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Phase diagram of the Gaussian-core model
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We trace with high numerical accuracy the phase diagram of the Gaussian-core model, a classical system of
point particles interacting via a Gaussian-shaped, purely repulsive potential. This model, which provides a
reliable qualitative description of the thermal behavior of interpenetrable globular polymers, is known to
exhibit a polymorphic fcc-bece transition at low densities and reentrant melting at high densities. Extensive
Monte Carlo simulations, carried out in conjunction with accurate calculations of the solid free energies, lead
to a thermodynamic scenario that is partially modified with respect to previous knowledge. In particular, we
find that:(i) the fluid-bcc-fcc triple-point temperature is about one third of the maximum freezing temperature;
(i) upon isothermal compression, the model exhibits a fluid-bcc-fcc-bece-fluid sequence of phases in a narrow
range of temperatures just above the triple point. We discuss these results in relation to the behavior of
star-polymer solutions and of other softly repulsive systems.
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It is common knowledge that crystallization is induced bykg is Boltzmann’s constant, and =pc®). Indeed, a straight-
the strong Pauli repulsion between inner-shell electronsforward calculation of the total energy of different cubic
causing thesffectiveinteratomic potential to blow up at short crystal structures shows that the fcc structure is favored, at
distances. However, the existence of a thermodynamicallgero temperature, only for reduced densities lower than
stable solid phase does not necessarily require a singular r& >2=0.1796. Beyond this threshold, a body-centered-cubic
pulsion for vanishing interatomic separations. As a matter ofPcc solid takes over. However, upon compression, any
fact, a finite square barrier, equal to a positive constdnt regular arrangement of particles is eventually destined to col-
distances smaller than a given diametebeing zero other- |apse for anyr>0 (reentrant melting[7].
wise, is an example of a bounded repulsion that supports a A comprehensive study of the phase diagram of the GCM

stable solid at all temperaturdd,2]. In this respect, a Was recently carried out by Lang and co-work#s These
Gaussian-shaped potential authors employed an approximate integral-equation theory to

describe the disordered phase and a variationally adjusted
- _ 2 harmonic interaction for the crystalline phases. The resulting
= 1 . . ;
v(r) = eexp(=r¥/o?), @ phase diagrantsee Fig. 9 of Ref[4]) accounts for the exis-
is a more realistic finite-strength repulsion. The so-calledence of a fluid phase and two solid phases. More specifi-
Gaussian-core moddlGCM) was introduced by Stillinger Cally the solid was found to be thermodynamically stable for
[3]. Such a potential, despite the fact that it is finite even afémperatures lower thaf,,,=0.0102, a temperature at
full overlap between the particles, is nonetheless perfectl)‘i"h'gg tge fLeezT]\g Imglattalns ét.s rInaX|mufr|n.\éague F’?ﬁax ol
admissible as an effective potential. Actually, it is used to_o.' " ?h 'tT ep atse t'agr?mf l'ISP ?)iso%oéﬂ?é C_;_:h Cc]c triple
represent the entropic repulsion betwétre centers of mass pﬁ:':se tarn\glaos te?omt])?e estabc:e a;)ela[u_'n. the Io' -de(ra]s'fc
of) self-avoiding polymer coils dispersed in a good solvent & u N u N Oy | W ty
[4-6]. Two distinctive features of the GCM, which are ab- region (for p* less than~0.17, whereas the bee structure
sent in the simpler penetrable-sphere system, (@réhe ex- prevails for larger temperatures and densities.

istence of a maximum freezing temperaturg,, and(ii) the A parallel r_1ume_r|cal study of the phase dl_agram of star-
occurrence, belowl., of reentrant melting into a dense polymer solutions in a good solvent was carried out under a

fluid phase. Stillinger noted in his original paper that, in thedn‘ferent assumption for the effective pair potential, modeled

I S . with an ultrasoft logarithmic repulsion within a diameter
limit of vanishing temperature and density, the GCM par- . . : )

. . e . and with a Yukawa potential outside the cp8¢ In this case,
ticles practically behave as hard spheres with increasingl

large diameter. In this limit, the fluid freezes into a face—}(/Ionte Carlo(MC) simulations and free-energy calculations

