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I. INTRODUCTION

Granular materials exhibit a range of behavior that has
attracted the attention of physicists, mathematicians, and en-
gineers from Coulomb, Faraday and Reynolds in the late
18th century, to several interdisciplinary research groups in
the earlier 21st, trying to improve the handing of agricultural
an pharmaceutical products, and to understand the material
behavior of construction materials such as ballast, concrete,
marble, etc. It is therefore surprising that perhaps the sim-
plest question of dilatancy remains unanswered even now. In
the simplest case of noncohesive granular materials, the con-
ventional elastoplastic models interpret the dilatancy using
the hypothesis of the existence of a finite domain in stress
space where only elastic deformations are possiblef1g. As-
tonishingly, a large amount of experimental evidence sug-
gests that the purely elastic regime in such materials is van-
ishingly smallf2g. This proves that the introduction of such
an elastic regime in the continuous description may be as
unnecessary as unsuitable. For this reason sand is sometimes
mathematically described by using a rigid-plastic limit which
is called thepsammic limit, where dilatancy is seen as an
internal constraintf3,4g.

Several recent investigations on granular materials at
grain scale have provided another context for understanding
the mechanical response of granular assembliesf5–7g. Even

in the absence of strong spatial disorder of the grains, static
assemblies show that the stress is transmitted through an
heterogeneous contact network with a peculiar force distri-
butionf8g. Under small deviatoric loads, an initially isotropic
packing develops an anisotropic contact network because
new contacts are created along the loading direction, while
some are lost perpendicular to it. This geometrical anisotropy
leads in turn to an anisotropic response of the granular as-
sembly, whose effect on the anisotropic elasticity and the
plasticity remains an open issuef9–11g.

In this paper we combine the continuous and the discrete
approaches in the investigation of the effect of the induced
anisotropy on the elastoplastic response of a two-
dimensional model consisting of perfect packings of poly-
gons. The polygonal particles have exactly adjusted shapes
and leave null porosity. The granular packing is regarded as
two complementary networks of sliding and nonsliding con-
tacts.

This bimodal character of the force network was sug-
gested byGedankenexperimenteby Dietrich f12g. Vardou-
lakis f13g was next to use the idea of Dietrich by looking
carefully into the force chains resulting in the numerical
simulations of Cundallf14g. He produced a constitutive
model that considers sand as a mixture of these two fractions
f15g. This idea was later numerically verified by the obser-
vation of the buckling force chains supported by sliding lat-
eral contacts during shearf16g.

This paper is organized as follows: The details of the par-
ticle model are presented in Sec. II. The interparticle forces
include elasticity and friction with the possibility of sliding.
The polygonal packing is driven by applying stress con-
trolled loading at the boundary particles. The calculation of
the incremental stress-strain relation is presented in Sec. III.
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The incremental strain is decomposed into reversible elastic
and irreversible plastic parts. In Sec. IV we characterize the
anisotropy of the contact network and the subnetwork of
sliding contacts. In Sec. V the anisotropy induced by shear-
ing in the contact network is correlated with the elastic ten-
sor. In Sec. VI we discuss the plastic flow rule in the frame-
work of several existing elastoplastic models. We also
interpret the dilatancy as an effect of the induced anisotropy
in the subnetwork of sliding contacts.

II. DISCRETE MODEL

Here we present a two-dimensional discrete element
model which has been used to investigate different aspects of
the deformation of granular materials, such as fragmentation
f18g, damagef19g, strain localizationf20,21g and cyclic
loading f22g. This model consists of randomly generated
convex polygons, which interact via contact forces. There are
some limitations in the use of such a two-dimensional code
to model granular materials that are three-dimensional in na-
ture. These limitations have to be kept in mind in the inter-
pretation of the results and its comparison with the experi-
mental data. In order to give a three-dimensional picture of
this model, one can consider the polygons as a collection of
bricks with randomly shaped polygonal basis filling com-
pletely the space such as the case of dry masonry walls.
Another physical picture of the model are the aggregates of
calcite crystal granules such as in the case of marblef17g.
The typical texture of marble is illustrated in Fig. 1. The
deformation of individual grains, as well as the Poisson ef-
fect in the grains, are not taken into account. In the case of
marble, this approximation is reasonable since deformation
occurs principally in the interface between the grainsf23g.

A. Generation of polygons

The polygons representing the particles in this model are
generated by using the method of Voronoi tessellationf19g.
This method is schematically shown in the left part of Fig. 1:
First, a regular square lattice of side, is created. Then, we
choose a random point in each cell of the rectangular grid.
Each polygon is constructed assigning to each point that part
of the plane that is closer to it than to any other point. The
details of the construction of the Voronoi cells can be found
in the literaturef24,25g.

Using the Euler theorem, it has been shown analytically
that the mean number of edges of this Voronoi construction
must be 6f25g. The number of edges of the polygons is
distributed between 4 and 8 for 98.7% of the polygons. Nu-
merically, it is shown that the orientational distribution of
edges is isotropic; and the distribution of areas of polygons is
symmetric around its mean value,2. The probabilistic distri-
bution of areas follows approximately a Gaussian distribu-
tion with a variance of 0.36,2.

B. Contact forces

When two elastic bodies come into contact, a slight de-
formation in the contact region appears, and there is an in-
teraction which transmits not only force but also torque be-

tween the bodies. In principle, this interaction can be
obtained using standard technics such as finite elements
methods. In our model this method would be computation-
ally very expensive, and it is necessary to introduce some
basic assumptions to simplify the calculation of this interac-
tion. As it was presented beforef20g, realistic contact forces
and torques can be obtained by allowing the polygon to over-
lap and calculating them from this virtual overlap.

The first step for the calculation of the contact interaction
is the definition of the line representing the flattened contact
line between the two polygons in contact. This is defined
from the contact points resulting from the intersection of the
edges of the overlapping polygons. In most cases, we have
two contact points, as shown in the left of Fig. 2. In such a

case, the contact line is defined by the vectorCW =C1C2
W con-

necting these two intersection points. In some pathological
cases, the intersection of the polygons leads to four or six
contact points as shown in the right of Fig. 2. In these cases,

we define the contact line by the vectorCW =C1C2
W +C3C4

W or

CW =C1C2
W +C3C4

W +C5C6
W , respectively. This choice guarantees

a continuous change of the contact line, and therefore of the
contact forces, during the evolution of the contact.

The contact force is separated as

FIG. 1. Left: Voronoi construction used to generate the convex
polygons. The dots indicate the point used in the tessellation. Peri-
odic boundary conditions were used. Right: Typical texture of
marble.sCourtesy of Royer-Carfagnif17g.d
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fW c = fW e + fW v, s1d

wherefW e and fW v are the elastic and viscous contribution. The
elastic part of the contact force is decomposed as

fW e = fn
en̂c + f t

et̂c. s2d

The unit tangential vector is defined ast̂c=CW / uCW u, and the

normal unit vectorn̂c is taken perpendicular toCW . The nor-
mal elastic force is calculated as

fn
e = − knA/Lc, s3d

wherekn is the normal stiffness,A is the overlapping area
and Lc is a characteristic length of the polygon pair. Our

choice isLc= uCW u. This normalization is necessary to be con-
sistent in the units of forcef19g.

