
Quantum drag forces on a sphere moving through a rarefied gas

D. Drosdoff* and A. Widom
Physics Department, Northeastern University, Boston, Massachusetts 02115, USA

Y. Srivastava
Physics Department, Northeastern University, Boston, Massachusetts 02115, USA

and Physics Department & INFN, University of Perugia, Perugia, Italy
sReceived 29 November 2004; published 27 May 2005d

As an application of quantum fluid mechanics, we consider the drag force exerted on a sphere by an
ultradilute gas. Quantum mechanical diffraction scattering theory enters in that regime wherein the mean free
path of a molecule in the gas is large compared with the sphere radius. The drag force is computed in a model
specified by the “sticking fraction” of events in which a gaseous molecule is adsorbed by the spherical surface.
Classical inelastic scattering theory is shown to be inadequate for physically reasonable sticking fraction
values. The quantum mechanical scattering drag force is exhibited theoretically and compared with experi-
mental data.

DOI: 10.1103/PhysRevE.71.051202 PACS numberssd: 47.45.2n, 47.45.Gx, 47.45.Nd, 03.65.Nk

I. INTRODUCTION

Quantum fluid mechanical effectsf1g are very often con-
sidered to be negligible. Except for some very special cases
f2g, such as the study of the superfluid phases of helium
f3,4g, quantum fluid mechanics is rarely considered. Here we
wish to consider an important exception to this rule; i.e., the
drag force exerted on a moving sphere by a highly rarified
gas. We wish to consider the case in which the mean free
path of a gas molecule is large, on the length scale of the
sphere radius. For example, a very rarefied gasf5g exists
above the upper atmosphere. Meteors or spaceships on first
entering such an atmospheref7,8g may approximate the situ-
ation to be studied in this work.

A rarified gas will exert a drag force on a moving sphere.
If the mean free path of a molecule in the gas is small com-
pared with the radius of the sphere, then the drag is due to
the viscosity of the gas. If the gas is further diluted so that
the mean free path of a molecule is much larger than the
sphere radius, then the drag force in a kinetic theory picture
depends on the notion of a sticking fractionf; i.e., the frac-
tion 0, f ,1 of molecules incident on a surface that sticks
and thermalizes to the temperature of the sphere before later
evaporating. We shall later presume that those molecules
which do not stick to the surface are specularly reflected. The
central result of such a Knudsen modelf6g is a relationship
between the sticking fraction and the slip drag force on the
sphere.

In past treatments of the scattering of molecules off the
sphere, the classical scattering theory has been employedf9g.
A central result of our work is that the classical scattering
theory is inadequate and should be replaced by quantum
scattering theory. The drag coefficient is proportional to the
transport cross section for molecules to scatter off the sphere.
Due to diffraction effects, the quantum mechanical cross sec-

tion will differ appreciably from the classical cross section.
The incoming molecules are sufficiently large and fast for
their quantum wavelengths to be very small on the scale of
the sphere radius. This is a necessary, but not sufficient con-
dition for the classical limit to be obtained. The classical
limit still fails to hold true due to diffractive shadow scatter-
ing which persists to even the smallest wavelengths. Diffrac-
tion effects increase the total cross section by roughly a fac-
tor of 2. The factor is exactly 2 for purely specular reflection.
Millikan f10g made a series of experiments measuring the
drag force on oil droplets by rarefied gases and found an
effective transport cross section given bysm<1.37pa2,
whereina is the sphere radius. It is not very easy to under-
stand why such an experimental cross section is larger than
the standard classical geometric cross sectionpa2. Unfortu-
nately we do not know of any recent experiments, which
attempt to measure the drag forces on spheres in a similar
Knudsen regimef11,12g. We thereby use the reliable Milli-
kan experimental results to compare with theory.

