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Anisotropy of the magnetoviscous effect in ferrofluids
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The anisotropy of the magnetoviscous effect in ferrofluids subjected to weak planar Couette flow is inves-
tigated by extensive molecular simulations. The field and concentration dependence of the viscosity coeffi-
cients are found to depend on the relative orientation of the magnetic field with respect to the flow geometry.
Comparison with dynamical mean-field models shows satisfactory agreement for moderate interaction
strengths. In the semidilute regime it is found that the anisotropy contains valuable information on particle

interaction.
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[. INTRODUCTION fied non-interacting modef4] and dynamical mean-field

) ) ) ) _model[7]. Simulation results of the model system are re-
Magnetic fluids have attracted considerable interest SINCBorted in Sec. IV together with a comparison to the simpli-

their viscous properties can be manipulated by external magieq models. Finally, some conclusions are offered in Sec. V.
netic fields[1,2]. Here, we study the anisotropy of the mag-

netoviscous effedtMVE), i.e., the dependence of the viscos-

ity not only on the magnitude of the magnetic field but also [l. MODEL EQUATIONS

on its relative orientation to the flow geometry. We study the same model that was already employed in

It has been kn_own since the first experimental Observaﬁo'ﬂrevious studie$9,10]. In this model,N identical spherical
of the_ magnetoviscous .effect py McTagEBﬂ_ that.the Mag-  harticles of diameter are considered. Each particle carries
netoviscous effect is anisotropic, i.e., the viscosity changes i n embedded magnetic point dipole of strength The
a dlffer('ant'way depending on the rglauve orientation of theposition of particlej and the orientation of its magnetic mo-
magnetic field and the velocity gradients. A pipe flow geom-

i h th ic field oriented either in fl ment are denoted by; and u;, respectively. LetH denote
etry wi € magnetic Tieid oriented either in Tow or PErpen-y, o - ,niform  internal magnetic field of strengtH. The
dicular to the flow direction was employed in the experiment.

. . . interaction energy of particlg with the magnetic field
of McTague. Early theoretical explanation by Shliorf$ of .CDH:(I)H(uJ-), the interaction energy of particlgsandk due
the magnetoviscous effect successfully accounts for the dif-! . . . dd_ 1.dd o

. . . , to dipolar interactionsb},’=®%(r,u;,u,) and steric inter-
ferent values of viscosity observed in these experiments. On ] LS

) s s
the other hand, the modf4] fails to account for the aniso- actions®j =®(r) are given by

tropy of the MVE observed in a parallel plate geome®y. dH(u) = —kgThu - H/H, (1)
In this experiment, three different viscosity coefficients are

measured for the magnetic field oriented in the flow, gradi- 3

ent, and vorticity direction, respectively. More refined theo- ®Y(r u,u’) = kBTA%[u ' =3u-H N, @)
retical models like the chain mod¢b] or the dynamical r

mean-field mode[7] are able to describe these results at

least qualitatively. Subsequent experimental investigations o JA€C(r)—C(rey)] forr=rgy,
have revealed other shortcomings of the mddé¢like con- Ar) = 0 elsewhere,
centration dependence of the viscosity, normal stress differ-

ences, and off-equilibrium magnetization in an elongationalvherer =r;—r, is the connector vector between particjes
flow (see, e.g[8], Odenbach if1] and references thergin ~ andk, fj=r/ry with ry the distance between the particles.
Unfortunately, these studies have focused on a fixed orientdd Egs.(1) and(2), we have introduced the Langevin param-
tion of the magnetic field and therefore cannot give directeterh=uomH/kgT and the dimensionless dipolar interaction

