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We study the quantization of a classical system of interacting particles obeying a recently proposed kinetic
interaction principlesKIPd fG. Kaniadakis, Physica A296, 405 s2001dg. The KIP fixes the expression of the
Fokker-Planck equation describing the kinetic evolution of the system and imposes the form of its entropy. In
the framework of canonical quantization, we introduce a class of nonlinear Schrödinger equationssNSEsd with
complex nonlinearities, describing, in the mean-field approximation, a system of collectively interacting par-
ticles whose underlying kinetics is governed by the KIP. We derive the Ehrenfest relations and discuss the main
constants of motion arising in this model. By means of a nonlinear gauge transformation of the third kind, it is
shown that in the case of constant diffusion and linear drift, the class of NSEs obeying the KIP is gauge-
equivalent to another class of NSEs containing purely real nonlinearities depending only on the fieldr= ucu2.
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I. INTRODUCTION

A wide class of diffusive processes in nature, known as
normal diffusion, are successfully described by the linear
Fokker-Planck equation. Its relation to Boltzmann-Gibbs en-
tropy sBG entropyd in the framework of the irreversible ther-
modynamics is well establishedf1–3g. However, nonlinear
Fokker-Planck equationssNFPEsd f4–8g and their connec-
tion in the field of the generalized thermodynamicsf9–11g is
nowadays an intense research area. In particular, many
physical phenomena, in the presence of memory effects, non-
local effects, long-range effects, or, more in general, nonlin-
ear effects, are well understood with the help of NFPEs.

To cite a few, let us recall the problem of diffusion in
polymersf12g, on liquid surfacesf13g, in Lévy flights f14g,
and enhanced diffusion in active intracellular transportf15g.
Many anomalous diffusion systems have a quantum nature,
such as, for instance, charge transport in anomalous solids
f16g, subrecoil laser coolingf17g, and the aging effect in
quantum dissipative systemsf18g.

A still open question concerns the dynamics underlying
the nonlinear kinetics governing the above anomalous sys-
tems. Langevin-like, Fokker-Planck-like, or Boltzmann-like
equations have been used by different authors to generate
nonlinear terms in the Schrödinger equation with the aim of
describing, in the mean-field approximation, the many quan-
tum particle interactionsf19–22g.

It is now widely recognized that the presence of a nonlin-
ear drift term as well as the presence of a diffusive term in a
quantum particle current originates complex nonlinearities in
the evolution equation for thec-wave function.

Different examples are known in the literature of nonlin-
ear Schrödinger equationssNSEsd originating from the study
of the kinetics governing the many-body quantum system.
For instance, the Doebner-Goldin family equationsf23g have
been introduced from topological considerations as the most

general class of Schrödinger equations compatible with the
linear Fokker-Planck equation. In Ref.f24g, the authors in-
troduced a NSE starting from a generalized exclusion-
inclusion principle sEIPd in order to describe systems of
quantum particles with different statistics interpolating with
continuity between the Bose-Einstein and the Fermi-Dirac
ones. In Ref.f25g, in the stochastic quantization framework,
starting from the most general nonlinear kinetics containing
a nonlinear drift term and compatible with a linear diffusion
term, a class of NSEs with a complex nonlinearity was ob-
tained.

Recently, a kinetic interaction principlesKIPd has been
proposed f26g to define a special collective interaction
among theN-identical particles of a classical system. On the
one hand, the KIP imposes the form of the generalized en-
tropy associated with the system, while on the other hand it
governs the evolution of the system toward equilibrium by
fixing the expression of the nonlinear current of particles in
the NFPE, thus governing the kinetics underlying the system.

The link between the generalized entropic functional and
the corresponding NFPE can also be obtained starting from a
maximum entropic production principle. In Refs.f6,7g, tak-
ing into account a variational principle maximizing the dis-
sipation rate of a generalized free energy, the authors ob-
tained a NFPE in the Smoluchowski limit. The same NFPE
was obtained in Ref.f8g from a stochastic process described
by a generalized Langevin equation where the strength of the
noise is assumed to depend on the density of the particle.

In the present paper, we perform the quantization of a
classical system obeying KIP, where the statistical informa-
tion is supplied by a very general entropy.

Up to today, different methods have been proposed for the
microscopic description of systems. Schrödinger’s wave me-
chanics, Heisenberg’s matrix mechanics, or Feynman’s path-
integral mechanics are some of the many. Another approach
is given by the hydrodynamic theory of quantum mechanics
originally owing to Madelungf27g and de Broglief28g and
successively reconsidered by Bohmf29g in connection with
his theory of hidden variables.*Electronic address: antonio.scarfone@polito.it
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In the hydrodynamic formulation of quantum mechanics,
the complex linear Schrödinger equation is replaced by two
real nonlinear differential equations for two independent
fields: the probability density and its velocity field. Basically,
such equations are formally similar to the equations of con-
tinuity and the Euler equation of ordinary hydrodynamics.

This formalism is fruitful, as in the present situation,
when the expression of the quantum continuity equation is
inherited from the one describing the kinetics of the ancestor
classical system. However, for a complete quantum-
mechanical description, besides the continuity equation, we
need to know if and how we should generalize the Euler
equation that describes the dynamics of the system. In this
paper, in order to fix the nonlinear terms in the Euler equa-
tion, we require that the whole model be formulated in the
canonical formalism.

We obtain a class of NSEs with complex nonlinearity de-
scribing a quantum system of interacting particles obeying
the KIP in the mean-field approximation. We study the case
of a quantum system undergoing a constant diffusion pro-
cess. The generalization to the case of a nonconstant diffu-
sive process is also presented at the end of the paper. It is
shown that the form of the entropy of the ancestor classical
system fixes the nonlinearity appearing in the evolution
equation. By means of a recently proposed nonlinear gauge
transformationf23,30,31g, this family of evolution equations
is transformed into another one describing a nondiffusive
process. In particular, when the kinetics of the system is
governed by a linear drift term, the new family of NSEs
contains a purely real nonlinearity depending only on the
density of particlesr= ucu2.

As working examples, we present the quantization of
some classical systems described by entropies already known
in the literature: BG entropy, Tsallis entropyf32g, Kaniadakis
entropyf26g, and the interpolating quantum statistics entropy
f33g.

The plan of the paper is as follows. In Sec. II, we recall
the relation between a given generalized entropy and the as-
sociated NFPE describing the kinetic evolution of the classi-
cal system in the nonequilibrium thermodynamic framework.
This kinetic equation is justified on the basis of KIP. In Sec.
III, first we present an overall summing up of the hydrody-
namic formulation of the linear Schrödinger equation, then
we generalize the method to quantize the classical system
obeying EIP. The Hamiltonian formulation of this model is
presented and a family of NSEs with complex nonlinearity is
obtained. In Sec. IV, we study the Ehrenfest relations and
discuss the conserved mean quantities. In Sec. V, the nonlin-
ear gauge transformation is introduced. Some relevant ex-
amples are presented in Sec. VI. The final Sec. VII present
comments and conclusions. In Appendix A, we give the deri-
vation of the Ehrenfest relations, while in Appendix B we
briefly discuss the generalization of the model for a quantum
system whose kinetics undergoes a nonconstant diffusive
process.

II. NONLINEAR FOKKER-PLANCK EQUATION

Our starting point, according to nonlinear kinetics, is to
relate the production of the entropy of a classical system to a

Fokker-Planck equation. This can be accomplished by fol-
lowing the classical approach to diffusionf1,2g.

We start by assuming a very general trace-form expres-
sion for the entropysthroughout this paper, we use units with
the Boltzmann constantkB set equal to unityd,

Ssrd = −E dxE dr ln ksrd, s2.1d

whereksrd is an arbitrary functional of the density particles
field r=rst ,xd, with x;sx1,… ,xnd a point in the
n-dimensional space.