In Sec. II, we first review the classical kinetic theory of
the drag coefficient on a sphere for the case of completely
elastic classical specular reflection. Second, the completely
absorptive limit is briefly discussed. In Sec. III we first re-
view the kinetic theory of the drag coefficient on a sphere for
the case of completely elasticquantumspecular reflection.
The quantum kinetic theory for the drag coefficient will be
calculated. Second, the completelyquantumabsorptive limit
is briefly discussed. In Sec. IV a general sticking fraction
model will be discussed. The results obtained thereof will be
compared to experiment. In the concluding Sec. V, the im-
plication of these results for the picture of quantum turbulent
backflow will be discussed. Quantum diffraction effects lead
to a strong forward peak in the differential cross section. In
quantum hydrodynamic terms, the forward scattering peak
translates into a thin quantum trail of fluid which will flow
behind a moving sphere. The trail is due to those particles
which undergo specular reflection from the surface.*Electronic address: drosdoff.d@neu.edu
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II. CLASSICAL DRAG FORCE ON A SPHERE

Many of the kinetic models applied to drag forces in ul-
trararefied gases involve the notion of a sticking fractionf
defined as follows:sid s1− fd is the probability that a mol-
ecule will elastically scatter off the surface in a specular
fashion andsii d f is the probability that a molecule will stick
to the surface and thermalize to the substrate temperature
before finally being evaporated back into the gas. Below, the
drag force on a sphere of radiusa will be reviewed using
purely classical scattering theory and classical kinetic theory.
Two opposite limits will be discussed; namely,sAd the purely
elastic specular reflection limit, i.e.,f =0 andsBd the purely
inelastic absorption limit, i.e.,f =1.

A. Classical elastic specular reflections

Consider a particle moving in the gas in the direction of a
unit vectoru. If the particle hits the sphere and specularly
scatters through an angleu, then the component of the mo-
mentum transfer along the original direction is given by

u · spi − p fd = upus1 − cosud. s1d

If one now hasn gas particles of massm per unit volume
with a distribution of momentap=pu, then the momentum
transfers give rise to a drag force

F =Knp
p

m
E s1 − cosuddsL

p
. s2d

In Eq. s2d, ds is the differential cross section of scattering
from the sphere into a solid angledV about the angleu. The
bracketsk¯lp denote averaging over all momentap with a
Maxwellian distribution corresponding to a mean gas “wind
velocity” v. The transport cross section is usually defined
f13g as

s1 =E s1 − cosudds, s3d

so that the drag force may be written as

F =Knp
p

m
s1L

p
. s4d

For classical specular reflection from a spherical surface,

F ds

dV
G

specular
=

a2

4
sclassical hard sphered, s5d

the transport cross section is the same as total cross section
sf14gd; i.e.,

s1 = s = pa2 sclassical elastic hard sphered. s6d

The drag force for the above cross sections isf15–20g

F =
pa2n

m
E ppe−sp − mvd2/2mkBTF d3p

s2pmkBTd3/2G ,

s7d

F =
1

2
rpa2CFv2 sr = mnd,

where

CF =
e−s2

Îps3
s2s2 + 1d +

erfssd
2s4 s4s4 + 4s2 − 1d, s8d

s= vÎ m

2kBT
, s9d

and erfssd is the error functionf21g. When the velocity of the
object is low, then the drag force obeysf22g

lim
v→0

FF

v
G =

4

3
spa2drc̄, wherec̄ =Î8kBT

pm
. s10d

The mean speed of a gas particle is denoted byc̄.

B. Classical purely inelastic absorption

By purely inelastic classical absorption, we mean that any
incoming particle whose impact parameter is less than the
sphere radius sticks to the spherical surface with probability
1; i.e., f =1. The particle may much later be re-emitted after
thermal equilibrium with the sphere is established. This kind
of evaporation implies the re-emission of gas particles with a
Maxwellian distribution with zero mean velocity in the ref-
erence frame of the sphere. The spherical nature of the re-
emission implies the equality of the transport cross section in
Eq. s4d and the total cross section. Specifically,

s1sf = 1d = sin = pa2 sclassicald. s11d

It then follows that the drag force on a sphere due to purely
classical elastic collisions coincides with the drag force due
to purely classical inelastic collisionsf22g. The drag force is
again,

F =
1

2
rpa2CFv2, s12d

whereinCF is defined in Eq.s8d.

III. QUANTUM DRAG FORCE ON A SPHERE

The elastic amplitude for a gas molecule to scatter off a
sphere may be expanded into partial waves as

fsu,pd = S "

2ip
Do

l=0

`

s2l + 1dfSlspd − 1gPlscosud. s13d

The total cross section can be decomposed into an elastic
plus an inelastic part, as

stotspd = selspd + sinspd. s14d

The total cross section follows from the “optical theorem” as

stotspd = S4p"

p
DIm fs0,pd

s15d

stotspd = S2p"2

p2 Do
l=0

`

s2l + 1df1 − ReSlspdg.