)

information on the anisotropy of the MVE. parameter

In this paper, we present extensive molecular simulations P
on the anisotropy of the MVE in weak planar Couette flow A= LU (4)
and its dependence on the magnetic field, concentration, and 4mokgT

interaction strength. This paper is organized as follows. INgojtzmann’s constant and absolute temperature are denoted
Sec. Il the model system is presented and the relevant magy k., and T, respectively. Following9,10], we choose the
roscopic quantities are given. Section Ill reviews the simpli-yca potential for the steric interaction, i.e5(r)=(c/r)*2
—(o/r)® andr. =280, i.e., a purely repulsive potential with
smooth cutoff atr=r.,. Same as if9,10], we assume that
*Corresponding author. Email address: ilg@physik.tu-berlin.de the system under study is surrounded by a uniform medium
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boundary conditions apply and the internal magnetic fi¢ld  tensor. The antisymmetric part involves the pseudovector

coincides with the applied external field. p*=—e: P, where we have introduced the total antisymmetric
tensor of rank three (Levi-Civita) is denoted by €, i.e., €
A. Translational and orientational dynamics (ab)=a Xb for the dyadic ab constructed by arbitrary vec-

tors a and b. The isotropic pressure p is irrelevant for sub-
sequent studies. The symmetric traceless part of the viscous
stress tensor is given by [12]

If M and ® denote the mass and the moment of inertia
tensor of the ferromagnetic particles, the equations of motiol
for the translational and orientational dynamics ré@e12]

N N
—_ 1 /
- ! B ) e . ]
MY; = X I’(::Ji( = 4lvy =Vl +Fy, 5 P=-7nD+ ZV% rF e, (9)
N

O -w=muXH+X ’N?kd— Lol ) = Q]+ NP, with the symmetric velocity gradiem= 2[Vv+(Vv)T]. The
k=1 antisymmetric part of the viscous pressure tensor is given by

(6) pe=M X H. (10)

wherev;=r; and w;=u; X u; denote the translational and an- ~ The magnetic force densify, can be derived from Max-
gular velocity of particlej, respectively. The forceBj, and  well's magnetic pressure tensBy, by fy, ==V -Py. If a term
torquesNﬂ(d are obtained from the interaction potential by proportional toM? is adsorbed in the scalar presspril4],
the magnetic pressure tensor can be writtenrPgs—-BH
Fi=—0®uldry, Nii=—LD (7)  +(ueH?/2)1. The magnetic inductiorB is given by B
=uo(H+M). The total pressure tensé+P,, is symmetric
(no summation convention where @ =®+®% is the  due to conservation of total angular momentum.
total inte_raction potc_antial of particleg and _k and L;=u; In a plane shear flowy=(yy,0,0), the shear viscosity is
>_<a/au,- is the rotational operator. TherII‘St 'term on the gefined by 7,=—P,,/ ¥. Note, that no contribution of the
right-hand side of Eq.(6) equals L;®;’, which is the \axwell pressure tensor to the shear stress arises because of
torque exerted by the magnetic field. Primes on summatioge boundary conditions for the magnetic fieldsand B
symbols imply that the term=k should be omitted from (see e.g., Chap. 8.12 {2]). Similar to the Miesowicz vis-
the sums. The Beffect of theB 5_°|Ve”é IS gnodeled bycosities of liquid crystal§13,15,16, different viscosity co-
Brownian forces=;” and torquedN;” with (F7)=(N7)=0and  efficientss can be defined if the magnetic field is oriented in
(FPFR)=2ks TZ: 831 and(NPNR)=2Kks T Sl The transla-  flow (i=1), in gradient(i=2), or in the vorticity direction
tional £, and rotationalf,, friction coefficients have been (i=3) of the flow. In addition, a fourth viscosity coefficient is
introduced. For a sphere of diameterin a solvent with needed to fully characterize the viscous behavior. This coef-
viscosity 7., these coefficients are given ly=3mnso and ficient can be chosen ag, the viscosityz,, that is measured
Lot=mne0>, respectively. Since hydrodynamic interactionsif the magnetic field is oriented along the bisector of the flow
are not included in Eqg5) and (6), we here consider the and gradient direction.
so-called “free-draining limit.” Next, we consider a simplified mean-field model that al-
lows analytical predictions of the nonequilibrium magnetiza-
tion and viscosity coefficients. These predictions will later be
compared to simulation results of the model just presented.
Macroscopic quantities like the magnetization and viscos-
ity coefficients are obtained as ensemble averages. The mac-
roscopic magnetization is defined by=Mgu, where Mgy

