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Quantum drag forces on a sphere moving through a rarefied gas
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As an application of quantum fluid mechanics, we consider the drag force exerted on a sphere by an
ultradilute gas. Quantum mechanical diffraction scattering theory enters in that regime wherein the mean free
path of a molecule in the gas is large compared with the sphere radius. The drag force is computed in a model
specified by the “sticking fraction” of events in which a gaseous molecule is adsorbed by the spherical surface.
Classical inelastic scattering theory is shown to be inadequate for physically reasonable sticking fraction
values. The quantum mechanical scattering drag force is exhibited theoretically and compared with experi-

mental data.
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[. INTRODUCTION tion will differ appreciably from the classical cross section.

The incoming molecules are sufficiently large and fast for

) o i their quantum wavelengths to be very small on the scale of
sidered to be negligible. Except for some very special Casege sphere radius. This is a necessary, but not sufficient con-

%]’4]Suﬁgn?jﬂfuﬁtﬂfgcr?;ntgz izurzgfllufor?shigztre: dOLS:‘:':”vnaition for the classical limit to be obtained. The classical
4], ! . Y X L Simit still fails to hold true due to diffractive shadow scatter-
wish to consider an important exception to this rule; i.e., the

drag force exerted on a moving sphere by a highly rarifie ng which persists to even the smallest wavelengths. Diffrac-
gas. We wish to consider the case in which the mean fre jon effects increase the total cross section by roughly a fac-

path of a gas molecule is large, on the length scale of théo,r pf 2. The factor is exagtly2 for purgly specular reflgction.
sphere radius. For example, a very rarefied Bisexists Millikan [10] ma_de a series of exp_enments measuring the
above the upper atmosphere. Meteors or spaceships on fidfad force on oil droplets by rarefied gases and found an
entering such an atmosphdf&8] may approximate the situ- ©ffective transport cross section given ly,~1.37ma,
ation to be studied in this work. whereina is the sphere radius. It is not very easy to under-
A rarified gas will exert a drag force on a moving Sphere_staﬂd Why such an experimental Cross section is Iarger than
If the mean free path of a molecule in the gas is small comthe standard classical geometric cross sectiafi Unfortu-
pared with the radius of the sphere, then the drag is due toately we do not know of any recent experiments, which
the viscosity of the gas. If the gas is further diluted so thatattempt to measure the drag forces on spheres in a similar
the mean free path of a molecule is much larger than th&nudsen regimé11,12. We thereby use the reliable Milli-
sphere radius, then the drag force in a kinetic theory picturéan experimental results to compare with theory.
depends on the notion of a sticking fractibni.e., the frac- In Sec. Il, we first review the classical kinetic theory of
tion 0<f<1 of molecules incident on a surface that sticksthe drag coefficient on a sphere for the case of completely
and thermalizes to the temperature of the sphere before latefastic classical specular reflection. Second, the completely
evaporating. We shall later presume that those moleculeghsorptive limit is briefly discussed. In Sec. Il we first re-
which do not stick to the surface are specularly reflected. Thgiey the kinetic theory of the drag coefficient on a sphere for
central result of such a Knudsen modé] is a relationship  the case of completely elastguantumspecular reflection.
between the sticking fraction and the slip drag force on therp,o quantum kinetic theory for the drag coefficient will be

sphere. calculated. Second, the completejyantumabsorptive limit

:1” pasrt] trelatmgntls of thg scar':teringh of lr)nolecules off Ctihqs briefly discussed. In Sec. IV a general sticking fraction
sphere, the classical scattering theory has been empl8Yed 0| will be discussed. The results obtained thereof will be

A central result of our work is that the classical Scatteringcompared to experiment. In the concluding Sec. V, the im-

theory_ls inadequate and shoulq.be Fep'aced _by quantuiiication of these results for the picture of quantum turbulent
scattering theory. The drag coefficient is proportional to th ackflow will be discussed. Quantum diffraction effects lead
transport cross section for molecules to scatter off the sphertt=-0 a strong forward peak in the differential cross section. In

Due to diffraction effects, the quantum mechanical cross Sectjuantum hydrodynamic terms, the forward scattering peak

translates into a thin quantum trail of fluid which will flow
behind a moving sphere. The trail is due to those particles
*Electronic address: drosdoff.d@neu.edu which undergo specular reflection from the surface.

