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Canonical quantization of nonlinear many-body systems
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We study the quantization of a classical system of interacting particles obeying a recently proposed kinetic
interaction principle(KIP) [G. Kaniadakis, Physica 296, 405 (2001)]. The KIP fixes the expression of the
Fokker-Planck equation describing the kinetic evolution of the system and imposes the form of its entropy. In
the framework of canonical quantization, we introduce a class of nonlinear Schrodinger eq(¥8&sswith
complex nonlinearities, describing, in the mean-field approximation, a system of collectively interacting par-
ticles whose underlying kinetics is governed by the KIP. We derive the Ehrenfest relations and discuss the main
constants of motion arising in this model. By means of a nonlinear gauge transformation of the third kind, it is
shown that in the case of constant diffusion and linear drift, the class of NSEs obeying the KIP is gauge-
equivalent to another class of NSEs containing purely real nonlinearities depending only on thefigfd
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I. INTRODUCTION general class of Schrédinger equations compatible with the

linear Fokker-Planck equation. In R¢R4], the authors in-

A Wide. cla§s of diffusive processes in' hature, "“OW.” 3%roduced a NSE starting from a generalized exclusion-
normal diffusion, are successfu!ly described by th'e lineak, |usion principle (EIP) in order to describe systems of
Fokker-Planck equation. lts relation to Boltzmann-Gibbs eng,antum particles with different statistics interpolating with
tropy (BG entropy in the framework of the irreversible ther- i ity hetween the Bose-Einstein and the Fermi-Dirac
mokdky narrlucs II<S well ?Stab“She[d_?’]'gHOW;Vﬁr'. nonlinear ones. In Ref[25], in the stochastic quantization framework,
Eo .er'ﬁ afncld eguhatloné\lFPl_EQer: ] and t elrgciringc- starting from the most general nonlinear kinetics containing
tion in the field of the generalized thermodynan(igs11) is a nonlinear drift term and compatible with a linear diffusion

nowadays an intense research area. In particular, man¥ ., 5 class of NSEs with a complex nonlinearity was ob-
physical phenomena, in the presence of memory effects, NOR:inad

local effects, long-range effects, or, more in general, nonlin- R PP : L
. ecently, a kinetic interaction principlkIP) has been
ear effects, are well understood with the help of NFPEs. proposed[26] to define a special collective interaction

To cite a few, let us recall the problem of diffusion in ; . - :
P o ) among theN-identical particles of a classical system. On the
polymers[12], on liquid surface$13], in Lévy flights[14],  ;ne hang the KIP imposes the form of the generalized en-

and enhanced diffusion in active intracellular transpaH]. tropy associated with the system, while on the other hand it

Many anomalous diffusion systems have a quantum nature,, e ng the evolution of the system toward equilibrium by
such as, for instance, charge transport in anomalous soli

. ) . ; ing the expression of the nonlinear current of particles in
E]ti]lhtzlﬁr?r(jeigcs):l:);ﬁ/eers(;c;?(lelpﬁigl and the aging effect in o NFPE, thus governing the kinetics underlying the system.

The link between the generalized entropic functional and

A still open question concerns the dynamics underlyingye oo responding NFPE can also be obtained starting from a
the nonllnear_kln_etlcs governing the_above anomalous_sy haximum entropic production principle. In Ref&,7], tak-
tems..Langhevm—hbke, Fokkzr—glag%k—llke, or lﬁoltzmann-hke ing into account a variational principle maximizing the dis-
equations have been use Dy dl erent authors to gener ‘?pation rate of a generalized free energy, the authors ob-
nonlinear terms in the Schrédinger equation with the aim o

d ibing. in th field N h ained a NFPE in the Smoluchowski limit. The same NFPE
escribing, in the mean-field approximation, the many quan; s ghtained in Ref8] from a stochastic process described
tum particle interactionf19-22.

It idel ed that th ; i by a generalized Langevin equation where the strength of the
td|s_fnow widely rﬁcognr:ze that the %resg?fce_o anoniin-ysise is assumed to depend on the density of the particle.
ear drift term as well as the presence of a diffusive termina "o present paper, we perform the quantization of a

quantum particle current originates complex nonlinearities irl:lassical system obeying KIP, where the statistical informa-
the evolution equation for the¢-wave function. tion is supplied by a very gen’eral entropy.

Different examples are known in the literature of nonlin- Up to today, different methods have been proposed for the
ear Schr.('jdinger equat!o(\NSEs originating from the study microscopic déscription of systems. Schrodinger’s wave me-
of the kinetics governing the ”.‘a”Y'b.Ody quantum SyStemchanics, Heisenberg’s matrix mechanics, or Feynman’s path-
For m_stance, the Doebner-Go_Idm fam|ly equgU@ﬁS] have integral mechanics are some of the many. Another approach
been introduced from topological considerations as the most given by the hydrodynamic theory of quantum mechanics

originally owing to Madelund27] and de Broglig 28] and
successively reconsidered by Boli&8] in connection with
*Electronic address: antonio.scarfone@polito.it his theory of hidden variables.
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In the hydrodynamic formulation of quantum mechanics,Fokker-Planck equation. This can be accomplished by fol-
the complex linear Schrodinger equation is replaced by twdowing the classical approach to diffusi¢h,2].
real nonlinear differential equations for two independent We start by assuming a very general trace-form expres-
fields: the probability density and its velocity field. Basically, sion for the entropythroughout this paper, we use units with
such equations are formally similar to the equations of conthe Boltzmann constarig set equal to unity
tinuity and the Euler equation of ordinary hydrodynamics.

This formalism is fruitful, as in the present situation, __
when the expression of the quantum continuity equation is Slp) = def dp In (p), 29
inherited from the one describing the kinetics of the ancestor ) . . , )
classical system. However, for a complete quantum-"_"hereK(P) is an ark_Jltrary functional of the de_nsny_ particles
mechanical description, besides the continuity equation, wéeld p=p(t,x), with x=(x;,....x,) a point in the
need to know if and how we should generalize the Eulem-dimensional space.
equation that describes the dynamics of the system. In this The constraints
paper, in order to fix the nonlinear terms in the Euler equa-
tion, we require that the whole model be formulated in the dex: 1 (2.2)
canonical formalism.

We obtain a class of NSEs with complex nonlinearity de- o

o : . . .~ on the normalization and
scribing a quantum system of interacting particles obeying
the KIP in the mean-field approximation. We study the case
of a quantum system undergoing a constant diffusion pro- fE(X)p dx=E 2.3
cess. The generalization to the case of a nonconstant diffu-

sive process is also presented at the end of the paper. It {tal energy of the system, witfi(x)=p?/2 m+V(x) the en-

shown that the form of the entropy of the ancestor classicabrgy for each particle, are accounted for by introducing the
system fixes the nonlinearity appearing in the evolutionconstrained entropic functional,

equation. By means of a recently proposed nonlinear gauge

transformatior] 23,30,31, this family of evolution equations ,

is transformed into another one describing a nondiffusive S(P)z_f dxfdp In K(P)_'Bfg(x)p dx - B f”dx'
process. In particular, when the kinetics of the system is

governed by a linear drift term, the new family of NSEs (2.4

conta}ins a purely real ?onlinearity depending only on thethe two constantg3 and @' are the Lagrange multipliers
density of particlep=|y|. o associated with constraintg.2) and (2.3).
As working examples, we present the quantization of qyite generally, the evolution of the fiejgin the configu-

some classical systems described by entropies already knowgion space is governed by the continuity equation
in the literature: BG entropy, Tsallis entrof82], Kaniadakis

entropy[26], and the interpolating quantum statistics entro d

o py[26] polating g py 0_/;>+ v.i=o0 2.5
The plan of the paper is as follows. In Sec. I, we recall

the relation between a given generalized entropy and the awith V=(d/dx,,...,d/dx,), and assures the conservation of

sociated NFPE describing the kinetic evolution of the classithe constrain{2.2) in time. We assume a nonlinear relation

cal system in the nonequilibrium thermodynamic framework.between the currenl and the constrained thermodynamic