B. Magnetization and viscosity coefficients

I1l. DYNAMICAL MEAN-FIELD MODEL

=nmis the saturation magnetization witl=N/V the number In Ref. [7], a mean-field approximation to the dynamics
density of magnetic particles. The average orientation of thef the interacting many-particle system, cf. Sec. II, was pro-
magnetic dipoles is calculated from=(1/N)Z{L,u;. posed that extends the model of noninteracting magnetic di-

In order to define the viscosity coefficients, consider thepoles[4] to the weakly interacting regime. The range of va-
momentum balance equation of the fluiy=-V -P+fy, lidity of this dynamical mean-field model was investigated in
wherefy, denotes the magnetic force density. The mass derf9] for the special case, where the magnetic field is oriented
sity and the velocity of the fluid are denoted pyandv, in the gradient direction of the flow.

respectively. Like any second rank tensor, the viscous pres- Here, we briefly summarize the dynamical mean-field
sure tensoP can be decomposed uniquely into its isotropic, model introduced if7]. On time scales that are long enough

symmetric traceless, and antisymmetric jag], so that the inertia terr® - w can be neglected, the Langevin
] dynamics of the orientational degrees of freedom can be ex-
P=pl+P+—€-p° ®) pressed by the Smoluchowski equation for the orientational
2

distribution functionf(u;t),
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TABLE |. Nomenclature(selected quantitigs

A h Msat ¢ XL Lrot & Trot Ko K
G somH nm 7on 8\ TGOS 3myo Crot 37 274 Ko
47o3kgT kgT 6 3ksT STrot
of 1 kg T by their equilibrium valuesS(h)=L;(hgo), where Ly(x)
e L- {(‘Q - chcpeﬁ)f} + ?Otf'zf- (1) =cothx)-xtis the Langevin function introduced above and

o _ L,(x)=1-3L,(x)/x. The ratio of relaxation timeskg
The magnetlzatéon IS determmgd _frOffn by M ?MsaK_U>’ =37/(57,) occurs inB, where 7,o,= 70>/ (3kgT) denotes
where (u)(t)=Jduuf(u;t). In principle, the orientational the orientational relaxation time of a sphere with diameter
and translational degrees of freedom are coupled by the djn a solvent with viscosityys.

polar interactions. For low concentrations and smalthe From Eq.(13) we observe that the flow induced nonequi-
comtz)ineg effe_tc):t gft? malgnetlic field &}[f‘dfqdii%‘)lalz i”tez‘a‘;tionsiibrium magnetization is different, if the magnetic field is
can be described by a local magnetic fidlg.=h+ y, (u), . . R . .

with ®,.=—kgTu-hj,.. In this approximation, the equilib- quentgd n tbe ﬂAOV\('_lj hx—.l,hy—hz—O) or.m the Qrad'e”t
rium magnetization is given bWle=Mgl(hoo), where (i=2: hy=1, h,=h,=0) direction. In the noninteracting case,
L,(x)=cothx)-x"* is the Langevin function. In the presence xL — 0, the absolute values of the magnetization components
of a flow fieldv(r) with a symmetric velocity gradier, the ~ become equal. Thus if we define an average nonequilibrium
dipolar interactions are modified via the flow-induced distor-magnetization by BI*=M,(i=1)+M(i=2), the DMF
tion of the pair correlation function. This effect was takenmodel predicts(i) that the non-equilibrium magnetization
into account in Ref[7] within a Kirkwood-Smoluchowski components are reIatedML:%[Mx(i:Al)—Meq], where
equation. For weak, time-independent flows, this effect cam,(i=4) denotes the magnetization in case the magnetic
be approximated by an additional contribution to the effecield is oriented along the bisector of the flow and gradient

tive potential, direction, and(ii) that (h/)M*=const, i.e. independent of
Dy 6 h. The value of this constant is a direct measure for the
QT U-hiee+ zxi7u-D (u). (12 strength of dipolar interactions.

