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Role of anisotropy in the elastoplastic response of a polygonal packing
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We study the effect of the anisotropy induced by loading on the elastoplastic response of a two dimensional
discrete element model granular material. The anisotropy of the contact network leads to a breakdown of the
linear isotropic elasticity. We report on a linear dependence of the Young moduli and Poisson ratios on the
fabric coefficients, measuring the anisotropy of the contact network. The resulting nonassociated plastic flow
rule and the linear relationship between dilatancy and stress ratio are discussed in terms of several existing
models. We propose a paradigm for understanding soil plasticity, based on the correlation between the plastic
flow rule and the induced anisotropy on the subnetwork of sliding contacts.
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[. INTRODUCTION in the absence of strong spatial disorder of the grains, static
assemblies show that the stress is transmitted through an
Granular materials exhibit a range of behavior that haseterogeneous contact network with a peculiar force distri-
attracted the attention of physicists, mathematicians, and etpution[8]. Under small deviatoric loads, an initially isotropic
gineers from Coulomb, Faraday and Reynolds in the lat@acking develops an anisotropic contact network because
18th century, to several interdisciplinary research groups imew contacts are created along the loading direction, while
the earlier 21st, trying to improve the handing of agriculturalsome are lost perpendicular to it. This geometrical anisotropy
an pharmaceutical products, and to understand the materilgads in turn to an anisotropic response of the granular as-
behavior of construction materials such as ballast, concretéembly, whose effect on the anisotropic elasticity and the
marble, etc. It is therefore surprising that perhaps the simplasticity remains an open iss{@-11]. _
plest question of dilatancy remains unanswered even now. In In this paper we combine the continuous and the discrete
the simplest case of noncohesive granular materials, the coAPProaches in the investigation of the effect of the induced

ventional elastoplastic models interpret the dilatancy usin%pisotro_py lon dthle elqstpplasftic :cesponsi_ of "’]‘c '[V}IO-
the hypothesis of the existence of a finite domain in stres Imensional model consisting of perfect packings of poly-

space where only elastic deformations are posgibleAs- gons. The polygonal particles have exactly adjusted shapes

and leave null porosity. The granular packing is regarded as

tonishingly, a large amount of experimental evidence SU9% o complementary networks of sliding and nonsliding con-

gests that the purely elastic regime in such materials is varg s
ishingly small[2]. This proves that the introduction of such " 11is bimodal character of the force network was sug-
an elastic regime in the continuous description may be a ested byGedankenexperimentey Dietrich [12]. Vardou-
unnecessary as unsu_itable. For_this reason sar_1d ?S _Someti Ris [13] was next to use the idea of Dietrich by looking
mathemaucally desc_rlb(_ed_by u3|ngqr|g|d-plgst|c limit which carefully into the force chains resulting in the numerical
is called thepsammic limit where dilatancy is seen as an gjnjations of Cundall[14]. He produced a constitutive
internal constrainf3,4. , model that considers sand as a mixture of these two fractions
Several recent investigations on granular materials atyg) Thjs idea was later numerically verified by the obser-
grain scale have provided another context for understanding,;:on of the buckling force chains supported by sliding lat-
the mechanical response of granular assembpfieg]. Even eral contacts during sheft6].
This paper is organized as follows: The details of the par-
ticle model are presented in Sec. Il. The interparticle forces

*Electronic address: fernando@ical.uni-stuttgart.de include elasticity and friction with the possibility of sliding.

"Electronic address: S.Luding@tnw.tudelft.nl The polygonal packing is driven by applying stress con-
*Electronic address: hans@ical.uni-stuttgart.de trolled loading at the boundary particles. The calculation of
SElectronic address: vardoulakis@mechan.ntua.gr the incremental stress-strain relation is presented in Sec. lll.
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The incremental strain is decomposed into reversible elastic SN Y YOOy
and irreversible plastic parts. In Sec. IV we characterize the LN AN IX L :
anisotropy of the contact network and the subnetwork of AT £ ¢
S . . LA M/ N nd) ,>
sliding contacts. In Sec. V the anisotropy induced by shear- AGAD - X
ing in the contact network is correlated with the elastic ten- S IINENL L
; . ) I NI 7. \
sor. In Sec. VI we discuss the plastic flow rule in the frame- A R TS T
work of several existing elastoplastic models. We also (I AL ‘12 plaas '4_)1 as)
interpret the dilatancy as an effect of the induced anisotropy (DG ©dNE B G\VaiB
in the subnetwork of sliding contacts. - AN NN LD
adn N TN A
C NS TR /A =
II. DISCRETE MODEL LA A RS A~
Here we present a two-dimensional discrete element ‘/ A T ]
model which has been used to investigate different aspects of A SL AN AMA TR I
. . ) CRRATR Y/ INCK :
the deformation of granular materials, such as fragmentation N MAVER =

[18], damage[19], strain localization[20,21] and cyclic
loading [22]. This model consists of randomly generated
convex polygons, which interact via contact forces. There are
some limitations in the use of such a two-dimensional code
to model granular materials that are three-dimensional in na-
ture. These limitations have to be kept in mind in the inter-
pretation of the results and its comparison with the experi-
mental data. In order to give a three-dimensional picture of
this model, one can consider the polygons as a collection of
bricks with randomly shaped polygonal basis filing com-
pletely the space such as the case of dry masonry walls.
Another physical picture of the model are the aggregates of
calcite crystal granules such as in the case of mdrblég

The typical texture of marble is illustrated in Fig. 1. The
deformation of individual grains, as well as the Poisson ef-
fect in the grains, are not taken into account. In the case of ] . .
marble, thig approximation is reasonable since deformation FIG. 1. Left: Voronoi construction used to generate the convex

L . . polygons. The dots indicate the point used in the tessellation. Peri-
occurs principally in the interface between the graiag]. odic boundary conditions were used. Right: Typical texture of

marble.(Courtesy of Royer-CarfagiiL7].)

A. Generation of polygons

The polygons representing the particles in this model aréween the bodies. In principle, this interaction can be
generated by using the method of Voronoi tessellafits. obtained using standard technics such as finite elements
This method is schematically shown in the left part of Fig. 1:methods. In our model this method would be computation-
First, a regular square lattice of sidels created. Then, we ally very expensive, and it is necessary to introduce some
choose a random point in each cell of the rectangular gridbasic assumptions to simplify the calculation of this interac-
Each polygon is constructed assigning to each point that pation. As it was presented befof20], realistic contact forces
of the plane that is closer to it than to any other point. Theand torques can be obtained by allowing the polygon to over-
details of the construction of the Voronoi cells can be foundap and calculating them from this virtual overlap.
in the literature[24,25. The first step for the calculation of the contact interaction

Using the Euler theorem, it has been shown analyticallyis the definition of the line representing the flattened contact
that the mean number of edges of this Voronoi constructiotine between the two polygons in contact. This is defined
must be 6[25]. The number of edges of the polygons is from the contact points resulting from the intersection of the
distributed between 4 and 8 for 98.7% of the polygons. Nu-edges of the overlapping polygons. In most cases, we have
merically, it is shown that the orientational distribution of two contact points, as shown in the left of Fig. 2. In such a
edges is isotropic; and the distribution of areas of polygons igase, the contact line is defined by the vetﬁi@r(fz con-

symmetric around its mean valéé. The probabilistic distri-  necting these two intersection points. In some pathological
bution of areas follows approximately a Gaussian distributases, the intersection of the polygons leads to four or six

tion with a variance of 0.3 contact points as shown in the right of Fig. 2. In these cases,
we define the contact line by the vect6=C,C,+C5C, or
B. Contact forces —_— = —=

