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We derive a model describing spatiotemporal organization of an array of microtubules interacting via
molecular motors. Starting from a stochastic model of inelastic polar rods with a generic anisotropic interaction
kernel we obtain a set of equations for the local rods concentration and orientation. At large enough mean
density of rods and concentration of motors, the model describes orientational instability. We demonstrate that
the orientational instability leads to the formation of vortices andsfor large density and/or kernel anisotropyd
asters seen in recent experiments.

DOI: 10.1103/PhysRevE.71.050901 PACS numberssd: 87.16.2b, 05.65.1b, 47.54.1r

One of the most important functions of molecular motors
sMM d is to organize a network of long filamentsfmicrotu-
bules sMTdg during cell division to form cytoskeletons of
daughter cellsf1g. A number of in vitro experiments were
performedf2–7g to study interaction of MM and MT in iso-
lation from other biophysical processes simultaneously oc-
curring in vivo. At large enough concentrations of MM and
MT, the latter organize inastersor vorticesdepending on the
type and concentration of MM.

After MM binds to a microtubule at a random position, it
marches along it in a fixed direction until it unbinds without
appreciable displacement of the MT. If a MM binds totwo
MTs, it can change their mutual position and orientation sig-
nificantly. In Ref.f5g, the interaction of rodlike filaments via
motor binding and motion has been studied, and patterns
resembling experimental ones were observed. Inf8g a phe-
nomenological model for the MM density and the MT orien-
tation has been proposed. Referencef9g generalized this
model by including separate densities of free and bound
MM, as well as the density of the MT. They found the tran-
sition from asters to vortices, as the density of MM is in-
creased in disagreement with experimental evidencef7g that
the asters give way to vortices withdecreasingthe MM con-
centration. A phenomenological flux-force relation for active
gels was applied inf10g. While vortex and aster solutions
were obtained, an analysis of that model is difficult because
of a large number of unknown parameters. In Ref.f11g a set
of equations for MT density and orientation was derived by
averaging conservation laws for the MT probability distribu-
tion function. However, this model does not exhibit orienta-
tion transition for homogeneous MT distributions.

Here we derive a model for the collective spatiotemporal
dynamics of MTs starting with a master equation for inter-
acting inelastic polar rods. Our model differs from the trans-
port equationsf11g in that it maintains the detailed balance of
rods with a certain orientation. The model exhibits an onset
of orientational order for large enough density of MT and
MM, formation of vortices and then asters with increase in
the MM concentration.

MMs enter the model implicitly by specifying the inter-
action rules between two rods. Since the diffusion of MMs is
about 100 times higher than that of MTs, as the first step we
neglect spatial variations of the MM density. While variable
MM concentration affects certain quantitative aspectsf7g,

our analysis captures salient features of the phenomena. All
rods are assumed to be of lengthl and diameterd! l, and
are characterized by the centers of massr and orientation
anglef.

Maxwell model. Consider the orientational dynamics only
and ignore the spatial coordinates of interacting rodsfan ana-
log of the Maxwell model of binary collisions in kinetic
theory of gasesssee, e.g.,f12gdg. Since the motor residence
time on MT sabout 10 sd is much smaller than the character-
istic time of pattern formationsabout 1 hd, we model the
MM-MT inelastic interaction by an instantaneous collision in
which two rods change their orientations
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b are orientations before andf1,2

a after the collision,
g characterizes the inelasticity of collisions, anduf2

b−f1
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,f0,p. The angle between two rods is reduced after the
collision by a factor 2g−1. g=0 corresponds to a totally
elastic collision sthe rods exchange their anglesd and
g=1/2 corresponds to a totally inelastic collision: rods
acquire identical orientationf1,2

a =sf1
b+f2

bd /2 fsee Fig. 1sadg.
Here we assume that two rods only interact if the angle
between them is less thanf0. Because of 2p periodicity, we
have to add the rule of collision between two rods with
2p−f0, uf2

b−f1
bu,2p. In this case we have to replace

f1
b,a→f1

b,a+p ,f2
b,a→f2

b,a−p in Eq. s1d. In the following we
will only consider the case of totally inelastic rods
sg=1/2d andf0=p, the generalization for arbitraryg andf0

FIG. 1. sad sketch of a motor-mediated two-rod interaction for
g=1/2, sbd integration regionsC1,2 for Eq. s2d.
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is straightforwardf13g. The probabilityPsfd obeys the fol-
lowing master equation:

]tPsfd = Dr]f
2Psfd + gE

C1

df1df2Psf1dPsf2d

3 fdsf − f1/2 − f2/2d − dsf − f2dg

+ gE
C2

df1df2Psf1dPsf2dfdsf − f1/2

− f2/2 − pd − dsf − f2dg, s2d

whereg is the “collision rate” proportional to the number of
MM, the diffusion term~Dr describes the thermal fluctua-
tions of rod orientation, and the integration domainsC1,C2
are shown in Fig. 1sbd. Changing variablest→Drt,
P→gP/Dr, w=f2−f1, one obtains