In Eq. (12), we have introduced the translational relaxation
time 7, which enters the Kirkwood-Smoluchowski equation
as an additional parametgf]. For spatially homogeneous systems, the symmetric con-
Inserting the effective potential E412) into the kinetic  tribution to the viscous pressure tensot8) can be reex-
equation (11) defines DMF model of weakly interacting pressed in terms of the pair correlation function. Employing
magnetic dipoles proposed [i7]. In the limit y, —0, the 3 Kirkwood-Smoluchowski equation for the pair correlation

kinetic model of noninteracting magnetic dipol@dl) is re-  function[7,18], the viscous pressure tensor becof@s
covered as a special cagSee Table ).

B. Viscosity coefficients in mean-field approximation

A. Nonequilibrium magnetization in mean-field approximation P=pl-2%,D - Tau)(u) X Q- 2a(c, - 3)D - (u)u)
The magnetization dynamics is obtained from the Smolu- 1
chowski equation11) by multiplication withu and subse- + E’lkBT«“)h—h(“))» (14

quent integration oveu. Due to interactions, however, no
closed equation for the magnetization can be obtained by this . _ 2
procedure. To overcome the closure problem, the so-called |2n4/Eq. (1'?)h, W?\ have mtrgduc%et(:fzntsx)\(.ﬁ , where k.
effective field approximation has frequently been employed” ( 7)K°;5 e szear viscosity 07 €1s0 rOE'C suspelnsuon IS
in the literature[4,17]. In [17], we have shown that the ef- 70~ 7d1+3¢+be )'_ where b=gc,« and 70= 7-3(C,
fective field approximation gives very accurate predictions in~ 3)a(u)?. The coefficientsy depend on the detailed form of
the noninteracting case for weak and moderate shear rateghe short range interaction potential. For the WCA potential
Within the effective field approximation, the nonequilib- considered in Sec. Il and in the limit of small concentrations
rium magnetization for small shear rategy<1 is found to ~ Where the pair correlation function of the reference fluid can

be given by be approximated byg(r) =exd-Bd3(r)] for r > o and zero
R ., else, these coefficients take the valugs=7.72 andc,
MM g h[1-B(1-2n)] ~8.36. A reduced temperature ®f =1 has been assumed.
7 _Meqg, _ _r 2 For potentials with softer repulsion higher valuespéndc,
Msat Msat Trot¥ h(2 + Sz) hX[l " B(l my] , are obtained.

2Bhhyh, The only parameter in the DMF model which is not speci-

(13) f|¢d SO _far is the tran_slatlonal_ re_Iaxatlon timeentering _the

dimensionless quantity. In principle, 7 can be determined
where we have defineB=«yyx, (2+S,)/3. To first order in  from molecular simulations of structural relaxation in non-
Tty the orientational order paramete8scan be replaced magnetic systems. Here, we use as a rough estimate the time
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TABLE Il. Definition of reduced units and main simulation 0
parameters.
-0.01 —

Parameter Reduced units \‘ -
o (soft) particle radius =1 . '0'02_%\ — ’;f:; ::: o
M particle mass =1 Eg _0'03; \\ . /::/’/ |
€ (separatiopinteraction energy =1 s [k / //,é’
Mo magnetic susceptibility =1 pro( i ~ //E . i
N number of particles 2048-10976 éﬁ 5%
é volume fraction 0.02-0.16 -0.05- %@l 7
N dipolar interaction parameter 0.25-2.0
T temperature 1 -0.06 e S S T
;y* shear rate 0.0-0.1 Langevin parameter h