The frictional force is calculated using an extension of the
method proposed by Cundall-Strackf26g. An elastic force
proportional to the elastic displacement is included at each
contact

f t
e = − ktDxt

e, s4d

wherekt is the tangential stiffness. The elastic displacement
Dxt is calculated as the time integral of the tangential veloc-
ity of the contact during the time where the elastic condition
uf t

eu,mfn
e is satisfied. The sliding condition is imposed,

keeping this force constant whenuf t
eu=mfn

e. The straightfor-
ward calculation of this elastic displacement is given by the
time integral starting at the beginning of the contact:

Dxt
e =E

0

t

vt
cst8dQsmfn

e − uf t
euddt8, s5d

whereQ is the Heaviside step function andvW t
c denotes the

tangential component of the relative velocityvWc at the con-
tact:

vWc = vW i − vW j + vW i 3 ,W i − vW j 3 ,W j . s6d

HerevW i is the velocity andvW i is the angular velocity of the

particles in contact. The branch vector,W i connects the center
of mass of particlei to the point of application of the contact
force. Replacing Eqs.s3d and s4d into s2d one obtains

fW e = − kn
A

Lc
n̂c − ktDxt

et̂c. s7d

Damping forces are included in order to allow rapid re-
laxation during the preparation of the sample, and to reduce
the acoustic waves produced during the loading. These
forces are calculated as

fW v = − msgnvn
cn̂c + gtvt

ct̂cd, s8d

beingm=s1/mi +1/mjd−1 the effective mass of the polygons
in contact.n̂c and t̂c are the normal and tangential unit vec-
tors defined before, andgn and gt are the coefficients of
viscosity. These forces introduce time dependent effects dur-
ing the loading. We will show that these effects can be arbi-
trarily reduced by increasing the loading time, as corre-
sponds to the quasistatic approximation.

The transmitted torque between two polygons in contact

is calculated astW =,W 3 fW. The so-calledbranch vectoris taken
as the vector connecting the center of mass of the particle to
the center of mass of the overlapping polygon. Since this
point is not collinear with the centers of masses of the inter-
acting polygons, there is a contribution of the torque from
both components of the contact force. This makes an impor-
tant difference with respect to the interaction between disks
or spheres: Polygons can transmit torques even in absence of
frictional forces.

C. Molecular dynamics simulation

The evolution of the positionxW i and the orientationwi of
the polygoni is governed by the equations of motion:

mixẄ i = o
c

fWi
c + o

b

fWi
b,

I iẅi = o
c

,W i
c 3 fWi

c + o
b

,W i
b 3 fWi

b. s9d

Heremi and I i are the mass and moment of inertia of the
polygon. The first sum goes over all those particles in contact
with this polygon; the second one over all the forces applied

on the boundary. The interparticle contact forcesfW c are given
by replacing Eqs.s7d ands8d in Eq. s1d. In order to perform
stress controlled test, a time dependent external force is ap-
plied on each edge belonging to the external contour of the

assembly: The external forcefW b acting of the edgeTW b

=Dx1
bx̂1+Dx3

bx̂3, is given by

fW b = − s1Dx3
bx̂1 + s3Dx1

bx̂3 − gbmivW
i . s10d

Here x̂1 and x̂3 are the unit vectors of the Cartesian coordi-
nate system.s1 ands3 are the components of the stress we
want to apply on the sample. Each loading stage from the
stress statesi

o to si
f is applied as

sistd = si
o +

si
f − si

o

2
F1 − cosS2pt

t0
DG, i = 1,3, s11d

wheret0 is the time of loading. This modulation is chosen to
avoid acoustic waves at the starting and at the end of the

FIG. 2. Contact pointsCi beforesleftd and after the formation of
a pathological contactsrightd. The vector denotes the contact line.t
represents the number of time steps.
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loading. The loading is applied in a quasistatic way in the
sense that a fastersor slowerd loading has no detectable ef-
fect. Note that a much faster loading has strong influence and
a much slower loading would take much longer. Therefore
our “quasi”-static loading is a compromise between compu-
tational and physical demands.

We use a fifth-order Gear predictor-corrector method for
solving the equation of motionf27g. This algorithm consists
of three steps. The first step predicts position and velocity of
the particles by means of a Taylor expansion. The second
step calculates the forces as a function of the predicted po-
sitions and velocities. The third step corrects the positions
and velocities in order to optimize the stability of the algo-
rithm. This method is much more efficient than the simple
Euler approach or the Runge-Kutta method, especially for
problems where very high accuracy is a requirement.

There are many parameters in the molecular dynamics
algorithm. Before choosing them, it is convenient to make a
dimensional analysis. In this way, we can keep the scale
invariance of the model and reduce the parameters to a mini-
mum of dimensionless constants. There is one dimensionless
parameter, the friction coefficient, and there are 10 dimen-
sional parameters. The latter ones can be reduced by intro-
ducing the following characteristic times: the loading timet0,
the relaxation timestn=1/gn, tt=1/gt , tb=1/gb and the
characteristic period of oscillationts=Îr,2/kn of the normal
contact.

Using the Buckingham Pi theoremf28g, one can show
that the strain response, or any other dimensionless variable
measuring the response of the assembly during loading, de-
pends only on the following dimensionless parameters:a1
= tn/ ts, a2= tt / ts, a3= tb/ ts, a4= t0/ ts, the ratiokt /kn between
the stiffnesses, the friction coefficientm and the ratiop0/kn
between the confining pressure and the normal stiffness.

The variablesai act ascontrol parameters. They are cho-
sen in order to satisfy the following criteria:s1d guarantee the
stability of the numerical solution,s2d optimize the time of
the calculation, ands3d satisfy the quasistatic approximation.
a1=0.1, a2=0.5 and a3=0.5 were taken large enough to
have a high dissipation, but not too large to keep the numeri-
cal stability of the method. The ratioa4= t0/ ts=10000 was
chosen large enough to avoid rate-dependence in the me-
chanical response, corresponding to the quasistatic approxi-
mation. Technically, this is performed by looking for the
value ofa4 such that a reduction of it by a factor two makes
a change of the stress-strain relation of less than 5%. The
time step is taken asDt=0.1ts.

The parameterskn, kt /kn andm can be considered asma-
terial parameters. They determine the constitutive response
of the system, so they should be adjusted to the experimental
data. The initial slope of the stress-strain curve of the mate-
rial is linearly related to the value of normal stiffness of the
contact. The ratiop0/kn determines the characteristic over-
lapping lengthd between the polygons as follows: From the
balance between external forces and contact forces in a pres-
sure confined granular assembly one obtain thatp0,,knd, so
that the ratio between the elastic deflection and the mean
diameters of the polygons satisfiesd /,,p0/kn. In order to
guaranty overlapping lengths lower that 1% of the diameter
of the polygons we choosep0/knø0.004. The plastic defor-

mations before failure as well as the Poisson ratio of the
assembly are monotonic decreasing function of the ratio
kt /kn. For samples subjected to isotropic pressure, taking val-
ues ofkt between 0 andkn lead to Poisson ratios between
0.35 and 0.0. Our choicekt=0.33kn gives a Poisson ratio of
n0=0.07. This is calculated from the elastic response in Sec.
V. Smaller values ofkt lead to larger Poisson ratios, but also
to larger plastic deformations which in turn induce time de-
pendence effects and hence very expensive quasistatic simu-
lations.

The angles of friction and dilatancy are increasing func-
tions of the interparticle friction coefficientm. Taking values
of m between 0 and 5.0 yields friction angles between 6° and
60° f29g. This range should be compared to the friction angle
of 48.2° measured in experiments with marblef30g, that is
bigger than the value of 40°–45° measured in sandf31g. The
reason of this difference is that the interlocking between the
grains in marble is bigger than in sand. A friction coefficient
of m=0.25 is chosen in the simulations. This lead to dila-
tancy angles between 20° and 30°f21g. Triaxial tests on
marble lead dilatancy angles between 11° and 38°f30g,
whereas in sand they yield angles between 7° and 14°f31g.
Note that the dilatancy angles in marble are bigger than in
sand. This is due to the peculiar texture of marble with van-
ishing void ratio, which is well captured by our model.