The constraints

E r dx = 1 s2.2d

on the normalization and

E Esxdr dx = E s2.3d

total energy of the system, withEsxd=p2/2 m+Vsxd the en-
ergy for each particle, are accounted for by introducing the
constrained entropic functional,

Ssrd = −E dxE dr ln ksrd − bE Esxdr dx − b8E r dx.

s2.4d

The two constantsb and b8 are the Lagrange multipliers
associated with constraintss2.2d and s2.3d.

Quite generally, the evolution of the fieldr in the configu-
ration space is governed by the continuity equation

] r

] t
+ = ·J = 0, s2.5d

with =;s] /] x1,… ,] /] xnd, and assures the conservation of
the constraints2.2d in time. We assume a nonlinear relation
between the currentJ and the constrained thermodynamic
force,

Fsrd = = SdS
dr

D , s2.6d

by posing

J = DgsrdFsrd, s2.7d

with D the diffusion coefficient andgsrd still an arbitrary
functional ofr.

Putting Eq.s2.7d in Eq. s2.5d, and taking into account the
expression ofS given in Eq.s2.4d, we obtain the following
continuity equation:

]r

]t
+ = · h− D gsrd = fb Esxd + b8 + ln ksrdgj = 0.

s2.8d

Introducing drift velocity
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udrift = − D b = Esxd, s2.9d

Eq. s2.8d takes the form of a NFPE for the fieldr,

] r

] t
+ = · fudriftgsrd − D fsrd = rg = 0, s2.10d

where

fsrd = gsrd
] ln ksrd

]r
. s2.11d

Total currentJ=Jdrift +Jdiff is the sum of a nonlinear drift
current Jdrift =udriftgsrd and a nonlinear diffusion current
Jdiff =−D fsrd=r, different from Fick’s standard oneJFick

=−D=r, which is recovered by posinggsrd=ksrd=r.
Equation s2.10d describes a class of nonlinear diffusive

processes varying the functionalsgsrd andksrd. We observe
that for any given entropys2.1d, an infinity of associated
NFPEs exists, one for any choice ofgsrd.

In Refs.f6,7g, starting from a variational principle which
maximizes the dissipation rate of a generalized free-energy
functional, substantially equivalent to Eq.s2.4d, a NFPE in
the position space as in Eq.s2.10d has been obtained. The
same NFPEs2.10d was also obtained in Ref.f8g, starting
from a stochastic process described by a generalized Lange-
vin equation, where the strength of the noise is assumed to
depend on the density of the particle. The nonlinear current,
as in Eq.s2.7d, is given by the gradient of the functional
derivative of a generalized free energy equivalent to Eq.
s2.4d.

In Ref. f4g, the problem of the NFPE derived from gen-
eralized linear nonequilibrium thermodynamics was also dis-
cussed at length.

At equilibrium, the particle current must vanish, and from
Eq. s2.6d it follows that

ln ksreqd + b Esxd + b8 = 0, s2.12d

where, without loss of generality, we posed the integration
constant equal to zerosotherwise it can be included in the
Lagrange multiplierb8d.

We obtain the equilibrium distribution of the system

req= k−1hexpf− b Esxd − b8gj. s2.13d

In particular, with the choiceksrd=er, Eq. s2.1d reduces to
standard BG entropy and Eq.s2.13d gives the well-known
Gibbs distribution.

Let us now justify Eq.s2.10d starting from the kinetic
approach introduced inf26g through the KIP. In accordance
with the arguments presented in Ref.f26g, we consider the
following classical Markovian process:

]r

]t
=E fpst,y → xd − pst,x → ydgdy, s2.14d

describing the kinetics of a system ofN-identical interacting
particles.

For transition probabilitypst ,x→yd, we assume a suit-
able expression in terms of the populations of the initial site
x and the final sitey.

According to KIP, we pose

pst,x → yd = rst,x,x − ydgsr,r8d, s2.15d

where r;rst ,xd and r8;rst ,yd are the particle density
functions in the starting sitex and in the arrival sitey, re-
spectively, whereasrst ,x ,x−yd is the transition rate which
depends only on the startingx and arrivaly sites, during
particle transitionx→y.

The functionalgsr ,r8d can be factorized in

gsr,r8d = asrdbsr8dcsr,r8d. s2.16d

The first factorasrd is a functional of the particle population
r of the starting site and satisfies the boundary condition
as0d=0, since if the starting site is empty, the transition prob-
ability is equal to zero. The second factorbsr8d is a func-
tional of the particle populationr8 at the arrival site, and
satisfies the conditionbs0d=1, because the transition prob-
ability does not depend on the arrival site if particles are
absent there. Finally, the third factorcsr ,r8d takes into ac-
count that the populations of the two sites can eventually
affect the transition collectively and symmetrically.

The expression of the functionalbsr8d plays a very im-
portant role in the particle kinetics because it can stimulate
or inhibit the transitionx→y, allowing, in this way, interac-
tions originating from collective effects.

With the assumptions made in Eqs.s2.15d and s2.16d for
transition probability, according to the Kramers-Moyal ex-
pansion and assuming the first neighbor approximation, we
can expand up to the second order the quantitiesrst ,y,y
−xdg(rst ,yd ,rst ,xd) andg(rst ,xd ,rst ,yd) in Taylor series of
y=x+u and y=x−u, respectively, in an interval aroundx,
for u!x.

We obtain

rst,x + u,udg„rst,x + ud,rst,xd…

= Hrst,y,udg„rst,yd,rst,xd…

+
]

] yi
frst,y,udg„rst,yd,rst,xd…gui

+
1

2

]2

] yi ] yj
frst,y,udg„rst,yd,rst,xd…guiujJ

y→x

s2.17d

and

g„rst,xd,rst,x − ud… = Hg„rst,xd,rst,yd…

−
]

] yi
g„rst,xd,rst,yd…ui

+
1

2

]2

]yi ] yj
g„rst,xd,rst,yd…uiujJ

y→x
.

s2.18d

Using Eqs.s2.17d ands2.18d in Eq. s2.15d, from Eq.s2.14d it
follows that
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]r

]t
=

]

]xi
FSzi +

]zi j

]xj
Dgsrd + zi jgsrd

]

]xj
ln ksrdG ,

s2.19d

with i =1,… ,n and summation over repeated indices is as-
sumed.

In Eq. s2.19d,

gsrd ; ugsr,r8dur=r8 s2.20d

and

ksrd =
asrd
bsrd

, s2.21d

while the coefficientszi andzi j are given by

zi =E rst,y,uduidu, s2.22d

zi j =
1

2
E rst,y,uduiujdu. s2.23d

Defining suiddrift =−zi −]zi j /] xj, the ith component ofudrift,
and assuming the independence of motion in different direc-
tions of the isotropic configuration space, we can posezi j
=Ddi j . It is easy to see that Eq.s2.19d reduces to Eq.s2.10d.

In conclusion, we observe that Eq.s2.10d is a NFPE in the
Smoluchowski limit since it describes a kinetic process in the
position space rather than in the phase space. This is a suit-
able form for the quantum treatment of the following sec-
tions. The passage from the NFPE in the phase space to the
NFPE in the position space was rigorously elaborated in Ref.
f34g in the limit of strong friction, by means of a Chapman-
Enskog-like expansion.