FIG. 1. The nonequilibrium magnetizatidi,/ Mgy is shown as
. . _ U2 \ar . a function of the Langevin parametér The magnetic field was
to travel a p_art'de diameter= 7,=(Mo?/ _E) - With this  ,iiented in the flow direction. Circles and squares correspond to
choice no adjustable parameters are left in the DMF modelyojume fractions op=0.05 andp=0.1, respectively. Solid, shaded,
In a steady shear flow with the linear velocity profile  and open symbols correspondyto=0.2, 0.4, and 0.8, respectively.
=(yy,0,0), the shear viscosityy,, can be calculated from Also shown are the predictions of the DMF model, cf. Etp).
Eq. (14) explicitly. If the magnetic field is oriented in the

flow (i=1), gradient(i=2), vorticity (i=3) direction or par-  hetic particles are treated as rigid spheres, for which the mo-
allel to the bisector between the flow and gradient directionnent of inertia tensor takes the for®=01 with ©

(i=4), the DMF model predicts the following viscosity coef- =\ 42/10. The translational friction coefficiert is chosen

ficients as{,=10t,.e/ o In order to study bulk properties in a finite,
3 3§ 2+5, sheared system, Lees-Edwards periodic boundary conditions
7= 1m0t E%QSE (1-65) +diKXLT , (15 are employed12]. The long range dipolar interactions are
+ ,

treated by the reaction field methdd2]. A cavity radius
rse=2.50- and metallic boundary conditions have been cho-
sen. Typically, systems witN=2048 and\=10976 particles
are considered. We have demonstrated already@jnthat

where the constantd; are defined byd;=(c,;/6+3)/6, d,
=(c,/6-4)/6,d3=(1-c,/3)/6, andd,=—ds. In the theory of

liquid crystals, the viscosity coefficients, are known as h | Hiciently | id finite si f
Miesowicz viscositie$13,16. Instead ofz, the Helfrich vis- these values are sufficiently large to avoid finite size eflects
on the simulation results. We also showed[#] that the

cosity coefficient is frequently employed, which is defined asresults do not change significantly upon increasigg The
— A : -1
1’112)_774(;7’4%2%’14- 7). From Eq. (18 we find 71,=5(c,/3 integration is carried out for at least l@me steps until a
S L1

. . stationary state has been reached. Magnetic and viscous
From Eq. (15 we find that 7, > 7,. The same relation y 9

N ) O ) roperties of the system are extracted as time averages for
holds for a d'IUtPT suspension of oblate e|||p30|d_s, Wh'le theZnother time interval of at least510° time steps. Error bars
opposite inequality applies in case of prolate ellipsith.

In the ab finteract 0. th it of th - are estimated from block averagd<)].
n the absence ol interactiong, =6, the result of the nonin- Volume fractions¢p=Nwo3/6V between$=0.02 and¢
teracting model is recovered frofd5), n,=7,= 71, 73= 71

and 7,,=0. For the special case of dilute systemss 7.72 =0.16 are considered which are typical for ferroflu[ds.

; 3 ; : The dipolar interaction parametét) is chosen in the range
is obtained for the WCA potentigsee above In this case, o5<\<2 Th ic field i . ither in fl
d,~0.71,d,~~0.45,d;~~0.26 and the following inequali- 0.25=<\ =<2. The magnetic field is oriented either in flow,

. gradient or in vorticity direction or parallel to the bisector of

ties hold 7,> 74> 7. the flow and gradient direction. The main simulation param-
eters are collected in Table II.

IV. RESULTS

A plane Couette floiw=(%y,0,0 with constant shear A. Magnetic properties

rate y is considered exclusively in the sequel. The equations In Fig. 1, the nonequilibrium magnetizatiadl,/ My is