C=C,C,+C5C,+C:Cq, respectively. This choice guarantees
When two elastic bodies come into contact, a slight de-a continuous change of the contact line, and therefore of the
formation in the contact region appears, and there is an incontact forces, during the evolution of the contact.
teraction which transmits not only force but also torque be- The contact force is separated as
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- A
fe=-— knL—nC - kAXTC. (7)
C
Damping forces are included in order to allow rapid re-
laxation during the preparation of the sample, and to reduce
the acoustic waves produced during the loading. These
C2 forces are calculated as

£ = — m(yoAC + 39, (8)

beingm=(1/m;+1/m))* the effective mass of the polygons
FIG. 2. Contact point€; before(left) and after the formation of in contact.n® andt® are the normal and tangential unit vec-
a pathological contadtight). The vector denotes the contact line. tors defined before, ang, and 7y, are the coefficients of
represents the number of time steps. viscosity. These forces introduce time dependent effects dur-
ing the loading. We will show that these effects can be arbi-
trarily reduced by increasing the loading time, as corre-

Fc — Fe+ ]?U, (1) S d . ) . .
ponds to the quasistatic approximation.
wheref® andf® are the elastic and viscous contribution. The The transmltteg tqrque between two polygons in contact
elastic part of the contact force is decomposed as is calculated ag=¢ X f. The so-calledranch vectoiis taken
as the vector connecting the center of mass of the particle to
Fe:fﬁﬁc_'_ftefc_ (2)  the center of mass of the overlapping polygon. Since this

point is not collinear with the centers of masses of the inter-
The unit tangential vector is defined #s=C/|C|, and the acting polygons, there is a contribution of the torque from
normal unit vectom® is taken perpendicular {6. The nor-  P0th components of the contact for_ce. Th'? makes an impor-
mal elastic force is calculated as tant difference with respect to the interaction between disks
or spheres: Polygons can transmit torques even in absence of
&= - kAL, (3) frictional forces.

wherek, is the normal stiffnessA is the overlapping area C. Molecular dynamics simulation
and L. is a characteristic length of the polygon pair. Our

choice isL.=|C|. This normalization is necessary to be con-
sistent in the units of forcgl9].

The frictional force is calculated using an exter!sion of the mi;i = ]E’ic+ D ]E’ib’
method proposed by Cundall-StrafR6]. An elastic force c b
proportional to the elastic displacement is included at each
contact

The evolution of the positioit; and the orientationy; of
the polygoni is governed by the equations of motion:

lii= > €8x £+ X 6P x fP. 9)
&= - kAXS, (4) c b

wherek; is the tangential stiffness. The elastic displacement Heremy and_li are the mass and moment Of. Inertia of the
Ax; is calculated as the time integral of the tangential velocp(.)lygo.n' The f|rst. sum goes over all those pariicles in contact
ity of the contact during the time where the elastic conditionWlth this polygon; the §econd Qne over all thejorces_apphed
[f8<ufl is satisfied. The sliding condition is imposed, ©N the boyndary. The mterpgrucle contact forésare given
keeping this force constant whéff|=uf. The straightfor- by replacing Eqs(7) and(8) in Eq. (1). In order to perform
ward calculation of this elastic displacement is given by theStress controlled test, a time dependent external force is ap-

time integral starting at the beginning of the contact: plied on each edge belongingﬁto the external contou[of the
t assebmbly: t:I'he external forcé® acting of the edgeTP
Axfzf vi(t)O(ufy = [t (5 =AxX T Axs, is given by
0 'Fb =- O-IAng\(l + 0'3AX§)§(3 - ybmiﬁi . (10)

where @ is the Heaviside step function anil denotes the

tangential component of the relative velocit§ at the con- Herex; andXg are the unit vectors of the Cartesian coordi-

nate systemo; and oz are the components of the stress we

tact want to apply onfthe sample. Each loading stage from the
7 > 0 T i
=G, — 0+ & X € - & X L. ©6) stress state? to oj is applied as
S . - . ol - 2mt .
Herev; is the velocity andw; is the angular velocity of the a(t)y=of + e l-cos— ||, i=1,3, (11
0

particles in contact. The branch vecﬁ?rconnects the center
of mass of particlé to the point of application of the contact wheret, is the time of loading. This modulation is chosen to
force. Replacing Eqg3) and(4) into (2) one obtains avoid acoustic waves at the starting and at the end of the
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loading. The loading is applied in a quasistatic way in themations before failure as well as the Poisson ratio of the
sense that a fastéor slowe) loading has no detectable ef- assembly are monotonic decreasing function of the ratio
fect. Note that a much faster loading has strong influence angl/k,. For samples subjected to isotropic pressure, taking val-
a much slower loading would take much longer. Thereforeyes ofk, between 0 and, lead to Poisson ratios between
our “quasi”-static loading is a compromise between compu,35 and 0.0. Our choicg=0.3%, gives a Poisson ratio of
tational and physical demands. 1,=0.07. This is calculated from the elastic response in Sec.
We use a fifth-order Gear predictor-corrector method fory smajler values ok, lead to larger Poisson ratios, but also

solving the equation of motiof27]. This algorithm consists 5 |arger plastic deformations which in turn induce time de-
of three steps. The first step predicts position and velocity og

] : endence effects and hence very expensive quasistatic simu-
the particles by means of a Taylor expansion. The secon tions
step calculates the forces as a function of the predicted po- |

o o . " The angles of friction and dilatancy are increasing func-
sitions and velocities. The third step corrects the pOSItlon%ions of the interparticle friction coefficient. Taking values
and velocities in order to optimize the stability of the algo- P j 9

rithm. This method is much more efficient than the simpIeOf K betweep 0 and 5.0 yields friction angles betvyegn 6° and
Euler approach or the Runge-Kutta method, especially foP0 [29]0' This range .ShOUId b'e Compafed to the friction gngle
problems where very high accuracy is a requirement. of 48.2° measured in experiments with marbg)], that is
There are many parameters in the molecular dynamicBigger than the value of 40°~45° measured in s&@1d The
algorithm. Before choosing them, it is convenient to make d€ason of this difference is that the interlocking between the
dimensional analysis. In this way, we can keep the scal@rainsin marble is bigger than in sand. A friction coefficient
invariance of the model and reduce the parameters to a min@f £=0.25 is chosen in the simulations. This lead to dila-
mum of dimensionless constants. There is one dimensionle$¢8ncy angles between 20° and 3(®1]. Triaxial tests on
parameter, the friction coefficient, and there are 10 dimenmarble lead dilatancy angles between 11° and BBJ],
sional parameters. The latter ones can be reduced by intrevhereas in sand they yield angles between 7° and 34f
ducing the following characteristic times: the loading tipge ~ Note that the dilatancy angles in marble are bigger than in
the relaxation timest,=1/y,, t;=1/y, t,=1/v, and the sand. This is due to the peculiar texture of marble with van-

characteristic period of oscillatio= Vp¢?/k, of the normal  ishing void ratio, which is well captured by our model.
contact.

Using thg Buckingham Pi theoreﬁQS], one can show Il INCREMENTAL RELATION
that the strain response, or any other dimensionless variable
measuring the response of the assembly during loading, de- When a granular material is loaded, the dynamics of the
pends only on the following dimensionless parametess: contact network involves creation and loss of contacts as
=t /s, an=t /1y, az=ty/ts, as=ty/t,, the ratiok,/k, between well as restructuring by means of sliding contd&8]. These
the stiffnesses, the friction coefficiept and the ratiopg/k,  changes imply a continuous variation of the stress-strain re-
between the confining pressure and the normal stiffness. lation and a change of the void ratio during log2B,34].

