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We derive a model describing spatiotemporal organization of an array of microtubules interacting via
molecular motors. Starting from a stochastic model of inelastic polar rods with a generic anisotropic interaction
kernel we obtain a set of equations for the local rods concentration and orientation. At large enough mean
density of rods and concentration of motors, the model describes orientational instability. We demonstrate that
the orientational instability leads to the formation of vortices &od large density and/or kernel anisotrgpy
asters seen in recent experiments.
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One of the most important functions of molecular motorsour analysis captures salient features of the phenomena. All
(MM) is to organize a network of long filamenimiicrotu-  rods are assumed to be of lendtland diameted<I, and
bules (MT)] during cell division to form cytoskeletons of are characterized by the centers of masand orientation
daughter celld1]. A number ofin vitro experiments were angle ¢.
performed[2-7] to study interaction of MM and MT in iso- Maxwell model Consider the orientational dynamics only
lation from other biophysical processes simultaneously ocand ignore the spatial coordinates of interacting ff@asana-
curring in vivo. At large enough concentrations of MM and |og of the Maxwell model of binary collisions in kinetic
MT, the latter organize iastersor vorticesdepending on the  heory of gasegsee, e.g.[12])]. Since the motor residence
type and concentration of MM. . time on MT (about 10 $is much smaller than the character-

After MM binds to a microtubule at a random position, it istic time of pattern formatiorabout 1 h, we model the

marches along it in a fixed direction until it unbinds without ; s : . L
; - : MM-MT inelastic interaction by an instantaneous collision in
appreciable displacement of the MT. If a MM bindstteo which two rods change their orientations

MTs, it can change their mutual position and orientation sig-
nificantly. In Ref.[5], the interaction of rodlike filaments via 5 y 1-y\[¢®
motor binding and motion has been studied, and patterns a :<1_ ) b | 1)
resembling experimental ones were observed.8ina phe- b2 Yy ov I\

nomenological model for the MM density and the MT orien- where¢? , are orientations before antf , after the collision,
tation has been proposed. Refererié¢ generalized this d characterizes the inelasticity of collisions, afyh— ¢

model by including separate densities of free and boun $o< . The angle between two rods is reduced after the
MM, as well as the density of the MT. They found the tran- . |;ision by a factor 3—1. y=0 corresponds to a totally

sition f{f_m ;sters to vorttlcgti, as thg detnsllty .(g‘{%/lﬂ:'\gq'st N" glastic collision (the rods exchange their angleand
fr:gaasseterlsngi\I/sc'ea\g/]vrae;/e tn(;e\?or\t,i\ges?/z/(i%:rclg:lgiggﬁ\gMM co?- 7:1/-2 corres pond_s o 2 tOtf Ilybinetl)astic collision: rods
. ; . . _acquire identical orientatiogh] ,=(¢;+ ¢5)/2 [see Fig. 18)].
centration. A phenomenological flux-force relation for active . \ve assume that two rods only interact if the angle
gels was applied ih10]. While vortex and aster solutions between them is less thak, Because of 2 periodicity, we
were obtained, an analysis of that model is difficult becaus«—‘ﬁave to add the rule of éollision between two roés with
of a large number of unknown parameters. In R&t] a set 2= by <| b_ b|<2 In thi h i |
of equations for MT density and orientation was derived by 7= do<|ppm fy| <2 In _'S case we have 0_ replace
b,a b,a b,a b,a
averaging conservation laws for the MT probability distribu- #1~— $1°+ 7, ¢ — ¢;°=min Eq.(1). In the following we
tion function. However, this model does not exhibit orienta-Will only consider the case of totally inelastic rods
tion transition for homogeneous MT distributions. (y=1/2) and ¢o=, the generalization for arbitrary and ¢,
Here we derive a model for the collective spatiotemporal
dynamics of MTs starting with a master equation for inter- b
acting inelastic polar rods. Our model differs from the trans-
port equation$11] in that it maintains the detailed balance of
rods with a certain orientation. The model exhibits an onset
of orientational order for large enough density of MT and ;
MM, formation of vortices and then asters with increase in
the MM concentration. N
MMs enter the model implicitly by specifying the inter- y
action rules between two rods. Since the diffusion of MMs is (5) d
about 100 times higher than that of MTs, as the first step we
neglect spatial variations of the MM density. While variable  FIG. 1. (a) sketch of a motor-mediated two-rod interaction for
MM concentration affects certain quantitative aspddth y=1/2, (b) integration region<; , for Eq. (2).
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FIG. 2. Stationary solutionB(¢) for different p. Inset: the sta- FIG. 3. Phase boundaries obtained from the linear stability
tionary value of/7| vs p obtained from the Maxwell modéB); the ~ analysis of aster solution fd8?=0.05, the dashed line shows the
dashed line is the truncated mod8). bundling instability limit pg> p,=5. Inset: The position of critical

pointH; vs B at pp=4.5.
is straightforward 13]. The probabilityP(¢) obeys the fol-