of motion (5) and (6) are integrated numerically starting shown as a function of the Langevin paraméteThe mag-
from a given initial configuration with random dipole orien- netic field was oriented in the flow direction. Results for
tations. An adaptive time step of ordét/t,=0.001 has different values of the volume fractio#h and dipolar inter-
been employed with the reference tiag=(Mo?/€)¥2. The  action parametek are shown. Also shown are the predic-
reduced shear rat§ =ty was chosen ag/=0.1 if not tions of the DMF model given by E¢13). We observe from
stated otherwise. We demonstrated [B] that this value Fig. 1, that the nonequilibrium magnetization is well de-
is within the weak shear flow limit. A reduced temperaturescribed by the dynamical mean-field theory fgr=0.4,
T'=kgT/€=1.0 has been chosen in all simulations. The magwhere y, =8\¢ denotes the Langevin susceptibility. For
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Langevin parameter h

o o FIG. 3. The relative change of shear viscosity,,/ 7, is shown
_FIG. 2. The nonequilibrium magnetization componeM{gMsa a5 a function of the Langevin parameter Circles, squares, and
(circles and My/Msy (squarep are shown as a function of the giamonds correspond to orientations of the magnetic field in the
Langevin parameten. The magnetic field was oriented parallel to fio\, gradient, and vorticity direction of the flow, respectively. The
the bisector between the flow and the gradient direction. Againygiume fraction was chosen as=0.1. Solid, shaded, and open
solid, shaded, and open symbols correspongit0.2, 0.4, and  sympols correspond ta=0.25, 0.5, and 1.0, respectively. Also
0.8, respectively. Also shown are the predictions of the DMFghown are the predictions of the DMF model; cf. EtS).
model; cf. Eq.(13).
o Note that the shear viscosity contains contributions from the
x.=0.8 we observe that the absolute valueMaf is bigger  symmetric (9) and antisymmetric partl0) of the viscous
for ¢=0.05,1=2.0 than for$=0.1,A=1.0. Thus, we must pressure tensor. The magnetic field was oriented either in the
conclude that fory, =0.8 the DMF model is not applicable flow, gradient, or in the vorticity direction. Also shown are
since the nonequilibrium magnetization is no longer a functhe corresponding Miesowicz viscosities, 7,, and 7, cal-
tion of x, only but depends orp and X separately. The culated from Eq.(15). While #; and 7, increase with in-
predictions of the DMF model agree well with the simulation creasing magnetic field strength #; is found to decrease
results for weak interactiongy < 0.4. with increasingh, therebyz;— 7, becoming negative. While
The case when the magnetic field is oriented in the gradithe values ofy; and 5, are comparable, the absolute value of
ent direction was already considered @]. A similar behav- 4, s significantly smaller. These observations are in agree-
ior as shown in Fig. 1 has been observed for the nonequilibment with the experimental results §5]. The NI model
rium magnetizationM,, except thatM, is positive in this  predicts identical values fop, and 7,, shown by the dotted
case; see Eq13). line, while 7, is predicted to be independent bf For the
If the magnetic field is oriented in the vorticity direction, present choice of parameters, the simulation results deviate
no flow induced magnetization component in flow or gradi-considerably from these predictions. For a volume fraction of
ent direction is observed within the error bars of the simula-4=0.1 and dipolar interaction strengths 0.25 and 0.5, the
tion. This observation is in agreement with the DMF modelsimulation results are accurately described by the DMF
predictions. model (solid and dashed lines, respectivelyor stronger
Figure 2 shows the nonequilibrium magnetization compodipolar interactionsh =1, the simulation results start to de-
nentsM,/ Mg and My /Mg, if the magnetic field is oriented viate from the predictions of the DMF modglashed-dotted
parallel to the bisector of the flow and gradient direction. |n|ines)_ A similar range of Va“dity of the DMF model was
this case, both magnetization components are equal in eqUound for the nonequilibrium magnetization. It is interesting
librium. In a planar shear flow, the magnetization componento note that the deviations from the DMF model are stronger
in flow direction is increased, while the component in gradi-for 7, and 7, than for 7;, which is still rather accurately
ent direction is decreased. Also shown are the predictions afescribed by the DMF model even far 1.
the DMF model, Eq(13), for ﬁx=ﬁy=1/\5, andﬁzzo. We Figure 4 shows the relative change of shear viscosity
find that the predictions of the DMF model accurately de-(7yx—70)/ 70 as a function of the volume fractiop. Results
scribe the simulation results even fgi=0.1 andA=1.0. for the Miesowicz viscositieg;, 77,, and zz corresponding to
Moreover, we observe that the simulation resultséer0.1,  different orientations of the magnetic field with respect to the
A=1.0 agree with those forh=0.05, A\=2.0 (not shown flow geometry are shown. Results for dipolar interaction
within the error bars. It seems therefore that in this geometrgtrengths ofA=0.5 and 1.0 are shown. A strong magnetic
the Langevin susceptibility is the only control parameter forfield h=20.0 was employed in the simulation. Comparison to
xL=0.8. the prediction of the DMF modétashed ling cf. Eq.(15),
_ _ shows very good agreement for volume fractigns0.1.
B. Viscous properties Similar to the above findings, the simulation results fgr
In Fig. 3, the relative change of shear viscosity,,  and 7; are well described up t@~0.15, while stronger
- 10)! 175 is shown as a function of the Langevin paraméter deviations from the DMF model are observed fgy. It is
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different viscosity coefficients depending on the orientation