Quantum fluid mechanical effecfs] are very often con-
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Il. CLASSICAL DRAG FORCE ON A SPHERE e—52 rf(s)

Cr= o 22+ 1)+ o (ast+42-1),  (8)
Many of the kinetic models applied to drag forces in ul- F \;’7—733 25t '
trararefied gases involve the notion of a sticking fractfon
defined as follows{i) (1-f) is the probability that a mol-
ecule will elastically scatter off the surface in a specular S=vA /i, 9)
fashion andii) f is the probability that a molecule will stick 2kgT

to the surface and thermalize to the substrate temperatutg,y erfs) is the error functioff21]. When the velocity of the
before finally being evaporated back into the gas. Below, th%bject is low, then the drag force obef22]
drag force on a sphere of radiaswill be reviewed using '

purely classical scattering theory and classical kinetic theory. _|F|_4 ., — _ 8kgT

Two opposite limits will be discussed; namel§,) the purely ||mo 17 E(Wa )pc, wherec= g (10
elastic specular reflection limit, i.ef=0 and(B) the purely o

inelastic absorption limit, i.ef=1. The mean speed of a gas particle is denoted.by

A. Classical elastic specular reflections . . ) .
B. Classical purely inelastic absorption

Consider a particle moving in the gas in the direction of a , . i ,
unit vectoru. If the particle hits the sphere and specularly BY purely inelastic classical absorption, we mean that any

scatters through an angt then the component of the mo- incoming particle whose impact parameter is less than the

mentum transfer along the original direction is given by sphere radius sticks.to the spherical surface with probability
1; i.e.,f=1. The particle may much later be re-emitted after

u - (p; = ps) =|p|(1 - cosh). (1)  thermal equilibrium with the sphere is established. This kind
of evaporation implies the re-emission of gas particles with a
Maxwellian distribution with zero mean velocity in the ref-
erence frame of the sphere. The spherical nature of the re-
emission implies the equality of the transport cross section in

p Eqg. (4) and the total cross section. Specifically,
F=\np— [ (1-cosfdo ) . (2)
m p o(f=1)=0,,=7ma’ (classical. (11)

In Eq. (2), do is _the differ_ential cross section of scattering |t then follows that the drag force on a sphere due to purely
from the sphere into a solid angi#) about the angl@. The  ¢|agsical elastic collisions coincides with the drag force due
brackets(---), denote averaging over all momerawith a 5 pyrely classical inelastic collisiorig2]. The drag force is
Maxwellian distribution corresponding to a mean gas “windagain,
velocity” v. The transport cross section is usually defined

[13] as

If one now hasn gas particles of mass per unit volume
with a distribution of momentg@=pu, then the momentum
transfers give rise to a drag force

1
F= EpWaZCFUZ, (12)

Ul:f (1-cosf)do, ©) whereinCg is defined in Eq(8).

so that the drag force may be written as
lIl. QUANTUM DRAG FORCE ON A SPHERE

F= <np£ol> . (4) The elastic amplitude for a gas molecule to scatter off a
m /p sphere may be expanded into partial waves as

For classical specular reflection from a spherical surface,

ﬁ oo

g 2 fa, =\ — 2| 1 _1 P 6 13

[gﬂ} =% (classical hard sphere ~ (5) (&p) (z.pE( +D[S(p) - 1P (cosh). (13
specular

4
the transport cross section is the same as total cross secti
([14)); i.e.,

o,=o=ma’ (classical elastic hard sphere

The total cross section can be decomposed into an elastic
Bius an inelastic part, as

(6) Tiol(P) = 0e(P) + oin(P) .- (14

The drag force for the above cross sectionElB-2( The total cross section follows from the “optical theorem” as

Amh
F o man f ppe- (P - m/2migT __dp ol P) = <—)lm f(0,p)
m (27rmkgT)%/2 | P
(15
" 2mhi? | <
F= %p’n’aZCFUZ (p = mn), ‘Ttot(p) = ( p2 )E (2| + 1)[1 - ReS(p)]
1=0
where The elastic cross section is determined by
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dog oy(quantum specul@r

