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Reaction-diffusion wave fronts on comblike structures
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From the Hamilton-Jacobi formalism, an explicit expression for the speed of wave front propagation along
the backbone of comblike structures is obtained. This expression, through the waiting-time distribution func-
tion, takes into account the number of sites and their distribution in the secondary branches. Our theoretical
results are supported by numerical simulations of the reaction random-walk process on the structure. Finally, a
more complex situation such as the Peano basin structure is also considered, both theoretically and numerically,
exhibiting a good agreement too.
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[. INTRODUCTION numerical simulations performed within the comb structures,

. . showing in general a good agreement. Finally, we justify that
Lattice models and some other discrete models have bgsyr method can be applied to a large range of lattice models,
come very popular in recent years for dealing with a widepoyided that we are not interested in the propagation

variety of dynamical systenld,2]. In this work we want to  thrgygh the whole structure but just in the direction of the
show an analytical method for studying the propagation of,5ckbone.

reaction random-walk wave fronts through heterogeneous
lattices when these structures are made up by a main back-
bone with a regular distribution of secondary branches. Thus,
our work is especially appropriate and easy to understand for A diffusion process can be expressed in the CTRW frame-
comblike modelgsee Fig. 1and so we focus on this kind of work in terms of the density of particlggx,t) as
structure, which has become of special interest for many re- .
searchers in recent yedi3. _ / / ’ Y

For our purpose, we start from the continuous-time ran- pIx = jo dt L X O, E)plx =Xt -1, @
dom walk(CTRW) framework[4]. Although this approach is
usually applied to continuous systems, we show that the dis¥here ¥(x,t) is the probability for a walker to perform a
crete nature of lattice models can be introduced there bjump of lengthx when a timet has elapsed since its previous
choosing the appropriate distribution functions describingump. Usually, the distribution of jump lengths and the dis-
the jumps made by the walkers. By doing that, our modeldribution of time probabilities are independent, so the func-
will be able to capture the properties of the underlyingtion W(x,t) can be written in the decoupled forf(x,t)
random-walk process in the latti¢and, in the limit of large =¢()®(x) and Eq.(1) turns into
distances, we can interpret it as a diffusion progess ¢

After that, we introduce in the CTRW a reaction process p(x,t) :J dt'@(t')f dX (X )p(x-x',t-t"), (2
taking into account the creatio@nnihilation of walkers. 0 R
This yields, as usual, traveling wave front solutions spread- o i .
ing through the media. These models are analyzed by meatid1€re ¢(t) represents the distribution function for waiting-
of the Hamilton-Jacobi techniques, which in recent yeardime probabilities andb(x) the distribution of jump lengths.
have been proved quite useful for the determination of wave We first consider the case of a discrete one-dimensional
front speeds on reaction random-walk systéf§]. The re- chain where the first neighbors are separated by a distance

sults for the front speeds are compared with random-walldX. Then, a single random walk, where each walker moves
to one of its first neighbors with equal probability after a

remaining timer, is characterized by the distributions

et)=ot-1), 3

IIl. RANDOM WALKS

d(x) = %[5(x - AX) + 8(x— Ax)], (4)

A AT . . .
so the time and the space in the model are taken as dis-
FIG. 1. Representation of a comb structure with distance becretized. In this way, discrete systems and lattices can be
tween first neighbora\x and secondary branches of lengtiThe ~ analyzed by the CTRW approach.
symbolsA,A’ A", ... are the names we give to some sites of the Next, we add to every site of the backbone a secondary

lattice (see text branch of lengtH, so a comblike structure appedfsg. 1).