; lead to a phase diagram that shows a rather complicated in-
pentereq cubigfcc) structure _at a temperatuii(p) that van terplay between various cubic phases. It is desirable to have
ishes with the number densigy (from now on, temperature

. : ) . g a similarly full-fledged analysis also for the GCM.
and density will be given in reduced uni®,=kgT/ €, where To this purpose, we performed standard Metropolis MC

simulations of the GCM, keeping the number of partidigs
the volumeV, and the temperatur€é constant. We used the

*Corresponding author. Electronic address: particle-insertion methofP] and the Frenkel-Ladd technique
Santi.Prestipino@unime.it [10,1]] to calculate the “exact” free energies of the dilute
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TABLE I. Excess Helmholtz free energy per parti€lg, in units

of kgT, calculated for some fcdN=1372 and bcc(N=1458 solid 0.4
states of the GCM. Fof =0.003 and 0.006, the tabulated values
refer to systems with 864 and 1024 particles, respectively. For each
state and solid structure, we also displayithin square brackets

the value of the reduced elastic constaittco?/ e that intervenes

in the Frenkel-Ladd calculation: for the given the mean square 0.2
displacement of the Einstein crystal approximately matches the 3
mean square deviation of a GCM particle from its reference crystal g.
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site. For a number of selected andT", we verified that the quan- 0.1

tity Bfe,(N)+In N/N, with 8=(kgT)™%, scales linearly witiN"? for

largeN, in agreement with a conjecture formulated ir]. P S N S \V
\‘a:-
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0.30 0.0020 195.7@3) [0.30] 195.3121) [0.45] :—}|UJ“UJ“” il il el
0.24 0.0030 86.252) [0.35] 86.0571) [0.39] 0 5 10 15 200 400 600
0.24 0.0033 78.992) [0.34] 78.8141) [0.38 pPo?
0.24 0.0035 74.838) [0.33 74.6641) [0.38
0.24 0.0037 71.122) [0.33 70.9611) [0.38] FIG. 1. Difference between the chemical potentials of pairs of
0.24 0.0038 69.412) [0.32] 69.2541) [0.37] GCM phases plotted as a function of the pressure along the iso-

' ' ' ' ' ' therm T"=0.002: BAuquidrec (dashed ling BAuquidpee (dotted
0.30 0.0040 101.072) [0.29 100.8941) [0.42] line), and BA titec e (continuous ling Upon increasing? (or p),
0.24 0.0060 46.023) [0.29) 45.9291) [0.39] the fluid transforms into a fcc solid; then, a fcc-bec transition takes
0.24 0.0080 35.782) [0.24] 35.71Q1) [0.317] place until the bcc melts into a fluid phase again. The lines are

spline interpolants of the data points. A zoom on the low-pressure
region shows the nonmonotonic behavior #& s e, @ feature
elaboratd 4], showing elements of similarity with the phase that is ultimately responsible, at higher temperatures, for the reen-
diagram of star-polymer solutions. trance of the bcc phagsee also Fig. B

Our samples typically consisted of 1372 particles for the
fluid and the fcc solid, and of 1458 particles for the bcc solid.tion of the pressure. Note that, at low pressures, the bcc
Occasionally, we considered smaller as well as larger sizephase is about to become stable as the fluid freezes into a fcc
so as to check whether our conclusions were possibly undestructure. In fact, this eventually occurs at higher tempera-
mined by a significant finite-size dependence. We paid muckures, in a way not documented before for the GCM.
care to a safe estimate of statistical errors. This is actually an Upon increasing the temperature, the shallow valley in
important issue whenever different crystalline structures s@tcc-ncc Moves gradually upwards until a narrow range of
closely compete, as in the present case, for thermodynamfyressure appeafor T =0.0030 where a stable bcc phase
stability. We computed the free-energy difference betweeslips in between the fluid and the fcc solid phases. This is
any two equilibrium states of the system belonging to thepossible because the corresponding increase of the freezing
same phase through standard thermodynamic integratiopressure with temperature is not large enough to suppress the
This method allows one to obtain the properties of the modeteentrant bcc phase. Fat >0.0038, the fcc phase ceases to
for any state, provided that the absolute free energy has bed® stable and a more regular behavior sets in, similar to that
autonomously computed in at least one reference state ppredicted by Lang and co-workef4].
phase. Table | gives the excess Helmholtz free energy for All in all, the phase diagram represented in Fig. 2
some fcc and bcec states of the model. Though we did noemerges. If compared with Fig. 9 ¢#], two differencgs
systematically check the relative stability of other crystallinestand out: a definitely lower triple-point temperatug,
structures, we verified that, for temperatures close to the=0.0031) and the as yet unpredicted reentrance of the bcc
triple point, the hexagonal-close-packd#iCP) solid is  phase when the fcc solid is isothermically expanded for re-
slightly less favored than the fcc solid, while the simple-duced temperatures in the 0.0031-0.0037 range. In order to
cubic solid is not mechanically stable. check whether this latter feature is a spurious effect due to

