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We present a molecular-dynamics study of force patterns, tensile strength, and crack formation in a cohesive
granular model where the particles are subjected to swelling or shrinkage gradients. Nonuniform particle size
change generates self-equilibrated forces that lead to crack initiation as soon as the strongest tensile contacts
begin to fail. We find that the tensile strength is well below the theoretical strength as a result of inhomoge-
neous force transmission in granular media. The cracks propagate either inward from the edge upon shrinkage
or outward from the center upon swelling. We show that the coarse-grained stresses are correctly predicted by
an elastic model that incorporates particle size change as metric evolution.
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The term “cohesive granular media” covers a vast spec-
trum of granular materials in which rigid grains are bound
together by cohesion forces of various chemico-physical ori-
gins f1g. Well-known examples are fine powders and soils
with more or less colloidal or water contentf2g. The solidlike
behavior attributed to noncohesive granular media under
quasistatic shearing becomes the dominant feature in the
presence of cohesion, with an increasing effective tensile
strength as a function of the contact tensile strengthf3–6g.
The stress-strain behavior and fracture mechanics of cohe-
sive granular media raise interesting open issues from a
grain-scale point of view and in interaction with heat or mass
transferf6–11g.

An appealing issue is how and in which respects these
“granular solids” differ from molecular solidssin the absence
of a granular structured f12g. For example, the phenomenon
of stress concentration, induced by defects at different scales,
governs the initiation of failure in molecular solids, the ef-
fective tensile strength remaining generally far below the
“theoretical” strengthf13g. In a granular assembly, stress
concentration occurs already at the particle scale in the form
of a highly inhomogeneous distribution of contact forces
f14,15g. This suggests that, even in the absence of meso-
scopic defects, the tensile strength will be weak compared to
its theoretical value for a granular assemblysto be defined
belowd. However, the tensile-strength properties have
scarcely been analyzed from a microscopic standpoint.

In this paper, we consider a benchmark test that was de-
signed to probe theintrinsic tensile responsesreflecting only
the granular disorderd of a cohesive granular sample by
avoiding both wall effects and strain localization as spurious
sources of randomness. The sample consists of rigid cohe-
sive disks compacted numerically into a circular form in a
two-dimensional space; see Fig. 1sad. At the start, the normal
force is exactly zero at all contacts. Then, the particle diam-
eters are increasedsor decreasedd at a rate that depends on
distance to the sample center. Such gradients of particle size
change occur, for instance, in fine soils, where particle swell-
ing sor shrinkaged happens as a result of humidificationsor
dryingd f2g. As we shall see in detail below, this bulk strain-
ing induces a field of radialsor orthoradiald tensile self-
stresses increasing in magnitude with time, and leading even-
tually to crack initiation at the centersor on the edged.

For the simulations, we used the molecular-dynamics
method with a velocity-Verlet scheme for the integration of
the equations of motionf16g. Cohesive interaction between
two particles implies resistance to relative motionsnormal
displacementdn, tangential displacementdt, and angular dis-
placementgd of two edge points belonging, respectively, to
the two particles and coinciding initially with the contact
point; see Fig. 1sbd. The corresponding contact actions are
the normal forcefn, the tangential forcef t, and the contact
torque M. Several force-displacement relations have been
proposed in order to model cohesive contacts in discrete el-
ement simulationsf3,6–8,10,11,17,18g. Each model repre-
sents particular physical phenomena at the origin of contact
cohesion such as solid surface adhesion, capillarity, cemen-
tation, and sintering.

Details of the contact cohesion model used for the present
studies can be found inf11g. This model assumes an elastic-
brittle behavior with a yield function that was extracted from
experiments. The elastic behavior is characterized by three
stiffnessesEn, Et and Eg, so that fn=Endn, f t=Etdt, and M
=Egg. As usual, damping actions are added in order to ac-
count for contact inelasticity and ensure numerical stability.