The variablesy; act ascontrol parametersThey are cho-  This behavior becomes apparent if a polygonal packing con-
sen in order to satisfy the following criteriét) guarantee the fined by isotropic pressure is submitted to vertical load with
stability of the numerical solution2) optimize the time of constant velocity[35]. The dependence of the deviatoric
the calculation, and3) satisfy the quasistatic approximation. stresso;—o3 and the volumetric strais=AV/V on the axial
a;=0.1, 2,=0.5 and @3=0.5 were taken large enough to straine;=AH/H are shown in Fig. 3 for different confining
have a high dissipation, but not too large to keep the numeripressures. We observe a compaction regime where there are
cal stability of the method. The ratia,=t,/t;=10000 was almost no open contacts and the restructuring is given only
chosen large enough to avoid rate-dependence in the méy sliding contacts. The stress response is characterized by a
chanical response, corresponding to the quasistatic approxontinuous decrease of the slope of the stress-strain curve
mation. Technically, this is performed by looking for the from the very beginning of the load process. Even in this
value ofa, such that a reduction of it by a factor two makes extreme case of dense polygonal packings, any load rear-
a change of the stress-strain relation of less than 5%. Theanges the contact network by means of sliding contacts,
time step is taken aAt=0.1t. which in turn reduces the strength of the material. Before

The parameterk,, k;/k, andu can be considered asa- failure the sample undergoes a transition from compactancy
terial parameters They determine the constitutive responseto dilatancy. This transition is caused by loss of contacts
of the system, so they should be adjusted to the experimentpkerpendicular to the load direction, allowing the contact net-
data. The initial slope of the stress-strain curve of the matework to rearrange and inducing large plastic deformations.
rial is linearly related to the value of normal stiffness of theNear to the failure, the amount of plastic deformations is
contact. The ratiqpy/k, determines the characteristic over- much larger than the elastic ones. This reduces considerably
lapping lengths between the polygons as follows: From the the value of the stiffness with respect to its initial value.
balance between external forces and contact forces in a preafter failure the sample reaches a stage where the deviatoric
sure confined granular assembly one obtain gét-k,5, so  stress as well as the density keeps approximately constant
that the ratio between the elastic deflection and the meaexcept for some fluctuations remaining for large deforma-
diameters of the polygons satisfiésf ~ py/k,. In order to  tions. The continuous variation of the stress-strain curve with
guaranty overlapping lengths lower that 1% of the diametethe loading makes it necessary to use an incremental formal-
of the polygons we choosg)/k,<0.004. The plastic defor- ism in the description of the mechanical response.
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2 ' fib == Ulegf(l + (T3AX?§(3, (13)
18 0.008 b ) o . .
: whereAx?=x"*1-xP. The point of application of this force is
1.6f 1 given by the center of the edge:
= 14} 1 1 1
£ _tb byo b byo
g .l 0.004 | = E(Xlﬂ + X)X + E(X?,Jrl +X3)X3. (14
;; 1r 1 Replacing Egs(13) and(14) into Eqg.(12) leads to
| = 4
o 08 0.002 -0, (DA 3 8T+ X0)AX
0.6f b b
o=
0.4 201 4 2A| - 51> 8T+ XDAXE 5> (G + X9 AXE
0.0005 b b
0.2f 00 (15)
0
0 0,05 0.1 By expanding this sums and using the formula for the area of
1 irregular polygons
0.08 ' 1 by b+l _ b+l b
“ b
0.061 one obtains
(o] O
i = . 17
) 0.04 o { 0 UJ (17)
! Thus the stress controlled test is restricted to stress states
0.02f without off-diagonal components. We can simplify the nota-
tion introducing thepressure pand thedeviatoric stress dn
the components of thstress vector
0
1| oq +
?r:[p}:—{al 03}. (18)
q 201~ 03
-0.02 : . . . .
0 0.05 0.1 The stress should be accompanied with a micromechani-

1 cal expression for the strain tensor. This is given by the av-
FIG. 3. Deviatoric stress and volumetric strain versus axial®'29€ of the g_radlent of the dlsplace_ment field over the as-
sembly[37]. Different from round grains, the length of the
contact region at the polygons is not necessarily much
smaller than their diameter. There is therefore a displacement
field which should be different from the case of a packing of
spheres. However, It is shown [88] that the incremental

We introduce here some definitions required for the deterStrain tensor can be transformed into a line integral of the
mination of the incremental response of the polygonal packdisplacement field on the external boundary of the polygonal
ing. The calculation of the average of the Cauchy stress terRacking, so that it does not depend on the displacement field

sor over a granular assembly leadq36] inside of the packing. By assuming rigid body motion at the
boundary particles, the line integral leads to a sum over the

boundary segments of the samp8s]

strain for different values op/k,, wherep is the lateral pressure.
e>0 represents compression of the sample.

A. Theoretical framework

1 bgb
= =2 12 1
ajj A% il (12 déuzﬂz (du?N})+duf’Nib). (19
b

dfleredﬁb is the displacement of the boundary segment, that is
calculated from the linear displacemedit and the angular

rotation dJ) of the polygons belonging to it, according to

The sum goes over all the forces acting over the boundary
the assemblyA is the area enclosed by the boundary @hd

is the point of application of the boundary forE%given by

Eqg. (10). The boundary of the assembly is given by an ir- e aiw 7

regular polygon whose vertices are denotedBoy (x?,yP), dir'=dx+de X . (20)
wherei=1, 3,b=1,..., Ny, andN, is the number of bound- From the eigenvaluede; andde; of de; we define thevolu-
ary segments. Using the equilibrium conditiope0 in Eq.  metric and deviatoric components of the strain as the com-
(10), we obtain ponents of thencremental strain vector
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TABLE I. Principal modes of loading according to the orienta- tal strain can be separated into an elagécoverablgand a

tion of 6. plastic (unrecoverablecomponent:
0 TEST de=de®+ deP, (24
0° isotropic compression dp>0dg=0 N
6 el
45° axial loading doy >0 do3=0 de®=D"(0)do, (25
90° pure shear dp=0dg>0
135° lateral loading do,=0 do3>0 deP=J(0,0)do. (26)
1800 'SOtr_OP'C eXpa_nS'on dp<0 dqfo Here,D7! is the inverse of the stiffness tensbr andJ
225 axial stretching do;<0do=0  —p—_p-1 the flow rule of plasticity[43]. They will be ob-
270 pure shear dp=0dg<0  tained from the calculation afé®(6) and deP(6).
315° lateral stretching do1=0do3<0
B. Calculation of the incremental response
de= de | _ B de; +des 21) The method presented here to calculate the strain response
€= dy B de; —des |’ has been used on sand experimdd#. It was introduced

by Bardet[45] in the calculation of the incremental response
By conventionde>0 corresponds to a compression of theusing discrete element methods. This method will be used to
sample. We assume a rate-independent relation between tbetermine the elastide® and plasticde? components of the
incremental stress and incremental strain tensor. In this casdrain as function of the stress stat@nd the stress direction

the incremental relation can generally be writter] 28] 6. First, the sample is isotropically compressed until it
R reaches the stress valag=o03=p—q. Then, it is subjected to
de=M(6,0)do, (22)  axial loading in order to increase the axial streggo p+q.