III. INCREMENTAL RELATION

When a granular material is loaded, the dynamics of the
contact network involves creation and loss of contacts as
well as restructuring by means of sliding contactsf32g. These
changes imply a continuous variation of the stress-strain re-
lation and a change of the void ratio during loadf33,34g.
This behavior becomes apparent if a polygonal packing con-
fined by isotropic pressure is submitted to vertical load with
constant velocityf35g. The dependence of the deviatoric
stresss1−s3 and the volumetric straine=DV/V on the axial
straine1=DH /H are shown in Fig. 3 for different confining
pressures. We observe a compaction regime where there are
almost no open contacts and the restructuring is given only
by sliding contacts. The stress response is characterized by a
continuous decrease of the slope of the stress-strain curve
from the very beginning of the load process. Even in this
extreme case of dense polygonal packings, any load rear-
ranges the contact network by means of sliding contacts,
which in turn reduces the strength of the material. Before
failure the sample undergoes a transition from compactancy
to dilatancy. This transition is caused by loss of contacts
perpendicular to the load direction, allowing the contact net-
work to rearrange and inducing large plastic deformations.
Near to the failure, the amount of plastic deformations is
much larger than the elastic ones. This reduces considerably
the value of the stiffness with respect to its initial value.
After failure the sample reaches a stage where the deviatoric
stress as well as the density keeps approximately constant
except for some fluctuations remaining for large deforma-
tions. The continuous variation of the stress-strain curve with
the loading makes it necessary to use an incremental formal-
ism in the description of the mechanical response.
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A. Theoretical framework

We introduce here some definitions required for the deter-
mination of the incremental response of the polygonal pack-
ing. The calculation of the average of the Cauchy stress ten-
sor over a granular assembly leads tof36g

si j =
1

A
o
b

ri
bf j

b. s12d

The sum goes over all the forces acting over the boundary of
the assembly.A is the area enclosed by the boundary andrWb

is the point of application of the boundary forcefW b given by
Eq. s10d. The boundary of the assembly is given by an ir-
regular polygon whose vertices are denoted byBi =sxi

b,yi
bd,

wherei =1, 3,b=1,… , Nb, andNb is the number of bound-
ary segments. Using the equilibrium conditionvW i =0 in Eq.
s10d, we obtain

f i
b = − s1Dx3

bx̂1 + s3Dx1
bx̂3, s13d

whereDxi
b=xi

b+1−xi
b. The point of application of this force is

given by the center of the edge:

rWb =
1

2
sx1

b+1 + x1
bdx̂1 +

1

2
sx3

b+1 + x3
bdx̂3. s14d

Replacing Eqs.s13d and s14d into Eq. s12d leads to

s =
1

2A3− s1o
b

sx1
b+1 + x1

bdDx3
b s3o

b

sx1
b+1 + x1

bdDx1
b

− s1o
b

sx3
b+1 + x3

bdDx3
b s3o

b

sx3
b+1 + x3

bdDx1
b4 .

s15d

By expanding this sums and using the formula for the area of
irregular polygons

A =
1

2o
b

sx1
bx3

b+1 − x1
b+1x3

bd, s16d

one obtains

s = Fs1 0

0 s3
G . s17d

Thus the stress controlled test is restricted to stress states
without off-diagonal components. We can simplify the nota-
tion introducing thepressure pand thedeviatoric stress qin
the components of thestress vector

s̃ = Fp

q
G =

1

2
Fs1 + s3

s1 − s3
G . s18d

The stress should be accompanied with a micromechani-
cal expression for the strain tensor. This is given by the av-
erage of the gradient of the displacement field over the as-
semblyf37g. Different from round grains, the length of the
contact region at the polygons is not necessarily much
smaller than their diameter. There is therefore a displacement
field which should be different from the case of a packing of
spheres. However, It is shown inf38g that the incremental
strain tensor can be transformed into a line integral of the
displacement field on the external boundary of the polygonal
packing, so that it does not depend on the displacement field
inside of the packing. By assuming rigid body motion at the
boundary particles, the line integral leads to a sum over the
boundary segments of the samplef38g

dei j =
1

2A
o
b

sdui
bNj

b + duj
bNi

bd. s19d

HereduWb is the displacement of the boundary segment, that is
calculated from the linear displacementdxW and the angular
rotationdfW of the polygons belonging to it, according to

duWb = dxW + dfW 3 ,W . s20d

From the eigenvaluesde1 andde3 of dei j we define thevolu-
metric and deviatoric components of the strain as the com-
ponents of theincremental strain vector:

FIG. 3. Deviatoric stress and volumetric strain versus axial
strain for different values ofp/kn, wherep is the lateral pressure.
e.0 represents compression of the sample.
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dẽ = Fde

dg
G = − Fde1 + de3

de1 − de3
G . s21d

By conventionde.0 corresponds to a compression of the
sample. We assume a rate-independent relation between the
incremental stress and incremental strain tensor. In this case
the incremental relation can generally be written asf39g

dẽ = Msû,s̃dds̃, s22d

whereû is the unit vector defining a specific direction in the
stress space:

û =
ds̃

uds̃u
; Fcosu

sinu
G, uds̃u = Îdp2 + dq2. s23d

The constitutive relation results from the calculation of
dẽsud, where each value ofu is related to a particular mode
of loading. Some special modes are listed in Table I.

The comparison of the incremental response with the con-
stitutive models requires to select the theoretical framework
which fits best to the numerical data. Many constitutive mod-
els can be found in the market, but they are essentially di-
vided into two groupsf39g: The incremental nonlinearmod-
els assume that the dependence ofM on u is nonlinear,
prototype of this class being the hypoplastic modelsf40g.
The second group corresponds to theincremental piecewise
linear models, such as theelastoplasticmodels. In these
models the space of the stress directions can be divided into
regions where the incremental relation is strictly linearf41g.

A special feature of the incremental nonlinear models is
that they depart from the superposition principle, i.e., if one
decomposes an incremental load asds̃=ds̃a+ds̃b, the strain
response of the total load is different from the sum of the
strain responses of the two incremental loadsf39,40g. Nu-
merical simulations with polygonal packings show that the
superposition principle is accurately satisfiedf42g, suggest-
ing that the incremental piecewise linear models are more
appropriate to interpret our simulations. This conclusion is
also supported by the fact that the strain envelope response
consists of two pieces of ellipses, as we will see later.

In order to compare the incremental response to the elas-
toplastic models, it is necessary to assume that the incremen-

tal strain can be separated into an elasticsrecoverabled and a
plastic sunrecoverabled component:

dẽ = dẽ e + dẽ p, s24d

dẽ e = D−1ss̃dds̃, s25d

dẽ p = Jsu,s̃dds̃. s26d

Here,D−1 is the inverse of the stiffness tensorD, andJ
=M −D−1 the flow rule of plasticityf43g. They will be ob-
tained from the calculation ofdẽ esud anddẽ psud.

B. Calculation of the incremental response

The method presented here to calculate the strain response
has been used on sand experimentsf44g. It was introduced
by Bardetf45g in the calculation of the incremental response
using discrete element methods. This method will be used to
determine the elasticdẽ e and plasticdẽ p components of the
strain as function of the stress states̃ and the stress direction

û. First, the sample is isotropically compressed until it
reaches the stress values1=s3=p−q. Then, it is subjected to
axial loading in order to increase the axial stresss1 to p+q.
Loading the sample froms̃ to s̃+ds̃ the strain incrementdẽ
is obtained. Then the sample is unloaded tos̃ and one finds
a remaining straindẽ p, that corresponds to the plastic com-
ponent of the incremental strain. For small stress increments
the unload stress-strain path is almost elastic. Thus the dif-
ferencedẽ e=dẽ−dẽ p can be taken as the elastic component
of the strain. This procedure is implemented on different
clonesof the same sample, choosing different stress direc-
tions and the same stress amplitude in each one of them.