III. CANONICAL QUANTIZATION

A. Quantization in the hydrodynamic representation

In the hydrodynamic representation, the quantum me-
chanics formulation can readily be obtained from the stan-
dard Schrödinger equation

i"
]c

]t
= −

"2

2m
Dc + Vsxdc, s3.1d

where Vsxd is a real external potential. The complex field
c;cst ,xd describing the quantum system is related to the
hydrodynamic fieldsrst ,xd andSst ,xd through polar decom-
position f27,29g

cst,xd = r1/2st,xdexpS i

"
Sst,xdD . s3.2d

Equations3.1d is separated into a couple of real equations

m
]v̂
]t

+ msv̂ · =dv̂ = = S "2

2m

DÎr

Îr
− VsxdD , s3.3d

]r

]t
+ = · j0 = 0, s3.4d

where quantum velocityv̂, which in the linear case coincides
with quantum drift velocityûdrift, is related to the phase
Sst ,xd through

mv̂ = = Sst,xd, s3.5d

and

j0 = rv̂ s3.6d

is the same relationship between current and velocity of the
standard hydrodynamic theory. We remark that the quantum
currents3.6d contains only a linear drift term.

According to the orthodox interpretation of quantum me-
chanics, the quantityrst ,xd= ucst ,xdu2 represents the position
probability density of the system normalized aserst ,xddx
=1.

Equationss3.3d–s3.6d form the basis of the hydrodynamic
formulation which consists of a quasiclassical approach to
quantum mechanics. In this picture, the evolution of the sys-
tem can be interpreted in terms of a flowing fluid with den-
sity rst ,xd associated with a local velocity fieldv̂st ,xd. The
dynamics of such fluid is described by the Euler equation
s3.3d and is governed by forces arising not only from the
external fieldFextsxd=−=Vsxd but also from an additional
potentialUq=−s"2/2mdDÎr /Îr known as the quantum po-
tential f29g. Remarkably, the expectation value for the quan-
tum force vanishes at all times, i.e.,k−=Uql=0. Finally, the
continuity equations3.4d assures the conservation of the nor-
malization of wave functionc during the evolution of the
system.

Let us remark that the quantum fluid has a very special
property. BecauseSst ,xd is a potential field for the quantum
velocity, the quantum fluid is irrotational. As a consequence,
in the linear Schrödinger theory, a nonvanishing vorticityv,
defined by

v = = 3 v̂, s3.7d

is possible only at the nodal region where neitherSst ,xd nor
=Sst ,xd are well defined. At such a point=3 =Sst ,xd does
not vanish in general, thus leading to the appearance of
pointlike vortices.

Finally, putting Eq.s3.5d into Eq. s3.3d, we obtain

]S

]t
+

s=Sd2

2m
−

"2

2m

DÎr

Îr
+ Vsxd = 0. s3.8d

This equation, in the classical limit"→0, reduces to the
Hamilton-Jacobi equation for the functionS.

Equationss3.4d ands3.8d can be obtained by means of the
Hamiltonian equations

]S

]t
= −

dH

dr
, s3.9d
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]r

]t
=

dH

dS
, s3.10d

where the Hamiltonian

H =E Hsr,Sddx, s3.11d

with

Hsr,Sd =
s=Sd2

2m
r +

"2

8m

s=rd2

r
+ Vsxdr, s3.12d

represents the total energy of the quantum system.

B. The many-body quantum system

Let us now generalize the method described above by
replacing the linear continuity equations3.4d with the more
general one obtained in analogy with the continuity equation
s2.10d describing the kinetics of a classical system obeying
KIP. In the following, we assume that the quantum system
undergoes a constant diffusion process withD=const.

We begin by introducing the wave functionc;cst ,xd
describing, in the mean-field approximation, a system of
quantum interacting particles. We postulate that the follow-
ing NSE describes the evolution equation of the system:

i"
]c

]t
= −

"2

2m
Dc + Lsc* ,cdc + Vsxdc, s3.13d

whereLsc* ,cd=Wsc* ,cd+ iWsc* ,cd is a complex nonlin-
earity, with Wsc* ,cd and Wsc* ,cd the real and the imagi-
nary part, respectively.

Using polar decompositions3.2d, Eq. s3.13d is separated
into a couple of real nonlinear evolution equations for phase
and amplitude,

]S

]t
+

s=Sd2

2m
+ Uq + Wsr,Sd + Vsxd = 0, s3.14d

]r

]t
+ = · j0 −

2

"
rWsr,Sd = 0. s3.15d

We require that both Eqs.s3.14d and s3.15d can be obtained
through the Hamilton equationss3.9d and s3.10d and, to ac-
commodate nonlinearitiesWsr ,Sd and Wsr ,Sd, we intro-
duce in the Hamiltonian densityH an additional real nonlin-
ear potential Usr ,Sd which describes the collective
interaction between the particles belonging to the system

Hsr,Sd =
s=Sd2

2m
r +

"2

8m

s=rd2

r
+ Usr,Sd + Vsxdr.

s3.16d

By means of Eqs.s3.9d and s3.10d, it follows that the non-
linear functionalsWsr ,Sd and Wsr ,Sd are related to the
nonlinear potentialUsr ,Sd as

Wsr,Sd =
d

dr
E Usr,Sddx, s3.17d

Wsr,Sd =
"

2r

d

dS
E Usr,Sddx. s3.18d

We assume that the quantum fluid satisfies a continuity equa-
tion formally equal to the classical one described by the
NFPE s2.10d. By matching Eq.s3.15d with Eq. s2.10d, we
obtain the expressionW and, accounting for Eq.s3.18d, we
have the nonlinear potentialUsr ,Sd. Finally, the nonlinearity
Wsr ,Sd, which follows from Eq.s3.17d, together with the
quantum potentialUq and the external potentialVsxd, de-
scribes the dynamic behavior of the quantum fluid according
to Eq. s3.14d.

We observe that if the following equation holds:

d

d S
E Usr,Sddx = = ·Fsr,Sd, s3.19d

with Fsr ,Sd an arbitrary functional, taking into account Eq.
s3.18d, Eq. s3.15d becomes

]r

]t
+ = · fj0 − Fsr,Sdg = 0. s3.20d

Equations3.19d is fulfilled if functional Usr ,Sd depends on
phaseS only through its spatial derivativesf30g.

Introducing the quantum drift velocity

ûdrift =
=S

m
, s3.21d

which in the linear case coincides with the quantum velocity
v̂ given in Eq.s3.5d, and by comparing Eq.s3.20d with Eq.
s2.10d, we have

Fsr,Sd =
=S

m
fr − gsrdg + Dfsrd=r. s3.22d

By integrating Eq.s3.18d, the nonlinear potential assumes the
expression

Usr,Sd =
s=Sd2

2m
fgsrd − rg − Dfsrd = r · = S + Ũsrd,

s3.23d

whereŨsrd is an arbitrary real potential depending only on
field r. Equationss3.9d ands3.10d give the following coupled
nonlinear evolution equations:

]S

]t
+

s=Sd2

2m

]gsrd
]r

−
"2

2m

DÎr

Îr
+ mDfsrd = ·S j0

r
D + Gsrd

+ Vsxd = 0, s3.24d

]r

]t
+ = ·F=S

m
gsrd − Dfsrd = rG = 0, s3.25d

whereGsrd=de Ũsrddx /dr.
In the classical limit"→0, Eq.s3.24d becomes a nonlin-

ear Hamilton-Jacobi equation for functionS. It differs from
the classical one owing to the presence of the nonlinear term
which functionally depends on bothr andS. We recall that
such a nonlinearity was introduced consistently with the re-
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quirement of a final canonical formulation of the theory.
We stress once again that in the approach described in this

paper, we start from a nonlinear generalization of the conti-
nuity equation that gives us only information on the kinetics.
This equation is not enough to completely determine the time
evolution of the quantum system. As a consequence, we have
ample freedom in the definition of nonlinear potential
Usr ,Sd. Such freedom is reflected in the arbitrary functional

Ũsrd which cannot be fixed only on the basis of the kinetic
equation. There are many possible dynamic behaviors, one

for any choice ofŨsrd, compatible with the same kinetics.