A Loading the sample frorr to o+do the strain incremende
where is the unit vector defining a specific direction in the is obtained. Then the sample is unloadedrtand one finds
stress space: a remaining strairfeP, that corresponds to the plastic com-

ponent of the incremental strain. For small stress increments

o — the unload stress-strain path is almost elastic. Thus the dif-
}, |do| = Vdp? + dof. (23)  ferencede®=de-deP can be taken as the elastic component

of the strain. This procedure is implemented on different

The constitutive relation results from the calculation of clonesof the same sample, choosing different stress direc-
dé(6), where each value of is related to a particular mode tions and the same stress amplitude in each one of them.
of loading. Some special modes are listed in Table I. The method is based on the assumption that the strain

The comparison of the incremental response with the conresponse after a reversal loading is completely elastic. Nu-
stitutive models requires to select the theoretical frameworknerical simulations have shown that this assumption is not
which fits best to the numerical data. Many constitutive mod-strictly true, because sliding contacts are always observed
els can be found in the market, but they are essentially diduring the unload path22,46. In our simulations, we ob-
vided into two group$39]: Theincremental nonlinearmod- ~ serve that for stress amplitudes |ofir|=0.00%p the plastic
els assume that the dependenceMfon ¢ is nonlinear, deformation during the reversal stress path is less than 1% of
prototype of this class being the hypoplastic model§].  the corresponding value of the elastic response. Within this
The second group corresponds to theremental piecewise margin of error, the method proposed by Bardet can be taken
linear models, such as thelastoplasticmodels. In these as a reasonable approximation to describe the elastoplastic
models the space of the stress directions can be divided int@€sponse.
regions where the incremental relation is strictly linpét]. Figure 4 shows the load-unload stress paths and the cor-

A special feature of the incremental nonlinear models igesponding strain response when an initial stress state with
that they depart from the superposition principle, i.e., if onesy=1.25X 103k, and 03=0.75x 103k, is chosen. The end
decomposes an incremental loaddas=da, +da, the strain  of the load paths in the stress space maps into a strain enve-
response of the total load is different from the sum of thelope responsée(6) in the strain space. Likewise, the end of
strain responses of the two incremental 10888,40. Nu-  the unload paths maps into a plastic envelope response
merical simulations with polygonal packings show that thedeP(6). This envelope consists of a very thin ellipse, nearly a
superposition principle is accurately satisfigt®], suggest- straight line, which confirms the unidirectional aspect of the
ing that the incremental piecewise linear models are moré&reversible response predicted by the elastoplasticity theory
appropriate to interpret our simulations. This conclusion i§43]. Theyield direction¢ can be found from this response,
also supported by the fact that the strain envelope response the direction in the stress space where the plastic response
consists of two pieces of ellipses, as we will see later. is maximal. In this example, this is arourt=87.2°. The

In order to compare the incremental response to the elaslow direction ¢ is given by the direction of the maximal
toplastic models, it is necessary to assume that the incremepfastic response in the strain space, which is around 76.7°.

sin@

~ do {coso
0=—=
|do]
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FIG. 5. Elastic strain envelope responsk$(6). They are cal-
culated for a pressune=0.00k, and taking deviatoric stresses with
g=0.0p (innen, 0.1p,...,0.7p (outen.

IV. ANISOTROPY

It is not surprising that isotropic linear elasticity is not
valid in the deformation of samples subjected to deviatoric
loads. Indeed, numerical simulatior{$3,34,48-50 and
photo-elastic experimenf51,52 on granular materials show
that loading induces a significant deviation from isotropy in
the contact network. The structural changes of contact net-
work involve creation of contacts whose branch vectors are
oriented nearly parallel to the loading direction, opening of
contacts perpendicular to the loading direction, and redistri-
0 1 bution of contacts by rolling and slippage. The first two pro-
de x10~° cesses reduce the strength under lateral compression below

the strength under further horizontal load, so that the elastic

FIG. 4. Stress-strain relation resulting from the load-unload testresponse becomes anisotropds,34,48,50 The rearrange-
Grey solid lines are the paths in the stress and strain spaces. Greyents by sliding contacts play an important role in the plas-
dash-dotted lines represent the yield directioppe) and the flow ticity, which has not been much explored by date. In this
direction (lower). Dashed line shows the strain envelope responseection we present a statistical investigation of the anisotropy
and the solid line is the plastic envelope response. of the contact network and the subnetwork of sliding con-
tacts. The calculations were performed taking 10 different
assemblies of 2820 polygons.

The fact that these directions do not agree refleatsrzas-
sociated flow rulethat is also observed in experiments on
realistic soils[44].

Another interesting aspect of the incremental stress-strain The anisotropy of the granular sample can be character-
relation concerns the elastic respongé=de-deP. Figure 5 ized by the distribution of the orientations of the branch vec-

shows the elastic envelope response for different stress rgers¢. Each branch vector connects the center of mass of the
tios. For stress values such @& = 0.4 the stress envelope polygon to the center of application of the contact force.
responses collapse on to the same ellipse. This response caarts(a) and (b) of Fig. 6 shows the branch vectors of the
be described by the isotropic linear elasticity by introducingpolygonal packing for two different stages of loading. The
two material parameters i.e. the Young modukisind the  structural changes of micro-contacts are principally due to
Poisson ratiov [47]. For stress values satisfyimg/p>0.4  the opening of contacts whose branch vectors are oriented
there is a reduction of the stiffness, and a rotation ofnearly perpendicular to the loading direction. The onset of
the principal directions of the elastic tensor. In this caseanisotropy can be investigated by definifif¢)A¢ as the

the elastic response can not be described using these twamber of contacts per particle whose branch vector is ori-
parameters. ented between the anglesand ¢+A¢, measured with re-

A. Anisotropy of the contact network

051304-7
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spect to the direction along which the sample is loaded. The
right part of Fig. 7 shows this distribution for three different
stages of loading. Note that anisotropy is absent for small
deviatoric loads, and it appears only near to failure. For all
stress values, the orientational distribution can be accurately
described by a truncated Fourier series expansion:

() ~ 2020+ ac0520) + acotag)].  (27)

Here N=Nga, is the average coordination number of the
polygons, whose initial valudly=6.0 reduces as the load is
increased. The parametexsanda, are related to the second
and fourth order fabric tensors defined in other works to
characterize the orientational distribution of the contacts
[32,48,53. We will call themfabric coefficientsThe depen-
dence of the fabric coefficients on the stress rajip is
shown in Fig. 8. We observe that for stress states satisfying
(< 0.4p there are almost no open contacts. Above this limit
a significant number of contacts are open, leading to an an-
isotropy in the contact network. Fourth order terms in the
Fourier expansion are necessary in order to accurately de-
scribe this distribution.

Of course, the onset of anisotropy depends on the initial
distribution of contact forces, and its evolution during load-
ing. Figure 7 shows the distribution of contact forces in the
polygonal assemblies for three different stages of loading an
the corresponding orientational distributions. For low stress
ratios, the contact forces is rather concentrated around their
mean value. This distribution is qualitatively different from
the heterogeneous distribution of forces observed in polydis-
perse disks packind®,54]. This is due to the particular ge-
ometry of the polygonal packing, where the absence of voids
and the low polydispersity of the grains reduces the disorder
of the contact network.

From Fig. 7 we observe that loading induces an increase
of the fluctuations of contact forces and hence opening of
contacts when the normal fordg vanishes. In particular, for
stress values satisfying< 0.4p there is almost no open con-
tacts. Above this limit a significant number of contacts are
open, leading to an anisotropy in the contact network. This is
different from the findings obtained for disks packings,
where due to the round nature of the particles that do not
resist against deformations as the polygons do, the aniso-
tropy starts to grow already for small deviatoric deforma-
tions[33,34.

B. Anisotropy of the sliding contacts

Let us classify the branch vectors of the contact network
in two classes, the first class corresponds to the nonsliding
contacts, which are able to carry the load in the material. The
second class is given by the sliding contacts, which allow the
rearrange of the contact network during loading.

The sliding condition at the contacts is given iy

FIG. 6. The lines show the branch vectors of the contact net=#fn, Wheref, andf; are the normal and tangential compo-

work for o;=03=0.00%k, (a) and ¢;=0.65x 1073k, and 03=0.35

nents of the contact force, andis the friction coefficient.

X 103, (b). The branch vectors of the subnetwork of sliding con- When the sample is isotropically compressed, we observe a

tacts are shown for the isotropic) and the anisotropic¢d) case.
The width of the lines represents the normal force.

significant number of contacts reaching the sliding condi-
tions. If the sample has not been previously sheared, the

051304-8
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FIG. 7. Left: force distribution
for the stress ratiog/p=0.1, 0.35,
and 0.65. Heref; and f,, are the
tangential and normal components
of the force. They are normalized
by the mean value of,. Right:
orientational distribution of the
contactsQ(¢) (outen and of the
sliding contactsQ%(¢) (innen. ¢
represents the orientation of the
branch vector.

