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Self-stresses and crack formation by particle swelling in cohesive granular media
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We present a molecular-dynamics study of force patterns, tensile strength, and crack formation in a cohesive
granular model where the particles are subjected to swelling or shrinkage gradients. Nonuniform particle size
change generates self-equilibrated forces that lead to crack initiation as soon as the strongest tensile contacts
begin to fail. We find that the tensile strength is well below the theoretical strength as a result of inhomoge-
neous force transmission in granular media. The cracks propagate either inward from the edge upon shrinkage
or outward from the center upon swelling. We show that the coarse-grained stresses are correctly predicted by
an elastic model that incorporates particle size change as metric evolution.
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The term “cohesive granular media” covers a vast spec- For the simulations, we used the molecular-dynamics
trum of granular materials in which rigid grains are boundmethod with a velocity-Verlet scheme for the integration of
together by cohesion forces of various chemico-physical orithe equations of motiofl6]. Cohesive interaction between
gins [1]. Well-known examples are fine powders and soilstwo particles implies resistance to relative motigrormal
with more or less colloidal or water contg2]. The solidlike  displacementl,, tangential displacemen, and angular dis-
behavior attributed to noncohesive granular media undeplacementy) of two edge points belonging, respectively, to
quasistatic shearing becomes the dominant feature in thhe two particles and coinciding initially with the contact
presence of cohesion, with an increasing effective tensilpoint; see Fig. (b). The corresponding contact actions are
strength as a function of the contact tensile streri@t6].  the normal forcef,, the tangential forcd;, and the contact
The stress-strain behavior and fracture mechanics of cohéerque M. Several force-displacement relations have been
sive granular media raise interesting open issues from proposed in order to model cohesive contacts in discrete el-
grain-scale point of view and in interaction with heat or massement simulationg3,6—8,10,11,17,1]8 Each model repre-
transfer[6-11]. sents particular physical phenomena at the origin of contact

An appealing issue is how and in which respects theseohesion such as solid surface adhesion, capillarity, cemen-
“granular solids” differ from molecular solidsn the absence tation, and sintering.
of a granular structuyd 12]. For example, the phenomenon  Details of the contact cohesion model used for the present
of stress concentration, induced by defects at different scalestudies can be found iri1]. This model assumes an elastic-
governs the initiation of failure in molecular solids, the ef- brittle behavior with a yield function that was extracted from
fective tensile strength remaining generally far below theexperiments. The elastic behavior is characterized by three
“theoretical” strength[13]. In a granular assembly, stress stiffnessesE,, E; andE,, so thatf,=E.d,, f;=E:d;, andM
concentration occurs already at the particle scale in the formE,y. As usual, damping actions are added in order to ac-
of a highly inhomogeneous distribution of contact forcescount for contact inelasticity and ensure numerical stability.
[14,15. This suggests that, even in the absence of meso- This elastic behavior holds as long as the contact actions
scopic defects, the tensile strength will be weak compared teemain below a “yield surfaceZ={(f,,f;,M)=0. We used
its theoretical value for a granular assemkly be defined the following function that fits our previous experimental
below. However, the tensile-strength properties havetests where a particular type of glue was employed to stick
scarcely been analyzed from a microscopic standpoint. cylindrical particles togethdrli]:

In this paper, we consider a benchmark test that was de- f AYANEVAY:

: P Al : . n t
signed to probe thintrinsic tensile respons@eflecting only = (—y> (—y) (—y> -1, (1)
the granular disordgrof a cohesive granular sample by fa fi M

avoiding both wall effects and strain localization as spuriousypere fY £, and MY are the yield parameters for normal,

sources of randomness. The sample consists of rigid coheangential, and angular actions, respectively. The elastic do-
sive disks compacted numerically into a circular form in a

two-dimensional space; see Fidall At the start, the normal
force is exactly zero at all contacts. Then, the particle diam-
eters are increase@r decreasedat a rate that depends on
distance to the sample center. Such gradients of particle size
change occur, for instance, in fine soils, where particle swell-
ing (or shrinkage happens as a result of humidificati¢or
drying) [2]. As we shall see in detail below, this bulk strain-

ing induces a field of radialor orthoradial tensile self- FIG. 1. (a) Geometry of the sampléb) relative displacements
stresses increasing in magnitude with time, and leading eveletween two edge points belonging to two particles and coinciding
tually to crack initiation at the centéor on the edge initially with their contact point.