The nonlinear potentialŨsrd can be used to describe other
possible interactions among the many particles of the system
that have an origin different from the one introduced by the
kinetic equations3.25d.

Actually, Eq. s3.25d is a quantum continuity equation for
field r with a nonlinear quantum current given by

j =
=S

m
gsrd − Dfsrd = r. s3.26d

We observe that, differently from the hydrodynamic formu-
lation of the linear quantum mechanics, where the Bohm-
Madelung fluid is irrotational, in nonlinear quantum theory
the situation can be very different. In fact, by defining quan-
tum velocity through Eq.s3.6d, from Eq. s3.26d we have

mv̂ =
gsrd

r
= fS − mD ln ksrdg, s3.27d

which states the relationship between quantum velocityv̂
and quantum drift velocityûdrift for the nonlinear case.

Expressions3.27d can be justified in terms of Clebsh po-
tentials. In fact, as is well known, a nonvanishing vorticity
can be accounted for in the Schrödinger theory by introduc-
ing three potentialsm, n, andl related to quantum velocity
through the relation

mv̂ = = m + n = l. s3.28d

Vorticity v assumes a nonvanishing expression given by

v =
1

m
= n 3 = l. s3.29d

By comparing Eq.s3.28d with Eq. s3.27d, we readily obtain
m=const, n=gsrd /r, and l=S−mD ln ksrd, respectively,
and Eq.s3.29d becomes

v =
1

m
= Sgsrd

r
D 3 = S, s3.30d

with no contribution from the diffusive term. The irrotational
case is recovered in linear driftgsrd=r.

The final expression of the NSEs3.13d is given by

i"
]c

]t
= −

"2

2m
Dc + fWsr,Sd + iWsr,Sdgc + Vsxdc,

s3.31d

with the nonlinearities

Wsr,Sd =
m

2
S ]gsrd

]r
− 1DS j0

r
D2

+ mDfsrd = ·S j0
r
D + Gsrd

s3.32d

and

Wsr,Sd = −
"

2mr
= hfgsrd − rg = Sj +

"D

2r
= · ffsrd = rg.

s3.33d

Equationss3.32d and s3.33d differ from the one obtained in
Ref. f25g where a family of NSE was derived in the stochas-
tic quantization framework starting from the most general
nonlinear classical kinetics compatible with constant diffu-
sion coefficientD=" /2m. In particular, the real nonlinearity
W arising in the stochastic quantization is found to depend
only on field r, in contrast with expressions3.32d, where
functionalW depends on both fieldsr andS.

Remarkably, we observe that when the kinetics of the sys-
tem is governed by a linear drift, withgsrd=r, the expres-
sion of nonlinear termss3.32d and s3.33d simplifies to

Wsr,Sd = mDf̃srd = ·S j0
r
D + Gsrd s3.34d

and

Wsr,Sd =
"D

2r
= · f f̃srdln ksrd = rg , s3.35d

where f̃srd=rs] /]rdln ksrd.
They are determined only through functionalksrd, which

also defines the entropys2.1d of the ancestor classical sys-
tem.

IV. EHRENFEST RELATIONS AND CONSERVED
QUANTITIES

In this section, we study the time evolution of the most
important physical observables of the system described by
the Hamiltonian densitys3.16d with the nonlinear potential
s3.23d: mass center, linear and angular momentum, and total
energy. The proofs are give in Appendix A.

Let us recall that, given a Hermitian operatorO=O†

associated with a physical observable, its time evolution is
given by

d

dt
kOl =

i

"
E SdH

dc
Oc − c*O dH

dc* Ddx +K ]O
]t
L ,

s4.1d

where the mean valuekOl=ec*Oc dx. The last term in Eq.
s4.1d takes into account a possible explicit time dependence
on the operatorO.

Observing that the NSEs3.31d can be written in

i"
]c

]t
= Hc, s4.2d

where
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H = −
"2

2m
D + Wsr,Sd + iWsr,Sd + Vsxd, s4.3d

Eq. s4.1d assumes the equivalent expression

d

dt
kOl =

i

"
kfReH,Ogl +

1

"
khIm H,Ojl +K ]O

]t
L ,

s4.4d

wheref· , ·g and h· , ·j indicate the commutator and the anti-
commutator, respectively.

By choosingO=x, from Eq. s4.1d we obtain the first
Ehrenfest relation for the time evolution of the mass center
of the system,

vmc ;
d

dt
kxl =Kgsrd

r
ûdriftL . s4.5d

We observe that only drift nonlinearity appears in this equa-
tion, whereas the diffusion term makes no contribution.
Equations4.5d states that, quite generally,vmc is not a motion
constant. This fact implies that the quantum system is not
Galilei invariant. The origin of the nonconservation ofvcm
can be found in the difference between quantitypmc=mvmc
and the expectation value of the momentum operatorp
;k−i"= l=er=S dx. These two quantities are equivalent
only in the linear drift case. Differently from the former, the
latter is in all cases conserved during the time evolution of
the system, in the absence of the external potential. This can
be shown by means of the second Ehrenfest relation, which
follows from Eq.s4.1d by posingO=−i"=,

d

dt
kpl = kFextsxdl. s4.6d

The time evolution of the expectation value of momentum is
governed only by external potentialVsxd. On average, the
KIP introduce no effect on the dynamics of the system. This
is a consequence of the invariance of nonlinearityWfr ,Sg
+ iWfr ,Sg under uniform space translation.

In the same way, accounting for the invariance of nonlin-
earity for uniform rotations, the third Ehrenfest relation fol-
lows,

d

dt
kLl = kMextsxdl, s4.7d

whereMextsxd=x3Fextsxd is the momentum of the external
force field. Equations4.7d is obtained from Eq.s4.1d after
posingO=x3 s−i"= d. Again, the nonlinear terms intro-
duced by KIP as well as nonlinearityGsrd make no contri-
bution, on average, to angular momentum.

Finally, the last relation concerns the total energy of the
system given by the HamiltonianE;H. By posing

O = −
"2

2m
D +

1

r
Usr,Sd + Vsxd, s4.8d

we havekOl;E and from Eq.s4.1d we obtain

dE

dt
= 0. s4.9d

In conclusion, for a constant diffusion process we have
shown that in the absence of the external potential, the sys-
tem admits three constants of motion: total linear momentum
kpl, total angular momentumkLl, and total energyE. Such
conserved quantities, according to the Noether theorem, fol-
low as a consequence of the invariance of the system under
uniform space-time translation and uniform rotation. More-
over, the system is also invariant for global Us1d transforma-
tion, which implies conservation of the normalization of field
c throughout the evolution of the system.

In Appendix B, we briefly discuss the case of a quantum
system with a diffusion coefficientDst ,xd that depends on
time and position. This space-time dependence destroys the
invariance of the system under uniform space-time transla-
tion and space rotation. As a consequence, all quantitieskpl,
kL l, and E are no longer conserved, even for a vanishing
external potential.

It should be remarked that the results discussed here, al-
though very general in that they are independent of the form
of nonlinearitiesW andW, are valid only for the class of the
canonical systems. In the literature, there are many nonca-
nonical NSEs, obtained starting from certain physically mo-
tivated conditions, which are worthy of being taken into ac-
count. For these equations, the expression of H appearing on
the right-hand side of the Schrödinger equation cannot be
obtained from Eqs.s3.9d and s3.10d by means of a Hamil-
tonian functionH=eH dx.