150/

180

210\

270

subnetwork of sliding contacts is isotropic as shown the partontacts and the average of the orientations of the branch
(c) of Fig. 6. This isotropy is broken when the sample isvectors with respect to the load direction decreases with the
subjected to deviatoric loads, as shown pdrtof Fig. 6. The  stress ratio. Close to the failure, some of the sliding contacts
onset of anisotropy is investigated by introducing the polawhose branch vectors are nearly parallel to the loading di-
function Q%(¢), where Q%(¢)A¢ is the number of sliding rection open, giving rise to a butterfly shape distribution, as
contacts per particle whose branch vector is oriented betweeshown in Fig. 7.
¢ andp+Ag. The orientational distribution of the subnetwork of sliding
Figure 7 shows the orientational distribution of sliding contacts can be approximated by a truncated Fourier expan-
contacts for different stress ratios. For low stress ratios, thsion:

branch vectord of the sliding contacts are oriented nearly
perpendicular to the loading direction. Increasing the devia- Q) =~ &[COJ, €,C092¢) + C,co84¢)]. (28)
toric strain results in an increase of the number of the sliding 27
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FIG. 8. Fabric coefficients of the contact net-
work. They are defined in Eq27). The lines
show the spline interpolation of the data.

Figure 9 shows the dependence of these fabric coefficientshat this abrupt induced anisotropy has an interesting effect
measuring the induced anisotropy of the sub-network of sliden the plastic deformations.

ing contacts. By integrating E428) over all orientation one

can see thaty is related to the fraction of sliding contact as

ns=cy/ay. Where ay is defined by Eq.(27). The last two V. ANISOTROPIC ELASTICITY

coefficients measure the second and the fourth order degrees ) , ) . ,

of anisotropy of the subnetwork of sliding contact. The com- ' this section we investigate the effect of the anisotropy
plex dependence of this coefficients on the stress is given b f the contact network on the el_astlc response of the material.
the fact the number of sliding contact increases for smalll "€ most general linear relation between the incremental
stress ratio, and an important fraction of them are open bes_tresg ar_ld the incremental elastic strain for anisotropic mate-
fore failure, as it was shown in Fig. 7. Note also that forials is given by

extremely small deviatoric loads the fabric coefficientis C—P. .

different from zero. This reflects a surprising fact: At the doyj = Dijdeg, (29

very beginning of the loading, most of the sliding contactswhereD;, is the stiffness tensdB83,34,47. Since the stress
whose branch vector is oriented nearly parallel to the direcand the strain are symmetric tensors, one can reduce their
tion of the loading, leave the sliding condition. We will see number of components from 4 to 3, and the number of com-

0.5 T T T T T T T

0.4
0.3

0.2

FIG. 9. Fabric coefficients of the distribution
of the branch vectors of the sliding contacts. They
are defined in Eq(28). The lines show the spline
interpolation of the data.

—0.44 1 1 1 1 1 i i
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FIG. 10. Young moduli. The lines are the linear fits Bfn;) FIG. 11. Poisson ratios. The lines are the linear approximation

according to Eq(33). of »(n;). See Eq(33).

ponents of the stiffiness tensor from 16 to 9. Elasticity in- The correlation between the parameters of the stiffness

volves an elastic potential energy, whose existence impliel€nsor and the fabric coefficients of H&7) is evaluated by
the so-called Voigt symmetry of the elastic tensdfy introducing three parameters measuring the degree of aniso-

=Dyy; [55]. This symmetry reduces the constants from 9 to 6/OPY
In the particular case of isotropic materials, it has been n=1-a, m=a, n=a, (32)
shown that the number of constants can be reduced4d]2
wherea; are the fabric coefficients defined by H7). By
1 integrating this equation over all orientations one obtains that
def = E[(l = v)doy; — v&doyd. (300 ny=(Ng—N)/N,, which represents the percentage change of
the average coordination number. The last two terms in Eq.
HereE is the Young modulus and the Poisson ratios; (32) measure the second and the fourth order degrees of an-
is the Kronecker delta. In the general case of anisotropicsotropy. From Fig. 8 one obtains that &5y~ 1.6a;. Thus,
materials, the 6 constants are given by two Young modulipne can take, andn, as the two independent internal vari-
two Poisson ratios and two shear moduli. If we considerables measuring the anisotropy of the contact network. The
deformations whose stress tensor has no off-diagonal condependence of the parameters of the stiffness tensor on these
ponents, only the Young moduli and the Poisson ratios argariables is evaluated by developing the Taylor series around

needed: the isotropic case whemg=0
i B m Ei = Eo+ Eilnl+ Ei2n2+0(ninj),
de§ E E d
i = 1 2 |: 0-1:| . (31) Ujj :U0+Uﬁn1+vﬁn2+0(ninj). (33)
des vy 1 dos _ )
"E E The variablesy; are calculated as functions gf p by per-
1 2

forming spline interpolation of the fabric coefficiends in

From the elastic part of the strain envelope response onEig. 8. Then, the coefficients in E(33) are calculated from
can determine these constants as shown in the Appendithe best fit of those expansions. Figures 10 and 11 show that
Figures 10 and 11 show these variables for different stresthe linear approximation is good enough to reproduce the
values. The averaged values on five different samples adependence of the stiffness on the stress ratio. This correla-
20X 20 polygons are used in these calculations; the baron is consistent with several models relating stiffness with
representing the standard variation of the data. For the stredise fabric of the contact netwoil32,48,53,56,5/ We ob-
values where the contact network is isotropic both Youngserve a slight dependence of the stiffness on the pressure
moduli and Poisson ratio are the same, as corresponds to thevel which tends to vanish in the limit of small values of
isotropic linear elasticity. For stress ratio where the contacp/k,. Since we use a linear relation for the contact force one
network depart from isotropy both Young moduli and would expect no dependence on the pressure. This is a spu-
Poisson ratios are different. Note that the reduction of theious effect resulting from the interpenetration between the
Young modulusg; reflect the reduction of the stiffness under polygons. Due to the overlapping, the area occupied by all
lateral compression, which is due to the opening of contactpolygons under isotropic pressure is lower than the sum of
whose branch vectors are almost perpendicular to the loadintpeir areas. This is reflected by a dependence of the stress on
direction. the pressure in a factor which is proportional fiok,. In
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order to avoid this effect it is necessary to take small values = !
of p/k,. Note that for real granular materials elastic ; : 5 5 5 5
moduli—as deduced from the velocity of sound—increase 081 i S ! - L W D e -
with confining pressure due to the nonlinear contact elastic- : ‘ § 5 : ¢
ity. Future modeling of elastic properties should in fact in-
volve more realistic contact force laws.