This kinetic equation is justified on the basis of KIP. In Sec.force,

1, first we present an overall summing up of the hydrody-

namic formulation of the linear Schrodinger equation, then Flp)=V (ﬁ) (2.6)

we generalize the method to quantize the classical system Sp)’ '

obeying EIP. The Hamiltonian formulation of this model is i

presented and a family of NSEs with complex nonlinearity isPY POSing

obtained. In Sec. IV, we study the Ehrenfest relations and _

discuss the conserved mean quantities. In Sec. V, the nonlin- I=DARFp), @7

ear gauge transformation is introduced. Some relevant exyith D the diffusion coefficient andy(p) still an arbitrary

amples are presented in Sec. VI. The final Sec. VII preserfynctional of p.

comments and conclusions. In Appendix A, we give the deri- Putt|ng Eq(27) in Eq (25), and takn’]g into account the

vation of the Ehrenfest relations, while in Appendix B we expression ofS given in Eq(24), we obtain the fo"owing

briefly discuss the generalization of the model for a quantungontinuity equation:

system whose kinetics undergoes a nonconstant diffusive
rocess. dp ,

P 2V =D AP VIBEX) + B +In k(p)]) = 0.

II. NONLINEAR FOKKER-PLANCK EQUATION

. . . . o (2.8)
Our starting point, according to nonlinear kinetics, is to

relate the production of the entropy of a classical system to &troducing drift velocity
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Ugrit =—D BV E(x), (2.9
Eq. (2.8 takes the form of a NFPE for the fiefd
L4V [ugn(p) ~D1(p) T p1=0, (2,10
where
)= ) e (2.10

Total currentd=Jg;x+Jqi IS the sum of a nonlinear drift
current Jgi=Ugriz¥(p) and a nonlinear diffusion current
Jair=—D f(p) V p, different from Fick's standard onégy
=-DVp, which is recovered by posing(p) =«(p) =p.

Equation(2.10 describes a class of nonlinear diffusive
processes varying the functionat§) and «(p). We observe
that for any given entropy2.1), an infinity of associated
NFPEs exists, one for any choice ¢fp).

In Refs.[6,7], starting from a variational principle which

PHYSICAL REVIEW E 71, 051103(2005

(2.19

where p=p(t,x) and p’=p(t,y) are the particle density
functions in the starting sitg and in the arrival sitey, re-
spectively, whereas(t,x,x~-y) is the transition rate which
depends only on the starting and arrivaly sites, during
particle transitionx —y.

The functionaly(p,p’) can be factorized in

a(t,x —y) =r(t,x,x=y)¥p.p'),

¥p,p") =alp)b(p")c(p,p"). (2.16)

The first factora(p) is a functional of the particle population

p of the starting site and satisfies the boundary condition
a(0)=0, since if the starting site is empty, the transition prob-
ability is equal to zero. The second factafp’) is a func-
tional of the particle populatiop’ at the arrival site, and
satisfies the conditiotn(0)=1, because the transition prob-
ability does not depend on the arrival site if particles are
absent there. Finally, the third factotp,p’) takes into ac-
count that the populations of the two sites can eventually

maximizes the dissipation rate of a generalized free-energyect the transition collectively and symmetrically.

functional, substantially equivalent to E(.4), a NFPE in
the position space as in ER.10 has been obtained. The
same NFPE(2.10 was also obtained in Ref8], starting

The expression of the functionalp’) plays a very im-
portant role in the particle kinetics because it can stimulate
or inhibit the transitiorx —y, allowing, in this way, interac-

from a stochastic process described by a generalized Langgg g originating from collective effects.
vin equation, where the strength of the noise is assumed t0 \with the assumptions made in Eqg.15 and (2.16) for

depend on the density of the particle. The nonlinear current,onition probability, according to the Kramers-Moyal ex-

as in Eq.(2.7), is given by the gradient of the functional ,ongjon and assuming the first neighbor approximation, we
derivative of a generalized free energy equivalent to Eq.gp, expand up to the second order the quantitiesy,y

(2.9.
In Ref. [4], the problem of the NFPE derived from gen-

eralized linear nonequilibrium thermodynamics was also dis

cussed at length.

At equilibrium, the particle current must vanish, and from

Eq. (2.6) it follows that

In k(peq) + BEX) +B' =0, (212

where, without loss of generality, we posed the integration

constant equal to zertherwise it can be included in the
Lagrange multipliers’).
We obtain the equilibrium distribution of the system

Peq= K_l{eXF{— BEX) -]} (2.13

In particular, with the choice(p)=ep, Eq. (2.1) reduces to
standard BG entropy and EQ.13 gives the well-known
Gibbs distribution.

Let us now justify Eq.(2.10 starting from the kinetic
approach introduced if26] through the KIP. In accordance
with the arguments presented in REZ6], we consider the
following classical Markovian process:

d
a—’t’ =J [a(ty —x) - m(tx —y)ldy,  (2.14
describing the kinetics of a system Nfidentical interacting

particles.
For transition probabilitym(t,x—y), we assume a suit-

=x)¥p(t,y), p(t,x)) and ¥(p(t,x),p(t,y)) in Taylor series of
y=x+u andy=x-u, respectively, in an interval around
for u<x.

We obtain

r(t,x +u,u) ¥(p(t,x +u),p(t,x))

= {r(t,y,U)7(p(t,y),p(t,x))

+j%U¢MMﬂMM&MMMM

+ %a Yi 0 Yj [r(t,y,u)*y(p(t,y),p(t,x))]uiuj}ny
(2.17
and
Yp(t,x),p(t,x —u)) = { Yp(t,x),p(t,y))
sy
Iy 'Y(P ,X), p(t, YU
2

+ ani 7y, 7(p(t’X)’p(t,y))UiuJ}yﬁx

(2.18

able expression in terms of the populations of the initial site

x and the final sitey.
According to KIP, we pose

Using Egs(2.17 and(2.18 in Eqg. (2.15, from Eq.(2.14) it
follows that
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ap 9 ( agi-> d ap _
=g+ 9p) + Zvip)—In k(p) |, S 4V =0, 3.4
ot ax [ gi o, ¥(p) gl] ¥(p) o (p) ot Jo (3.4

(2.19 where guantum velocity, which in the linear case coincides
with i=1,...,n and summation over repeated indices is asWith quantum drift velocityUys, is related to the phase

sumed. 2(t,x) through
In Eqg. (2.19,
mo = V X(t,x), (3.5
¥p) = Yp.p')p=pr (2.20
and
and
jo=pv (3.6
k(p) = 2lp) (2.21
b(p)’ ' is the same relationship between current and velocity of the
standard hydrodynamic theory. We remark that the quantum
while the coefficients; and ¢j; are given by current(3.6) contains only a linear drift term.
According to the orthodox interpretation of quantum me-
f= f F(t,y, u)udu (2.22 chanics, the quantity(t,x)=|y(t,x)| represents the position
' o probability density of the system normalized fs(t,x)dx
=1.
1 Equations3.3)—(3.6) form the basis of the hydrodynamic
Gij :Efr(t,y,u)uiujdu. (2.23 formulation which consists of a quasiclassical approach to

guantum mechanics. In this picture, the evolution of the sys-
tem can be interpreted in terms of a flowing fluid with den-