Despite this, even for these noncanonical systems, the
time evolution of the mean values of the quantum operators
associated with the observables can be derived through Eq.
s4.4d, but what is important is that these operators can as-
sume a different definition with respect to the one given in
the canonical theory. For instance, in the canonical frame-
work the energy is supplied by the HamiltonianH of the
system, whereas in a noncanonical theory it is identified with
the operatori"] /] t;H. sWe remark that in the canonical
framework, H and H are, in general, different quantities.d
Moreover, for a noncanonical theory, conservation of the en-
ergy and the momentum do not follow merely from the prin-
ciple of invariance of the system under space-time transla-
tion. Their time evolution depends on the expression of the
nonlinearities appearing in the Schrödinger equation. All of
this clearly causes a profound difference in the resulting
Ehrenfest relations.

For instance, in Ref.f20g, a noncanonical Schrödinger
equation with complex nonlinearity was derived starting
from a Fokker-Planck equation for density fieldr by assum-
ing some physically justified separability conditions. The re-
sulting evolution equation has the real and the imaginary
nonlinearity given by Wsr ,Sd=gsS−kSld and Wsr ,Sd
=s" D /2dDr /r, respectively, whereg is a constant related to
diffusion coefficientD and such thatD→0 if g→0. It is
easy to see that such nonlinearities cannot be obtained start-
ing from a nonlinear potentialUsr ,Sd through Eqs.s3.17d
ands3.18d. The system described by this NSE turns out to be
dumped and dissipative, even in the presence of a constant
diffusive process. In fact, it can be shown that, following
Ref. f20g, from Eq. s4.4d it follows that dkpl /dt=kFextl
−gkpl and dE/dt;dkHl /dt=−sg /mdkp2l, which is a very
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different situation with respect to the one discussed in the
present paper, with the exception of the trivial caseg=0.

V. GAUGE EQUIVALENCE

We introduce a nonlinear gauge transformation of the
third kind f30g,

c → f = c expS−
i

"
mD ln ksrdD , s5.1d

which, being a unitary transformation, does not change the
amplitude of wave functionucu2= ufu2=r, and transforms the
phaseS of the old fieldc into phases of the new fieldf
according to the equation

s = S − mD ln ksrd. s5.2d

Consequently, the nonlinear currents3.26d takes the expres-
sion

j → j̃ =
=s

m
gsrd s5.3d

with only a nonlinear drift term.
Let us observe that, at the classical level, the similar trans-

formation

udrift8 = udrift − D = ln ksrd s5.4d

changes total currentJ→J8=udrift8 gsrd into another one con-
sisting only of a nonlinear drift term.

Performing the transformations5.1d, Eq. s3.31d becomes

i"
]f

]t
= −

"2

2m
Df + fW̃sr,sd + iW̃sr,sdgf + Vsxdf,

s5.5d

where the new nonlinearitiesW̃sr ,sd andW̃sr ,sd are given
by

W̃sr,sd =
m

2
S ]gsrd

]r
− 1DS j̃0

r
D2

+ mD2ff1srdDr + f2srds=rd2g + Gsrd, s5.6d

with j̃0=r=s /m,

f1srd = gsrdF ]

]r
ln ksrdG2

, s5.7d

f2srd =
1

2

] f1srd
]r

, s5.8d

and

W̃sr,Sd = −
"

2mr
= hfgsrd − rg = sj. s5.9d

Equations5.5d is still a NSE with a complex nonlinearity due
to the presence of the nonlinear drift term in the quantum
current expressions5.3d.

Basically, both Eqs.s3.31d and s5.5d are different NSEs
describing the same physical system. This is a consequence

of the unitary structure of the transformations5.1d, which
implies that the probability position density for fieldc and
field f assumes the same value at any instant of timef23g.

In the case ofgsrd=r, expressionss5.6d ands5.9d can be
simplified and the NSEs5.5d assumes the form

i"
]f

]t
= −

"2

2m
Df + mD2f f̃1srdDr + f̃2srds=rd2gf + Gsrdf

+ Vsxdf, s5.10d

with

f̃1srd = rF ]

]r
ln ksrdG2

, s5.11d

f̃2srd =
1

2

] f̃1srd
]r

, s5.12d

which contains a purely real nonlinearity depending only on
field r.

We observe that although Eq.s5.1d transforms the nonlin-
ear current into another one without the diffusive term, NSEs
s5.5d ands5.10d contain a dependence from on diffusion co-
efficient D.

The NSEs5.5d is still canonical. It can be obtained from
the following Hamiltonian density:

Hsr,sd =
s=sd2

2m
r +

"2

8m

s=rd2

r
+ Ûsr,sd + Vsxdr,

s5.13d

with nonlinear potential

Ûsr,sd =
s=sd2

2m
fgsrd − rg −

mD2

2
f1srds=rd2 + Ũsrd.

s5.14d

In this sense, Eq.s5.1d defines a canonical transformation.
In conclusion, let us make the following observation.

Equations5.5d admits the following continuity equation:

]r

]t
+ = ·F=s

m
gsrdG = 0. s5.15d

A natural question is, what kind of NSE is obtained if we
quantize a classical system obeying the continuity equation
]r /]t+ = ·J8=0 with the method described above? We easily
have

i"
]f

]t
= −

"2

2m
Df −

m

2
S ]gsrd

]r
− 1DS j̃0

r
D2

f

− i
"

2mr
= hfgsrd − rg = sjf + Gsrdf + Vsxdf,

s5.16d

where nowr and s are independent fields representing the
amplitude and phase of wave functionf. Equations5.16d can
be derived through the Hamiltonian densitys5.13d with the
nonlinear potential
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Û1sr,sd =
s=sd2

2m
fgsrd − rg + Ũsrd. s5.17d

Potentialss5.14d and s5.17d differ for the quantity

Ūsrd = Ûsr,sd − Û1sr,sd = −
m D2

2
f1srds=rd2,

s5.18d

which depends only on fieldr. This nonlinear potentialŪsrd
does not affect the continuity equation and thus cannot be
obtained starting directly from Eq.s5.15d.

VI. SOME EXAMPLES

To illustrate the relevance and applicability of the theory
described in the previous sections, we derive and discuss
some different NSEs obtained starting from kinetic equations
known in the literature. In the following section, for simplici-

ty’s sake we omit the arbitrary nonlinear potentialŨsrd and
focus our attention only on the effect yielded through the
potential introduced by the KIP.

A. Boltzmann-Gibbs entropy

It is well known that when the many-body system is gov-
erned by short-range interactions, or when interaction energy
is neglecting with respect to the total energy of the system,
the suitable entropic functional is given by the BG entropy

SBGsrd = −E r lnsrddx. s6.1d

This entropy arises from Eq.s2.1d by posingksrd=er with
asrd=er and bsrd=1. It is readily seen thatgsrd=ercsrd.
Among the many NFPEs compatible with entropys6.1d, we
consider the simplest case of linear drift by posingcsrd
=1/e. Then the continuity equations3.25d becomes the stan-
dard linear Fokker-Planck equation

]r

]t
+ = · sj0 − D = rd = 0, s6.2d

whereas the evolution equation for the quantum system is
given by the following NSE:

i"
]c

]t
= −

"2

2m
Dc + mD= ·S j0

r
Dc + i

"

2
D

Dr

r
c + Vsxdc,

s6.3d

which is recognized as the canonical subfamily of the class
of Doebner-Goldin equations parametrized by diffusion co-
efficientD. We recall that Eq.s6.2d was obtained in the quan-
tum mechanics theory starting from the study of the physical
interpretation of a certain family of diffeomorphismin group
f23g.