The method is based on the assumption that the strain
response after a reversal loading is completely elastic. Nu-
merical simulations have shown that this assumption is not
strictly true, because sliding contacts are always observed
during the unload pathf22,46g. In our simulations, we ob-
serve that for stress amplitudes ofuds̃u=0.001p the plastic
deformation during the reversal stress path is less than 1% of
the corresponding value of the elastic response. Within this
margin of error, the method proposed by Bardet can be taken
as a reasonable approximation to describe the elastoplastic
response.

Figure 4 shows the load-unload stress paths and the cor-
responding strain response when an initial stress state with
s1=1.25310−3kn and s3=0.75310−3kn is chosen. The end
of the load paths in the stress space maps into a strain enve-
lope responsedẽsud in the strain space. Likewise, the end of
the unload paths maps into a plastic envelope response
dẽ psud. This envelope consists of a very thin ellipse, nearly a
straight line, which confirms the unidirectional aspect of the
irreversible response predicted by the elastoplasticity theory
f43g. Theyield directionf can be found from this response,
as the direction in the stress space where the plastic response
is maximal. In this example, this is aroundf=87.2°. The
flow direction c is given by the direction of the maximal
plastic response in the strain space, which is around 76.7°.

TABLE I. Principal modes of loading according to the orienta-

tion of û.

u TEST

0° isotropic compression dp.0 dq=0

45° axial loading ds1.0 ds3=0

90° pure shear dp=0 dq.0

135° lateral loading ds1=0 ds3.0

180° isotropic expansion dp,0 dq=0

225° axial stretching ds1,0 ds3=0

270° pure shear dp=0 dq,0

315° lateral stretching ds1=0 ds3,0
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The fact that these directions do not agree reflects anonas-
sociated flow rule, that is also observed in experiments on
realistic soilsf44g.

Another interesting aspect of the incremental stress-strain
relation concerns the elastic responsedẽ e=dẽ−dẽ p. Figure 5
shows the elastic envelope response for different stress ra-
tios. For stress values such asq/pø0.4 the stress envelope
responses collapse on to the same ellipse. This response can
be described by the isotropic linear elasticity by introducing
two material parameters i.e. the Young modulusE and the
Poisson ration f47g. For stress values satisfyingq/p.0.4
there is a reduction of the stiffness, and a rotation of
the principal directions of the elastic tensor. In this case,
the elastic response can not be described using these two
parameters.

IV. ANISOTROPY

It is not surprising that isotropic linear elasticity is not
valid in the deformation of samples subjected to deviatoric
loads. Indeed, numerical simulationsf33,34,48–50g and
photo-elastic experimentsf51,52g on granular materials show
that loading induces a significant deviation from isotropy in
the contact network. The structural changes of contact net-
work involve creation of contacts whose branch vectors are
oriented nearly parallel to the loading direction, opening of
contacts perpendicular to the loading direction, and redistri-
bution of contacts by rolling and slippage. The first two pro-
cesses reduce the strength under lateral compression below
the strength under further horizontal load, so that the elastic
response becomes anisotropicf33,34,48,50g. The rearrange-
ments by sliding contacts play an important role in the plas-
ticity, which has not been much explored by date. In this
section we present a statistical investigation of the anisotropy
of the contact network and the subnetwork of sliding con-
tacts. The calculations were performed taking 10 different
assemblies of 20320 polygons.

A. Anisotropy of the contact network

The anisotropy of the granular sample can be character-
ized by the distribution of the orientations of the branch vec-

tors,W. Each branch vector connects the center of mass of the
polygon to the center of application of the contact force.
Partssad and sbd of Fig. 6 shows the branch vectors of the
polygonal packing for two different stages of loading. The
structural changes of micro-contacts are principally due to
the opening of contacts whose branch vectors are oriented
nearly perpendicular to the loading direction. The onset of
anisotropy can be investigated by definingVswdDw as the
number of contacts per particle whose branch vector is ori-
ented between the anglesw and w+Dw, measured with re-

FIG. 4. Stress-strain relation resulting from the load-unload test.
Grey solid lines are the paths in the stress and strain spaces. Grey
dash-dotted lines represent the yield directionsupperd and the flow
direction slowerd. Dashed line shows the strain envelope response
and the solid line is the plastic envelope response.

FIG. 5. Elastic strain envelope responsesdẽ esud. They are cal-
culated for a pressurep=0.001kn and taking deviatoric stresses with
q=0.0p sinnerd, 0.1p,… ,0.7p souterd.
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spect to the direction along which the sample is loaded. The
right part of Fig. 7 shows this distribution for three different
stages of loading. Note that anisotropy is absent for small
deviatoric loads, and it appears only near to failure. For all
stress values, the orientational distribution can be accurately
described by a truncated Fourier series expansion:

Vswd <
N0

2p
fa0 + a1coss2wd + a2coss4wdg. s27d

Here N=N0a0 is the average coordination number of the
polygons, whose initial valueN0=6.0 reduces as the load is
increased. The parametersa1 anda2 are related to the second
and fourth order fabric tensors defined in other works to
characterize the orientational distribution of the contacts
f32,48,53g. We will call themfabric coefficients. The depen-
dence of the fabric coefficients on the stress ratioq/p is
shown in Fig. 8. We observe that for stress states satisfying
q,0.4p there are almost no open contacts. Above this limit
a significant number of contacts are open, leading to an an-
isotropy in the contact network. Fourth order terms in the
Fourier expansion are necessary in order to accurately de-
scribe this distribution.

Of course, the onset of anisotropy depends on the initial
distribution of contact forces, and its evolution during load-
ing. Figure 7 shows the distribution of contact forces in the
polygonal assemblies for three different stages of loading an
the corresponding orientational distributions. For low stress
ratios, the contact forces is rather concentrated around their
mean value. This distribution is qualitatively different from
the heterogeneous distribution of forces observed in polydis-
perse disks packingsf8,54g. This is due to the particular ge-
ometry of the polygonal packing, where the absence of voids
and the low polydispersity of the grains reduces the disorder
of the contact network.

From Fig. 7 we observe that loading induces an increase
of the fluctuations of contact forces and hence opening of
contacts when the normal forcefn vanishes. In particular, for
stress values satisfyingq,0.4p there is almost no open con-
tacts. Above this limit a significant number of contacts are
open, leading to an anisotropy in the contact network. This is
different from the findings obtained for disks packings,
where due to the round nature of the particles that do not
resist against deformations as the polygons do, the aniso-
tropy starts to grow already for small deviatoric deforma-
tions f33,34g.

B. Anisotropy of the sliding contacts

Let us classify the branch vectors of the contact network
in two classes, the first class corresponds to the nonsliding
contacts, which are able to carry the load in the material. The
second class is given by the sliding contacts, which allow the
rearrange of the contact network during loading.

The sliding condition at the contacts is given byuf tu
=mfn, wherefn and f t are the normal and tangential compo-
nents of the contact force, andm is the friction coefficient.
When the sample is isotropically compressed, we observe a
significant number of contacts reaching the sliding condi-
tions. If the sample has not been previously sheared, the

FIG. 6. The lines show the branch vectors of the contact net-
work for s1=s3=0.001kn sad and s1=0.65310−3kn and s3=0.35
310−3kn sbd. The branch vectors of the subnetwork of sliding con-
tacts are shown for the isotropicscd and the anisotropicsdd case.
The width of the lines represents the normal force.
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subnetwork of sliding contacts is isotropic as shown the part
scd of Fig. 6. This isotropy is broken when the sample is
subjected to deviatoric loads, as shown partsdd of Fig. 6. The
onset of anisotropy is investigated by introducing the polar
function Vsswd, where VsswdDw is the number of sliding
contacts per particle whose branch vector is oriented between
w andw+Dw.