1539-3755/2005/1%5)/0511046)/$23.00 051104-1 ©2005 The American Physical Society



D. CAMPOS AND V. MENDEZ PHYSICAL REVIEW E71, 051104(2005

In this situation, a walker that is at a site on the backbone can < .

spend a certain time in the secondary branch before passing o9 = ago>, [(1-a)@3) =

to one of the first neighbors in the backbone. Therefore, if we =0

are only interested in the behavior of the system in the di- A S . :

rection of the backbone, then we can interpret the secondar\l\/here(p0 is the probability distribution for one single jump
i L . P T n our casep,=exp(—7s), which is the Laplace transform of

branches as introducing a delay time between the sites in t

) L g.(3)].
backbone. In this case, the random walk within the comb Equation (6) is derived as follows. The terml—a)g“oﬁ

strgcture s given by Eq(4) and a new distributiony(t) within the sum represents, according to r(ile the probabil-
which has to include the effect of the delay by the secondaryy nction for each time the walker goes into the secondary

branches. branch. This expression must sum up to infidityle (ii)] to

To determine analytically the effect of the branches weiake into account that the walker can go into the branch
can apply some convolution rules which were partially d'5'1,2, ... po times. Finally, the factowg, for the final jump to
cussed by Van den BroedB] for the case of homogeneous e first neighbor in the backbone is added.

lattices. . o _ . The next step is to calculate the antitransform(éf in
. (|_) Let us consider that a walker is initially at a certain site ,qer to compare it with the predicted result(8). Unfortu-
within the secondary branch. If the walker moves further o,y that antitransform is not possible to find analytically.

the secondary branctso it goes away from the backbdne |nstead of that, it is easy to see that the expres@pmay be
the probability for it to return to the initial site in a tintds |\ ritten (by Taylor seriesas

a convolution of factorgthen it becomes a product in the

@y
1-(1-a)@d ©

Laplace spage ” A .
(i) The total probability for that walker to return to the P9 = a(l-a) Y pydL, (7)
initial site is determined by the sum forfrom 0O toce. j=1

(iii) When the walker reaches a crossisg it can choose o )
between different waysthe total probability is the sum of Now itis straightforward to see that the Laplace transform of

the probabilities for each possible way. (5) is (7) and so our method for determinings) is proved
Note that for the case of comb structures like that in Fig.to be valid in this case.
1, the secondary branches have no crossings, sdiiulés (b) Comb structure with+2Ax. Analogously to the case

not necessary there; however, we will show in Sec. IV that inrs€en above, if now the secondary branch is two sites long we
many other situations it must be taken into account too. can write the distribution for the time probabilities as

For the sake of generality, let us consider that when the . . _
walker is at a site in the backbone it can jump to another site . . (1-a)., 1., k! apy(2 - q”o(z))
in the backbone with probability or go into the secondary ~ #(8) = ago S\ 5%) | =5 e

: - . o i=0 2 k=0 \ 2 2-(2-a)@y
branch with probability 1«. This generalization allows us
to analyze, for example, structures like those shown in Sec. (8)
IV below as equivalent to that in Fig. 1 just by choosing the
suitable value for.

Now we can assume that initially a walker is located in
the backbone and apply the rulés(iii) to determinep(t).
We will examine three specific cases.

(a) Comb structure withAx. In this case there is only
one site within the secondary branch, so the walker can onlg.
jump in the direction of the backbone with probabiligyor !
go into the branch with probability 1e-and then come bac
to the initial site at the next jump. In consequence, the time i
takes to reach one of the first neighbors in the backbone i
t=7 with probability «, t=37 with probability (1-a)x1
X a, t=57 with probability (1-a)?X1>X a, and so on.
Hence, we can write intuitively the general forpft) as

In this equation, a new sum for the indkxappears because
now the walker can go twice away from the backbone and
for each one of them we must apply rui¢. We have also
used the fact that within the linear secondary branch the
jumps to the first neighbor have probability 1/2.

We have checked the result in E@®) by random-walk
mulations within a comb structure. According to the results
Kk SO obtainednot shown, the antitransform of expressiq8)

grees exactly with the jump probabilities to the first neigh-

or as a function of time, and so it confirms the validity of
our method.

(c) Comb structure with+ . We have mentioned that,
as long as the walker moves away from the backbone, a new
convolution factor appears i(s). So that, for the case
—o, we would have theoretically infinite convolution fac-
tors in the expression fap(s).