This elastic behavior holds as long as the contact actions
remain below a “yield surface”z=zsfn, f t ,Md=0. We used
the following function that fits our previous experimental
tests where a particular type of glue was employed to stick
cylindrical particles togetherf11g:

z = S fn

fn
yD + S f t

f t
yD2

+ S M

MyD2

− 1, s1d

where fn
y, f t

y, and My are the yield parameters for normal,
tangential, and angular actions, respectively. The elastic do-

FIG. 1. sad Geometry of the sample;sbd relative displacements
between two edge points belonging to two particles and coinciding
initially with their contact point.
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main corresponds toz,0. Note thatfn can take indefinitely
large valuessthe positive sign corresponding to compressive
forcesd but it has a lower boundfn=−fn

y that defines the
largest tensile force that can be sustained by a contact. As
soon aszù0, the cohesive bond breaks down irreversibly
and the contact turns into noncohesive frictional behavior
f19g.

The shape of the yield functionz and the values of the
parameters will naturally influence the failure properties of
the material as a whole for a specified loading mode. In our
system, loading by particle swelling or shrinkage with a ra-
dial gradient induces appreciable displacements only along
the contact normals. Using different values off t

y andMy does
not influence the results that will be discussed below. In
other words, the failure is governed by extensional strain
when fn

y is reached at a strongly tensile contact in the sample.
On the other hand, as we shall see below, the sample-scale

displacements in the elastic range are mainly controlled by
the rate of particle size change, so that the behavior is not
sensitive to the choice of the elastic parametersEn, Et, and
Eg. These remarks apply only to the loading mode and
boundary conditions that we employed for the present inves-
tigation sin order to be able to get explicit analytical solu-
tionsd. It is obvious that the situation would be different if
more complex loading or anisotropic boundary conditions
were used instead.

We used samples composed of 1133 polydisperse disks
with a uniform distribution of diametersD within a range
fDmin,Dmaxg where Dmax=1.2 Dmin. The coefficient of fric-
tion is m=0.1. Each sample is created by removing all par-
ticles belonging to a noncohesive assembly in static equilib-
rium except those contained inside a circle of radiusR0. The
cohesive bonds are then switched on and the sample is al-
lowed to relax to equilibrium. The samples prepared by this
procedure correspond to a dense but disordered packing of
solid fraction.0.89 and coordination number 3.8.

The initial configuration is set as the reference state for
our system so that the contact actions are identically zero
everywhere. Obviously, multiplying all particle diameters by
the same factor does not disturb this state since no relative
motions are generated at the contact points, whereasdiffer-
ential particle-size change gives rise immediately to perma-
nent compressive and tensile force gradients. For instance,
the swelling of a single particle produces compressive radial

forces by pushing the neighboring particles outward, as well
as tensile orthoradial forces by increasing the total length of
the “rings” of contiguous particles surrounding the swelling
particle; see Fig. 2. A slight shrinkage of the same particle
produces exactly the same force patterns with the signs in-
verted everywherescompressive contacts turning to tensile,
and vice versad.

Since we are interested here only in the effect of bulk

straining, we require that the swelling rateṡi ; Ḋi /Di of each
particle i be independent of its diameterDi. We use the sim-
plest swelling kinetics defined by a constant gradient from
the center to the edge,ṡi =sa /R0dr i, wherer i is the distance
of the particle to the system center anda is a constant rate.
Positive and negative values ofa correspond to particle
swelling and shrinkage, respectively.

Figure 3 shows snapshots of normal compressive and ten-
sile forces in a shrinkage simulation. Although at the very
local scale the forces are inhomogeneously distributed, we
observe radial and orthoradial compressive forces decreasing
in magnitude from the center to the edge, as well as ortho-
radial tensile forces decreasing in magnitude from the edge
to the center. The cracks appear on the edge as soon as the
first tensile contact fails, and they propagate toward the cen-
ter as shown in Fig. 4sbd. In swelling simulations, the respec-
tive roles of compressive and tensile roles are simply inter-
changed with respect to the shrinkage case. As a result, the
cracks are initiated at the center, and they propagate toward
the edge; see Fig. 4sad.

The coarse-grained stresses can be evaluated from the
contact forces by means of the “micromechanical” expres-
sion of the stress tensors f20g,

FIG. 2. Tensilesad and compressivesbd normal forces generated
by the swelling of a single particlesin blackd. The linewidth is
proportional to the normal force.

FIG. 3. Compressivesad and tensilesbd forces in a shrinkage
simulation.