The thermodynamically stable phase, for a given temperathe finite size of the system, we investigated the bcc-fcc
ture and pressure, is the one with the lowest chemical poterphase coexistence also for larger samples, but we did not
tial w(T,P). Figure 1 shows the difference between theregister any significant change in the location of the transi-
chemical potentials of competing phases plotted as a fundion points(see the inset of Fig.)2In the triple-point region,
tion of P at fixed temperature. The sequence of phase trarthe density jump is~0.002 across the fluid-solid transition
sitions undergone by the GCM &t =0.002, with increasing and ~0.000 15 across the solid-solid transition; the corre-
pressures, is fluid-fcc-bee-fluid: the disordered phase is actusponding(absolutg values of the entropy jump per particle
ally seen to reenter the phase diagram at high density. As @re ~0.7kg and ~0.1kg, respectively. The freezing line at-
also apparent from Fig. 1, the gap between the fcc and bec tains its maximum valugT;, .= 0.008 74 for p;, = 0.239.
phases is anything but monotonous when plotted as a funét the maximum, the fluid-solid transition is still first-order
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FIG. 3. Temperature evolution OBA g peo the chemical-
potential gap between the f¢hl=1372 and bcc(N=1458 phases,
plotted as a function of the pressure. AB=0.003 and 0.006, the
systems investigated were smal(864 and 1024 particles, respec-
tively). The dotted line refers to a calculation carried outTat
=0.0037 using larger sampldfcc: N=2048; bcc:N=2000, and

FIG. 2. (Color) Phase diagram of the GCM in tlip,T) plane,
with a zoom on the triple-point regiofinsed. The transition densi-
ties for each phase are shown for various temperatures: {id
=1372, black open circlgsfcc (N=1372, blue solid squargsand
bce (N=1458, red solid trianglgsThe black crosses refer to simu-
Ia*t|ons of larger systgmm:2948, fluid and fccN=2000, beg _at was plotted for a comparison with the smaller-sizes calculation at
T =0.0037. The continuous lines drawn through the data points arg o same temperature.

a guide for the eye. We also plotted the freezing and the fcc-bcc
coexistence loci calculated {@] (black dashed lingsand the or-

dering threshold predicted by a one-phase entropy-based criterichability. In fact, Lang and co-workers used the Gibbs-
(blue dotted ling[12]. Bogoliubov inequality to optimize a strictly harmonic model

of both solid phases. This method may actually enhance the

with an entropy gap between the two phases equal tkf.79 crystallinity and give, at the same time, an inadequate repre-