Nevertheless, we can greatly simplify this situation. Con-
sider that the walker is at the first site in the secondary
branch(point A’ in Fig. 1) and moves away from the back-

The rules shown above fer(t) should now reproduce this bone; then, we can caly, the probability distribution of
behavior. For this purpose, we need to work in the Laplaceeturning for the first time to the poimt’ after a timet. Now
space and so we will usé(s), which is defined as the imagine the same situation but for the initial pokit; it is
Laplace transform ob(t). easy to see that, ds—o, the conditionn,— 7, has to

The rules(i)—(iii) allow us to write the expression hold.

[}

e() =2 a(l-a)t8(t- (2] - D7). (5)
j=1
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Thus it is possible to use the rul@s—(iii) to determine is not too difficult to deal with and has been used before
7. By doing this, we obtain the expression successfully in many different fields, such as population dy-
namics, tumor growth[9], and so on, is the Fisher-
Kolmogorov-Petrovskii-Piskunov equation

f(p) =ap(l-p), (14
which is an expression equivalent to the fof6) with «  wherea is a constant growth rate.

=1/2 (because within the secondary branch every jump to a The systen{12)—(14) is expected to yield in general wave
first neighbor has probability 1jJ2Now we can introduce front solutions which connect the unstakile=0) and the
the condition 7= 7,, which is strictly correct forl==.  gtable(p=1) state in Eq.(14). Thus, the speed of the wave

_9%(9 | ©
77A’_2(P0]_:0 2<Po77A// )

Solving so Eq/(9) yields front becomes the essential parameter to find in order to de-
1-\1-22 termine the behavior of the system.
s = M_ (10) Recently, we have showii,10] that the wave front speed
%o for the case(12—(14) can be obtained analytically by

Once we have found this result, the distributiéfs) Hamllton—Jacobl techniqud$]; as a result, we can write the
expression for that speed as

comes straightforwardly by applying again the three rules

(i)—(iii) above. It leads us to m,n( H ) or m'n(H(p)> 15
v=min{ —— v=min| — |,
o - H \p(H) p \ (p)
#(9) = ao> [(L - a)pona] = e . . . .
¢ 0. PoTln _ N2 whereH(p) or p(H) is the solution of the Hamilton-Jacobi
i=0 at(1-a)Vl-¢; .
equation
(11 1 1
- a
an expression which has been checked by simulations too, ﬂ =d(p) + ﬁ(ﬂ - 1)- (16)
confirming that Eq(11) agrees exactly with the results ex- ¢ ¢
pected. The distributionsp(H) andd®(p) are defined as

At the sight of this agreement found in the cagas(c),

we can affirm that our method is able to describe exactly the - [ it R
random-walk process in these structures along the backbone. @(H)—fo e gDt (D(p)_f_m e 0(x)dx,  (17)

so they are the Laplace transform and the bilateral transform
of the waiting time and the jump length distributions, respec-
Our main objective, as said above, is to use the probabiltively.
ity distributions we have found to determine the properties of The importance of the resull5—(17) lies especially in
reaction random-walk processes and the wave front solutioni¢s generality. We can introduce any pair of distributions
they yield. In order to extend the CTRW approach showne(t),P(x) determining a diffusion pattern and obtain as a
above to the case of reaction random-walk systems we wiltesult the speed for the corresponding reaction-diffusion
add to Eq.(2) a term that accounts for the reaction processfronts.