The elastic cross section is determined by
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dsel

dV
= ufsu,pdu2

s16d

selspd =E ufsu,pdu2dV = Sp"2

p2 Do
l=0

`

s2l + 1du1 − Slspdu2,

so that

sinspd = Sp"2

p2 Do
l=0

`

s2l + 1df1 − uSlspdu2g. s17d

Thus, the probabilitywl
el of elastic scattering and the prob-

ability wl
in of inelastic scattering in a given partial wave are

determined, respectively, by

wl
el = uSlspdu2 andwl

in = 1 − uSlspdu2. s18d

A. Quantum pure elastic scattering

If the probability of elastic scattering in a partial wave is
unity, then one may define phase shiftshdlspdj via

wl
el = 1 impliesSlspd = e2idlspd. s19d

The elastic cross-section equations16d yields the quantum
result

sspd = S4p"2

p2 Do
l=0

`

s2l + 1dsin2 dlspd. s20d

The quantum mechanical effect of the drag force is deter-
mined by the transport scattering cross sections1spd. Equa-
tions s4d, s16d, ands19d imply f23g

s1spd =
s4p"2d

p2 o
l=0

`

l sin2fdl−1spd − dlspdg. s21d

The hard sphere phase shiftsf24g are

tandlspd =
j lspa/"d
nlspa/"d

; s22d

j l andnl are, respectively, the spherical Bessel and Neumann
functions.

In the high-energy limit,pa@". First, the asymptotic
form of the phase shift is given by

dlspd → s− pa/"d + slp/2d asp → `. s23d

Second, the partial wave summation cuts off at"l <pa,
where a is the radius of the sphere andp is the particle
momentum. By inserting Eq.s23d into Eq. s21d, one obtains

lim
p→`

s1spd = 2pa2. s24d

Comparing the classical specular reflection transport coeffi-
cient in Eq. s6d with the quantum specular reflection Eq.
s24d, one finds the drag force ratio

s1squantum speculard
s1sclassical speculard

= 2,

s25d
Fsquantum speculard
Fsclassical speculard

= 2.

The argument for the famous factor of 2f25g between the
quantum and classical cross sections is that there exists an
interference of amplitudes between the scattered wave and
the incoming wave. This interference creates a peak in the
forward direction. This effect is closely analogous to Fresnel
diffraction in optics, wherein the limit to geometric optics
cannot really be achieved. Our point here is that the so-called
classical limit "→0 cannot really be achieved because of
diffraction effects when the particle scatters off the sphere.
From Eq.s4d one gets the final equations25d. The drag force
on a sphere due to elastic scattering is twice as large as the
classical value if quantum mechanical diffraction effects are
taken into account.

B. Quantum pure absorptive scattering

Pure absorptive scattering takes place when the inelastic
cross section is at a maximum. Equationss17d and s18d im-
ply that pure absorptive scattering in thelth partial wave
occursf26g when Sl =0. If all the partial waves scatter in a
purely absorptive manner, thenSsl,kad<0 and Ssl.kad<1.
The total cross section becomesstot<2pa2. The elastic
cross section is thereby equal to the inelastic cross section;
i.e.,

sel = sin = pa2 andstot = 2pa2. s26d

As in the classical result, the inelastic cross section is equal
to the inelastic transport cross section. The ratio between the
force due to quantum scattering and classical scattering is

s1squantum absorptived
s1sclassical absorptived

= 2,

s27d
Fsquantum absorptived
Fsclassical absorptived

= 2.

The drag force due to quantum purely inelastic scattering is
twice as large as the classical drag force.

IV. STICKING FRACTION MODEL

For purely elastic scattering, theS-matrix eigenvalues
obey the unitary conditionuSlu2=1. In terms of the Heitler
K-matrix eigenvaluesf27,28g,

Sl = F1 − ipKl

1 + ipKl
G , s28d

the unitary condition is enforced by requiring thatKl be real.
In the most simple sticking fraction model, the inelastic pro-
cesses are described with imaginaryK-matrix eigenvalues,

pKl = − ihl, wherehl ù 0. s29d
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In the lth partial wave, a fractionwl
in of incident particles

“stick” to the sphere and a fractionwl
el specularly reflect

from the sphere. In detail, Eqs.s18d, s28d, ands29d imply

wl
el =

s1 − hld2

s1 + hld2 snonstickingd,

s30d

wl
in =

4hl

s1 + hld2 sstickingd.