1539-3755/2005/15)/0513075)/$23.00 051307-1 ©2005 The American Physical Society



EL YOUSSOUFI, DELENNE, AND RADJAI PHYSICAL REVIEW E/1, 051307(2009

(b)

FIG. 3. Compressivéa) and tensile(b) forces in a shrinkage

FIG. 2. Tensilela) and compressivéb) normal forces generated . ;
@) P ) g simulation.

by the swelling of a single particlén black. The linewidth is

roportional to the normal force. . . . .
prop forces by pushing the neighboring particles outward, as well

main corresponds t§<<0. Note thatf, can take indefinitely as tensile orthoradial forces by increasing the total length of
large valuegthe positive sign corresponding to compressivethe “rings” of contiguous particles surrounding the swelling
forces but it has a lower boundn:—fﬁ_ that defines the particle; see Fig. 2. A slight shrinkage of the same particle
largest tensile force that can be sustained by a contact. Asroduces exactly the same force patterns with the signs in-
soon as{=0, the cohesive bond breaks down irreversiblyverted everywhergcompressive contacts turning to tensile,
and the contact turns into noncohesive frictional behavioiand vice versa
[19]. . _ Since we are interested here only in the effect of bulk

The shape of the yield functiofi and the values of the giraining, we require that the swelling rate=D,/D; of each
parameters will naturally influence the failure properties Ofparticlei be independent of its diametBx. We use the sim-

. . pe . |

the material as a whole for a specified loading mode. In oupjest swelling kinetics defined by a constant gradient from
system, I_oadmg by particle S\_/velllng_or shrinkage with a ra-the center to the edg&,=(a/Ryr;, wherer, is the distance
dial gradient induces appreciable displacements only alongf the particle to the system center ands a constant rate.

the contact normals. Using different valuestpandMY does  pitive and negative values af correspond to particle
not influence the results that will be discussed below. Inswelling and shrinkage, respectively

other \)//vprds, the failure is governgd by extensional strain Figure 3 shows snapshots of normal compressive and ten-
whenf} is reached at a strongly tensile contact in the sample%i’!:3 forces in a shrinkage simulation. Although at the very

_ On the other hand, as we shall see below, the sample-scalg.5| scale the forces are inhomogeneously distributed, we
displacements n the_ elastic range are mainly cont_rollgd bYpserve radial and orthoradial compressive forces decreasing
the rate of particle size change, so that the behavior is nQf magnitude from the center to the edge, as well as ortho-
sensitive to the choice of the elastic parame_ﬁ{,sEt, and  raqial tensile forces decreasing in magnitude from the edge
E,. These remarks :;pply only }0 thef Ioak:jmg mode andg the center. The cracks appear on the edge as soon as the
boundary conditions that we employed for the present invesgyo; tensile contact fails, and they propagate toward the cen-
tigation (|_n Ord?r to be able to get explicit analyt!cal SOIL?' ter as shown in Fig. ). In swelling simulations, the respec-
tions). It is obvious that the situation would be different if 4o y5les of compressive and tensile roles are simply inter-
more complex loading or anisotropic boundary conditions;pangeqd with respect to the shrinkage case. As a result, the
were used instead. . __cracks are initiated at the center, and they propagate toward

We used samples composed of 1133 polydisperse disk§q edge; see Fig.(d.

with a uniform distribution of diameter® within a range The c’oarse-grained stresses can be evaluated from the

[Drins Dmax] Where Dpa=1.2 Dyin- The coefficient of fric- - ooniact forces by means of the “micromechanical” expres-
tion is u=0.1. Each sample is created by removing all par-gign of the stress tensar [20]

ticles belonging to a noncohesive assembly in static equilib-
rium except those contained inside a circle of radysThe
cohesive bonds are then switched on and the sample is al
lowed to relax to equilibrium. The samples prepared by this
procedure correspond to a dense but disordered packing ¢
solid fraction=0.89 and coordination number 3.8.