VI. PLASTIC DEFORMATION

We now turn to the description of the plastic part of the 0.2F i
strain response. Figure 4 shows that the plastic envelope re-
sponse lies almost on a straight line, as is predicted by the oy SRR S
hardening elastoplasticity theofyl]. This motivates us to e 3 e ‘*"M :
obtain the flow rule of Eq(26) by introducing the same -150 -100 -50 0
parameters describing the plasticity in this theory: The yield 0-9¢
direction ¢, the flow directiony, and the plastic modulus. . .
The yield direction is defined from the plastic envelope re- . FIG. 12. Plastic componentey(6) (circles and «,(6) (dot9

sponse as the direction in the stress space leading to maxim " Py E(38). The results for different stress values have been
: - Superposed. The solid line represents the truncated cosine function.
plastic deformation

3
P

50 100 150

P = P A A
(GP()] = made®(6)]. S ko0) < ky(6) = (g0 PN = (- B, (39)
The flow direction is the orientation of the plastic response atvhere{x)=x0(x), with ©(x) being the Heaviside step func-
its maximum value tion. Now, the flow rule results from the substitution of Egs.
(37) and (39) into Eq. (26):
v= L[de"()]. (35 .
The plastic modulus is obtained from the maximal plastic deP(9) = J(9)do = (¢-do) [p (40)
response h
1 |deP(g)] This equation establishes a bilinear relation between the
-= . (36) incremental stress and the plastic deformation. This is char-
h |da] acterized by an absence of plastic deformation for stress in-

The incremental plastic response can be expressed in terraggments such ag-do <0 and a plastic deformation, always
of these quantities as follows: Let us define the unitary vecoriented along the flow directio), for stress increments
tors ¢ and ¢/*. The first one is oriented in the direction ¢f ~ such as¢-do>0. At the micromechanical level, this means
and the second one is the rotation a:tz)fof 90°. The plastic that the sliding contacts haveAa well defined response under
strain is written as incremental load: In the casé-do<0 the load typically
drives them to the elastic reginif| < uf,. Otherwise, there

1 ~ ~ is a sliding at each one of these contacts in a direction which
de(6) = H[Klw)w kO], B9 goes not depend of the direction in the stress space along

) which the load is applied. This unidirectionality of the plastic

where «;(6) and «;(6) are defined by the dot products: deformation is confirmed by several experimental results on

_ 0 7 plane strain deformatiofb8] and it is an essential ingredient
x1(6) = h(de® - ¢), of the hardening elastoplasticif#3,59. The fact that this
A relation is obtained using a simple discrete element model
ko(0) = h(deP - ). (38)  suggests that it is possible to interpret the flow rule of plas-

. ) _ticity from the collective response of all sliding contacts.
These functions are calculated from the resulting plastic

response taking pressures wiik,=0.001, 0.002, 0.004,
0.008 and deviatoric stresses wihp=0.1,.., 0.7. The re-
sults are shown in Fig. 12. We found that the functions In soil mechanics the plastic flow rule is interpreted in
k1(6—¢) collapse on to the same curve for all the stresgerms of the incremental work done during load[158]
states. This curve fits well to a cosine function, truncated to dW= pde+ ad (41)
zero for the negative values. The profite depends on the P qcy-
stress ratio we take. This dependency is difficult to evaluate, According to thecritical state theory under large mono-
because the values of this function are of the same order asnic loads the material reaches a limit state where it behaves
the statistical fluctuations. In order to simplify the descrip-purely frictional, deforming isochorically during loading and
tion of the plastic response, the following approximation ishaving constant friction coefficied68]. Numerical simula-
made: tions of the biaxial test using polygonal packings seems to

A. Stress-dilatancy relation
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02 ' ' ; : : ! ; interpreted as the stress ratio at the critical s{&@]. A

: : : physical interpretation of has been presented by Gutierrez
and Ishihard63]. Their theory is based on the fact that load-
SIS SORUIUS TS TSI SR <ol NSRS W— ing induces anisotropy, which in turn involves noncoaxiality,
Gutierrez & Ishihara : : : that means that the principal directions of the stress do not

: 1 : ; : ' coincide with those of the incremental plastic strain tensor.
This noncoaxiality implies that the dissipated work ex-

; ; ; : : ; pressed as the sum of the products of the stress invariants
S ; v P=0008k;: i with the plastic strain invariants, as in Ed4), is erroneous.
FI ,  p=0.004k ﬁ The correct expression should be given in terms of the Car-
N i| S— ;’ ......... S .......... .......... T .......... .......... 4 teSlan Components Md: O'”dfﬁ A Stralghtforward Calcu_

Nova & Wodd ; ; ; lation leads tadWy=pd€’+cqdy?, wherec=cog2V¥), Being
v P =0.001 I ; ¥ the angle of noncoaxiality. Assuming, as the stress-
: ; ; ; ; i ; dilatancy theory, that the dissipated energy remains constant
0 o1 02 03 04 05 06 07 08 during the loading, we obtaidW,=pde+cqdyP=cMpdyP.
a/p This identity leads to Eq(45). Note that values o€ lower

FIG. 13. Dilatancy versus the stress ratio. The solid curve repIhan ur_wity are predicted by this theory. Our biqxial tests
resents a fit with the Gutierrez and Ishihara model. The dashegiMmulations However, lead to a valwe=1.7. Experimental

curve represents the relation given by the Nova and Wood modelPiaxial tests report on values afranging form 0.9 to 1.2
[64]. This range goes also beyond the limits of this theory.

An explanation of this contradiction can be done by ex-

verify this limit condition [29]. As shown in Fig. 3, the . e T :
C loring the coaxiality and power dissipation during load. Ac-
granular assembly reaches this critical state, where the volu-__ . . . R
cording to our simulations, the angle of noncoaxiality is a

metric strain as well as the stress ratio keeps apprOXimate.l%onotonically decreasing function of the stress ratio. This

constant except for some stress fluctuations, which remaifl, _. o 'is also observed in experiments on 85 provin
for large deformations. Neglecting those fluctuations, the in- b P 9

o . that c is strictly not a material parameter. Furthermore, the

cremental work done at the critical state can be approxmatedI L . . : .
by plastic dlSSlpgtlon is a mpnotonlcally increasing fun_ctlon of

the stress ratio. This implies that the basic assumption of the

dW, = qdy=M.pdy, (42)  stress-dilatancy theory, that the incremental power dissipa-

. . . tion stays constant, is not applicable to our results. Lets make
whereM_ is the frictional constant at critical state. As far as jaar that we are not trying to prove with our simplified

granular materials are concerned, it is assgmed that the dgsgqe| that these theories are wrong. Our results only suggest
formation is aimost completely plastide~deF), so thatthe 54 i the case of extremely high densities some deviations
elastic stored energy is negligible and hence almost all thgapy pe expected. Based on experimental data on dense and
work is dissipated, i.edW=dW. o loose sand, Li and Dafalias conclude that the void ratio
In classical book of Taylof60] the basic idea of the ghould be integral part of the stress-dilatancy relafio®.
stress-dilatancytheory is discussed. Based on few data onaccording to Gutierrez and Ishihara, not only the void ratio,
Ottawa standard sand, Taylor concluqles that the dissipatgq, aiso the also the anisotropy of the sample should be
work can be assumed to be constant, independent to the stgfg|uded in this relation. A good alternative would be to in-
of loading so that troduce the fabric coefficients of the sliding contacts in the
dWj =~ dW.. (43) descr|_pt|on of pla§t|C|ty. We will explore this approach in the
following subsections.

,Yp

de / d
S
Cl

1
1
1
1
1
1

Replacing Taylors hypothesis in Eqg.l) and (42) and ne-
glecting the elastic energy, we obtain B. Limit of small stress ratios

d=7-M.. (44) Further important issues should be addressed in the range
of small stress ratios. Here the plastic deformations are much
Here we definel=-de"/|dy?| as the dilatancy ang=a/pas  |ower than the elastic ones so that the above assumptions
the stress ratio. As shown in Fig. 13, the dilatancy evaluategbading to the stress-dilatancy relation can not be applied. A
from our data does not support the simple rule of Ed),  modification of this theory for small stress ratio has been
but rather a modification of this expression is required presented by Nova and Wo89]. Their model is based on
d=c(p-M,), (45) the assumption that the response of the sample must be iso-
tropic for small deviatoric loads, so that the deviatoric plastic
whereM=0.5 andc=1.7. According to Eq(34), the flow  deformationdyP must vanish in the limity=q/p—0. In
direction is therefore given by order to satisfy this isotropy condition, Nova and Wood pro-
_ _ pose that Eq(45) should be replaced bg=C/ 7 for small
cosy)=cMc=7), O<y=<m. (46) values of; the constanC is selected by matching this ex-
This linear relation between the dilatancy and the strespression with Eq(45). Contrary to this assumption, our nu-
ratio has been observed in experimental data in tridxia) merical data fits well to the Eq45) for small stress ratio as
and biaxial[62] tests on sand. The material constdhit is  shown the Fig. 13.
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FIG. 15. The flow direction and the yield direction of the plastic
response. Solid curves represent a fit using E4f). and (47).
FIG. 14. Plastic envelope response resulting from isotropically