]tPsfd = ]f
2Psfd +E

−p

p

dwfPsf + w/2dPsf − w/2d

− PsfdPsf − wdg. s3d

The rescaled number densityr=e0
2pPsf ,tddf now is propor-

tional to the density of rods multiplied by the density of
motors. Let us consider the Fourier harmonics

Pk = ke−ikfl =
1

2p
E

0

2p

dfe−ikfPsf,td. s4d

The zeroth harmonicP0=r /2p=const, and the real and
imaginary parts ofP1 represent the componentstx=kcosfl,
ty=ksinfl of the average orientation vectort, tx+ ity=P1

* .
Substitutings4d into Eq. s3d yields

Ṗk + sk2 + rdPk = 2po
m

Pk−mPmSfpk/2 − mpg. s5d

shereSsxd=sinx/xd. Due to the angular diffusion term, the
magnitudes of harmonics decay exponentially withuku. As-
sumingPk=0 for uku.2 one obtains from Eq.s5d

Ṗ1 + P1 = 2s4 − pdP0P1 −
8

3
P2P1

* , s6d

Ṗ2 + 4P2 = − 2pP0P2 + 2pP1
2. s7d

Since near the instability threshold the decay rate ofP2 is
much larger than the growth rate ofP1, we can neglect the

time derivativeṖ2 and obtainP2=AP1
2 with A=2psr+4d−1

and arrive at

ṫ = et − A0utu2t, s8d

with e=rs4p−1−1d−1<0.273r−1 andA0=8A/3. For large
enough r.rc=p / s4−pd<3.662, an ordering instability
leads to spontaneous rods alignment. This instability satu-
rates at the value determined byr. Close to the threshold
A0<2.18. Figure 2 shows stationary solutionsPsfd obtained
from Eq. s3d. As seen from the inset, the corresponding val-
ues ofutu are consistent with Eq.s8d up to r,5.5.

To describe thespatial localizationof interactions, we
introduce the probability distributionPsr ,f ,td to find a rod
with orientationf at locationr at time t. The master equa-
tion for Psr ,f ,td can be written as

]tPsr ,fd = ]f
2Psr ,fd + ]iDij] jPsr ,fd

+E E dr 1dr 2E
−f0

f0

dwFWsr 1,r 2,f

+ w/2,f − w/2dPsr 1,f + w/2dPsr 2,f − w/2d

3dS r 1 + r 2

2
− rD − Wsr 1,r 2,f,f − wdPsr 2,fd

3Psr 1,f − wddsr 2 − r dG , s9d

where we performed the same rescaling as in Eq.s3d and
dropped argumentt for brevity. The first two terms in the
right-hand-side ofs9d describe angular and translational dif-

FIG. 2. Stationary solutionsPsfd for different r. Inset: the sta-
tionary value ofutu vs r obtained from the Maxwell models3d; the
dashed line is the truncated models8d.

FIG. 3. Phase boundaries obtained from the linear stability
analysis of aster solution forB2=0.05, the dashed line shows the
bundling instability limit r0.rb=5. Inset: The position of critical
point Hc vs B at r0=4.5.
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fusion of rods with the diffusion tensorDij =s1/DrdfDininj

+D'sdi j −ninjdg. Here n=fcosf ,sinfg. Dr ,Di ,D' are
known in polymer physics:Di=kBT/ji, D'=kBT/j', Dr
=4kBT/jr, where ji ,j' ,jr are corresponding drag coeffi-
cients. For rodlike molecules,ji=2phsl / logsl /dd; j'=2ji;
jr <phsl

3/3logsl /dd wherehs is shear viscosityf14g.
The last term of Eq.s9d describes the MM-mediated in-

teraction of rods. We assume that after the interaction, the
two rods acquire the same orientation and the same spatial
location in the middle of their original locations. The inter-
action kernelW is localized in space, but in general does not
have to be isotropic. On the symmetry grounds we assume
the following formfwe assume two-dimensionals2Dd geom-
etry and neglect higher-order anisotropic correctionsg:

W=
1

b2p
expF−

sr 1 − r 2d2

b2 Gf1 + bsr 1 − r 2dsn1 − n2dg,

with b< l =const. This form implies that only nearby MTs
interact effectively due to the MMs. TheOsbd anisotropic
term describes the dependence of the coupling strength on
the MT mutual orientation: “diverging” polar rodsfsuch as
shown in Fig. 1sadg interact stronger than “converging” ones.
This is the simplest term yielding nontrivial coupling be-
tween density and orientation. We perform a Fourier expan-
sion in f and truncate the series atunu.2, 2pP0 gives the
local number densityr, and P±1 the local orientationt.
Omitting calculationsssee f13gd, rescaling space byl, and
introducing parametersB=b/ l, H=blB2, we arrive at

]tr = =2F r

32
−

B2r2

16
G +

pB2H

16
f3 = · st=2r − r=2td

+ 2]is] jr] jti − ]ir] jt jdg −
7r0B

4

256
=4r, s10d

]tt =
5

192
=2t +

1

96
= s= · td + et − A0utu2t + HF=r2

16p

− Sp −
8

3
Dts= · td −

8

3
st = dtG +

B2r0

4p
=2t. s11d

The last two terms in Eqs.s10d and s11d are linearized near
the mean densityr0=krl. The last term in Eq.s10d regular-
izes the short-wave instability when the diffusion term
changes sign forr0.rb=1/4B2. This instability leads to
strong density variations associated with formation of MT
bundlesssee Fig. 3d.