Finally, we presume a single value for the sticking fraction:

wl
in < f if "l , pa,

s31d
wl

in < 0 if "l . pa.

Equationss16d–s18d and s28d–s31d imply the central results
of the simple sticking fraction model; i.e.,

sel = spa2df1 −Î1 − fg2,
s32d

sin = spa2df .

The physical significance of the central quantum scattering
Eq. s32d is as follows.sid The cross section for the incident
particle to stick to the sphere is simply the classical cross
section times sticking probability, i.e.,sin=spa2df, which
would also be valid in a classical scattering context.sii d The
elastic cross sectionsel=spa2df1−Î1− fg2 is in part due to
diffractive scattering which is a purely quantum mechanical
process havingno classical counterpart. siii d The total cross
section in the sticking fraction model is

stot = 2pa2f1 −Î1 − fg squantum stickingd. s33d

On the other hand, for a classical sticking model, the total
cross section is geometrical:

sclassical
tot = pa2 sclassical stickingd. s34d

The physical kinetics of sticking and specular reflection are
such that the mean momenta transferred to the sphere are
equal for elastic and inelastic events. The friction drag coef-
ficient is thereby

lim
v→0

FF

v
G ; G = SÎ128kBT

9pm
Drstot. s35d

The quantum expression for the drag coefficient in the stick-
ing model is thereby

G = s2pa2dÎ128kBT

9pm
f1 −Î1 − fg. s36d

The sticking fraction for very dilute air molecules bounc-
ing off an oil surface had been measured by two different
methods.sid In the rolling cylinder methodf29g, the drag
force on one rotating cylinder due to the dilute gas between
it and another nearby concentric stationary cylinder is em-
ployed to measure the sticking fractionf. sii d In the falling

drop methodf30g, the drag coefficientG on a falling spheri-
cal oil droplet is measured.G then determines the sticking
fraction f. The droplet should have a small radius compared
with the mean free path length of an atom in the gas. Agree-
ment between these two methods is obtained if the fully
quantum mechanical scattering theoretical equations36d is
used in the analysis of the data. The experimental results are
shown in the table below:

Experimental method Sticking fractionf

Rotating cylinder 0.893

Falling droplet 0.901

More recently, methodsf31,32g, similar to the rolling cyl-
inder method have been developed. For the case of air on
polished spheresf33g, sticking fractions in the range

0.85, f , 0.95 s37d

were observed. The close agreement corresponds to a mea-
sured total cross section for a droplet in which the Knudsen
number Kn@1. Recall the conventional definitionf6g of this
number,

Kn =
L

a
, s38d

whereL is the mean free path of a molecule in the rarified
gas. The experimental number deduced from Eq.s35d is

stot < 1.37pa2 s39d

from which f may be deduced from Eq.s33d. The experi-
mental cross sectionstot is larger than the classical total
cross sectionsclassical

tot =pa2 due to quantum diffraction ef-
fects. The agreement between the experimental methods is
not entirelysatisfactory since only for one oil droplet is data
available to us in which Kn<102@1. However, the data that
do exist seem to demand quantum diffraction effects for the
scattering of a molecule off the sphere. Further experiments
would be of interest for probing the accuracy of these results.

V. CONCLUSION

The drag force on a sphere moving through a highly rar-
efied gas with large Knudsen number has been discussed. It
was found that quantum mechanics substantially alters the
drag force. Quantum mechanics enters into the computation
via diffraction effects in the cross section for molecules scat-
tering from the sphere. In the extreme case, it was found that
if the molecules of the gas are completely elastic or com-
pletely inelastic, then the cross section is twice that found if
only classical mechanics is taken into account. On the other
hand, when there are both elastic and inelastic processes,
then the total cross section may be only somewhat higher
than the classical result. When collisions are mostly inelastic
and absorptive, the cross sections are determined mainly by
the sticking fractionf for the molecule to thermalize on the
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oil drop surface. Whereas classical elastic scattering is
roughly isotropic, leaving an “empty shadow” behind the
sphere, the elastic quantum cross section exhibits diffraction
patterns strongly peaking in the forward direction of the gas
flow. A quantum wake with a narrow stream of particles will
thus appear behind the sphere.

By independent measurements of the sticking fraction and
the drag force, quantum mechanical theory has been experi-
mentally shown to be a more accurate description of the flow
than the classical cross section. However, experimental data
available to us in the Kn@1 regime are somewhat limited.
Further experiments would be of great importance.
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