The initial configuration is set as the reference state for:
our system so that the contact actions are identically zerc:
everywhere. Obviously, multiplying all particle diameters by
the same factor does not disturb this state since no relative
motions are generated at the contact points, whed&es-
ential particle-size change gives rise immediately to perma-
nent compressive and tensile force gradients. For instance, FIG. 4. Crack patterns in swellinga) and shrinkage(b)
the swelling of a single particle produces compressive radiadimulations.

(@)

(b)

051307-2



SELF-STRESSES AND CRACK FORMATION BY. PHYSICAL REVIEW E 71, 051307(2009

RIR, RIR,
1.03 1.03
1.00 1.00
|of £ |od 2
9.70+ > 9704 >
0.0 25x10? 5.0x1072 0.0 2.5x10 5.0x102
(a) (b)
FIG. 5. Normalized stress components as a function of distance
r to the center in swellinga) and shrinkageb) simulations. The FIG. 6. Evolution of the sample radilR in swelling (a) and
full lines are elastic fits. shrinkage(b) simulations.
1 e=¢g°+3l, (4)
0y =y 2 fief, 2) o N .
ceV wheree® is the elastic strain raté,represents the unit tensor,

andsl is the metric change rate.

We assume that the displacement field, 6) is radial
[according to the symmetry of straining expressed by(Bg.
and that of the sampleso thate,,=0. Since the radiuR of
the sample changes with time, Hooke’s laws will be written

in the form of rate equations,

wherei andj design the coordinate¥,is the control volume
over which the stress tensor is evaluatihd contacts taken
from this volume, f7 is thei component of the forcé® at
contactc, and€jC is thej component of the vectdi® joining
the centers of the two contact neighbors.

The stress tensor is a well-defined average if the contr
volume V contains a sufficiently large number of contacts. e ) 1. )
This requirement is satisfied by taking concentric circular Er =& ~S= —E(Urr = vOgy),
volume elements as suggested by the rotational invariance of
our system. We use polar coordinates and the radial and an-
gglar positions will be c_ienotec_i hyan_d_a, respectively; see £5y= Egp— 5=~ =(0gg— vOyr), (5)
Fig. 1(a). As a result of isotropic straining, the cross compo- E

nentsoy, are zero. where extensional strains and compressive stresses are

_ The radial stressy, and orthoradial stress, are shown ¢4 nted positive. We need also the balance equation, which
in Fig. 5(@) as a function of distanceto the center at differ- 5105 the following form in polar coordinates:

ent stages of a swelling simulation. For each data set at a

given instant of evolution, we have normalized the distance ) . J0y

by R and the stress components by the largest tensile stress To9~ Orr = ra—r. (6)
—omax (OCcurring at the centgrWe see that the normalized ) _ o

stresses collapse on a straight line as a functianasfd they The set of equation&3), (5), and(6) is easily integrated

agree nicely with a one-parameter analytical fit that will beOVer time and space using the boundary conditio(rs=0)
detailed below. Note thaw, is negative (tensile stregs =0 (imposed by 3 and o, (r=R)=0 (by continuity of the
throughout the sample, whereas,, changes sign ar  normal stress at the boundarfrhe solution is

=R/2. In the case of shrinkage simulations, similar results Ry
are obtained with opposite signs, as shown in Fil).5 =,
We now turn to analytical evaluation of the stresses. At a 1-2at/3
coarse-grained scale, the granular assembly will be repre-
sented by a linear elastic medium with an effective stiffness _ ( _ &)(L _ )
. . R W © : o, =E(1 1/,
E and an effective Poisson’s ratio This is a plausible as- R

sumption, although, as we shall see below, the behavior of

the stresses as a functionrofs independent of the nature of Ry r

the interactions. On the other hand, coarse-grained swelling Tpg= E<1 —E>(2§ - 1)- (7)

at a pointA of polar coordinates$r, 6) in space is equivalent

to an imposed isotropispace dilation & ,6)=(5)i.vrg, ~ We see that both stress components are linearTime simu-
where the average is taken over all particles contained in ktion data of Fig. 5 were fitted by adjusting only the effec-
representative volume(r, ) centered orA. Since the rates tive elastic modulu€. The evolution of the system is, how-

are independent of particle diameters, we get ever, nonlinear as a function of time. The evolutionRofs
shown in Fig. 6 for swellinga>0) and shrinkagd a < 0)
.« simulations together with the analytical fit from E?)