Defining (Uj) g =—¢i— ¢/ I x;, the ith component ofuyig, ; . . Lo
and assuming the independence of motion in different direcg'Ity plt,x) associated with a local velocity fieit,x). The

tions of the isotropic configuration space, we can pgse dg/ r;’amicds .Of such flucidbis fdescribeq _by the Eullerfequatri]on
=Dg;. Itis easy to see that E€.19 reduces to Eq(2.10. (3.3 and is governed by forces arising not only from the

In conclusion, we observe that E@.10 is a NFPE in the externgl fieIdFexgx):—Vy(x)_but also from an additional
Smoluchowski limit since it describes a kinetic process in thé?otentialUg==(%/2m)Avp/\p known as the quantum po-
position space rather than in the phase space. This is a sufgntial[29]. Remarkably, the expectation value for the quan-
able form for the quantum treatment of the following sec-tUm force vanishes at all times, i.¢=VUg)=0. Finally, the
tions. The passage from the NFPE in the phase space to ti§@ntinuity equatior(3.4) assures the conservation of the nor-
NFPE in the position space was rigorously elaborated in Refnalization of wave function/ during the evolution of the

[34] in the limit of strong friction, by means of a Chapman- System. . _
Enskog-like expansion. Let us remark that the quantum fluid has a very special

property. Becaus&(t,x) is a potential field for the quantum
velocity, the quantum fluid is irrotational. As a consequence,
in the linear Schrddinger theory, a nonvanishing vortieity

A. Quantization in the hydrodynamic representation defined by

IIl. CANONICAL QUANTIZATION

In the hydrodynamic representation, the quantum me-
chanics formulation can readily be obtained from the stan-

dard Schrodinger equation is possible only at the nodal region where neitBér,x) nor
i 2 V.(t,x) are well defined. At such a poiit X VX(t,x) does
ih—=—-—A¢y+V(X)y, (3.1 not vanish in general, thus leading to the appearance of
gt 2m pointlike vortices.
Finally, putting Eq.(3.5) into Eq.(3.3), we obtain

w=V Xu, (3.7

where V(x) is a real external potential. The complex field

= f(t,x) describing the quantum system is related to the —
= ¢(t,x) gtheq y 32+(Vz)z_ﬁ_zm,p

hydrodynamic fields(t,x) andX(t,x) through polar decom- 7= —Livx)=o. (3.9)
position[27,29 at 2m  2m \p

_ap i This equation, in the classical limft— 0, reduces to the
Yt x) = p~H(t x)ex %E(t,x) : (32 Hamilton-Jacobi equation for the functidh
Equations3.4) and(3.8) can be obtained by means of the
Equation(3.1) is separated into a couple of real equations Hamiltonian equations

I s oH
ma—v+m(ﬁ-V)i;= V(_T—V(X)), (3.3 - =
at Jo

=——, 3.9
ot op 3.9
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% _H (3.10 Wip3) =22 [ U(p,5)0x (3.19
s ' P s ) T '
where the Hamiltonian We assume that the quantum fluid satisfies a continuity equa-
tion formally equal to the classical one described by the
H ZJH(p,E)dX, (3.11) NFPE (2.10. By matching Eq.(3.15 with Eq. (2.10, we
obtain the expression/ and, accounting for Eq3.18, we
with have the nonlinear potentibl(p,). Finally, the nonlinearity
WI(p,>), which follows from Eq.(3.17), together with the
(V22 #2(Vp)? quantum potential, and the external potentiaf(x), de-
Hip,2) = >m Pt am P V), (812 gepibes the dynamic behavior of the quantum fluid according
to Eq.(3.14.
represents the total energy of the quantum system. We observe that if the following equation holds:
1)
B. The many-body quantum system EJ Ulp,2)dx =V -F(p,2), (3.19

Let us now generalize the method described above byih F(,,s) an arbitrary functional, taking into account Eq.
replacing the linear continuity equatidB.4) with the more (3.18, Eq. (3.15 becomes

general one obtained in analogy with the continuity equation

(2.10 describing the kinetics of a classical system obeying ap . _

KIP. In the following, we assume that the quantum system at +V lio=F(p.2)]=0. (3.20

undergoes a constant diffusion process vidthconst. . . ] ) )
We begin by introducing the wave function= yit,x) Equation(3.19 is fulfll!ed if fu_nctlon_al U_(p,E) depends on

describing, in the mean-field approximation, a system ofhaseX only through its spatial derivative$0].

guantum interacting particles. We postulate that the follow- Introducing the quantum drift velocity

ing NSE describes the evolution equation of the system: . vs .
drift = = s .
L ay hP . h
= =S AYHAW LYYV, (313

which in the linear case coincides with the quantum velocity
where A( . ) =W ) +IW(W i) is a complex nonlin- D given in Eq.(3.5), and by comparing E¢3.20 with Eq.
earity, with W(y/", ) and W(i/',y) the real and the imagi- (219 W€ have

nary part, respectively. _ V3
Using polar decompositiofB.2), Eq. (3.13 is separated Flp,2) = F[p_ Y(p)] +DF(p) Vp. (3.22
into a couple of real nonlinear evolution equations for phase ) ) _
and amplitude, By integrating Eq(3.18), the nonlinear potential assumes the
s (V3)? expression
) v
— +Ug+W(p,2) +V(x)=0, (3.14 (V3)? ~
gt 2m a U(p,2) = om [¥(p) —p] -Df(p) Vp- VZ+U(p),
9 2 (3.23
SV o= SpW(p3) = 0. (3.15

whereD(p) is an arbitrary real potential depending only on

We require that both Eq$3.14 and(3.19 can be obtained field p. Equationg3.9) and(3.10 give the following coupled

through the Hamilton equation(8.9) and(3.10 and, to ac- honlinear evolution equations:

commodate nonlinearitie¥(p,>) and W(p,X), we intro- 2 P .
d \% d he AN

duce in the Hamiltonian densiti an additional real nonlin- = + (V2)7ovip) _ h° ,\_p +mDf(p) V - (J—°> +G(p)

ear potential U(p,S) which describes the collective 9t 2m  dp  2m \p p

interaction between the particles belonging to the system +V(x)=0, (3.29
(V2)? 7% (Vp)?
2)=—p+———+U(p,2) +V(X)p. d v
Mp3)= 5 ot g =+ U(p.Z) + Vo ?f* v. %y(p) ) Df(p)vp] 0, (325

(3.19

By means of Eqs(3.9 and(3.10), it follows that the non-
linear functionalsW(p,) and W(p,2) are related to the
nonlinear potential(p,>) as

whereG(p)=46fU(p)dx/ op.
In the classical limith — 0, Eq.(3.24) becomes a nonlin-
ear Hamilton-Jacobi equation for functi@h It differs from
the classical one owing to the presence of the nonlinear term
S which functionally depends on bofhandX. We recall that
Wi(p,2) = 5—pJ U(p,2)dx, (3.17  such a nonlinearity was introduced consistently with the re-
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quirement of a final canonical formulation of the theory. m( dy(p) io 2 io

We stress once again that in the approach described in thisW(p,2) = S\, YV T mDf(p) V -| = | + G(p)
paper, we start from a nonlinear generalization of the conti- P P P
nuity equation that gives us only information on the kinetics. (3.32
This equation is not enough to completely determine the timgq
evolution of the quantum system. As a consequence, we have

ample freedom in the definition of nonlinear potential __ B hD
U(p,>). Such freedom is reflected in the arbitrary functional Wip.%) = 2mp Vilre) - p] VE}+ 2p V- [fp) Vpl.