Aster and vortex solutions. If B2H!1, the density modu-
lations are rather small, and Eq.s11d for orientation t
decouples from Eq.s10d. It is convenient to rewrite Eq.s11d
for complex variablec=tx+ ity in polar coordinatesr ,u:
c=Fsrdexpfiu+ iwsrdg where the amplitudeFsrd and the
phasewsrd are real functions. For the aster solutionwsrd=0

FIG. 4. Stationary vortex and aster solutionstx+ ity

=Fsrdexpfiu+ iwsrdg to Eq. s12d, for r0=4, B2=0.05.

FIG. 5. Orientationt for vortices sH=0.006, leftd and asters
sH=0.125, rightd obtained from Eqs.s10d ands11d. The color code
indicates the intensity ofutu sred corresponds to maximum and blue
to zerod, B2=0.05,r0=4, domain of integration 80380 units, time
of integration 1000 units.
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and for the vortexwsrdÞ0. Asters and vortices can be exam-
ined in the framework of a one-dimensional problem for
V=ÎA0Fsrdexpfiwsrdg:

]tV = D1DrV + D2DrV
* + s1 − uVu2dV − HSa1VRe¹rV

+ a2]rVReV +
a2VImV

r
D , s12d

where Dr =]r
2+r−1]r −r−2, ¹r =]r +r−1, D1=1/32+r0B

2/4p,

D2=1/192, a1=sp−8/3d /ÎA0<0.321, a2=8/3ÎA0<1.81,
and we rescaled timet→ t /e and space byr → r /Îe. The
aster and vortex solutions for certain parameter values ob-
tained by numerical integration of Eq.s12d are shown in Fig.
4. Vortices are observed only for small values ofH and give
way to asters for largerH. For H=0, Eq. s12d reduces to a
form that was studied inf15g. It was shown inf15g that the
term DrV

* favors vortex solutionsw=p /2d. In contrast, the
terms proportional toH select asters. IncreasingH leads to
gradual reduction ofw, and at a finiteH0sr0d fsrd=0, i.e.,
the transition from vortices to asters occurs. For 0,H,H0,
the vortex solution has a nontrivial structure. As seen in Fig.
4, the phasew→0 for r →`, i.e., vortices and asters become
indistinguishable far away from the core.

The phase diagram is shown in Fig. 3. The solid line
H0sr0d separating vortices from asters is obtained from solu-
tion of the linearized Eq.s12d by tracking the most unstable
eigenvaluel of the aster. For this purpose the solution to Eq.
s12d was sought in the formV=F+ iw expsltd, where realw

obeysL̂w=lw with operator

L̂ ; D̄Dr + s1 − F2 − a1H¹rFd − a2HF¹r s13d

sD̄=D1−D2d. Eq. s13d was solved by the matching-shooting
method. The dashed line corresponds to the orientation tran-
sition limit r0=rc. The lines meet in a critical pointHc
=H0srcd above which vortices are unstable for arbitrary

small e.0. The phase diagram is consistent with experi-
ments, see Ref.f5g: for low value of kernel anisotropyH
,Hc spossibly corresponding to kinesin motorsd increase of
the densityr0 first leads to formation of vortices and then
asters. ForH.Hc spossibly corresponding to the second
type of MM of Ref. f5gd only asters are observed.

For HÞ0 well-separated vortices and asters exhibit expo-
nentially weak interaction. For asters it follows from the fact

that L̂ is not a self-adjoint operator. Null space ofL̂† expo-
nentially decays at larger, w,expf−r /L0g with the screen-

ing length in the original unitsL0=D̄ /a2HÎe sseef16gd.
We studied Eqs.s10d and s11d numerically. Integration

was performed in a two-dimensional square domain with pe-
riodic boundary conditions by a quasi-spectral method. For
small H we observed vortices and for largerH asters, in
agreement with the above analysis. As seen in Fig. 5, asters
have unique orientation of the microtubulesshere, towards
the centerd. Asters with opposite orientation oft are un-
stable. In large domains, asters form a disordered network of
cells with a cell size of the order ofL0. Neighboring cells are
separated by the “shock lines” containing saddle-type de-
fects. Starting from a random initial condition we observed
initial merging and annihilation of asters. Eventually, annihi-
lation slows down due to exponential weakening of the in-
teraction.

We derived continuous equations for the evolution of MT
concentration and orientation. We found that an initially dis-
ordered system exhibits an ordering instability similar to a
nematic phase transition in ordinary polymers at high den-
sity. The important difference is that here the ordering insta-
bility is mediated by MM and can occur at arbitrary low
densities of MT. At the nonlinear stage, the instability leads
to experimenatlly observed formation of asters and vortices.
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