: on: . s .
lowing master equation Py + P, = 2(4 - m)PoP, - §P2P1, ©6)
aP:Da2P+JddPP :
iP(¢) =D, 7yP(¢) +9 ‘. $1dd,P(¢1)P(2) B, + 4P, = - 27PyP, + 27P2. o
X [8(p— Pp1/2 = pol2) = 8(b— )] Since near the instability threshold the decay rat@.ois
much larger than the growth rate B%, we can neglect the
+gf dp1d P (p1) P(po)[ 8(p — 112 time derivativeP, and obtainP,=AP? with A=2m(p+4)~"
G, and arrive at

= ¢l2 =) = 8(p= )], 2

whereg is the “collision rate” proportional to the number of B i B
MM, the diffusion term=D, describes the thermal fluctua- With €=p(4m"~1)—~1=0.279~1 andA,=8A/3. For large
tions of rod orientation, and the integration doma@sC,  €nough p>p.=m/(4-m)~3.662, an ordering instability

7= er— Ay 7%, (8)

are shown in Fig. (). Changing variablest— Dit, leads to spontaneous rods alignment. This instability satu-
P—gP/D,, W= ¢,— ¢, one obtains rates at the value determined by Close to the threshold
Ay~ 2.18. Figure 2 shows stationary solutidPp) obtained

ko

_ from Eq. (3). As seen from the inset, the corresponding val-

WdMP(¢+W/2)P(¢ wi2) ues of|7| are consistent with Eq8) up top<5.5.

To describe thespatial localizationof interactions, we

- P(¢)P(p—w)]. (3 introduce the probability distributioR(r , ¢,t) to find a rod
The rescaled number dens}iycfg’TP(qb t)de now is propor- with orientation¢ at locationr at timet. The master equa-
tional to the density of rods multiplied by the density of fion for P(r,¢,t) can be written as
motors. Let us consider the Fourier harmonics
GP(r,¢) = HP(r, ) + 3D ,P(r, )

amw=ﬁmw+]

) 1 2 ) ‘f’
_ (eikdy — T ik 0
Pu=(e™) = wao dgeOP(AD. @ +fjdr1drzj¢ dW{W(fl,fzﬂﬁ
]
The zeroth harmonid?y=p/2m=const, and the real and +WI2,—WI2)P(r 1, b+ WI2)P(r 5, b — WI2)
imaginary parts of; represent the components=(cos ¢, ' ’ '
7,=(sin$) of the average orientation vectef 7,+iz,=P}. X5<r1+ 2 _ r) Wb = W)P(T 1 )
Substituting(4) into Eq. (3) yields e ’

Pk+ K2+ p)Py =272, PP 7ki2 -ma].  (5) XP(rq,p=wW)8(r,— r)] , (9)
m
(here S(x)=sinx/x). Due to the angular diffusion term, the where we performed the same rescaling as in @y.and
magnitudes of harmonics decay exponentially wkh As-  dropped argument for brevity. The first two terms in the
sumingP,=0 for |k| >2 one obtains from Eq(5) right-hand-side of9) describe angular and translational dif-
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FIG. 4. Stationary vortex and aster solutiong+ir
=F(r)exdif+ie(r)] to Eq.(12), for py=4, B=0.05.

fusion of rods with the diffusion tensdp;;=(1/D,)[Dnn;
+D, (§;—nny)]. Here n=[cos¢,sing]. D;,D;,D, are
known in polymer physicsD=kgT/§, D, =kgT/&,, D,
=4kgT/¢,, where §,¢&,,& are corresponding drag coeffi-
cients. For rodlike molecules;=27nd/log(l/d); &, =2¢;
&~ mnd3/3log(l/d) where 7 is shear viscosity14].

The last term of Eq(9) describes the MM-mediated in-
teraction of rods. We assume that after the interaction, th
two rods acquire the same orientation and the same spati
location in the middle of their original locations. The inter-
action kerneW is localized in space, but in general does not

have to be isotropic. On the symmetry grounds we assume

the following form[we assume two-dimension&D) geom-
etry and neglect higher-order anisotropic correctlons

1 _ 2
W= EGXP[_ %][1 +B(ry—ry)(ny—nyJ,

with b=I=const. This form implies that only nearby MTs
interact effectively due to the MMs. Th@(8) anisotropic

term describes the dependence of the coupling strength on

the MT mutual orientation: “diverging” polar rodsuch as
shown in Fig. 1a)] interact stronger than “converging” ones.
This is the simplest term yielding nontrivial coupling be-
tween density and orientation. We perform a Fourier expan
sion in ¢ and truncate the series @ > 2, 27P, gives the
local number densityp, and P,; the local orientations.
Omitting calculations(see[13]), rescaling space b}, and
introducing parameterB8=b/I, H=IB?, we arrive at

p B%? mB?H
Ap=V? —=-—=|+——[3V - (#V?p-pV?
o [32 16] 16[ (7Vp - pV<7)
7poB*
+20(3pdm = aipdym)] =~ =V, (10)
5 1 Vp?
r=—V27+—V (V-7 +er— 27+ H| —
= T0pY T tgp Y (Ve AdrlT Lew

2
- (77— g)f(v )~ g(TV)T] + %’VZT. (11)
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FIG. 5. Orientationr for vortices (H=0.006, lef} and asters
(H=0.125, right obtained from Eqs(10) and(11). The color code
indicates the intensity dfr| (red corresponds to maximum and blue
to zerg, B2=0.05, pp=4, domain of integration 88 80 units, time
of integration 1000 units.