D(p) which cannot be fixed only on the basis of the kinetic (3.33
equation. There are many possible dynamic behaviors, Onlgquations(S 32 and (3.33 differ from the one obtained in
for any chou:e OfU(p)f ~compat|ble with the same .k|net|cs. Ref.[25] where a family of NSE was derived in the stochas-
The nonlinear potential(p) can be used to describe other tic quantization framework starting from the most general
possible interactions among the many particles of the systemonlinear classical kinetics compatible with constant diffu-
that have an origin different from the one introduced by thesjon coefficientD=#/2m. In particular, the real nonlinearity

kinetic equation(3.25. o _ W arising in the stochastic quantization is found to depend
Actually, Eq.(3.29 is a quantum continuity equation for only on field p, in contrast with expressiof8.32), where
field p with a nonlinear quantum current given by functional W depends on both fields and3..
Vs Remarkably, we observe that when the kinetics of the sys-
j=—(p) - Df(p) Vp. (3.269  tem is governed by a linear drift, with(p)=p, the expres-
m

sion of nonlinear term$3.32 and(3.33 simplifies to

We observe that, differently from the hydrodynamic formu- 5 :

lation of the linear quantum mechanics, where the Bohm- W(p,3) =mDf(p) V .<J—°> +G(p) (3.39
Madelung fluid is irrotational, in nonlinear quantum theory p

the situation can be very different. In fact, by defining quan-g,q

tum velocity through Eq(3.6), from Eq.(3.26) we have

_vp)

iD _ [~
mﬁ—TV[E—mDIn x(p)], (3.27) W(p'z)_Z_pV JICLECANCE

Where~f(p) =p(dl dp)In k(p).
They are determined only through functiondp), which
also defines the entropi2.1) of the ancestor classical sys-

which states the relationship between quantum velogity
and quantum drift velocityily,; for the nonlinear case.
Expression(3.27) can be justified in terms of Clebsh po-
tentials. In fact, as is well known, a nonvanishing vorticity tem.
can be accounted for in the Schroédinger theory by introduc-

ing three potentialg:, », andA related to quantum velocity IV. EHRENFEST RELATIONS AND CONSERVED
through the relation QUANTITIES
mo=Vu+vVA\. (3.289 In this section, we study the time evolution of the most

important physical observables of the system described by
the Hamiltonian density3.16 with the nonlinear potential
1 (3.23: mass center, linear and angular momentum, and total
“=0 VyXxX VA (3.29 energy. The proofs are give in Appendix A.
Let us recall that, given a Hermitian operat@=O"
By comparing Eq(3.28 with Eq. (3.27), we readily obtain  associated with a physical observable, its time evolution is
m=const, v=y(p)/p, and A\=%-mDIn «(p), respectively, given by

Vorticity @ assumes a nonvanishing expression given by

and Eq.(3.29 becomes q ] S H 20
I *
—(O)=— —Oy-y O— |d —/,
=%V(M>XVE, (3.30 dt< ) ﬁf(@l/l ks 51[1)X+< &t>
P

(4.2)

with no contribution from the diffusive term. The irrotational | 1«1 the mean valu@)= [ Oy dx. The last term in Eq.

cai_ehlsfreclc)vered n Imez:rtr(ilr%p):pl. . b (4.1) takes into account a possible explicit time dependence
e final expression of the NSB.13) is given by on the operato®.

oy h2 Observing that the NSE3.31) can be written in
iﬁg :—%AJH[W(/),E) +iW(p,2) g+ V(X) ¥, a0
(3.3) ! at v, 4.2
with the nonlinearities where
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h2 ) In conclusion, for a constant diffusion process we have
H=-2_A +W(p,2) +iW(p,2) +V(X),  (4.3)  shown that in the absence of the external potential, the sys-
tem admits three constants of motion: total linear momentum

Eq. (4.1) assumes the equivalent expression (p), total angular momenturL), and total energye. Such
d . 1 O conserved quantities, according to the Noether theorem, fol-
—(O)= I—([ReH,O]) +~{ImH,0h) +{ — ), low as a consequence of the invariance of the system under
dt h h at uniform space-time translation and uniform rotation. More-

(4.4) over, the system is also invarjant for gIoba(Ill)J;rangformq—
tion, which implies conservation of the normalization of field
where[-, -] and{-, -} indicate the commutator and the anti- i throughout the evolution of the system.
commutator, respectively. In Appendix B, we briefly discuss the case of a quantum
By choosing®©=x, from Eq. (4.1) we obtain the first system with a diffusion coefficierb(t,x) that depends on
Ehrenfest relation for the time evolution of the mass centetime and position. This space-time dependence destroys the
of the system, invariance of the system under uniform space-time transla-
tion and space rotation. As a consequence, all quan{jpies
_d, < ¥p) > Bs
Ume= —(X)={ —— 0yt /- (4.5 (L), andE are no longer conserved, even for a vanishing
dt P external potential.
We observe that only drift nonlinearity appears in this equa- It should be remarked that the results discussed here, al-
tion, whereas the diffusion term makes no contribution.though very general in that they are independent of the form
Equation(4.5) states that, quite generally,,. is not a motion ~ of nonlinearitiesW and)V, are valid only for the class of the
constant. This fact implies that the quantum system is noganonical systems. In the literature, there are many nonca-
Gallilei invariant. The origin of the nonconservationgf,  nonical NSEs, obtained starting from certain physically mo-
can be found in the difference between quangity=mv,,. tivated conditions, which are worthy of being taken into ac-
and the expectation value of the momentum opergtor count. For these equations, the expression of H appearing on
=(-inV)=[pVZ dx. These two quantities are equivalent the right-hand side of the Schrodinger equation cannot be
only in the linear drift case. Differently from the former, the obtained from Eqgs(3.9) and (3.10 by means of a Hamil-
latter is in all cases conserved during the time evolution ofonian functionH= 7 dx.
the system, in the absence of the external potential. This can Despite this, even for these noncanonical systems, the
be shown by means of the second Ehrenfest relation, whichme evolution of the mean values of the quantum operators

follows from Eq.(4.1) by posing®=-i#V, associated with the observables can be derived through Eq.
(4.4), but what is important is that these operators can as-

E<p> = (F (X)) (4.6) sume a different definition with respect to the one given in

dt e ' the canonical theory. For instance, in the canonical frame-

The time evolution of the expectation value of momentum isWork the energy is supplied by the Hamiltoniah of the
P . system, whereas in a noncanonical theory it is identified with
governed only by external potentisgl(x). On average, the

; . . the operatoiifd/dt=H. (We remark that in the canonical
.KIP introduce no effect on the Qynamlcs of the system. Th'Sframework H and H are, in general, different quantities.
is a consequence of the invariance of nonlineavifyp,> ] : i ’

. . . Moreover, for a noncanonical theory, conservation of the en-
+Wp,X] under uniform space translation. _ergy and the momentum do not follow merely from the prin-
In the same way, accounting for the invariance of nonlin-gipje of invariance of the system under space-time transla-
earity for uniform rotations, the third Ehrenfest relation fol- {ion Their time evolution depends on the expression of the
lows, nonlinearities appearing in the Schrédinger equation. All of
d this clearly causes a profound difference in the resulting
d_t<L> = (MexdX)), (4.7)  Ehrenfest relations.