— 2
a0 -~ T@.p) oy(classical specular
(16) (25
2\ F(quantum specular
oel(p) :f |£(6,p)|?d2 = (F)% @+11-SPP F(classical specular

The argument for the famous factor of 25] between the
quantum and classical cross sections is that there exists an
2\ @ interference of amplitudes between the scattered wave and
oin(p) = <_2>2 2 +1[1-]|S(P. (17)  the incoming wave. This interference creates a peak in the
1=0 forward direction. This effect is closely analogous to Fresnel
diffraction in optics, wherein the limit to geometric optics
Thus, the probabilityf' of elastic scattering and the prob- cannot really be achieved. Our point here is that the so-called
ability w)" of inelastic scattering in a given partial wave are classical limit#—0 cannot really be achieved because of

so that

determined, respectively, by diffraction effects when the particle scatters off the sphere.
o ) n_ ) From Eq.(4) one gets the final equatid@5). The drag force
Wi =[S(p)|* andw" = 1 ~[S(p)[*. (18)  on a sphere due to elastic scattering is twice as large as the

classical value if quantum mechanical diffraction effects are
. . taken into account.
A. Quantum pure elastic scattering
If the probability of elastic scattering in a partial wave is , )
unity, then one may define phase shif&(p)} via B. Quantum pure absorptive scattering
_ Pure absorptive scattering takes place when the inelastic
wf' =1 implies§(p) = €2, (19)  cross section is at a maximum. Equatidag) and (18) im-
ply that pure absorptive scattering in thil partial wave

The elastic cross-section equatidte) yields the quantum . ..,rs26] when S=0. If all the partial waves scatter in a

result purely absorptive manner, the® . x,=~0 and §j-yy=1.
ah2\ & The total cross section becomes,~2ma®. The elastic
a(p) :( 5 )E (21 + Dsir? §(p). (20) cross section is thereby equal to the inelastic cross section;
=0 ie.,
The quantum mechanical effect of the drag force is deter- O = Oy = ma? and oy = 2ma’. (26)

mined by the transport scattering cross sectig(p). Equa-

tions (4). (16), and (19) imply [23] As in the classical result, the inelastic cross section is equal

to the inelastic transport cross section. The ratio between the
force due to quantum scattering and classical scattering is

= @i | sirf[ 6, -5 21
oy(classical absorptive '
The hard sphere phase shif] are (27)
. F(quantum absorptive
tang(p) = M; (22) Fi?:lassical absorsti\\;e:
n(palh)

i . ) The drag force due to quantum purely inelastic scattering is
jrandn, are, respectively, the spherical Bessel and Neumangyice as large as the classical drag force.

functions.
In the high-energy limit,pa>#. First, the asymptotic
form of the phase shift is given by IV. STICKING FRACTION MODEL

8(p) — (= palh) + (17/2) asp — . (23 For purely elastic scattering, th8-matrix eigenvalues
obey the unitary conditionS|?=1. In terms of the Heitler
Second, the partial wave summation cuts off7adt= pa, K-matrix eigenvalue$27,28,
where a is the radius of the sphere amiis the particle

momentum. By inserting Eq23) into Eq. (21), one obtains 5= {1 _iWKI} 28
1+inK, |’
lim o(p) = 2ma?. (24) _ o I N
p—oe the unitary condition is enforced by requiring thgtbe real.

In the most simple sticking fraction model, the inelastic pro-

C_ompgring the classical specular reflection transport coeffizasses are described with imagin&nmatrix eigenvalues,
cient in Eq.(6) with the quantum specular reflection Eg.