IIl. REACTION-RANDOM WALKS

So we obtain the mesoscopic equation Now, we want to apply the Hamilton-Jacobi result for
‘ random walks in the comb structures studied in Sec. Il. Ac-
p(X,t)=f dt' e(t') | dXd(x)p(x-x' t—t) cording to our initial hypothesis we only con_sider the

0 R random-walk process through the backbone and interpret the

. secondary branches as included into the definitiorp(@j.
+j dt’ p(tF(x,t—t'), (12) Thus we <_:an_take the jump _Iength distributiéd) and the
0 time distributions obtained in Sec. [Inote that, as we

) ) ) - worked there in the Laplace space, we already know the
where the functions(t) is defined as the probability to re- 5 of o(H)].

main still at least a time before performing a new jump, Introducing Eq.(4) into Eq. (16) and solving forp we
% obtain from the first equation ifil5) the front speed for the
b(t) =J dt’ o(t'). (13 three cases in Sec. I,
t o HAX
In consequence, the reaction functibnwhich determines v= Hm;r;cosﬁl{[llé(H)](l—a/H)+a/H}' (18)

the characteristics of the reaction process, is applied for all

the particles that are at positionand arrived there a timg  with ¢(H)=¢(s=H) given by Eqgs(6), (8), and(11). In Eq.

ago. For a more rigorous description, the reader can find if18), the minimum that gives us the value forcannot be

[6] how Eq. (12) can be derived straight from the master computed analytically; instead of that, we must find it by

equations in the CTRW framework. numerical methods. This operation has been performed in
To analyze the reaction random-walk equation we firstFig. 2, where we compare the results found with the speed

need to give a specific form tb A reasonable choice which obtained from simulations within comb structures where we
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FIG. 3. Construction process of the Peano fractal basin for the
three first construction levels.

in the lattice, but our theoretical method considers that all the
walkers are concentrated in the backbone. So, when we ap-
ply f(p), the dependence in introduce differences between
the two situations. However, we see in Fig. 2 that only if the
reaction process is importaffior high values ofa) do the
differences between the two situations become apparent.
This deviation increases with and it is maximum forl
— oo because for this case there are more sites in the structure
that do not belong to the backbone. See Fig. 3

Finally, we note that in the regime for high valuesadhe
wave front speed tends asymptotically to the speed of the
individual particlesAx/ 7 (which is equivalent tw7/Ax—1
in Fig. 2), a behavior that we discussed[i®] and that now
we have proved analyticallisee the Appendjx

IV. OTHER CASES

Here, we have focused on the study of wave front solu-
tions across comblike structures because they are specially
suitable to illustrate our method. However, we want to point
out that we are allowed to deal with a wide variety of het-
erogeneous lattices. The one important restriction is that we
must be only interested in the dynamic behavior across a
backbone and then consider the rest of the structure as sec-
ondary.

One of the most interesting cases we could analgze
pecially for practical purposg¢svould be fractal structures.

FIG. 2. Comparison of the wave front speda@®rmalized by
v7/ Ax) found from the Hamilton-Jacobi methdtines) and from
the simulations within the comb structur@srcles as a function of
the reaction parametex for the three cases studied here. All the
parameters in the plot are dimensionless.

In Fig. 3 we show the construction for the well-known Peano
basin(as a function of the construction lev@)), which has
been used before for the modelization of fractal river basins
[11,12. For instance, if we are only interested in the behav-
ior in the direction of the backbone, then the c&¥e2 for

have implemented a reaction random-walk process. The gdhe Peano basin leads us to the waiting-time distribution

tails for the simulations are given [i7]; basically, we simu- function

late a random-walk process within the structure and then the 142 ®© /. 72 Kli a5 — 322

reaction function(14) is applied to every site of the structure () = _%E [ E ( ) ] = QDO—AQDO,

at every time step of the simulation in order to implement the 2415 8 - T¢q

reaction process. (19)
From Fig. 2, we can conclude that the agreement between

Eq. (18) and simulations is excellent for low values af ~ where we have used=1/2 (the same jump probability in all