For instance, in Ref[20], a noncanonical Schrédinger
whereM g,((X) =X X Fe(X) is the momentum of the external equation with complex nonlinearity was derived starting
force field. Equation(4.7) is obtained from Eq(4.1) after  from a Fokker-Planck equation for density figldy assum-
posing O=xX (-iAV). Again, the nonlinear terms intro- ing some physically justified separability conditions. The re-
duced by KIP as well as nonlinearit(p) make no contri- sulting evolution equation has the real and the imaginary

bution, on average, to angular momentum. nonlinearity given by W(p,2)=¢2-(X)) and W(p,Z)
Finally, the last relation concerns the total energy of the=(% D/2)Ap/p, respectively, where is a constant related to
system given by the Hamiltonigg=H. By posing diffusion coefficientD and such thaD—0 if y—0. It is
52 1 easy to see that such nonlinearities cannot be obtained start-
O=-—A+-U(p,3) +V(x), (4.9 ing from a nonlinear potentidl(p,>) through Eqgs(3.17)
2m  p and(3.18. The system described by this NSE turns out to be

dumped and dissipative, even in the presence of a constant
diffusive process. In fact, it can be shown that, following
Ref. [20], from Eq. (4.4) it follows that d(p)/dt=(F ¢,
-¥p) and dE/dt=d(H)/dt=—(y/m){p?, which is a very

we have(®)=E and from Eq.(4.1) we obtain
dE
—=0. 4.9
at (4.9
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different situation with respect to the one discussed in thef the unitary structure of the transformati@f.1), which

present paper, with the exception of the trivial case0. implies that the probability position density for field and

field ¢ assumes the same value at any instant of {ig8.
In the case ofy(p) =p, expressiong5.6) and(5.9) can be

We introduce a nonlinear gauge transformation of theSimplified and the NSKES5.5) assumes the form
third kind [30],

V. GAUGE EQUIVALENCE

h2 ~ ~
| 12 = 2+ mDATA(p)Ap + Tolp) (V)71 + Glp)
U — qb:(pexp(——len K(p)>, (5.1
% V(). (5.10

which, being a unitary transformation, does not change th¢iin
amplitude of wave functiofw|?=|$[>=p, and transforms the

phaseZ of the old field ¢ into phases of the new field¢ F (o) = il 2 1
according to the equation p)=p p n«p)] . (5.13
o=2-mDIn «(p). (5.2 3
Consequently, the nonlinear curret26 takes the expres- T,(p) = EM, (5.12
sion 2 dp
- Vo which contains a purely real nonlinearity depending only on
j—i=—vp) (5.3 field p.
m We observe that although E¢p.1) transforms the nonlin-
with only a nonlinear drift term. ear current into another one without the diffusive term, NSEs
Let us observe that, at the classical level, the similar transt5.5) and(5.10 contain a dependence from on diffusion co-
formation efficientD.
, The NSE(5.5) is still canonical. It can be obtained from
Ugritt = Ugrie = D'V In x(p) (5.4 the following Hamiltonian density:
c_ha_nges total curremﬁJ’:uériﬂy(p) into another one con- (Vo2 %2 (VpP? -
sisting only of a nonlinear drift term. H(p,0) = “om P + am o +U(p,0) +V(X)p,
Performing the transformatiof®.1), Eq. (3.31) becomes P
(5.13
dp  h? ~ o~
ih— == S Ad+[Wp,0) +iW(p.0)]d+V(X)$, with nonlinear potential
55 N (Vo)? mD? ~
) ) B9 b= e - o= T oV + D).
where the new nonlinearities/(p, o) andW(p, o) are given
by (5.14
~\2 In this sense, Eq5.1) defines a canonical transformation.
W(p,0) = T<‘97_(’3) _ )(J_O) In conclusion, let us make the following observation.
2\ dp p Equation(5.5 admits the following continuity equation:
+mD[f1(p)Ap + f2(p)(Vp)*] + G(p), (5.6) J Vo
p
s —+ V| —p)|=0. (5.19
with jo=pVo/m, ot m
J 2 A natural question is, what kind of NSE is obtained if we
f1(p) = ¥(p) ﬁ—ln k(p) | (5.7 quantize a classical system obeying the continuity equation
P dplot+V -J'=0 with the method described above? We easily
19t4(p) have
P
fo(p) = =———, 5.8 ~
24P = 5 0 9 ihﬁ;ﬁ__ﬁ_zA¢_T<M_1)<m)2¢
and ot 2m 2\ dp p
_h
VV(p E):—LV{['y(p)—p]VO'}. (5.9 _|2_mpv{[7(P)_P]VU'}¢+G(P)¢+V(X)¢.
' 2mp
(5.16

Equation(5.5) is still a NSE with a complex nonlinearity due
to the presence of the nonlinear drift term in the quantumwhere nowp and o are independent fields representing the
current expressiofb.3). amplitude and phase of wave functign Equation(5.16 can

Basically, both Egs(3.31) and (5.5 are different NSEs be derived through the Hamiltonian densi®:13 with the
describing the same physical system. This is a consequene@nlinear potential
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A Vo) ~
0.1 = Sy -1+ 0. (517
Potentials(5.14) and(5.17) differ for the quantity
— - n D?
UG = 0(6,0) = 0s(p,0) == "~ Fa(p) (V)2
(5.18

which depends only on field. This nonlinear potentiai(p)

does not affect the continuity equation and thus cannot b

obtained starting directly from E@5.15).

VI. SOME EXAMPLES

PHYSICAL REVIEW E 71, 051103(2005

o

Ap 1(V
ih " —p——< &
ot

2
—”¢+V(X)¢,
p 2\ p
(6.4

which was studied previously ir85]. In particular, Eq(6.4)
is equivalent to the following linear Schrodinger equation:

hZ
- %A¢+ sz[

—3
i X = (6.5)
at

ﬁ2
-—Ax+V(X)x,

X (x)x
gyith zzﬁ\,l—(ZmD/ﬁ)2 and field y is related to hydrgdy—
namic fieldsp and o through the relationy=p*%expio/#).

This appear to be an interesting result. By quantizing a

classical system described by MB entropy, the standard lin-
ear Schrddinger equation was obtained. In this equation, the

To illustrate the relevance and applicability of the theorynonlinear terms describing the interaction between the many
described in the previous sections, we derive and discuggarticles of the quantum system are absent. This is in accor-
some different NSEs obtained starting from kinetic equationglance with the general statement that MB entropy is suitable
known in the literature. In the following section, for simplici- for describing systems with néor negligible interaction

ty's sake we omit the arbitrary nonlinear potenfw(lp) and

among the particles.

focus our attention only on the effect yielded through the

potential introduced by the KIP.