(24), one finds the drag force ratio 7Ky =—i7, wheren =0. (29
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In the Ith partial wave, a fractiom|”" of incident particles drop method30], the drag coefficient’ on a falling spheri-

“stick” to the sphere and a fractionf' specularly reflect cal oil droplet is measured: then determines the sticking

from the sphere. In detail, EqL8), (28), and(29) imply fraction f. The droplet should have a small radius compared
with the mean free path length of an atom in the gas. Agree-

we'= (1‘77|)2 (nonsticking ment between these two methods is obtained if the fully
b (1+n)? ' quantum mechanical scattering theoretical equatR8) is
(30) used in the analysis of the data. The experimental results are
. 4 o shown in the table below:
| = 5 (sticking). _ o _
(1+m) Experimental method Sticking fractidn
Finally, we presume a single value for the sticking fraction: Rotating cylinder 0.893
\N:n ~ f if 4l < pa, Falling droplet 0.901
_ (3D More recently, method31,32, similar to the rolling cyl-
w" = 0 if 4l > pa. inder method have been developed. For the case of air on

i ) polished spherek33], sticking fractions in the range
Equations(16)—(18) and (28)—<31) imply the central results

of the simple sticking fraction model; i.e., 0.85< f < 0.95 (37)
el — 2 - J'—_ 2
0% = (ma)[1-V1-f], were observed. The close agreement corresponds to a mea-
o ) (32 sured total cross section for a droplet in which the Knudsen
o" = (ma’)f. number Kre> 1. Recall the conventional definitig] of this

The physical significance of the central quantum scatterin&umber’

Eq. (32) is as follows.(i) The cross section for the incident

particle to stick to the sphere is simply the classical cross Kn =
section times sticking probability, i.eq"=(ma®f, which

would also be valid in a classical scattering contéiki. The ) _ -~
elastic cross sectioae':(waz)[l—\s’ﬁ]z is in part due to whereA is the mean free path of a molecule in th_e rarified
diffractive scattering which is a purely quantum mechanical9@s- The experimental number deduced from @B§) is
process havingo classical counterpart(iii) The total cross ot 5

section in the sticking fraction model is o'~ 1.37ra (39

A (39)
a

o= 27aq1 -1 -f] (quantum stickiny. (33 from which f may be deduced from Eq33). The experi-
mental cross section'™ is larger than the classical total

On the other hand, for a classical sticking model, the totatross sectionr ..o~ 78> due to quantum diffraction ef-
cross section is geometrical: fects. The agreement between the experimental methods is
of . o not entirely satisfactory since only for one oil droplet is data
Ociassical™ T@° (Classical sticking, (34)  available to us in which Kre 107> 1. However, the data that

. N . . do exist seem to demand quantum diffraction effects for the
The physical kinetics of sticking and specular reflection areSCattering of a molecule off the sphere. Further experiments

such that the mean momenta transferred to .the sphere aiould be of interest for probing the accuracy of these results.
equal for elastic and inelastic events. The friction drag coef-

ficient is thereby
V. CONCLUSION

| F 12&gT| o
lim N =I'= 9m /P7 (35) The drag force on a sphere moving through a highly rar-

00 efied gas with large Knudsen number has been discussed. It
The quantum expression for the drag coefficient in the stickwas found that quantum mechanics substantially alters the

ing model is thereby drag force. Quantum mechanics enters into the computation
via diffraction effects in the cross section for molecules scat-

o [12&gT — tering from the sphere. In the extreme case, it was found that

I'=(2ma’)\/—g— {1 -V1-f]. (36)  if the molecules of the gas are completely elastic or com-

pletely inelastic, then the cross section is twice that found if
The sticking fraction for very dilute air molecules bounc- only classical mechanics is taken into account. On the other
ing off an oil surface had been measured by two differenthand, when there are both elastic and inelastic processes,
methods.(i) In the rolling cylinder method29], the drag then the total cross section may be only somewhat higher
force on one rotating cylinder due to the dilute gas betweetthan the classical result. When collisions are mostly inelastic
it and another nearby concentric stationary cylinder is emand absorptive, the cross sections are determined mainly by
ployed to measure the sticking fractidn(ii) In the falling  the sticking fractionf for the molecule to thermalize on the
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oil drop surface. Whereas classical elastic scattering is By independent measurements of the sticking fraction and
roughly isotropic, leaving an “empty shadow” behind thethe drag force, quantum mechanical theory has been experi-
sphere, the elastic quantum cross section exhibits diffractiomentally shown to be a more accurate description of the flow
patterns strongly peaking in the forward direction of the gaghan the classical cross section. However, experimental data
flow. A qguantum wake with a narrow stream of particles will available to us in the K& 1 regime are somewhat limited.

thus appear behind the sphere. Further experiments would be of great importance.
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