The last two terms in Eq$10) and(11) are linearized near
the mean densitpy=(p). The last term in Eq(10) regular-
izes the short-wave instability when the diffusion term
changes sign folp,>p,=1/4B°. This instability leads to
strong density variations associated with formation of MT
bundles(see Fig. 3.

Aster and vortex solution$f B°H<1, the density modu-
lations are rather small, and E@l1) for orientation =
decouples from Eq10). It is convenient to rewrite Eq11)
for complex variabley=r+ir, in polar coordinates, ¢:
Y=F(r)exdif+ie(r)] where the amplitudeF(r) and the
phasee(r) are real functions. For the aster solutipfr)=0
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and for the vortexp(r) # 0. Asters and vortices can be exam- small e>0. The phase diagram is consistent with experi-
ined in the framework of a one-dimensional problem forments, see Ref5]: for low value of kernel anisotropyd

V= \sWOF(r)exdigo(r)]: < H, (possibly corresponding to kinesin motpiscrease of
the densitypy first leads to formation of vortices and then
asters. ForH>H_ (possibly corresponding to the second
type of MM of Ref.[5]) only asters are observed.

For H # 0 well-separated vortices and asters exhibit expo-
an|mV) (120  nentially weak interaction. For asters it follows from the fact
r ' that L is not a self-adjoint operator. Null space Iof expo-

where A,=@2+r719,-r 2, V,=g,+17%, D;=1/32+p,B%/ 4, nentially decays at large w~exd—r/Lq] Xvith the screen-
D,=1/192, a,=(m—8/3)/Ag=0.321, a,=8/3/A,~1.81, ing length in the original unit$.0:D/a2H\_e"e (see[16]). _

We studied Eqs(10) and (11) numerically. Integration
was performed in a two-dimensional square domain with pe-
riodic boundary conditions by a quasi-spectral method. For
small H we observed vortices and for larger asters, in
agreement with the above analysis. As seen in Fig. 5, asters
have unique orientation of the microtubuléere, towards
the center Asters with opposite orientation of are un-
stable. In large domains, asters form a disordered network of
cells with a cell size of the order &f;. Neighboring cells are
separated by the “shock lines” containing saddle-type de-
fects. Starting from a random initial condition we observed
initial merging and annihilation of asters. Eventually, annihi-
lation slows down due to exponential weakening of the in-
teraction.

a4V =D;AV+D,AV +(1-|VJ)V- H<a1VReVrV

+ 8,0, VReV +

and we rescaled timé—t/e and space by—>r/\s"2. The
aster and vortex solutions for certain parameter values o
tained by numerical integration of E(L2) are shown in Fig.
4. Vortices are observed only for small values-baind give
way to asters for largeid. For H=0, Eq.(12) reduces to a
form that was studied ipl15]. It was shown in15] that the
term A,V favors vortex solution(¢=7/2). In contrast, the
terms proportional tdd select asters. Increasirtd) leads to
gradual reduction ofp, and at a finiteHy(pg) &(r)=0, i.e.,
the transition from vortices to asters occurs. Ferld<H,,
the vortex solution has a nontrivial structure. As seen in Fig
4, the phase— 0 forr — oo, i.e., vortices and asters become
indistinguishable far away from the core.

The phase.diagrar.n is shown in Eig. 3. The solid line We derived continuous equations for the evolution of MT
HO(’)O) sepqratmg vortices from aster-s is obtained from SOIu'Concentration and orientation. We found that an initially dis-
tion of the linearized Eq(12) by tracking the most unstable ,jered system exhibits an ordering instability similar to a
eigenvaluex of thg aster. For this purpose the solution to EQ.hematic phase transition in ordinary polymers at high den-
(12) was sought in the formv=F+iw exp(\t), where realv  gjry The important difference is that here the ordering insta-

obeysLw=Aw with operator bility is mediated by MM and can occur at arbitrary low
O ) densities of MT. At the nonlinear stage, the instability leads
L=DA, +(1-F"-aHVF) -a,HFV, (13)  to experimenatlly observed formation of asters and vortices.

(D=D;-D,). Eq. (13) was solved by the matching-shooting  We thank Leo Kadanoff, Jacques Prost, and Valerii
method. The dashed line corresponds to the orientation traninokur for useful discussions. This work was supported by
sition limit pg=p.. The lines meet in a critical pointd,  the U.S. DOE, Grants No. W-31-109-ENG-38A.) and
=Hy(p.) above which vortices are unstable for arbitrary DE-FG02-04ER46135L.T.).
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