A. Boltzmann-Gibbs entropy

B. Generalized entropies

In the presence of long-range interactions or memory ef-
fects persistent in time, it has been argued that MB entropy
may not be appropriate in describing such systems. For this

Itis well known that when the many-body system is gov-reason, many different versions of E§.1) have been pro-
erned by short-range interactions, or when interaction energy¥osed in the literature. Very recently, Ref86,37 intro-

is neglecting with respect to the total energy of the systemgy,ceq a biparametric deformation of the logarithmic function

the suitable entropic functional is given by the BG entropy

Ssa(p) =-f pIn(p)dx. (6.1)

This entropy arises from Ed2.1) by posing«(p)=€p with
a(p)=ep and b(p)=1. It is readily seen that(p)=epc(p).
Among the many NFPEs compatible with entro@yl), we
consider the simplest case of linear drift by posicigp)

=1/e. Then the continuity equatiof8.25 becomes the stan-

dard linear Fokker-Planck equation

9
P4V (j,-DVp) =0, 6.2

ot

r+x _ Xr—K

o (6.6)

In{K,r}(X) =
which reduces, in théx,r)—(0,0) limit, to the standard
logarithm: Ing o,(x)=In x. By replacing the logarithmic func-
tion in Eq.(6.1) with its generalized versio(6.6), we obtain
a biparametric family of generalized entropies,

Ser(p) =- f p Iy (p)dx, (6.7)
introduced, for the first time, in Ref$38,39. Remarkably,

this family of entropies includes, as special cases, some gen-
eralized entropies, well known in the literature, used in the
study of systems exhibiting distribution with asymptotic

whereas the evolution equation for the quantum system iﬁower-law behavior. Among them, we can cite Tsallis en-

given by the following NSE:

W__h (J_o) AN
P 2mA¢+ mDV - ) 1,0+|2D ) P+ V(X)) i,

(6.3

in

which is recognized as the canonical subfamily of the class
of Doebner-Goldin equations parametrized by diffusion co-
efficientD. We recall that Eq(6.2) was obtained in the quan-

tum mechanics theory starting from the study of the physical

tropy [32], which follows by posing =+ |«],
pi-p
= d ,
S(p) f 1-q™
with g=1+2|«| and Kaniadakis entrop26], for r=0,

1+k _ 1-k
Sdp)=- f PP g,
2K

(6.9

(6.9

Both of these entropies, as well as other one-parameter

interpretation of a certain family of diffeomorphismin group deformed entropies, originating from E.7) [37], can be

[23].

By performing gauge transformatidh.1), Eq. (6.3) be-

comes

employed to describe generalized statistical systems, such as,
for instance, charge particles in electric and magnetic fields
[40], 2D turbulence in pure-electron plasmél], brems-
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strahlung 42], and anomalous diffusion of the correlated andferent approach. The nonlinearity appearing in the NLS of
Lévy type[43,44. Refs.[49,50 reduces, foru=1 andq—2-q, to the same
In addition to the many applications where Tsallis entropyone reported here.
has been employ€gdi5], Kaniadakis entropy6.9) has been On the other hand, for Kaniadakis entropy, the continuity
successfully applied in the description of the energy distribuequation is given in Eq(3.25 with
tion of fluxes of cosmic rayg26], whereas the entropy in Eq.
(6.7) with x?=(r+1)2-1 has been applied in the generalized f(p) = l[(K'l' Dp = (k- 1)p~"] (6.16
statistical mechanical study gfdeformed oscillators in the 2 ’
framewqu of quantum groudigi6]. . which coincides with that proposed in R¢R6] while the
Despite the topics recalled above, there is currently grealssociated NSE is given in E¢6.12 with
interest in studying quantum systems with long-range micro-
scopic interactions. Systems such as quantum wires, which ~ 1 1 1)\ _
are now possible in practice thanks to recent technological  (P) = _{(’” 1)<"_ _)PK+ (k= D(’“‘ _>P K]
advances, require on theoretical grounds the development of

a quantum(nonlineaj theory capable of capturing the emer- (6.17)
gent factd47]. The entropy in Eq(6.7) arises from Eq(2.1)  and reduces to Eq(6.4) in the k—0 limit just as entropy
by posing (6.9 reduces to BG entropy.
p
In =\In =1, 6.10 ; ;
«(p) {K,r}< a) (6.10 C. Interpolating bosons-fermions entropy

In Ref. [33], on the basis of the generalized exclusion-
inclusion principle, the authors introduced a family of
NFPEs describing the evolution of a classical system of par-
ticles whose statistical behavior interpolates between bosonic
and fermionic particles. The equilibrium distribution gov-
erned by the EIP can be obtained by maximizing the follow-

with  AN=(14r—x)T02)(L4r+x)T02¢  and  a=[(1+r
— k)] (L+r+K)]Y2,

Among the many different possibilities, we discuss the
case of linear drift withy(p) =p. By taking into account Eg.
(6.10, we have continuity equatiof8.25 with

f(P) - a.,.pHK _ &pr—K’ (611) Ing entropy:
wherea,=(rt «)(1+r+«)/2« are constants. Seplp) = _f [p Inp- l(l +kp)In(L + xp) |dx,
The associated NSE assumes the expression K
6.19
ap w2 () - , (
=T oAt mDZT[f(p)Ap +Hp)(VP)ld with —1<k=<1. In particular, fork=+1 we recognize the
well-known Bose-Einstein and Fermi-Dirac entropies,
+V(X) ¢, (6.12  whereas intermediary behavior follows for <kk<1. En-
with tropy (6.18 can be obtained from Eq2.1) by posinga(p)
=p andb(p)=1+«p.
T(p) =b,p ™ —p_p L, (6.13 Some examples of real physical systems where EIP can be
usefully applied are to be found in the Bose-Einstein conden-
andb,=a,(rt«-1/2). sation. Typically, the cubic NSE is used to describe the be-

Equation(6.12 contains only a purely real nonlinearity havior of the condensate by simulating in this way the sta-
and reduces to E@6.4) in the (x,r)—(0,0) limit, as well as tistical attraction between the many bodies constituting the

Eq. (6.7), which reduces to the standard BG entropy. system. In spite of the simplest cubic interaction, other inter-
In particular, for Tsallis entropy, the continuity equation actions like the one introduced by the EIP can be adopted to
(3.25, with simulate an attraction among the particles.
1 In the opposite direction, almost-fermionic systems can be
f(p) =qp™, (6.14 found in the study of the motion of electrons and holes in a
becomes the diffusive NFPE48] while the corresponding semiconductor. In fact, V\_/hile if separately consid_ered elec-
NSE is given through Eq6.12 with trons and holes are fermions, together they constitute an ex-

cited state behaving differently from a fermion or a boson.
~ 3 The same argument can be applied to the Cooper pair in the
f(p) = (q - E)Pq_z, (6.19  superconductivity theory. Such excitation differs from a pure
boson state because of the spatial delocalization of the two
and reduces to Eq6.4) in the q—1 limit just as entropy electrons, which are not completely overlying. Deviation
(6.8 reduces to BG entropy. from Bose statistics must be taken into account.
We observe that in Ref§49,50, the quantization of a In the following, we discuss separately two different
classical system described by Tsallis entropy has been athoices for functionaly(p).
ready discussed. There, a NLS compatible with the continu- In the linear drift case, witle(p)=1/(1+«p), the evolu-
ity equationdp”/ at+V -(p*04,x) =0 was obtained with a dif- tion equation for fieldo assumes the expression
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ap ] Vp lated 0<p(t,y) <pmax the transition is inhibited. The range
ot +V- (JO_ Dl +Kp) =0, (619 of values that parameter can assume is limited by the con-
dition that 7(t,x —y) be real and positive agt,x,x—y).
which was proposed in Ref22]. By means of Eq(5.1),  We may conclude that=—1/pa
nonlinear currenf,—DV p/(1+kp)— ], assumes the stan- A physical meaning of parametercan be supplied by the
dard bilinear form and the corresponding NSE follows fromfollowing considerations. We recall that Bose-Einstein and
Eq. (5.10, Fermi-Dirac statistics originate from the fundamental prin-
ciple of indistinguishability in quantum mechanics, which is
ihﬁ_‘ﬁ - h_2A¢+ ﬂ{& - ﬂ(ﬂ)z} P closely related to the symmetrization of the wave function.
g 2m (1+xp)’L p 2L+xp\ p Completely symmetric wave functions are used to describe