By performing gauge transformations5.1d, Eq. s6.3d be-
comes

i"
]f

]t
= −

"2

2m
Df + mD2FDr

r
−

1

2
S=r

r
D2Gf + Vsxdf,

s6.4d

which was studied previously inf35g. In particular, Eq.s6.4d
is equivalent to the following linear Schrödinger equation:

i"̄
]x

]t
= −

"̄2

2m
Dx + Vsxdx, s6.5d

with "̄="Î1−s2mD/"d2 and fieldx is related to hydrody-

namic fieldsr ands through the relationx=r1/2expsis / "̄d.
This appear to be an interesting result. By quantizing a

classical system described by MB entropy, the standard lin-
ear Schrödinger equation was obtained. In this equation, the
nonlinear terms describing the interaction between the many
particles of the quantum system are absent. This is in accor-
dance with the general statement that MB entropy is suitable
for describing systems with nosor negligibled interaction
among the particles.

B. Generalized entropies

In the presence of long-range interactions or memory ef-
fects persistent in time, it has been argued that MB entropy
may not be appropriate in describing such systems. For this
reason, many different versions of Eq.s6.1d have been pro-
posed in the literature. Very recently, Refs.f36,37g intro-
duced a biparametric deformation of the logarithmic function

lnhk,rjsxd =
xr+k − xr−k

2k
, s6.6d

which reduces, in thesk ,rd→ s0,0d limit, to the standard
logarithm: lnh0,0jsxd=ln x. By replacing the logarithmic func-
tion in Eq.s6.1d with its generalized versions6.6d, we obtain
a biparametric family of generalized entropies,

Sk,rsrd = −E r lnhk,rjsrddx, s6.7d

introduced, for the first time, in Refs.f38,39g. Remarkably,
this family of entropies includes, as special cases, some gen-
eralized entropies, well known in the literature, used in the
study of systems exhibiting distribution with asymptotic
power-law behavior. Among them, we can cite Tsallis en-
tropy f32g, which follows by posingr = ± uku,

Sqsrd =E rq − r

1 − q
dx, s6.8d

with q=1±2uku and Kaniadakis entropyf26g, for r =0,

Sksrd = −E r1+k − r1−k

2k
dx. s6.9d

Both of these entropies, as well as other one-parameter
deformed entropies, originating from Eq.s6.7d f37g, can be
employed to describe generalized statistical systems, such as,
for instance, charge particles in electric and magnetic fields
f40g, 2D turbulence in pure-electron plasmaf41g, brems-
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strahlungf42g, and anomalous diffusion of the correlated and
Lévy type f43,44g.

In addition to the many applications where Tsallis entropy
has been employedf45g, Kaniadakis entropys6.9d has been
successfully applied in the description of the energy distribu-
tion of fluxes of cosmic raysf26g, whereas the entropy in Eq.
s6.7d with k2=sr +1d2−1 has been applied in the generalized
statistical mechanical study ofq-deformed oscillators in the
framework of quantum groupsf46g.

Despite the topics recalled above, there is currently great
interest in studying quantum systems with long-range micro-
scopic interactions. Systems such as quantum wires, which
are now possible in practice thanks to recent technological
advances, require on theoretical grounds the development of
a quantumsnonlineard theory capable of capturing the emer-
gent factsf47g. The entropy in Eq.s6.7d arises from Eq.s2.1d
by posing

ln ksrd = l lnhk,rjS r

a
D , s6.10d

with l=s1+r −kdsr+kd/2k / s1+r +kdsr−kd/2k and a=fs1+r
−kd / s1+r +kdg1/2k.

Among the many different possibilities, we discuss the
case of linear drift withgsrd=r. By taking into account Eq.
s6.10d, we have continuity equations3.25d with

fsrd = a+rr+k − a−rr−k, s6.11d

wherea±=sr ±kds1+r ±kd /2k are constants.
The associated NSE assumes the expression

i"
]f

]t
= −

"2

2m
Df + mD2 fsrd

r
ffsrdDr + f̃srds=rd2gf

+ Vsxdf, s6.12d

with

f̃srd = b+rr+k−1 − b−rr−k−1, s6.13d

andb±=a±sr ±k−1/2d.
Equations6.12d contains only a purely real nonlinearity

and reduces to Eq.s6.4d in the sk ,rd→ s0,0d limit, as well as
Eq. s6.7d, which reduces to the standard BG entropy.

In particular, for Tsallis entropy, the continuity equation
s3.25d, with

fsrd = qrq−1, s6.14d

becomes the diffusive NFPEf48g while the corresponding
NSE is given through Eq.s6.12d with

f̃srd = Sq −
3

2
Drq−2, s6.15d

and reduces to Eq.s6.4d in the q→1 limit just as entropy
s6.8d reduces to BG entropy.

We observe that in Refs.f49,50g, the quantization of a
classical system described by Tsallis entropy has been al-
ready discussed. There, a NLS compatible with the continu-
ity equation]rm /]t+ = ·srmûdriftd=0 was obtained with a dif-

ferent approach. The nonlinearity appearing in the NLS of
Refs. f49,50g reduces, form=1 andq→2−q, to the same
one reported here.

On the other hand, for Kaniadakis entropy, the continuity
equation is given in Eq.s3.25d with

fsrd =
1

2
fsk + 1drk − sk − 1dr−kg, s6.16d

which coincides with that proposed in Ref.f26g while the
associated NSE is given in Eq.s6.12d with

f̃srd =
1

2r
Fsk + 1dSk −

1

2
Drk + sk − 1dSk +

1

2
Dr−kG ,

s6.17d

and reduces to Eq.s6.4d in the k→0 limit just as entropy
s6.9d reduces to BG entropy.

C. Interpolating bosons-fermions entropy

In Ref. f33g, on the basis of the generalized exclusion-
inclusion principle, the authors introduced a family of
NFPEs describing the evolution of a classical system of par-
ticles whose statistical behavior interpolates between bosonic
and fermionic particles. The equilibrium distribution gov-
erned by the EIP can be obtained by maximizing the follow-
ing entropy:

SEIPsrd = −E Fr ln r −
1

k
s1 + krdlns1 + krdGdx,

s6.18d

with −1økø1. In particular, fork= ±1 we recognize the
well-known Bose-Einstein and Fermi-Dirac entropies,
whereas intermediary behavior follows for −1,k,1. En-
tropy s6.18d can be obtained from Eq.s2.1d by posingasrd
=r andbsrd=1+kr.

Some examples of real physical systems where EIP can be
usefully applied are to be found in the Bose-Einstein conden-
sation. Typically, the cubic NSE is used to describe the be-
havior of the condensate by simulating in this way the sta-
tistical attraction between the many bodies constituting the
system. In spite of the simplest cubic interaction, other inter-
actions like the one introduced by the EIP can be adopted to
simulate an attraction among the particles.

In the opposite direction, almost-fermionic systems can be
found in the study of the motion of electrons and holes in a
semiconductor. In fact, while if separately considered elec-
trons and holes are fermions, together they constitute an ex-
cited state behaving differently from a fermion or a boson.
The same argument can be applied to the Cooper pair in the
superconductivity theory. Such excitation differs from a pure
boson state because of the spatial delocalization of the two
electrons, which are not completely overlying. Deviation
from Bose statistics must be taken into account.

In the following, we discuss separately two different
choices for functionalgsrd.

In the linear drift case, withcsrd=1/s1+krd, the evolu-
tion equation for fieldr assumes the expression
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]r

]t
+ = ·Sj0 − D

=r

1 + kr
D = 0, s6.19d

which was proposed in Ref.f22g. By means of Eq.s5.1d,
nonlinear currentj0−D=r / s1+krd→ j̃0 assumes the stan-
dard bilinear form and the corresponding NSE follows from
Eq. s5.10d,

i"
]f

]t
= −

"2

2m
Df +

mD2

s1 + krd2FDr

r
−

1 − 3kr

2s1 + krd
S=r

r
D2Gf

+ Vsxdf. s6.20d

We can observe that in Eq.s6.20d, the EIP is accounting
through a diffusion process and its effect vanishes in theD
→0 limit where it reduces to the standard linear Schrödinger
equation. Equations6.20d has a purely real nonlinearity de-
pending only on fieldr.