Figure 7 shows the orientational distribution of sliding
contacts for different stress ratios. For low stress ratios, the

branch vectors,W of the sliding contacts are oriented nearly
perpendicular to the loading direction. Increasing the devia-
toric strain results in an increase of the number of the sliding

contacts and the average of the orientations of the branch
vectors with respect to the load direction decreases with the
stress ratio. Close to the failure, some of the sliding contacts
whose branch vectors are nearly parallel to the loading di-
rection open, giving rise to a butterfly shape distribution, as
shown in Fig. 7.

The orientational distribution of the subnetwork of sliding
contacts can be approximated by a truncated Fourier expan-
sion:

Vsswd <
N0

2p
fc0 + c1coss2wd + c2coss4wdg. s28d

FIG. 7. Left: force distribution
for the stress ratiosq/p=0.1, 0.35,
and 0.65. Heref t and fn are the
tangential and normal components
of the force. They are normalized
by the mean value offn. Right:
orientational distribution of the
contactsVswd souterd and of the
sliding contactsVsswd sinnerd. w
represents the orientation of the
branch vector.
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Figure 9 shows the dependence of these fabric coefficients,
measuring the induced anisotropy of the sub-network of slid-
ing contacts. By integrating Eq.s28d over all orientation one
can see thatc0 is related to the fraction of sliding contact as
ns=c0/a0. where a0 is defined by Eq.s27d. The last two
coefficients measure the second and the fourth order degrees
of anisotropy of the subnetwork of sliding contact. The com-
plex dependence of this coefficients on the stress is given by
the fact the number of sliding contact increases for small
stress ratio, and an important fraction of them are open be-
fore failure, as it was shown in Fig. 7. Note also that for
extremely small deviatoric loads the fabric coefficientc2 is
different from zero. This reflects a surprising fact: At the
very beginning of the loading, most of the sliding contacts
whose branch vector is oriented nearly parallel to the direc-
tion of the loading, leave the sliding condition. We will see

that this abrupt induced anisotropy has an interesting effect
on the plastic deformations.

V. ANISOTROPIC ELASTICITY

In this section we investigate the effect of the anisotropy
of the contact network on the elastic response of the material.
The most general linear relation between the incremental
stress and the incremental elastic strain for anisotropic mate-
rials is given by

dsi j = Dijkldekl
e , s29d

whereDijkl is the stiffness tensorf33,34,47g. Since the stress
and the strain are symmetric tensors, one can reduce their
number of components from 4 to 3, and the number of com-

FIG. 8. Fabric coefficients of the contact net-
work. They are defined in Eq.s27d. The lines
show the spline interpolation of the data.

FIG. 9. Fabric coefficients of the distribution
of the branch vectors of the sliding contacts. They
are defined in Eq.s28d. The lines show the spline
interpolation of the data.
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ponents of the stiffness tensor from 16 to 9. Elasticity in-
volves an elastic potential energy, whose existence implies
the so-called Voigt symmetry of the elastic tensorDijkl
=Dklij f55g. This symmetry reduces the constants from 9 to 6.
In the particular case of isotropic materials, it has been
shown that the number of constants can be reduced to 2f47g:

dei j
e =

1

E
fs1 − nddsi j − ndi jdskkg. s30d

HereE is the Young modulus andn the Poisson ratio.di j
is the Kronecker delta. In the general case of anisotropic
materials, the 6 constants are given by two Young moduli,
two Poisson ratios and two shear moduli. If we consider
deformations whose stress tensor has no off-diagonal com-
ponents, only the Young moduli and the Poisson ratios are
needed:

Fde1
e

de3
eG = 3

1

E1
−

n13

E2

−
n31

E1

1

E2

4Fds1

ds3
G . s31d

From the elastic part of the strain envelope response one
can determine these constants as shown in the Appendix.
Figures 10 and 11 show these variables for different stress
values. The averaged values on five different samples of
20320 polygons are used in these calculations; the bars
representing the standard variation of the data. For the stress
values where the contact network is isotropic both Young
moduli and Poisson ratio are the same, as corresponds to the
isotropic linear elasticity. For stress ratio where the contact
network depart from isotropy both Young moduli and
Poisson ratios are different. Note that the reduction of the
Young modulusEi reflect the reduction of the stiffness under
lateral compression, which is due to the opening of contacts
whose branch vectors are almost perpendicular to the loading
direction.

The correlation between the parameters of the stiffness
tensor and the fabric coefficients of Eq.s27d is evaluated by
introducing three parameters measuring the degree of aniso-
tropy

n0 ; 1 − a0, n1 ; a1, n2 ; a2, s32d

whereai are the fabric coefficients defined by Eq.s27d. By
integrating this equation over all orientations one obtains that
n0=sN0−Nd /N0, which represents the percentage change of
the average coordination number. The last two terms in Eq.
s32d measure the second and the fourth order degrees of an-
isotropy. From Fig. 8 one obtains that 1−a0<1.6a1. Thus,
one can taken1 andn2 as the two independent internal vari-
ables measuring the anisotropy of the contact network. The
dependence of the parameters of the stiffness tensor on these
variables is evaluated by developing the Taylor series around
the isotropic case whereni =0

Ei = E0 + Ei
1n1 + Ei

2n2 + Osninjd,

vi j = v0 + vi j
1n1 + vi j

2n2 + Osninjd. s33d

The variablesni are calculated as functions ofq/p by per-
forming spline interpolation of the fabric coefficientsai in
Fig. 8. Then, the coefficients in Eq.s33d are calculated from
the best fit of those expansions. Figures 10 and 11 show that
the linear approximation is good enough to reproduce the
dependence of the stiffness on the stress ratio. This correla-
tion is consistent with several models relating stiffness with
the fabric of the contact networkf32,48,53,56,57g. We ob-
serve a slight dependence of the stiffness on the pressure
level which tends to vanish in the limit of small values of
p/kn. Since we use a linear relation for the contact force one
would expect no dependence on the pressure. This is a spu-
rious effect resulting from the interpenetration between the
polygons. Due to the overlapping, the area occupied by all
polygons under isotropic pressure is lower than the sum of
their areas. This is reflected by a dependence of the stress on
the pressure in a factor which is proportional top/kn. In

FIG. 10. Young moduli. The lines are the linear fits ofEsnid
according to Eq.s33d.

FIG. 11. Poisson ratios. The lines are the linear approximation
of nsnid. See Eq.s33d.
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order to avoid this effect it is necessary to take small values
of p/kn. Note that for real granular materials elastic
moduli—as deduced from the velocity of sound—increase
with confining pressure due to the nonlinear contact elastic-
ity. Future modeling of elastic properties should in fact in-
volve more realistic contact force laws.