bosons while fermions are described by completely antisym-
+V(X) . (6.20 i : X . - oI
metric wave functions. Thus, intermediate statistics arise in
We can observe that in Eq6.20, the EIP is accounting the presence of incomplete symmetrization or antisymmetri-
through a diffusion process and its effect vanishes inQhe zation of the wave function and the concept of degree of
— 0 limit where it reduces to the standard linear Schrédingesymmetrization or degree of antisymmetrization has been in-
equation. Equatiort6.20 has a purely real nonlinearity de- troduced[33]. Parameterx has the meaning of degree of

pending only on fieldp. indistinguishability of fermions or bosons, corresponding to
In a different way, by making the choi@gp)=1, the con-  the degree of symmetrization or antisymmetrization, respec-
tinuity equation(3.25 becomes tively. Value k=-1 corresponds to the case of fermions and
denotes a complete antisymmetric wave function, whereas
ap . —
—+V -[jo(1+xp)-DVp]=0. (6.2 value k=1 corresponds to the case of bosons and denotes a
t complete symmetric wave function. In addition, valde0

The gauge transformation changes nonlinear curjent is_ associated vyith classical MB statistics and all the interme-
diate cases arise whenassumes all the values between -1
and 1.

Equation (6.23, for D=0, was obtained previously in
Ref. [24], where the canonical quantization of the classical
system obeying EIP was accounted for. As discussed in Sec.

V, Eq. (6.23 differs from the NSE obtained if24] for a real
This equation was introduced at the classical level in Ref

: 'nonlinearity originated from nonlinear potential
[33] and subsequently reconsidered at the quantum level in y g P 2

. . AU =-mD?(Vp)?/ p(1+kp) and depending only on fielg.
Ref.[24]. The NSE associated with E¢5.22) is given by Final(ly p\)/vepf)bsef\ze that dFi)fferen'? fron{ EQG.ZS Eq.

ip_ mD? {%_ 1+ 2kp (E)Z}(ﬁ (6.23 has vorticity different from zero. The Clebsh poten-

IﬁE a 2mA¢+ 1+kpl p 2 +xp)\ p tials corresponding to current(Va/m)p(1+xp) are given

=jo(1+kp)-DVp—]=jo(1+kp) containing only a nonlin-
ear drift term and Eq(6.21) reduces to

%+ V -[jo(1 +xp)]=0. (6.22

by v=1+kp, A\=c and u=const and vorticity assumes the

~ 2 ~
m( j . h ( Ip ) expression
K —ik V| =P |+ V(X) 8.
Kp<l+Kp) ¢ IK2p 1+kp ¢+ V)

(6.23 w:%VpX Vo. (6.24)

We observe that E¢6.23 still has a complex nonlinearity In Refs.[51,52, localized, static, fermionlike vortex solu-

due to the nonlinear structure of quantum curfeand both i (k<0) were obtained and studied starting from Eq.
the nonlinearitiesV and)V depend on fieldg ando. More- (6.23 with D=0. We observe that ifi51,52, a different

over, in Eq.(6._23§, EIPis accounted through a nonli_near drift definition of the Clebsh potentials corresponding ge A
term and survives even in the absence of a diffusion Process . and y= xp was adopted. Despite this, vorticity assumes
(D—0). - the same expression that is given by Ej24) in both cases.
Factor (1+xp) in nonlinear currenf takes into account EIP vortex solutions are important on theoretical grounds
the EIP in the many-particle system. In fact, transition prob-and for interpretation of experimental results of several ap-
ability (2.19 from site x to y is defined asw(t,x—y) plications. For instance, they can be employed in the study of
=r(t,x,x—y)p(t,x)[1+«p(t,y)]. For k#0, the EIP holds fermionlike vortices observed ifiHe-A superfluidity or in
and parametek quantifies to what extent particle kinetics is heavy fermion superconductors YPand U, ¢;Thy oBeis
affected by the particle population of the arrival site. [63-55.
If k>0, them(t,x—Yy) contains an inclusion principle. In
fact, the population density at arrival poiptstimulates the
particle transition and therefore transition probability in-
creases linearly withp(t,y). Where k<0, the =(t,x—Yy) We have presented the quantization of a classical system
takes into account the Pauli exclusion principle. If the arrivalof interacting particles obeying a kinetic interaction prin-
pointy is emptyp(t,y)=0, the(t,x—y) depends only on ciple. The KIP both fixes the expression of the Fokker-
the population of the starting point. If the arrival site is popu-Planck equation describing the kinetic evolution of the sys-

VII. CONCLUSIONS
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tem and imposes the form of its entropy. In the framework of APPENDIX A
canonical quantization, we have introduced a class of NSEs
with complex nonlinearity obtained from the classical syste
obeying KIP. The form of nonlinearity\(¢", ) is deter-
mined by functionalk(p), which also fixes the form of the
entropy of ancestor classical system.

Among the many interesting solutions of the family of

We present proof of the Ehrenfest equations discussed in
Msec. IV, In the following, we assume uniform boundary con-
ditions on the fields in order to neglect the surface terms.

Let us rewrite Eq(4.1) in a more suitable form. Account-
ing for the relation

NSEs (3.31), we observe that for a free system wit{x) S 6 ik S
=0, and posinds(p)=0, the planar wave 5’0: 5_p B 275 ' (A1)
i Eq. (4.1) becomes
Y(t,x) = Aex —g(wt—k-x) , (7.1
d i oH 1/)J16H 0
—(O)=-A|—0O0| )+ V=0 /)+\— /.
with constant amplitudeA=const is the simplest solution,  dt h\L dp 2\ pox at
where the relationship betweenandk is given by (A2)
1#2k2 9y(p) Equation(4.5) can be obtained starting from EG\2) by
= ——— , (7.2 posingO=x,
2m 07[) p=A2
d, i . oH . OH
and reduces to the standard dispersion relationyfpy=p. a(x) =2 |7 5—px¢— 4 Xg_p‘ﬁ dx
When the quantum system is in a stationary state such that
dpsl t=0, the relationships between distributipnand phase . }f w*}ﬁm/ﬁ w*xlﬁw dx
>, follow from Eq. (3.25), 2 p S x>
oH
1[ (ES(X) )} =IX§dX
=Kk -B 11, 7.3
ps=kK 7| EXP mD B (7.3

