogf
fixed in space.(Otherwise, the application of a localized a solution of the differential EqB7) with u replaced by this
force at the interface would shift the droplet as a whole with-integral, 4Ry, replaced by —1]1=0, and the analogs of the
out deforming it) As an example, we assume that the dropletboundary conditionsuy=0=u), and (ii) that the function
interface is pinned af; (another example, force balance by (W(o)/W,-1)/2 is the solution to the same differential

suitable localized counterstresses, is studied in F3&): equation with the same boundary conditions. With these
identities Eq.(B9) turns into
u(y=4n) =0. (B10)
The general solution of the inhomogeneous Legendre Eq. N Wi

87 1o ’ ? “ g=ap+Bo- R [ gsinotiim| 1 - MO |
(B7) is 2y W,

o 0

(B17)

1
u(y) = AP(¢) + BQ(¢) + EMRdrop
where we have introduced the numerical constants

2 n
+ Mpf do sina{ P(0)Q(¢) = P()Q(0)]11(a),

Y Jy f‘//l
P = dysiny{P(y) - P
whereA andB are integration constants and
i
P(¢) == cosy, Q:= | dysiny{Q(y) - Q,]. (B18)
%o
Q(¢) =1+ cosyIn tang, (B12)  We note that the constants and B are determined by the

two linear Eqs(B14) and (B17).
are solutions of the homogeneous Legendre equation. For These results permit us to study the intermediate

notational simplicity, evaluation of a function g(y;) will ~ @Symptotic regime, e, < Ryop IN the expressions derived
be denoted by the subscripfy). ?bo&/el/,/ we g?"el//to tj‘ke theRd“mgdr(OD_’f; \;vgllfpiele)pllng
: IXe 1, I'=R4ro an I’O’refZ rop?o (SO alyy, <1). In
From Eq.(B10) one obtains this limit, the C(F))nstantg> and Q F;ire finite, whileP(y)=1
%MRdrop: - AP, -BQ,. (813  and Q(¥) =In(r/Rye)—In2+1. The integrals oveil ap-
pearing in Eqs(B11), (B14), and(B17) are simplified when
From the other boundary conditiaB®8) it follows that the stress fieldl(y) decays sufficiently fast. So, e.g.,
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i Q
f do sinoW(o)I1(0) A=- 5!’0(8,: —-eq). (B21)
o
1 (?Rarop S S S One finds indeed that the Lagrange multipliedetermined
= f dssin( )W( )H( ) by Eq.(B13) is linear iner—¢y;. Finally, the general solution
Rarop 0, ref rop Rarop Rarop (B11) simplifies to
1 +°° s
22—<M>J dssﬂ( ) (B19 u:A(l—Pl)+B<In ' —In2+1—Ql>
Rdrop Fo,ref 10 ref Rdrop Rdrop
1(™
——f dssH( S )In ° (B22)
since the main contribution of the integrand stems from the Y Rarop/ 1

regions/Ryop<<1, in which W(s/Ryop) = Ryrop/ To,rer In this  which renders Eq(24) with the constant
manner, we obtain from EqB14):

6=2ex;{(1—P1)%+Q1—1] (B23)

B=ro(er —en), (B20)  This constant is finite and non-vanishing providggdis not
close tow. The casey, = is pathological because’ ()
=0 for a smooth profile, so that the boundary condition

and Eq.(B17) yields (B10) would overdetermine the problem.
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