VI. PLASTIC DEFORMATION

We now turn to the description of the plastic part of the
strain response. Figure 4 shows that the plastic envelope re-
sponse lies almost on a straight line, as is predicted by the
hardening elastoplasticity theoryf1g. This motivates us to
obtain the flow rule of Eq.s26d by introducing the same
parameters describing the plasticity in this theory: The yield
directionf, the flow directionc, and the plastic modulush.
The yield direction is defined from the plastic envelope re-
sponse as the direction in the stress space leading to maximal
plastic deformation

udẽ psfdu = max
u

udẽ psudu. s34d

The flow direction is the orientation of the plastic response at
its maximum value

c = /fdẽ psfdg. s35d

The plastic modulus is obtained from the maximal plastic
response

1

h
=

udẽ psfdu
uds̃u

. s36d

The incremental plastic response can be expressed in terms
of these quantities as follows: Let us define the unitary vec-

tors ĉ andĉ'. The first one is oriented in the direction ofc

and the second one is the rotation ofĉ of 90°. The plastic
strain is written as

dẽsud =
1

h
fk1sudĉ + k2sudĉ'g, s37d

wherek1sud andk2sud are defined by the dot products:

k1sud = hsdẽ p · ĉd,

k2sud = hsdẽ p · ĉ'd. s38d

These functions are calculated from the resulting plastic
response taking pressures withp/kn=0.001, 0.002, 0.004,
0.008 and deviatoric stresses withq/p=0.1,…, 0.7. The re-
sults are shown in Fig. 12. We found that the functions
k1su−fd collapse on to the same curve for all the stress
states. This curve fits well to a cosine function, truncated to
zero for the negative values. The profilek2 depends on the
stress ratio we take. This dependency is difficult to evaluate,
because the values of this function are of the same order as
the statistical fluctuations. In order to simplify the descrip-
tion of the plastic response, the following approximation is
made:

k2sud ! k1sud < kcossu − fdl = kf̂ · ûl, s39d

wherekxl;xQsxd, with Qsxd being the Heaviside step func-
tion. Now, the flow rule results from the substitution of Eqs.
s37d and s39d into Eq. s26d:

dẽ psud = Jsudds̃ =
kf̂ ·ds̃l

h
ĉ. s40d

This equation establishes a bilinear relation between the
incremental stress and the plastic deformation. This is char-
acterized by an absence of plastic deformation for stress in-
crements such asf̂ ·ds̃,0 and a plastic deformation, always
oriented along the flow directionc, for stress increments
such asf̂ ·ds̃.0. At the micromechanical level, this means
that the sliding contacts have a well defined response under
incremental load: In the casef̂ ·ds̃,0 the load typically
drives them to the elastic regimeuf tu,mfn. Otherwise, there
is a sliding at each one of these contacts in a direction which
does not depend of the direction in the stress space along
which the load is applied. This unidirectionality of the plastic
deformation is confirmed by several experimental results on
plane strain deformationf58g and it is an essential ingredient
of the hardening elastoplasticityf43,59g. The fact that this
relation is obtained using a simple discrete element model
suggests that it is possible to interpret the flow rule of plas-
ticity from the collective response of all sliding contacts.

A. Stress-dilatancy relation

In soil mechanics the plastic flow rule is interpreted in
terms of the incremental work done during loadingf58g

dW= pde+ qdg. s41d

According to thecritical state theory, under large mono-
tonic loads the material reaches a limit state where it behaves
purely frictional, deforming isochorically during loading and
having constant friction coefficientf58g. Numerical simula-
tions of the biaxial test using polygonal packings seems to

FIG. 12. Plastic componentsk1sud scirclesd and k2sud sdotsd
given by Eq.s38d. The results for different stress values have been
superposed. The solid line represents the truncated cosine function.
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verify this limit condition f29g. As shown in Fig. 3, the
granular assembly reaches this critical state, where the volu-
metric strain as well as the stress ratio keeps approximately
constant except for some stress fluctuations, which remain
for large deformations. Neglecting those fluctuations, the in-
cremental work done at the critical state can be approximated
by

dWc = qdg = Mcpdg, s42d

whereMc is the frictional constant at critical state. As far as
granular materials are concerned, it is assumed that the de-
formation is almost completely plasticsdẽ<dẽ pd, so that the
elastic stored energy is negligible and hence almost all the
work is dissipated, i.e.,dW<dWd.

In classical book of Taylorf60g the basic idea of the
stress-dilatancytheory is discussed. Based on few data on
Ottawa standard sand, Taylor concludes that the dissipated
work can be assumed to be constant, independent to the state
of loading so that

dWd < dWc. s43d

Replacing Taylors hypothesis in Eqs.s41d and s42d and ne-
glecting the elastic energy, we obtain

d = h − Mc. s44d

Here we defined=−dep/ udgpu as the dilatancy andh=q/p as
the stress ratio. As shown in Fig. 13, the dilatancy evaluated
from our data does not support the simple rule of Eq.s44d,
but rather a modification of this expression is required

d = csh − Mcd, s45d

where M =0.5 andc=1.7. According to Eq.s34d, the flow
direction is therefore given by

cosscd = csMc − hd, 0 ø c ø p. s46d

This linear relation between the dilatancy and the stress
ratio has been observed in experimental data in triaxialf61g
and biaxialf62g tests on sand. The material constantMc is

interpreted as the stress ratio at the critical statef58g. A
physical interpretation ofc has been presented by Gutierrez
and Ishiharaf63g. Their theory is based on the fact that load-
ing induces anisotropy, which in turn involves noncoaxiality,
that means that the principal directions of the stress do not
coincide with those of the incremental plastic strain tensor.
This noncoaxiality implies that the dissipated work ex-
pressed as the sum of the products of the stress invariants
with the plastic strain invariants, as in Eq.s44d, is erroneous.
The correct expression should be given in terms of the Car-
tesian components asdWd=si jdei j

p. A straightforward calcu-
lation leads todWd=pdep+cqdgp, wherec=coss2Cd, Being
C the angle of noncoaxiality. Assuming, as the stress-
dilatancy theory, that the dissipated energy remains constant
during the loading, we obtaindWd=pdep+cqdgp=cMpdgp.
This identity leads to Eq.s45d. Note that values ofc lower
than unity are predicted by this theory. Our biaxial tests
simulations However, lead to a valuec=1.7. Experimental
biaxial tests report on values ofc ranging form 0.9 to 1.2
f64g. This range goes also beyond the limits of this theory.

An explanation of this contradiction can be done by ex-
ploring the coaxiality and power dissipation during load. Ac-
cording to our simulations, the angle of noncoaxiality is a
monotonically decreasing function of the stress ratio. This
feature is also observed in experiments on sandf65g, proving
that c is strictly not a material parameter. Furthermore, the
plastic dissipation is a monotonically increasing function of
the stress ratio. This implies that the basic assumption of the
stress-dilatancy theory, that the incremental power dissipa-
tion stays constant, is not applicable to our results. Lets make
clear that we are not trying to prove with our simplified
model that these theories are wrong. Our results only suggest
that in the case of extremely high densities some deviations
can be expected. Based on experimental data on dense and
loose sand, Li and Dafalias conclude that the void ratio
should be integral part of the stress-dilatancy relationf66g.
According to Gutierrez and Ishihara, not only the void ratio,
but also the also the anisotropy of the sample should be
included in this relation. A good alternative would be to in-
troduce the fabric coefficients of the sliding contacts in the
description of plasticity. We will explore this approach in the
following subsections.

B. Limit of small stress ratios

Further important issues should be addressed in the range
of small stress ratios. Here the plastic deformations are much
lower than the elastic ones so that the above assumptions
leading to the stress-dilatancy relation can not be applied. A
modification of this theory for small stress ratio has been
presented by Nova and Woodf59g. Their model is based on
the assumption that the response of the sample must be iso-
tropic for small deviatoric loads, so that the deviatoric plastic
deformationdg p must vanish in the limith=q/p→0. In
order to satisfy this isotropy condition, Nova and Wood pro-
pose that Eq.s45d should be replaced byd=C/h for small
values ofh; the constantC is selected by matching this ex-
pression with Eq.s45d. Contrary to this assumption, our nu-
merical data fits well to the Eq.s45d for small stress ratio as
shown the Fig. 13.