To have a clue on the extent to which statistical errorssentation of the entropic contribution to the solid free ener-
may affect our conclusions, we turn the reader’s attentiorjies. Considering that the fcc-bec transition occurs for rather
back to Fig. 1. Let\u, g(P) be theu gap(at fixed tempera-  small densities, the harmonic approximation seems a severe
ture) between two generic phasAsandB. In the triple-point  limitation of the theory. In fact, the variational technique
region, we estimated a maximum statistical error on thebasically propagates to higher temperatures the relative sta-
minimum value of BAuscpc.dP) approximately equal to bility condition valid atT=0. We also note that the fcc-to-
1072, Of the same order is the maximum error we estimatedbcc transition undergone, with increasing temperatures, by
near coexistence, on the valuesB uq,iq soic(P). However, the GCM at low densities is to be ascribed to the higher
the rate of change of this latter quantity is much larger, im-entropy of the bcc phase, that is likely due to the presence of
plying that its zero is more sharply defined. This means thaa larger number of soft shear modes. Even below the triple-
fluid-solid coexistence is numerically better defined thanpoint temperature, bcc-ordered grains tend to form in the
solid-solid coexistence. If we follow the evolution of liquid that is about to freeze, a phenomenon that substan-
BA e ned P) @s a function ofT (see Fig. 3, we realize that, tially slows down crystallization.
over the whole stability region of the reentrant bcc phase, The low-density and low-temperature phase behavior of
this quantity takes values that are of the order of the estithe GCM, with a triple point separating a region where the
mated numerical errors. However, we can safely argue thdtuid freezes into a fcc structure from another region where
the true errors are in fact much smaller since, otherwise, wghese two phases are bridged by an intermediate bcc phase,
would have hardly obtained the very smooth behavior repreis rather common among model systems with softly repul-
sented in Fig. 3 as well as the clear phase portrait shown igive interactions, such as the inverse-power potential,
the inset of Fig. 2. The already mentioned absence of any,(r)=A(o/r)" [13,14, and the Yukawa potentialy(r)
significant size dependence BA pec ped P) at T'=0.0037 is  =Bexp(-r/¢)/r [15-17. The phase diagram of the above
a further guarantee of the reliability of the present phaséwo models is typically unfolded by one or tw@ossibly
diagram. rescalegdl thermodynamic quantities and by the relevant con-

The fcc phase of the GCM is energetically favored at lowtrol parameter of the interaction, i.e., the inverse-power-law
densities(p” less than=0.17), for temperatures up td" exponent 1i or the Yukawa lengtif. The crystalline pattern
=0.008. This may actually explain why the fcc-bcc coexist-produced by such potentials is critically determined by their
ence locus found in Ref4] is an almost vertical line in the degree of softness, the bcc phase being promoted by a suffi-
p-T plane, which leads to a more extended region of fccciently soft interaction. A criterion to relate the phase behav-
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ior of v,(r) anduv,(r) to that of the GCM is to require the low densities, the arm numbémplays the role of an effective
logarithmic derivatives of such potentials to match that of thenverse temperaturgior two reasons: the strength of the po-
Gaussian potentidEq. (1)], at least for separations close to tential increases withi andits range increases with*). For
the mean interparticle distanaes p™2/3. The values oh and ~ hot too huge values of, the Yukawa repulsion yields a

¢ that enforce this mapping are phase-stability scenario that is very similar to that of the
GCM. Only for star-polymer packing fractions larger than
13 ~0.7 (which is where the nearest-neighbor distance in a bcc
T=2p"%3 and? = p—*‘zf/s. (2)  solid is~o) will the peculiarities of the short-distance repul-
2-p sion make a difference, stabilizing other cubic phases that are

likely unstable in the GCM.
When p* increases along the GCM freezing line, the bcc  In this paper, we discussed the phase diagram of the GCM
phase becomes eventually stable. The same effect occuifd@t was redrawn using current best-quality numerical-
with the inverse-power and Yukawa potentials when and ~ Simulation tools. We predicted the existence of a narrow
¢ change with the freezing density according to E2). In range of temperatures within which the sequence of stable

this respect, 1 and ¢ play a role analogous to that of an phases exhibited by the GCM upon isothermal compression

effective temperature. For instance, dilute solutions ofS fluid, bee, fec, bee again, and finally fluid again. We also

charged colloids with counterior{d8], which constitute a rationalized these findings in terms of the properties of other
practical realization ob,(r), show this kind of behavior as a softly repulsive potentials, with an emphasis on the phase

function of the Debye screening length. behavior of star-polymer solutions.
The phase diagram of the GCM shows some resemblance We acknowledge some useful discussions with Gianpiero
also with the phase behavior of star-polymer soluti@jsAt Malescio.
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