In a different way, by making the choicecsrd=1, the con-
tinuity equations3.25d becomes

]r

]t
+ = · fj0s1 + krd − D = rg = 0. s6.21d

The gauge transformation changes nonlinear currentj
; j0s1+krd−D=r→ j̃ ; j̃0s1+krd containing only a nonlin-
ear drift term and Eq.s6.21d reduces to

]r

]t
+ = · fj̃0s1 + krdg = 0. s6.22d

This equation was introduced at the classical level in Ref.
f33g and subsequently reconsidered at the quantum level in
Ref. f24g. The NSE associated with Eq.s6.22d is given by

i"
]f

]t
= −

"2

2m
Df +

mD2

1 + kr
FDr

r
−

1 + 2kr

2s1 + krd
S=r

r
D2Gf

+ k
m

r
S j̃

1 + kr
D2

f − ik
"

2r
= ·S j̃r

1 + kr
Df + Vsxdf.

s6.23d

We observe that Eq.s6.23d still has a complex nonlinearity
due to the nonlinear structure of quantum currentj̃ and both
the nonlinearitiesW andW depend on fieldsr ands. More-
over, in Eq.s6.23d, EIP is accounted through a nonlinear drift
term and survives even in the absence of a diffusion process
sD→0d.

Factor s1+krd in nonlinear currentj̃ takes into account
the EIP in the many-particle system. In fact, transition prob-
ability s2.15d from site x to y is defined aspst ,x→yd
=rst ,x ,x→ydrst ,xdf1+krst ,ydg. For kÞ0, the EIP holds
and parameterk quantifies to what extent particle kinetics is
affected by the particle population of the arrival site.

If k.0, thepst ,x→yd contains an inclusion principle. In
fact, the population density at arrival pointy stimulates the
particle transition and therefore transition probability in-
creases linearly withrst ,yd. Where k,0, the pst ,x→yd
takes into account the Pauli exclusion principle. If the arrival
point y is emptyrst ,yd=0, thepst ,x→yd depends only on
the population of the starting point. If the arrival site is popu-

lated 0,rst ,ydørmax, the transition is inhibited. The range
of values that parameterk can assume is limited by the con-
dition that pst ,x→yd be real and positive asrst ,x ,x→yd.
We may conclude thatkù−1/rmax.

A physical meaning of parameterk can be supplied by the
following considerations. We recall that Bose-Einstein and
Fermi-Dirac statistics originate from the fundamental prin-
ciple of indistinguishability in quantum mechanics, which is
closely related to the symmetrization of the wave function.
Completely symmetric wave functions are used to describe
bosons while fermions are described by completely antisym-
metric wave functions. Thus, intermediate statistics arise in
the presence of incomplete symmetrization or antisymmetri-
zation of the wave function and the concept of degree of
symmetrization or degree of antisymmetrization has been in-
troducedf33g. Parameterk has the meaning of degree of
indistinguishability of fermions or bosons, corresponding to
the degree of symmetrization or antisymmetrization, respec-
tively. Value k=−1 corresponds to the case of fermions and
denotes a complete antisymmetric wave function, whereas
valuek=1 corresponds to the case of bosons and denotes a
complete symmetric wave function. In addition, valuek=0
is associated with classical MB statistics and all the interme-
diate cases arise whenk assumes all the values between −1
and 1.

Equation s6.23d, for D=0, was obtained previously in
Ref. f24g, where the canonical quantization of the classical
system obeying EIP was accounted for. As discussed in Sec.
V, Eq. s6.23d differs from the NSE obtained inf24g for a real

nonlinearity originated from nonlinear potentialŨsrd
=−mD2s=rd2/rs1+krd and depending only on fieldr.

Finally, we observe that different from Eq.s6.20d, Eq.
s6.23d has vorticity different from zero. The Clebsh poten-
tials corresponding to currentj̃ =s=s /mdrs1+krd are given
by n=1+kr, l=s and m=const and vorticity assumes the
expression

v =
k

m
= r 3 = s. s6.24d

In Refs. f51,52g, localized, static, fermionlike vortex solu-
tions sk,0d were obtained and studied starting from Eq.
s6.23d with D=0. We observe that inf51,52g, a different
definition of the Clebsh potentials corresponding tom=l
=s and n=kr was adopted. Despite this, vorticity assumes
the same expression that is given by Eq.s6.24d in both cases.

EIP vortex solutions are important on theoretical grounds
and for interpretation of experimental results of several ap-
plications. For instance, they can be employed in the study of
fermionlike vortices observed in3He-A superfluidity or in
heavy fermion superconductors UPt3 and U0.97Th0.03Be13
f53–55g.

VII. CONCLUSIONS

We have presented the quantization of a classical system
of interacting particles obeying a kinetic interaction prin-
ciple. The KIP both fixes the expression of the Fokker-
Planck equation describing the kinetic evolution of the sys-
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tem and imposes the form of its entropy. In the framework of
canonical quantization, we have introduced a class of NSEs
with complex nonlinearity obtained from the classical system
obeying KIP. The form of nonlinearityLsc* ,cd is deter-
mined by functionalksrd, which also fixes the form of the
entropy of ancestor classical system.

Among the many interesting solutions of the family of
NSEs s3.31d, we observe that for a free system withVsxd
=0, and posingGsrd=0, the planar wave

cst,xd = A expS−
i

"
svt − k ·xdD , s7.1d

with constant amplitudeA=const is the simplest solution,
where the relationship betweenv andk is given by

v = U"2k2

2m

]gsrd
]r

U
r=A2

, s7.2d

and reduces to the standard dispersion relation forgsrd=r.
When the quantum system is in a stationary state such that

]rs/]t=0, the relationships between distributionrs and phase
os follow from Eq. s3.25d,

rs = k−1FexpSos
sxd

mD
− b8DG , s7.3d

which mimics the classical equilibrium distributions2.12d, as
can be seen by replacingossxd /mD with −bEsxd. Despite
this, we stress that such an analogy is purely formal. The
equivalence between Eqs.s2.12d and s7.3d requires that the
relation ossxd /mD=−bEsxd must hold. In the general case,
the expression of stationary phaseossxd must be obtained
from Eq.s3.24d, after posing]os/]t=0, with r given through
Eq. s7.3d.

Finally, another interesting class of possible solutions are
solitons. It is well know that soliton solutions in NSE arise
when the dispersive effects, principally due to term
−s"2/2mdDc, are exactly balanced by the nonlinear terms.
The existence of this class of solutions depends on the par-
ticular form of functionalsgsrd and ksrd which fix the ex-
pression of nonlinearitiesWsr ,Sd and Wsr ,Sd. A special
situation, where soliton solutions are found within the NSEs
derived in this paper, is given by the EIP equations6.23d
with D=0 f24g, wheregsrd=rs1+krd andksrd=r / s1+krd.

The study of soliton solutions for other functional choices
of gsrd andksrd, such as, for instance, the ones related to the
generalized entropies discussed in Sec. VI B, is a very im-
portant task which deserves further research. These solutions
may lead to practical applications. In fact, in recent years
there has been great interest in the formulation of models
where solitons can interact with a long-range forcef56g.
Typical nonlinear models supporting solitons, such as the
sine-Gordon model, arise from short-range forces. However,
there is experimental evidence that most real transfer mecha-
nisms have long-range interaction, as noted in condensed
matter theoryf57g or in spin glassesf58g.