compressed samples with a pressprd.00k,. The average of the orientations of the branch vectors with
Extrapolating these data tp=0 brings to light an appar- respect to the load direction decreases with the stress ratio,

ent contradiction: Ag=0 the contact network is isotropic, so Which in tumn results in a change of the orientation of the
that no deviatoric deformation should appear under isotropi@!astic flow. Close to the failure, some of the sliding contacts
compression. On the other hand, takimg0 in Eq. (45)  Whose branch vectors are nearly parallel to the loading di-
leads toy# 0, which established deviatoric plastic deforma- rection open, giving rise to a butterfly shape distribution, In
tion under isotropic loads. To resolve this paradox we plothis case, the mean value of the orientation of the branch
the plastic part of the strain envelope response when theector with respect to the direction of the loading is around
sample is initially under isotropic pressure, in Fig. 14. We¢=38°, which means that the sliding between the grains oc-
see clearly that the unidirectionality of the plastic deforma-curs principally around 52° with respect to the vertical. This
tions breaks down under isotropic condition, so that the flowprovides a crude estimate of the ratio between the principal
rule given by Eq.(45) is not valid here. Note from Fig. 14 components of the plastic deformation @t 0.65 as dej

that further isotropic compressigd=0) induces only plastic =~ -dePtan(52°). According to Eq(35) this gives an angle of
volumetric deformation, which is consistent with the initial djlatancy ofyy~97°. This crude approximation is reasonably

isotropy of the polygonal packing. Under extremely smallcjose to the angle of dilatancy of 104° calculated from Eq.
deviatoric loads the isotropy of the assembly is broken, anglg).

there is plastic deviatoric deformations with flow direction
close to 45°.

This striking effect can be understood from an inspection
of the orientational distribution of the sliding contacts. Part The earliest theoretical studies on plasticity came from the
(a) of Fig. 6 shows a significant number of contacts reachingstudy of metal§67]. They were based on the postulation of
the sliding conditions even when the sample is isotropicallya yield surface. This surface is supposed to enclose a domain
compressed, The initial distribution of the branch vectors isn the stress space where only elastic deformations are pos-
isotropic. This explains the fact that under isotropic load onlysjble[1]. The existence of a finite elastic domain leads to the
volumetric plastic deformations are observed, as shown imormality condition, which establishes that both plastic flow
Fig. 14. direction and the yield direction are perpendicular to the

As Sh?""” in Sec. IV Bhthe shubnetwolrk of sliding contactﬁ ield surface. The question naturally arises as to whether this
departs from isotropy when the sample is subjected t0 thg,hqition is valid for the plastic deformation of granular ma-

fﬂ'gTgstta(i?;"atﬁgfelob?gwgh TQ'CSK')? gegﬁgﬁfemseta?r thzrselllije- rials. Experimentalists on soils say that yield surfaces are
Ing w v : ' yPp ifficult to determine because the transition from elastic to

to the direction of the loading leave the sliding condition. | lastic behavior i t h the th dict
This is represented fay=0.1p in Fig. 7. For low stress ra- elastoplastic behavior Is not as sharp as the theory predicts
) i o . [68]. Loosely speaking, the yield surface appears to be a
tios, the branch vectoré of the sliding contacts are oriented pragmatic compromise which allows to describe the depen-
nearly perpendicular to the loading direction. Sliding occursgence of plastic deformation on the deformation history, but
perpendicular td, so in this case it must be nearly parallel to is not a necessary feature of granular matefiag.
the loading direction. Then, the plastic deformation must be This conclusion becomes clearly apparent if the yield di-
such thatdel <def, so that Eq/(35) yields a flow direction rection and the flow direction are calculated from the plastic
of y=45°, in agreement with Fig. 14. part of the strain envelope response using the E2¢§.and
Figure 7 shows that by increasing the deviatoric strain(35). Both directions are shown in Fig. 15. The results show
results in an increase of the fraction of the sliding contactsthat they depend only on the stress ratigsq/p. The flow

C. Normality condition
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10' £
10°
K .
- FIG. 16. Inverse hardening modulbsversus
¥':10' fraction of sliding contact:ns. Different stress
values with q=0.01p,0.1p,...0.7p and p/k,
=0.001, 0.002, 0.004, and 0.008. The lowest
value ofng corresponds ta=0.01p.
1072
-3 1 1 I 1
1075 0.1 0.2 0.3 0.4 0.5
n
S
direction is fitted by using Eq46). The yield direction can Loss of contacts seems to play a secondary role in the
be fitted by a similar relation, but with different regression plastic deformations. The onset of anisotropy of the contact
parameters networks aty=0.4 is probably related to the abrupt change
of slope in Fig. 15 around this value.
cot(¢)=c'(M'-7), O0<op=m. (47) D. Plastic modulus
The fitting parameter®’=0.18 andc’ =1.1 do not corre- In the past two sections we presented a close correlation

spond to the valued=0.5 andc=1.7 one of the flow direc- between the orientational distribution of the sliding contacts
tion. This proves that both angles are quite different so tha@nd the plastic flow rule. This correlation suggests that plas-
the normality condition is violated. A large amount of experi- tic deformation of granular materials can be micromechani-
mental evidence has also indicated a clear deviation from theally described by introducing fabric constasfssuch as in
normality condition[68], leading to the so-called nonassoci- Ed. (28), measuring the anisotropy of the subnetwork of the
ated plasticity{43]. From a micromechanical inspection one sliding contacts. This description would be equivalent to the
can understand this strong deviation from the normality conrelation between the anisotropy of the contact network and
dition. The principal mechanism of plasticity in granular ma-the elastic stiffness tensor presented in Sec. V.

terials is the rearrangement of the grains by sliding at the In Sec. IV B we found that the the fraction of sliding
contacts. This is not the case for microstructural changes ifontacts is related to the fabric coefficients s cy/ay,

metals, where there is no frictional resistaf6@]. Even for ~ Wherec, anda, are defined by Eq$27) and(28). We intro- -
small deviatoric loads there is an important fraction of con-ducens as an internal variable of the contact network, which

tacts reaching the sliding condition as shown in pgaytof Wil be used to describe the evolution of the plastic modulus
Fig. 6. This is reflected in the strong non-associated behavigkith the loading. The plastic modulirsdefined in Eq(36) is

shown in Fig. 15 where the yield direction is around 90° andelated to the incremental plastic strain hisfeP|~|do],
the flow direction around 45°. which is equivalent to the relatidf|de® ~ |do| between the

The fact that any load involves sliding contacts and itsYoung moduli and incremental elastic strain. Thus, just as we
effect on the nonassociated flow rule of plasticity contradictgelated the Young moduli to the average coordination number
several constitutive models of granular materials. For exof the polygons, it is reasonable to connhdb the fraction
ample, Nova and Wood establish that due to the absence 6f sliding contacts. Figure 16 shows that this relation can
sliding contacts at small stress ratios the plastic deformatioRe fitted to an exponential relation
should be associated like in metdf9]. They introduce a _
threshold in the stress ratio, above which %e onset of fric- h = hoexp(=ndno), (48)
tional contacts breaks the normality rule. This condition iswhere hy=5.0Xx 10°k,, and n,=0.066. This exponential de-
not verified in our simulations, probably due to the fact thatpendence contrasts with the linear relation between the
in reality not only sliding contacts, but also breaking of Young modulus and the number of contacts obtained in Sec.
grains can occur at low stress ratios at contacts with largest. From this comparison, it follows that when the number of
forces[70]. The contribution of grain fragmentation on the contacts is such thait,>n,, the deformation is not homoge-
plastic deformation is however beyond to the scope of thisieous, but is principally concentrated more and more around
work. the sliding contacts as their number increases. For low stress
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ratiosh~ 10°%k, whereasE; ~ k, so that plastic deformations, the conclusion that a profound modification of the elastoplas-
which are inverse proportional to the plastic modulus, ardicity theory is required39].