Nevertheless, aa grows there appear some little discrepan-directions. The wave front speed derived from E39) can

cies between the two resultior high values ofa the simu-  be obtained again by means of E#8). In the plot in Fig. 4,

lations become more difficult and it prevents us from extendwe show these speeds for the c&se2 and also for the case

ing the results in this regime Q=5 [¢(s) is not shown here for simplicify the highest
These differences may be explained as follows. For thdevel we have analyzed by our method. We compare them

random-walk process, we have proved in Sec. Il that ouwith reaction random-walk simulations within a Peano basin

method agrees exactly with simulations. On the contrary, thavith Q=10 (for simulations, we need a high value Qfto

reaction process is implemented differently in both cases: illow the formation of fronts; although the value &f is

the simulations we apply the reaction function to every sitedifferent in the theory and the simulations, we observe that
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APPENDIX: WAVE FRONT SPEED IN THE REGIME

a— ®

0.24

In Ref.[6], we argued that there is a physical restriction to
the speed of reaction-random-walk fronts. This restriction
0.0 - . - - : . was called thdinite jump speeckffect and it says that the

0.0 05 a 10 15 speed of the front cannot be higher than the speed of the
individual particles in the process. The speed of the front
FIG. 4. Wave front speedsiormalized by 7/ Ax) for the Peano  tends to increase as the reaction term gets higher, so in our
basin, analogously to Fig. 2. Circles represent values from simulacase, where the reaction term is controlled by the valug of
tions withQ=10 and lines are obtained from E¢$8) and(19) for ~ we expect that in the regima—  the speed of the fronts
the casesQ=2 and 5. All the parameters in the plot are will tend asymptotically to the speed of individual particles.
dimensionless. Next, we shall prove it analytically.

We observe from the expressidi8) for the speed of
the results fow converge very fast and so taking the greatesfronts thata— o implies H—c too (from the conditionH
values forQ in the theory would not improve our results >a). So, first of all we must look for the expression gfft)
substantially. In consequence, we find for the Peano basinn this limit of high H.

the same behavior as that observed for comb structtimas For this purpose, we can observe tlaat-c means that
is, a good agreement between theory and simulations for lowhe reaction process is almost immediéitee characteristic
values ofa and some discrepancies agrows. time for the process ia™*— 0), so in this regime the reaction

We also mention that percolation clusters, one of the bestprocess is dominated by the first particles jumping, that is,
known fractal structures, are another case for which it hathose particles that jump after a waiting tirner. According
been proposed that comblike models can be a good approatt our arguments in Sec. Il, this means that we can write
to study their propertiefl 3], though in this case there exists . _
some gontrovgrss about it. ’ H—oO oH) — ae™, (A1)

whereae ™ represents the distribution function correspond-
ing to the probabilitya of jumping to the first neighbor of
V. CONCLUSIONS the backbone after a time It can be checked that EGAL)

From the CTRW framework we have used a mesoscopi@°!ds in all the cases reported in this article—E@, (8),
equation to describe the front propagation in comblike struc!11), and(19). . )
tures in the backbone direction. We have exposed how to From Ed.(A1) and the conditiora<H we can also write

derive the waiting-time distribution function in the Laplace 1 a a aH-= 1 e
space, which has to take into account the number of sites in A—( _ﬁ> + " = =—. (A2)
the secondary branches. These are assumed to emerge from ¢(H) ¢H) «

the backbone’s sites separated by a distaliceThe Peano  Finally, we use the equivalence

basin and three particular cases of comblike structures have JR—

been studied. We have employed the Hamilton-Jacobi for- cosh(§) =In(é+ V&€ -1) (A3)

malism to ob_tam an explicit expression for the_: speed of frontand 50, using Eq¢A2) and (A3), we can write the speed

propagation in these structures. Our theoretical results hay,
: ; ; o fom Eqg.(18) as

been compared to numerical simulations exhibiting a goo

agreement. The structures we have analyzed are just some aH—e HAX ) HAX

examples to show the wide range of application for our vV—— mmln 2e™] :mmln Sl +H

method. We think there are still many more different struc- HIn( @) In(@la)

tures and lattices with practical interest and whose dynami®low it is easy to see that — « leads us tw — Ax/ 7, so the

properties can be successfully analyzed by the approach weont speed tends in this limit to the value of the individual

have presented here. jump speed.

(A4)
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