FIG. 4. Crack patterns in swellingsad and shrinkagesbd
simulations.
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1
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cPV
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c, j

c, s2d

wherei and j design the coordinates,V is the control volume
over which the stress tensor is evaluatedsthe contactsc taken
from this volumed, f i

c is the i component of the forcefc at
contactc, and, j

c is the j component of the vectorøc joining
the centers of the two contact neighbors.

The stress tensor is a well-defined average if the control
volume V contains a sufficiently large number of contacts.
This requirement is satisfied by taking concentric circular
volume elements as suggested by the rotational invariance of
our system. We use polar coordinates and the radial and an-
gular positions will be denoted byr andu, respectively; see
Fig. 1sad. As a result of isotropic straining, the cross compo-
nentssru are zero.

The radial stresssrr and orthoradial stresssuu are shown
in Fig. 5sad as a function of distancer to the center at differ-
ent stages of a swelling simulation. For each data set at a
given instant of evolution, we have normalized the distancer
by R and the stress components by the largest tensile stress
−smax soccurring at the centerd. We see that the normalized
stresses collapse on a straight line as a function ofr and they
agree nicely with a one-parameter analytical fit that will be
detailed below. Note thatsrr is negative stensile stressd
throughout the sample, whereassuu changes sign atr
.R/2. In the case of shrinkage simulations, similar results
are obtained with opposite signs, as shown in Fig. 5sbd.

We now turn to analytical evaluation of the stresses. At a
coarse-grained scale, the granular assembly will be repre-
sented by a linear elastic medium with an effective stiffness
E and an effective Poisson’s ration. This is a plausible as-
sumption, although, as we shall see below, the behavior of
the stresses as a function ofr is independent of the nature of
the interactions. On the other hand, coarse-grained swelling
at a pointA of polar coordinatessr ,ud in space is equivalent
to an imposed isotropicspace dilation s˙sr ,ud=kṡiliPVsr,ud,
where the average is taken over all particles contained in a
representative volumeVsr ,ud centered onA. Since the rates
are independent of particle diameters, we get

ṡ=
a

R0
r . s3d

Then, the strain-rate tensor«̇ at a point is the sum of two
terms,

«̇ = «̇e + ṡI , s4d

where«̇e is the elastic strain rate,I represents the unit tensor,
and ṡI is the metric change rate.

We assume that the displacement fieldusr ,ud is radial
faccording to the symmetry of straining expressed by Eq.s3d
and that of the sampleg so that«̇ru;0. Since the radiusR of
the sample changes with time, Hooke’s laws will be written
in the form of rate equations,

«̇rr
e = «̇rr − ṡ= −

1

E
sṡrr − nṡuud,

«̇uu
e = «̇uu − ṡ= −

1

E
sṡuu − nṡrrd, s5d

where extensional strains and compressive stresses are
counted positive. We need also the balance equation, which
takes the following form in polar coordinates:

ṡuu − ṡrr = r
]ṡrr

]r
. s6d

The set of equationss3d, s5d, and s6d is easily integrated
over time and space using the boundary conditionsusr =0d
=0 simposed by 3d and srrsr =Rd=0 sby continuity of the
normal stress at the boundaryd. The solution is

R=
R0

1 − 2at/3
,

srr = ES1 −
R0

R
DS r

R
− 1D ,

suu = ES1 −
R0

R
DS2

r

R
− 1D . s7d

We see that both stress components are linear inr. The simu-
lation data of Fig. 5 were fitted by adjusting only the effec-
tive elastic modulusE. The evolution of the system is, how-
ever, nonlinear as a function of time. The evolution ofR is
shown in Fig. 6 for swellingsa.0d and shrinkagesa,0d
simulations together with the analytical fit from Eq.s7d
which involves no fitting parameter. The agreement is excel-
lent although the nonlinear nature of the evolution cannot be
seen foruaut!1. The largest tensile stresssmax occurs on the
edge for shrinkage and at the center for swelling. From Eq.

FIG. 5. Normalized stress components as a function of distance
r to the center in swellingsad and shrinkagesbd simulations. The
full lines are elastic fits.