= [xv -[%y(m—of(p)w}dx

which mimics the classical equilibrium distributié®.12), as
can be seen by replacingy(x)/mD with —B&(x). Despite Vs
this, we stress that such an analogy is purely formal. The =f [—7(p) —Df(p)Vp]dx
equivalence between EgR.12 and (7.3) requires that the m

relation 24(x)/mD=~-8&(x) must hold. In the general case, vs

the expression of stationary phaZg(x) must be obtained :f F?’(P)dx— Df V F(p)dx

from Eq.(3.24), after posing’=¢/ dt=0, with p given through

Eq.(7.3. = Ma : (A3)
Finally, another interesting class of possible solutions are B p drift />

solitons. It is well know that soliton solutions in NSE arise
when the dispersive effects, principally due to termWhere
—(h%/2m)Ay, are exactly balanced by the nonlinear terms. o
The existence of this class of solutions depends on the par- F(p) :f f(p")dp’. (A4)
ticular form of functionalsy(p) and x(p) which fix the ex-
pression of nonlinearitie\(p,>) and W(p,2). A special 14 show the validity of Eq(4.6), we pose®=-i4V in Eq.
situation, where soliton solutions are found within the NSEsa2) 5o that
derived in this paper, is given by the EIP equati@23
with D=0 [24], wherey(p)=p(1+kp) and k(p)=p/(1+kp). d, . OH . SH
The study of soliton solutions for other functional choices d_t<p> _J 4 5 Vi-y'v 5_p‘/’ dx
of y(p) andk(p), such as, for instance, the ones related to the
generalized entropies discussed in Sec. VI B, is a very im- _iﬁf [w*lﬁv Jrd v <1ﬁ¢)}dx
portant task which deserves further research. These solutions 2 p & p 6%
may lead to practical applications. In fact, in recent years
there has been great interest in the formulation of models :f ﬁ(,p* Vy+yVy)
where solitons can interact with a long-range fof&®). op
Typical nonlinear models supporting solitons, such as the

sine-Gordon model, arise from short-range forces. However, - iﬁ f lﬁ(;,/f V- ¢V )dx

there is experimental evidence that most real transfer mecha- 2) pox

nisms have long-range interaction, as noted in condensed SH SH

matter theony{57] or in spin glassef58]. _f (5—p Vp+ = v E)dx, (A5)

051103-12



CANONICAL QUANTIZATION OF NONLINEAR MANY- ...

PHYSICAL REVIEW E 71, 051103(2005
where an integration by parts has been performed, and we
have posed

SoH SH
VH—@-pr+EVE+pVV(X), (A8)

(A6) from Eq. (A5) it follows that

d%(rJ):f VH dx-fpVV(X)dX=<Fext(X)>- (A9)

Equation(4.7) can easily be obtained following the same
steps used in the proof of E.6).
Taking into account the relation

Finally, by posing®@=—(%%/2m)A+U(p,3)/p+V(x) in
Eg. (A2), whereU(p,2) is given in Eq.(3.23, we have

YV y+yVy =Vp,

:,Zf*Va,//—://Vz//*:i%pVE. (A7)

d—E—I—f *ﬁ(—ﬁ—zA+9+V> - *{<—ﬁ—2A+9+V)5H } d
g nl) P\ m Y)Y o v [

p op
= *zﬁ(-ﬁmzw) . *[(_ﬁ_m!w)zﬁ } e [ 7Y v
2 pdoZ\ 2m p vy 2m  p pﬁplp P ot p
ih

—+V —z/;:|dx—ﬁ—2 [w*}ﬁA
p p op 4m p O

s[5 e[l
=" om ¢5p¢¢5p¢ X+3 l//5p y-y
+¢*A<%%¢/>}dx+%f{¢*%%<%+V>¢+ ¢,*<9+V)lﬁ :|dX+fpi<g)dX

P p o at\ p
in [ oH, . , #2 [(1eH, , ) 5H(U ) au Uﬁp}
=—— | — (g Ay—yAy)dx-— | —(J A Ay )d —|—=+V]+—-——|dx, A10
o 5p(wwww)x4mfp52(¢f w+¢w)x+”52p+ t e (A10)
[
;/r\:gei:ﬁ(?;lgcuobulitintegration by parts has been performed. Tak- ﬁ_2 A;; B (E)z _ 5 f Uk oH V. (ALS)
2m| \p h S S
i, . o V3
s =v (). ey v (%)= 2 ua-2 e
mP) " & N
Ap (VE)?
JAY+ YAy = 2pl¥ - (—> } (A12) which follow from Egs.(3.11), (3.16, and(3.23, and mo-
vV fi tion equationg3.9) and(3.10, we obtain
which follow from Eq.(3.2), and the relation dE SH{ s SHY SH/ s SH
—:f - fde—— ——( fde——
JU P op P g3, dt Sp \ 8% 5%/) 8\ p Sp
E_ 5—pJUdX5+ EJUdX_1 (A13) sH/U sHl s U
+V /| |dx+ = —+V +5 5 Udx — —
Eqg. (A10) becomes P P P
~ —ﬁ i ud dx=0 Al7
GE_[1alg (32, Kafsp (Vi PATSH Il e (A7
dt p m?) 2mss V’; i
+f {%<E+V> +<5ﬁf U dk!)% APPENDIX B
P P P We briefly discuss the generalization of the theory for
o Jz quantum systems obeying the KIP and undergoing a diffu-
* (5 f U dX)E}dX' (A14) sive process with a diffusion coefficiefi(t,x) depending
both on time and space position.
By using the relations

Given the following Hamiltonian density:
051103-13
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(V3)? h2 (Vp)2 in the absence of the external potential, as a consequence of
H(p,2) = om Yp) + 8m o the position dependence Df which breaks the invariance of
Eqg. (B1) under uniform space translation and uniform space
-D(t,X)¥(p) VInk(p) - VI + D(p) +V(X)p, rotation. This can also be seen from the Ehrenfest relations
(B1) d )
_ _ _ —(x) = %—pud,m -{D(t,x)f(p)VInp), (B5)
from the Hamilton equation&3.9) and(3.10 we obtain the dt p
NSE
d
d h? —(p) =~ MA(p,2) VD(t,X)) +(Fexi(X)),  (B6)
12 = P WG )+ I D+ Gl VOO, dt "
B2 d
(B2 U == MA)x X VDEX]) + M), (B7)
with nonlinearities t
m( d¥(p) )(]o)z dE 9
W( ,E)=—(——1 - —=-m{ A(p,3)=D(t,x) }, B8
p 2\ "o ; =M (,02)&t (t,x) (B8)
9 _ J'_o> whereA(p,2)=f(p) VIn p- g
+my(p)apln «lp) v (D(t,x)p +Glp) Finally, the gauge transformation described in Sec. V

(B3) cannot be performed, in general, when the diffusion coeffi-
cient has spatial dependence. In fact, the transformation in
and Eqg. (5.1 is well defined only if the following condition is
fulfilled:

fi
W(p.E)I-Z—mpV{[V(p)-p]VE} V X [D(t,x) VIn x(p)] =0, (B9)

1 as can be seen by applying the curl operator to both sides of
+ 2 V - [DtX)yp) VInk(p)]. (B4  the equation

The system described by HamiltonigB1) is dissipative Vo= V2 -mD(tx) Vin (p), (B10)
sincedE/dt#0. This is a consequence of the time depen-which follows from Eqgs(3.26 and(5.3). We remark that if
dence ofD, which breaks the invariance of E@B1) under the dynamics of the system evolves in one spatial dimension,
uniform time translation. In the same way, linear momentumigq. (B9) is trivially verified and the transformation in Eq.
as well as angular momentum are no longer conserved, evéB.1) can in all cases be accomplished.
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