FIG. 13. Dilatancy versus the stress ratio. The solid curve rep-
resents a fit with the Gutierrez and Ishihara model. The dashed
curve represents the relation given by the Nova and Wood model.
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Extrapolating these data toh=0 brings to light an appar-
ent contradiction: Atq=0 the contact network is isotropic, so
that no deviatoric deformation should appear under isotropic
compression. On the other hand, takingh=0 in Eq. s45d
leads tocÞ0, which established deviatoric plastic deforma-
tion under isotropic loads. To resolve this paradox we plot
the plastic part of the strain envelope response when the
sample is initially under isotropic pressure, in Fig. 14. We
see clearly that the unidirectionality of the plastic deforma-
tions breaks down under isotropic condition, so that the flow
rule given by Eq.s45d is not valid here. Note from Fig. 14
that further isotropic compressionsu=0d induces only plastic
volumetric deformation, which is consistent with the initial
isotropy of the polygonal packing. Under extremely small
deviatoric loads the isotropy of the assembly is broken, and
there is plastic deviatoric deformations with flow direction
close to 45°.

This striking effect can be understood from an inspection
of the orientational distribution of the sliding contacts. Part
sad of Fig. 6 shows a significant number of contacts reaching
the sliding conditions even when the sample is isotropically
compressed, The initial distribution of the branch vectors is
isotropic. This explains the fact that under isotropic load only
volumetric plastic deformations are observed, as shown in
Fig. 14.

As shown in Sec. IV B, the subnetwork of sliding contacts
departs from isotropy when the sample is subjected to the
slightest deviatoric loading. This is because most of the slid-
ing contacts whose branch vector is oriented nearly parallel
to the direction of the loading leave the sliding condition.
This is represented forq=0.1p in Fig. 7. For low stress ra-

tios, the branch vectors,W of the sliding contacts are oriented
nearly perpendicular to the loading direction. Sliding occurs

perpendicular to,W, so in this case it must be nearly parallel to
the loading direction. Then, the plastic deformation must be
such thatde3

p!de1
p, so that Eq.s35d yields a flow direction

of c<45°, in agreement with Fig. 14.
Figure 7 shows that by increasing the deviatoric strain

results in an increase of the fraction of the sliding contacts.

The average of the orientations of the branch vectors with
respect to the load direction decreases with the stress ratio,
which in turn results in a change of the orientation of the
plastic flow. Close to the failure, some of the sliding contacts
whose branch vectors are nearly parallel to the loading di-
rection open, giving rise to a butterfly shape distribution, In
this case, the mean value of the orientation of the branch
vector with respect to the direction of the loading is around
w=38°, which means that the sliding between the grains oc-
curs principally around 52° with respect to the vertical. This
provides a crude estimate of the ratio between the principal
components of the plastic deformation atq=0.65p as de3

p

<−de1
ptans52°d. According to Eq.s35d this gives an angle of

dilatancy ofc<97°. This crude approximation is reasonably
close to the angle of dilatancy of 104° calculated from Eq.
s46d.

C. Normality condition

The earliest theoretical studies on plasticity came from the
study of metalsf67g. They were based on the postulation of
a yield surface. This surface is supposed to enclose a domain
in the stress space where only elastic deformations are pos-
sible f1g. The existence of a finite elastic domain leads to the
normality condition, which establishes that both plastic flow
direction and the yield direction are perpendicular to the
yield surface. The question naturally arises as to whether this
condition is valid for the plastic deformation of granular ma-
terials. Experimentalists on soils say that yield surfaces are
difficult to determine because the transition from elastic to
elastoplastic behavior is not as sharp as the theory predicts
f68g. Loosely speaking, the yield surface appears to be a
pragmatic compromise which allows to describe the depen-
dence of plastic deformation on the deformation history, but
is not a necessary feature of granular materialsf58g.

This conclusion becomes clearly apparent if the yield di-
rection and the flow direction are calculated from the plastic
part of the strain envelope response using the Eqs.s34d and
s35d. Both directions are shown in Fig. 15. The results show
that they depend only on the stress ratioh=q/p. The flow

FIG. 14. Plastic envelope response resulting from isotropically
compressed samples with a pressurep=0.001kn.

FIG. 15. The flow direction and the yield direction of the plastic
response. Solid curves represent a fit using Eqs.s46d and s47d.
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direction is fitted by using Eq.s46d. The yield direction can
be fitted by a similar relation, but with different regression
parameters

cotsfd = c8sM8 − hd, 0 ø f ø p. s47d

The fitting parametersM8=0.18 andc8=1.1 do not corre-
spond to the valuesM =0.5 andc=1.7 one of the flow direc-
tion. This proves that both angles are quite different so that
the normality condition is violated. A large amount of experi-
mental evidence has also indicated a clear deviation from the
normality conditionf68g, leading to the so-called nonassoci-
ated plasticityf43g. From a micromechanical inspection one
can understand this strong deviation from the normality con-
dition. The principal mechanism of plasticity in granular ma-
terials is the rearrangement of the grains by sliding at the
contacts. This is not the case for microstructural changes in
metals, where there is no frictional resistancef69g. Even for
small deviatoric loads there is an important fraction of con-
tacts reaching the sliding condition as shown in partscd of
Fig. 6. This is reflected in the strong non-associated behavior
shown in Fig. 15 where the yield direction is around 90° and
the flow direction around 45°.

The fact that any load involves sliding contacts and its
effect on the nonassociated flow rule of plasticity contradicts
several constitutive models of granular materials. For ex-
ample, Nova and Wood establish that due to the absence of
sliding contacts at small stress ratios the plastic deformation
should be associated like in metalsf59g. They introduce a
threshold in the stress ratio, above which the onset of fric-
tional contacts breaks the normality rule. This condition is
not verified in our simulations, probably due to the fact that
in reality not only sliding contacts, but also breaking of
grains can occur at low stress ratios at contacts with largest
forces f70g. The contribution of grain fragmentation on the
plastic deformation is however beyond to the scope of this
work.

Loss of contacts seems to play a secondary role in the
plastic deformations. The onset of anisotropy of the contact
networks ath=0.4 is probably related to the abrupt change
of slope in Fig. 15 around this value.

D. Plastic modulus

In the past two sections we presented a close correlation
between the orientational distribution of the sliding contacts
and the plastic flow rule. This correlation suggests that plas-
tic deformation of granular materials can be micromechani-
cally described by introducing fabric constantsci such as in
Eq. s28d, measuring the anisotropy of the subnetwork of the
sliding contacts. This description would be equivalent to the
relation between the anisotropy of the contact network and
the elastic stiffness tensor presented in Sec. V.

In Sec. IV B we found that the the fraction of sliding
contacts is related to the fabric coefficients asns=c0/a0,
wherec0 anda0 are defined by Eqs.s27d ands28d. We intro-
ducens as an internal variable of the contact network, which
will be used to describe the evolution of the plastic modulus
with the loading. The plastic modulush defined in Eq.s36d is
related to the incremental plastic strain ashudẽ pu,uds̃u,
which is equivalent to the relationEiudẽ eu,uds̃u between the
Young moduli and incremental elastic strain. Thus, just as we
related the Young moduli to the average coordination number
of the polygons, it is reasonable to connecth to the fraction
of sliding contactsns. Figure 16 shows that this relation can
be fitted to an exponential relation

h = hoexps− ns/n0d, s48d

where h0=5.03102kn and n0=0.066. This exponential de-
pendence contrasts with the linear relation between the
Young modulus and the number of contacts obtained in Sec.
V. From this comparison, it follows that when the number of
contacts is such thatns.n0, the deformation is not homoge-
neous, but is principally concentrated more and more around
the sliding contacts as their number increases. For low stress

FIG. 16. Inverse hardening modulush versus
fraction of sliding contactsns. Different stress
values with q=0.01p,0.1p,…0.7p and p/kn

=0.001, 0.002, 0.004, and 0.008. The lowest
value ofns corresponds toq=0.01p.
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ratiosh,102kn whereasEi ,kn so that plastic deformations,
which are inverse proportional to the plastic modulus, are
two orders of magnitude smaller than elastic ones. In this
case the strain response of the assembly is almost completely
elastic. Near to failure we found thath,10−2kn, so that plas-
tic deformations are two orders of magnitude bigger than
elastic ones. This corresponds to the well-known rigid-plastic
limit for granular materialsf4g.