0.25 of the magnetic field. The difference in the viscosity coeffi-
cients ; and 7, if the magnetic field is oriented in the flow
2 and in the gradient direction cannot be explained within the
I noninteracting model. In both cases, the magnetic field is
= s perpendicular to the vorticity direction. Therefore, the differ-
= - ence betweemy; and », gives information on the strength of
< = particle interactions. Similarly, the viscosity coefficient
6iis that is measured if the magnetic field is oriented in the vor-
Tl ticity direction is identical to the zero-field viscosity in the
0 noninteracting model. Therefore, deviations »f from the
zero-field viscosity also give information on particle interac-
005 tions. For moderate interaction strengthis= 0.4 the viscos-

ity coefficients are well described by the dynamical mean-
FIG. 4. The relative change of shear viscosity as a function offield model. For stronger interactions, the model has to be

the volume fractiong for dipolar interaction strengths=0.5 (full extended by including higher order terms in the dipolar in-
symbolg and 1.0(open symbols The value of the Langevin pa- teraction strength. Some steps in this direction have been
rameter was chosen ds=20.0. Circles, squares, and diamonds proposed irf 7] but the consequences for the magnetoviscous
show the simulation results for magnetic fields oriented in the flow,effect have not been worked out so far. Eor very strong di-
gradient, and vorticity direction, respectively. Solid and dashedyolar interactions where permanent, chainlike aggregates are
lines are the result of the DMF model far0.5; dotted line the NI 355med, the chain modél] has been employed in order to
model. investigate magnetoviscous propertigds]. We hope that

further experimental studies on well-characterized ferrofluids
interesting to note that the comparison between the DMHwill be performed in order to further investigate the aniso-
model and the simulation results can be improved if thetropy of the magnetoviscous effect. It should be noted, how-
structural relaxation time is assumed to te 75/2 instead ever, that in experiments the external field is controlled,
of 7=y (solid lines in Fig. 4, i.e., the time to travel the while the present study assumes a given internal fi¢ld
particle radius rather than the particle diameter. ThereforeBoth fields are related via the demagnetization coefficient

both estimates of seem to be acceptable. and the magnetization. Thus using the results for the magne-
tization presented in the present study and the demagnetiza-
V. CONCLUSIONS tion coefficient appropriate for the experimental condition

) ) ) .allows us to recalculate the external field corresponding to
Extensive molecular simulations have been performed ifhe internal field considered here.

order to investigate the anisotropy of the magnetoviscous
effect. A planar, steady shear flow with the magnetic field
oriented in the flow, gradient, or vorticity direction or paral-
lel to the bisector of the flow and gradient direction has been This work has been performed under the auspices of the
considered. We observe that dipolar interactions lead t®@FG-SPP 1104 “Kolloidale magnetische Flussigkeiten.”
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