FIG. 6. Evolution of the sample radiusR in swelling sad and
shrinkagesbd simulations.
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s7d, we getsmax=
2
3Euaut. Again, this linear form nicely fits

the evolution ofsmax sby virtue of the fits shown in Fig. 5d
up to failure forsmax=sy. The latter represents the effective
tensile strength of the material.

It is worth noting that Poisson’s ration does not appear in
Eqs.s7d and the only role of the stiffnessE is to set the stress
scale. This means that the behavior of the stress components
and sample size as a function ofr is independent of the local
force law. In particular, in the limit of infinitely rigid par-
ticles, the same results remain true up to a stress scale which
may be fixed through a confining pressure. More generally,
both the local interactions and the mass or heat transfer in-
fluence the stress scale.

By analogy with molecular solids, we introduce a “theo-
retical” tensile strengthstheor

y based on the interactions be-
tween two particlesf13g. According to Eq.s2d, the orthora-
dial stress is

suu = nckfu,ul . nck,lkful, s8d

wherenc is the number density of contacts andk¯l designs
averaging over the control volume. The largest value ofsuu

in tension corresponds to the limit where all forces are po-
larized in the same direction and they have all reached the
largest tensile forcefn

y. This defines a “theoretical” tensile
strength

stheor
y = nck,lfn

y. s9d

In our simulations, the measured tensile strengthsy is
below stheor

y by a factor.4.3. In molecular solids, a similar
discrepancy betweenstheor

y , defined from atomic interactions
in a regular atomic arrangement, andsy stems from “built-
in” disorder sdefects, damaged at different scales leading to
stress concentration. In a granular solid, the disorder is “in-
trinsic” to the structure. As a result, the contact forces both in
cohesive and noncohesive granular media have a wide dis-
tribution with a decreasing exponential shape for strong
forces f8,15g. In fact, stheor

y reflects thestrongestcontact
force at failure, whereassy represents themeantensile force
by construction. Indeed, the simulations show that the ratio
of the largest tensile forcesat the contact where failure is
initiatedd to the mean tensile forcefwhich is proportional to
the mean stress according to Eq.s8dg is of the order of
stheor

y /sy.4.3.

As far as we know, this is the first example showing how
the local force inhomogeneities in a granular material control
a macroscopic property, namely the tensile strength. Further
investigations are, however, necessary in order to assess in
more detail this correlation between the distribution of con-
tact forces and the tensile strength. The shape of the prob-
ability density functions of contact forces is quite robust with
respect to system parameters and the specific features of the
contact force model. Nevertheless, the range of tensile forces
varies as a function of adhesion, compactness, and probably
some other details of the packing structure such as its aniso-
tropy. Hence, we expect that the ratio between the theoretical
and effective tensile strengths should reflect mostly those
parameters pertaining to the granular structure rather than the
contact force model.

Let us also underline here the brittle nature of our system
that allows the first contact failure to propagate rapidly
throughout the packing. For an elastoplastic contact model,
particle rearrangements might take place and dissipate effi-
ciently elastic energy. In this case, the packing undergoes a
cumulative damage and the tensile strength will not be con-
trolled only by the strongest tensile contacts.

In summary, our numerical data and their comparison
with an analytical evaluation of stresses in the elastic domain
and at failure suggest that a macroscopically elastic behavior
is relevant up to crack initiation, as in molecular solids.
However, the tensile strength is dependent on the inhomoge-
neous transmission of forces. The simple test described in
this paper not only provides reproducible results, but it has
also the advantage of combining features of discrete model-
ing with theoretical predictability at the macroscopic scale.

This approach may now be used to investigate and to
predict the tensile thresholds and crack propagation in cohe-
sive granular materials as a function of the initial density and
anisotropy of the material or the possible couplings of the
local cohesion with mass and heat transfer in the pores as in
fine soils and granular rocksf21g. The theoretical approach
can be extended to other structured media involving meso-
scopic length scales, such as gelsf22g, cellular mediaf23g,
layered structures such as woodf24g, and pastesf25g. Swell-
ing or shrinkage may occur as a result of cellular growthsin
biological systemsd or the evolution of local variables such
as water content and temperature.

It is a pleasure to thank J.-C. Bénet and J. N. Roux for
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