VII. CONCLUDING REMARKS

The thrust of this work was the understanding of the ef-
fect of induced anisotropy on the elastoplastic response of a
polygonal packing in the limit of initially vanishing pore
space. The incremental response has been decomposed in an
elastic and a plastic part. These components have been cor-
related to the fabric coefficients, measuring the anisotropy of
the contact network and the subnetwork of the sliding con-
tacts.

The incremental elastic response has been described using
two Young moduli and two Poisson ratios. Below the stress
ratio q/p,0.4, this response can be represented by only one
Young modulus and one Poisson ratio, as corresponds to the
isotropic elasticity. Above this stress ratio both Young moduli
and Poisson ratios are different. These parameters show a
linear dependence on the fabric coefficients of the contact
network. This result is consistent with several approaches
dealing with the connection between the elastic properties of
granular materials with the anisotropy of the contact network
f32,48,53,56,57g. Our simulations suggest that this correla-
tion could be given by an explicit linear relation between the
parameters of the stiffness and the fabric coefficients. We
have remarked that the transition to anisotropy aroundq/p
=0.4 is due to the fact that we start with a polygonal packing
with zero porosity, where the force distribution is unusually
narrow. This is not typical in most granular materials where
the force distribution is rather heterogeneousf8g. In dense
polygonal packings with finite porosityf29g and disks as-
semblies,f33,54g small loads open weak contacts and hence
induce a smooth transition to the anisotropy for small devia-
toric loads. In all cases it is concluded that one can micro-
mechanically characterize the anisotropic elasticity by intro-
ducing fabric coefficients, measuring the anisotropy of the
contact network.

Another interesting aspect of the incremental response is
the unidirectionality of the plastic response, which can be
described using a nonassociated flow rule. From numerical
simulations of packings of disks, Bardet concluded also that
a nonassociated flow rule describes satisfactorily the incre-
mental responsef45g. This conclusion is also supported by
several experimental tests on plane strain deformation
f43,58,59g. Both numerical and experimental results show
clearly deviations from the normality condition. This is prob-
ably connected to the fact that any load involves sliding con-
tacts so that the elastic regime is vanishing small but not a
finite domain as the elastoplasticity establishesf42g. Recent
numerical simulations of three dimensional packings of
spheres contradict not only the normality postulatef71g, but
also the unidirectionality of the flow rulef72g, leading also to

the conclusion that a profound modification of the elastoplas-
ticity theory is requiredf39g.

Apart from the violation of the normality condition, an
abrupt anisotropy induced by extremely small deviatoric
loads is detected in the subnetwork of the sliding contacts.
This results in a breakdown of the unidirectionality of the
flow rule atq=0, which deserves experimental verifications.
This deviation from anisotropy implies deviatoric plastic de-
formations when the sample is subjected to the smallest de-
viatoric load. Deviatoric plastic deformation under extremely
small deviatoric loads has been also observed in numerical
experiments on loose packings of polygonsf22g and pack-
ings of disksf73g, leading to important effects in the me-
chanical response under cyclic loadingf38g.

In spite of the complexity of the plastic response, the
relation between the dilatancyd and the stress ratioh is
given by a simple linear relationd=csh−Md. This relation is
not only supported by experiments, but also it has been one
of the fundamental issues in modeling the stress-strain be-
havior of soils. Unfortunately the theoretical assumptions of
classical modelssTaylor f60g, Nova and Woodf59g, and
Gutierrez and Ishiharaf63gd are not verified in our model.
This leads to the basic question:what lies behind of this
simple stress-dilatancy relationship?Although we cannot
give a definitive answer, a physical explanation would be
that a granular medium close to the plasticity limit behaves
like a strange fluid, that obeys this stress-dilatancy relation
as an internal kinematical constraint. This constraint be-
comes apparent near to failure, where plastic deformation
dominates, and it could be seen as the counterpart of the
well-known incompressibility condition of fluids. This
means that for such astrange fluidnot the mean stress is
kinematically undetermined, but that part of the stress which
does not work and which corresponds to the component of
the stress perpendicular to thesplasticd strain f4g. Thus the
usual decomposition of the stress in deviatoric and isotropic
part, used in the continuum fluid—and soil-mechanics analy-
ses is not justifiedf3g. This idea underlies in our opinion the
concept of the so-calledmobilized planein soil plasticity
f74g. The resulting correlation between the mean orientation
of the sliding contacts and the plastic flow direction in our
calculations suggests that this internal constraint can be mi-
cromechanically interpreted from the induced anisotropy of
the subnetwork of the sliding contacts.

Since the mechanical response of the granular sample is
represented by a collective response of all the contacts, it is
expected that the constitutive relation of granular materials
can be completely characterized by the inclusion of some
internal variables, containing the information about the mi-
crostructural arrangements between the grains. We have in-
troduced some internal variables taking into account the an-
isotropy of the contact force network. The fabric coefficients
ai, measuring the anisotropy of the network of all the con-
tacts, prove to be connected with the anisotropic stiffness.
On the other hand, the fabric coefficientsci, measuring the
anisotropy of the sliding contacts, are closely related to the
plasticity.

A clear definition of the internal variables is essential to
solve the basic paradox of elastoplastic models: The math-
ematical description of the evolution of a plastic flow rule
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with the loading requires the postulation of a finite elastic
regime. The existence of this regime implies normality of the
flow rule, which contradicts the nonassociated flow rule
found in experiments. In our opinion, future work should be
oriented towards the elaboration of a theoretical framework
connecting the constitutive relation to these internal vari-
ables. To provide a complete micromechanically based de-
scription of the elastoplastic features, the evolution equations
of these internal variables must be included in this formal-
ism. This theory would be an extension of the ideas which
have been proposed to introduce the fabric tensor in the con-
stitutive relation of granular materialsf11,33,34,53,56,57g.
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APPENDIX: CALCULATION OF THE PARAMETERS
OF THE STIFFNESS TENSOR

In this section we present the method used to calculate the
Young moduli and the Poisson ratios of the stiffness tensor
from the elastic part of the strain envelope responsedẽ esud.
First we write Eq.s25d as

Fdee

dgeG = Fa11 a12

a21 a22
GFdp

dq
G . sA1d

Replacing Eq. s18d into Eq. s23d one obtains thatp
= uds̃ucosu andq= uds̃usinu, whereu is the direction of the
stress increment. Replacing these equations into Eq.sA1d
one obtains

dep = uds̃usa11cosu + a12sinud, sA2d

dgp = uds̃usa21cosu + a22sinud, sA3d

so that the parametersaij are evaluated as the Fourier coef-
ficients ofdee anddg e:

a11 =
1

puds̃u
E

0

2p

deesudcosudu, sA4d

a12 =
1

puds̃u
E

0

2p

deesudsinudu, sA5d

a21 =
1

puds̃u
E

0

2p

dgesudcosudu, sA6d

a22 =
1

puds̃u
E

0

2p

dgesudsinudu. sA7d

These equations allow us to calculate the coefficientsaij
as a function of the elastic part of the envelope response. The
parameter of the stiffness tensor of Eq.s31d are expressed in
terms of these coefficients by replacing Eqs.s18d and s21d
into Eq.sA1d and comparing the result to Eq.s31d. It leads to

1

E1
= a11 + a21 + a12 + a22, sA8d

−
n12

E2
= a11 + a21 − a12 − a22, sA9d

−
n21

E1
= a11 − a21 + a12 − a22, sA10d

1

E2
= a11 − a21 − a12 + a22. sA11d
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