APPENDIX A

We present proof of the Ehrenfest equations discussed in
Sec. IV. In the following, we assume uniform boundary con-
ditions on the fields in order to neglect the surface terms.

Let us rewrite Eq.s4.1d in a more suitable form. Account-
ing for the relation

d

dc
= c*S d

dr
−

i"

2r

d

dS
D , sA1d

Eq. s4.1d becomes

d

dt
kOl =

i

"
KFdH

dr
,OGL +

1

2
KH1

r

dH

dS
,OJL +K ]O

]t
L .

sA2d

Equations4.5d can be obtained starting from Eq.sA2d by
posingO=x,

d

dt
kxl =

i

"
E Fc* dH

dr
xc − c*x

dH

dr
cGdx

+
1

2
E Fc* 1

r

dH

dS
xc + c*x

1

r

dH

dS
cGdx

=E x
dH

dS
dx

= −E x = ·F=S

m
gsrd − Dfsrd = rGdx

=E F=S

m
gsrd − Dfsrd = rGdx

=E =S

m
gsrddx − DE = Fsrddx

=Kgsrd
r

ûdriftL , sA3d

where

Fsrd =Er

fsr8ddr8. sA4d

To show the validity of Eq.s4.6d, we poseO=−i"= in Eq.
sA2d so that

d

dt
kpl =E Fc* dH

dr
= c − c* = SdH

dr
cDGdx

− i
"

2
E Fc* 1

r

dH

dS
= c + c* = S1

r

dH

dS
cDGdx

=E dH

dr
sc* = c + c = c*d

− i
"

2
E 1

r

dH

dS
sc* = c − c = c*ddx

=E SdH

dr
= r +

dH

dS
= SDdx, sA5d
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where an integration by parts has been performed, and we
have posed

c* = c + c = c* = = r, sA6d

c* = c − c = c* = i
2

"
r = S. sA7d

Taking into account the relation

=H =
dH

dr
= r +

dH

dS
= S + r = Vsxd, sA8d

from Eq. sA5d it follows that

d

dt
kpl =E = H dx −E r = Vsxddx = kFextsxdl. sA9d

Equations4.7d can easily be obtained following the same
steps used in the proof of Eq.s4.6d.

Finally, by posingO=−s"2/2mdD+Usr ,Sd /r+Vsxd in
Eq. sA2d, whereUsr ,Sd is given in Eq.s3.23d, we have

dE

dt
=

i

"
E Hc* dH

dr
S−

"2

2m
D +

U

r
+ VDc − c*FS−

"2

2m
D +

U

r
+ VDdH

dr
cGJdx

+
1

2
E Hc* 1

r

dH

dS
S−

"2

2m
D +

U

r
+ VDc + c*FS−

"2

2m
D +

U

r
+ VD1

r

dH

dr
cGJdx +E r

]

]t
SU

r
+ VDdx

= −
i"

2m
E Fc* dH

dr
Dc − c*DSdH

dr
cDGdx +

i

"
E Fc* dH

dr
SU

r
+ VDc − c*SU

r
+ VDdH

dr
cGdx −

"2

4m
E Fc* 1

r

dH

dS
Dc

+ c*DS1

r

dH

dS
cDGdx +

1

2
E Fc* 1

r

dH

dS
SU

r
+ VDc + c*SU

r
+ VD1

r

dH

dS
cGdx +E r

]

]t
SU

r
Ddx

= −
i"

2m
E dH

dr
sc*Dc − cDc*ddx −

"2

4m
E 1

r

dH

dS
sc*Dc + cDc*ddx +E FdH

dS
SU

r
+ VD +

]U

]t
−

U

r

]r

]t
Gdx, sA10d

where a double integration by parts has been performed. Tak-
ing into account

−
i"

2m
sc*Dc − cDc*d = = ·S=S

m
rD , sA11d

c*Dc + cDc* = 2rFDÎr

Îr
− S=S

"
D2G , sA12d

which follow from Eq.s3.2d, and the relation

]U

]t
= S d

dr
E U dxD ]r

]t
+ S d

dS
E U dxD ]S

]t
, sA13d

Eq. sA10d becomes

dE

dt
=E HdH

dr
= ·S=S

m
rD −

"2

2m

dH

dS
FDÎr

Îr
− S=S

"
D2GJdx

+E FdH

dS
SU

r
+ VD + S d

dr
E U dx −

U

r
D ]r

]t

+ S d

dS
E U dxD ]S

]t
Gdx. sA14d

By using the relations

"2

2m
FDÎr

Îr
− S=S

"
D2G =

d

dr
E Udx −

dH

dr
+ V, sA15d

= ·S=S

m
rD =

d

dS
E Udx −

dH

dS
, sA16d

which follow from Eqs.s3.11d, s3.16d, and s3.23d, and mo-
tion equationss3.9d and s3.10d, we obtain

dE

dt
=E FdH

dr
S d

dS
E Udx −

dH

dS
D −

dH

dS
S d

dr
E Udx −

dH

dr

+ VDGdx +E FdH

dS
SU

r
+ VD +

dH

dS
S d

dr
E Udx −

U

r
D

−
dH

dr
S d

dS
E UdxDGdx = 0. sA17d

APPENDIX B

We briefly discuss the generalization of the theory for
quantum systems obeying the KIP and undergoing a diffu-
sive process with a diffusion coefficientDst ,xd depending
both on time and space position.

Given the following Hamiltonian density:
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Hsr,Sd =
s=Sd2

2m
gsrd +

"2

8m

s=rd2

r

− Dst,xdgsrd = ln ksrd · = S + Ũsrd + Vsxdr,

sB1d

from the Hamilton equationss3.9d and s3.10d we obtain the
NSE

i"
]c

]t
= −

"2

2m
Dc + fWsr,Sd + iWsr,Sdgc + Gsrdc + VsxdC,

sB2d

with nonlinearities

Wsr,Sd =
m

2
S ]gsrd

]r
− 1DS j0

r
D2

+ mgsrd
]

]r
ln ksrd = ·SDst,xd

j0
r
D + Gsrd

sB3d

and

Wsr,Sd = −
"

2mr
= hfgsrd − rg = Sj

+
1

2r
= · fDst,xdgsrd = ln ksrdg . sB4d

The system described by HamiltoniansB1d is dissipative
sincedE/dtÞ0. This is a consequence of the time depen-
dence ofD, which breaks the invariance of Eq.sB1d under
uniform time translation. In the same way, linear momentum
as well as angular momentum are no longer conserved, even

in the absence of the external potential, as a consequence of
the position dependence ofD, which breaks the invariance of
Eq. sB1d under uniform space translation and uniform space
rotation. This can also be seen from the Ehrenfest relations

d

dt
kxl =Kgsrd

r
ûdriftL − kDst,xdfsrd = ln rl , sB5d

d

dt
kpl = − mkAsr,Sd = Dst,xdl + kFextsxdl, sB6d

d

dt
kLl = − mkAsr,Sdfx 3 = Dst,xdgl + kMextsxdl, sB7d

dE

dt
= − mKAsr,Sd

]

]t
Dst,xdL , sB8d

whereAsr ,Sd= fsrd= ln r ·ûdrift.
Finally, the gauge transformation described in Sec. V

cannot be performed, in general, when the diffusion coeffi-
cient has spatial dependence. In fact, the transformation in
Eq. s5.1d is well defined only if the following condition is
fulfilled:

= 3 fDst,xd = ln ksrdg = 0, sB9d

as can be seen by applying the curl operator to both sides of
the equation

=s = = S − mDst,xd = ln ksrd, sB10d

which follows from Eqs.s3.26d ands5.3d. We remark that if
the dynamics of the system evolves in one spatial dimension,
Eq. sB9d is trivially verified and the transformation in Eq.
s5.1d can in all cases be accomplished.
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