two orders of magnitude smaller than elastic ones. In this Apart from the violation of the normality condition, an
case the strain response of the assembly is almost completedprupt anisotropy induced by extremely small deviatoric
elastic. Near to failure we found that- 10, so that plas- loads is detected in the subnetwork of the sliding contacts.
tic deformations are two orders of magnitude bigger thanl his results in a breakdown of the unidirectionality of the

elastic ones. This corresponds to the well-known rigid-plastidlow rule atq=0, which deserves experimental verifications.
limit for granular material§4]. This deviation from anisotropy implies deviatoric plastic de-

formations when the sample is subjected to the smallest de-
viatoric load. Deviatoric plastic deformation under extremely
VIl. CONCLUDING REMARKS small deviatoric loads has been also observed in humerical
. . experiments on loose packings of polygd2®] and pack-
The thrust of this work was the Understandmg of the Ef-ings of d|sks[73], |eading to important effects in the me-

fect of induced anisotropy on the elastoplastic response of ghanical response under cyclic loadifg8].
polygonal packing in the limit of initially vanishing pore  |n spite of the complexity of the plastic response, the
space. The incremental response has been decomposed inrgfation between the dilatanoy and the stress ratioy is
elastic and a plastic part. These components have been caiven by a simple linear relatioth=c(#—M). This relation is
related to the fabric coefficients, measuring the anisotropy ofiot only supported by experiments, but also it has been one
the contact network and the subnetwork of the sliding conof the fundamental issues in modeling the stress-strain be-
tacts. havior of soils. Unfortunately the theoretical assumptions of
The incremental elastic response has been described usiofassical modelgTaylor [60], Nova and Wood[59], and
two Young moduli and two Poisson ratios. Below the stressGutierrez and Ishihar§63]) are not verified in our model.
ratio g/ p< 0.4, this response can be represented by only onghis leads to the basic questiowhat lies behind of this
Young modulus and one Poisson ratio, as corresponds to tlemple stress-dilatancy relationshipAlthough we cannot
isotropic elasticity. Above this stress ratio both Young moduligive a definitive answer, a physical explanation would be
and Poisson ratios are different. These parameters showthat a granular medium close to the plasticity limit behaves
linear dependence on the fabric coefficients of the contadike a strange fluid that obeys this stress-dilatancy relation
network. This result is consistent with several approacheas an internal kinematical constraint. This constraint be-
dealing with the connection between the elastic properties ofomes apparent near to failure, where plastic deformation
granular materials with the anisotropy of the contact networldominates, and it could be seen as the counterpart of the
[32,48,53,56,5F Our simulations suggest that this correla- well-known incompressibility condition of fluids. This
tion could be given by an explicit linear relation between themeans that for such atrange fluidnot the mean stress is
parameters of the stiffness and the fabric coefficients. W&inematically undetermined, but that part of the stress which
have remarked that the transition to anisotropy arogfjd  does not work and which corresponds to the component of
=0.4 is due to the fact that we start with a polygonal packinghe stress perpendicular to tfylastio strain[4]. Thus the
with zero porosity, where the force distribution is unusuallyusual decomposition of the stress in deviatoric and isotropic
narrow. This is not typical in most granular materials wherepart, used in the continuum fluid—and soil-mechanics analy-
the force distribution is rather heterogened8% In dense ses is not justifiedi3]. This idea underlies in our opinion the
polygonal packings with finite porosit29] and disks as- concept of the so-calledhobilized planein soil plasticity
semblies|[33,54] small loads open weak contacts and hencd 74]. The resulting correlation between the mean orientation
induce a smooth transition to the anisotropy for small deviaof the sliding contacts and the plastic flow direction in our
toric loads. In all cases it is concluded that one can micro€alculations suggests that this internal constraint can be mi-
mechanically characterize the anisotropic elasticity by introcromechanically interpreted from the induced anisotropy of
ducing fabric coefficients, measuring the anisotropy of thehe subnetwork of the sliding contacts.
contact network. Since the mechanical response of the granular sample is
Another interesting aspect of the incremental response igepresented by a collective response of all the contacts, it is
the unidirectionality of the plastic response, which can beexpected that the constitutive relation of granular materials
described using a nonassociated flow rule. From numericalan be completely characterized by the inclusion of some
simulations of packings of disks, Bardet concluded also thainternal variables, containing the information about the mi-
a nonassociated flow rule describes satisfactorily the increcrostructural arrangements between the grains. We have in-
mental responsf45]. This conclusion is also supported by troduced some internal variables taking into account the an-
several experimental tests on plane strain deformatioiisotropy of the contact force network. The fabric coefficients
[43,58,59. Both numerical and experimental results showa;, measuring the anisotropy of the network of all the con-
clearly deviations from the normality condition. This is prob- tacts, prove to be connected with the anisotropic stiffness.
ably connected to the fact that any load involves sliding conOn the other hand, the fabric coefficiertts measuring the
tacts so that the elastic regime is vanishing small but not anisotropy of the sliding contacts, are closely related to the
finite domain as the elastoplasticity establishé®]. Recent plasticity.
numerical simulations of three dimensional packings of A clear definition of the internal variables is essential to
spheres contradict not only the normality postulatg], but  solve the basic paradox of elastoplastic models: The math-
also the unidirectionality of the flow rulg2], leading also to  ematical description of the evolution of a plastic flow rule
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with the loading requires the postulation of a finite elastic dvyP = |do|(ay;cos 0+ ay,sin 6), (A3)
regime. The existence of this regime implies normality of the

flow rule, which contradicts the nonassociated flow ruleso that the parametees are evaluated as the Fourier coef-
found in experiments. In our opinion, future work should beficients ofde® anddy®:

oriented towards the elaboration of a theoretical framework 1 (e

connecting the constitutive relation to these internal vari- 11:_~f de’(6)cosade, (A4)
ables. To provide a complete micromechanically based de- wldal Jo

scription of the elastoplastic features, the evolution equations

of these internal variables must be included in this formal- 1 27

ism. This theory would be an extension of the ideas which = _~f de’(0)sin 6do, (A5)
have been proposed to introduce the fabric tensor in the con- lda] Jo

stitutive relation of granular material41,33,34,53,56,57

l 27T
= —— d+#(#)cosade, A6
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HPRN-CT-2002-00220. as a function of the elastic part of the envelope response. The
parameter of the stiffness tensor of E§1) are expressed in
APPENDIX: CALCULATION OF THE PARAMETERS terms of these coefficients by replacing E¢s8) and (21)
OF THE STIFFNESS TENSOR into Eq.(Al) and comparing the result to E@1). It leads to
In this section we present the method used to calculate the
Young moduli and the Poisson ratios of the stiffness tensor E_l =t axntanptay, (A8)

from the elastic part of the strain envelope respofi&® o).
First we write Eq.(25) as

V12
|:dee:| [all a.lz:| |:dp:| (Al) - E— =ajptap—app—agy, (Ag)
= i 2
dy® ay a[ldg
Replacing Eg.(18) into Eqg. (23) one obtains thatp Vo1 _

— ~ . . . ——==ay —aytapp—ay, A10
=|do|cos# and q=|da|sin 6, where§ is the direction of the E, b Ttz oz (A10)
stress increment. Replacing these equations into (Ed)
one obtains 1

. — =ay1— Ay~ Aot Ay All
de® = |do(as,c0s6 + a;,8in 6), (A2) E, 1t Ttz (ALD)
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