S= Eor' 3) which involves no fitting parameter. The agreement is excel-

lent although the nonlinear nature of the evolution cannot be
Then, the strain-rate tenser at a point is the sum of two seen forla|t<1. The largest tensile stress,,, occurs on the
terms, edge for shrinkage and at the center for swelling. From Eqg.
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(7), we getgmax:§|5|a|t_ Again, this linear form nicely fits As far as we know, this is the first example showing how
the evolution ofop,,, (Dy virtue of the fits shown in Fig.)5 the local force inhomogeneities in a granular material control

up to failure forop,a=0”. The latter represents the effective @ macroscopic property, namely the tensile strength. Further
tensile Strength of the material. |nveSt|gat|0nS are, however, necessary in order to assess in

Egs.(7) and the only role of the stifinesSis to set the stress tact forces and the tensile strength. The shape of the prob-

scale. This means that the behavior of the stress componerfi@!lity density functions of contact forces is quite robust with
and sample size as a functionrols independent of the local respect to system parameters and the specific featu_res of the
force law. In particular, in the limit of infinitely rigid par- contact force model. Nevertheless, the range of tensile forces

ticles, the same results remain true up to a stress scale whidg"es aﬁ a ngt.'lon ?fhadhesign, compactness,hand'probqbly
may be fixed through a confining pressure. More generallySome other details of the packing structure such as its aniso-
’ tropy. Hence, we expect that the ratio between the theoretical

both the local interactions and the mass or heat transfer INnd” effective tensile strengths should reflect mostly those
fluence the stress scale. _ _ parameters pertaining to the granular structure rather than the
By analogy with molecular solids, we introduce a “theo- -gniact force model.
retical” tensile strengthu,., based on the interactions be- | et ys also underline here the brittle nature of our system
tween two particle$13]. According to Eq.(2), the orthora-  that allows the first contact failure to propagate rapidly
dial stress is throughout the packing. For an elastoplastic contact model,
particle rearrangements might take place and dissipate effi-
ciently elastic energy. In this case, the packing undergoes a
cumulative damage and the tensile strength will not be con-
wheren, is the number density of contacts aqd-) designs  trolled only by the strongest tensile contacts.
averaging over the control volume. The largest valuergf In summary, our numerical data and their comparison
in tension corresponds to the limit where all forces are powith an analytical evaluation of stresses in the elastic domain
larized in the same direction and they have all reached thand at failure suggest that a macroscopically elastic behavior
largest tensile forcd). This defines a “theoretical” tensile is relevant up to crack initiation, as in molecular solids.
strength However, the tensile strength is dependent on the inhomoge-
neous transmission of forces. The simple test described in
this paper not only provides reproducible results, but it has
also the advantage of combining features of discrete model-
ing with theoretical predictability at the macroscopic scale.
This approach may now be used to investigate and to

09 =N Fol o) = N(EXTp), (8)

O-%lheor: nc<€>f¥- (9)

In our simulations, the measured tensile strengthis
below a3, by @ factor=4.3. In molecular solids, a similar

discrepancy betweedty, defined from atomic interactions e ict the tensile thresholds and crack propagation in cohe-
in a regular atomic arrangement, aol stems from “built-  gjye granular materials as a function of the initial density and
in” disorder (defects, damageat different scales leading 0 anisotropy of the material or the possible couplings of the
stress concentration. In a granular solid, the disorder is “injgca| cohesion with mass and heat transfer in the pores as in
trinsic” to the structure. As a result, the contact forces both ifine soils and granular rock21]. The theoretical approach
cohesive and noncohesive granular media have a wide digyn phe extended to other structured media involving meso-
tribution with a decreasing exponential shape for Strongscopic length scales, such as gi2g], cellular media 23],
forces [8,1_5]. In fact, o}, reflects thestrongestcontact layered structures such as wd@], and pastef25]. Swell-
force at failure, whereas’ represents theneantensile force ing or shrinkage may occur as a result of cellular grogith

by construction. Indeed, the simulations show that the ratigyig|ogical systemsor the evolution of local variables such
of the largest tensile forceat the contact where failure is 55 \water content and temperature.

initiated) to the mean tensile fordavhich is proportional to
the mean stress according to E®)] is of the order of
Oheol 0¥ =4.3.
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