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We trace with high numerical accuracy the phase diagram of the Gaussian-core model, a classical system of
point particles interacting via a Gaussian-shaped, purely repulsive potential. This model, which provides a
reliable qualitative description of the thermal behavior of interpenetrable globular polymers, is known to
exhibit a polymorphic fcc-bcc transition at low densities and reentrant melting at high densities. Extensive
Monte Carlo simulations, carried out in conjunction with accurate calculations of the solid free energies, lead
to a thermodynamic scenario that is partially modified with respect to previous knowledge. In particular, we
find that:sid the fluid-bcc-fcc triple-point temperature is about one third of the maximum freezing temperature;
sii d upon isothermal compression, the model exhibits a fluid-bcc-fcc-bcc-fluid sequence of phases in a narrow
range of temperatures just above the triple point. We discuss these results in relation to the behavior of
star-polymer solutions and of other softly repulsive systems.
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It is common knowledge that crystallization is induced by
the strong Pauli repulsion between inner-shell electrons,
causing theeffectiveinteratomic potential to blow up at short
distances. However, the existence of a thermodynamically
stable solid phase does not necessarily require a singular re-
pulsion for vanishing interatomic separations. As a matter of
fact, a finite square barrier, equal to a positive constante for
distances smaller than a given diameters being zero other-
wise, is an example of a bounded repulsion that supports a
stable solid at all temperaturesf1,2g. In this respect, a
Gaussian-shaped potential

vsrd = e exps− r2/s2d, s1d

is a more realistic finite-strength repulsion. The so-called
Gaussian-core modelsGCMd was introduced by Stillinger
f3g. Such a potential, despite the fact that it is finite even at
full overlap between the particles, is nonetheless perfectly
admissible as an effective potential. Actually, it is used to
represent the entropic repulsion betweensthe centers of mass
ofd self-avoiding polymer coils dispersed in a good solvent
f4–6g. Two distinctive features of the GCM, which are ab-
sent in the simpler penetrable-sphere system, are:sid the ex-
istence of a maximum freezing temperature,Tmax andsii d the
occurrence, belowTmax, of reentrant melting into a dense
fluid phase. Stillinger noted in his original paper that, in the
limit of vanishing temperature and density, the GCM par-
ticles practically behave as hard spheres with increasingly
large diameter. In this limit, the fluid freezes into a face-
centered-cubicsfccd structure at a temperatureTfsrd that van-
ishes with the number densityr sfrom now on, temperature
and density will be given in reduced units,T* =kBT/e, where

kB is Boltzmann’s constant, andr* =rs3d. Indeed, a straight-
forward calculation of the total energy of different cubic
crystal structures shows that the fcc structure is favored, at
zero temperature, only for reduced densities lower than
p−3/2.0.1796. Beyond this threshold, a body-centered-cubic
sbccd solid takes over. However, upon compression, any
regular arrangement of particles is eventually destined to col-
lapse for anyT.0 sreentrant meltingd f7g.

A comprehensive study of the phase diagram of the GCM
was recently carried out by Lang and co-workersf4g. These
authors employed an approximate integral-equation theory to
describe the disordered phase and a variationally adjusted
harmonic interaction for the crystalline phases. The resulting
phase diagramssee Fig. 9 of Ref.f4gd accounts for the exis-
tence of a fluid phase and two solid phases. More specifi-
cally, the solid was found to be thermodynamically stable for
temperatures lower thanTmax

* =0.0102, a temperature at
which the freezing line attains its maximum value forrmax

*

=0.2292. The phase diagram displays a fluid-bcc-fcc triple
point that was estimated to fall atTtr

* =0.008 75. The fcc
phase turns out to be stable belowTtr

* in the low-density
region sfor r* less than<0.17d, whereas the bcc structure
prevails for larger temperatures and densities.

A parallel numerical study of the phase diagram of star-
polymer solutions in a good solvent was carried out under a
different assumption for the effective pair potential, modeled
with an ultrasoft logarithmic repulsion within a diameters
and with a Yukawa potential outside the coref8g. In this case,
Monte CarlosMCd simulations and free-energy calculations
lead to a phase diagram that shows a rather complicated in-
terplay between various cubic phases. It is desirable to have
a similarly full-fledged analysis also for the GCM.

To this purpose, we performed standard Metropolis MC
simulations of the GCM, keeping the number of particlesN,
the volumeV, and the temperatureT constant. We used the
particle-insertion methodf9g and the Frenkel-Ladd technique
f10,11g to calculate the “exact” free energies of the dilute
fluid and of the solid phases, respectively. By this means, we
discovered that the phase diagram of the GCM is highly
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elaboratef4g, showing elements of similarity with the phase
diagram of star-polymer solutions.

Our samples typically consisted of 1372 particles for the
fluid and the fcc solid, and of 1458 particles for the bcc solid.
Occasionally, we considered smaller as well as larger sizes,
so as to check whether our conclusions were possibly under-
mined by a significant finite-size dependence. We paid much
care to a safe estimate of statistical errors. This is actually an
important issue whenever different crystalline structures so
closely compete, as in the present case, for thermodynamic
stability. We computed the free-energy difference between
any two equilibrium states of the system belonging to the
same phase through standard thermodynamic integration.
This method allows one to obtain the properties of the model
for any state, provided that the absolute free energy has been
autonomously computed in at least one reference state per
phase. Table I gives the excess Helmholtz free energy for
some fcc and bcc states of the model. Though we did not
systematically check the relative stability of other crystalline
structures, we verified that, for temperatures close to the
triple point, the hexagonal-close-packedsHCPd solid is
slightly less favored than the fcc solid, while the simple-
cubic solid is not mechanically stable.

The thermodynamically stable phase, for a given tempera-
ture and pressure, is the one with the lowest chemical poten-
tial msT,Pd. Figure 1 shows the difference between the
chemical potentials of competing phases plotted as a func-
tion of P at fixed temperature. The sequence of phase tran-
sitions undergone by the GCM atT* =0.002, with increasing
pressures, is fluid-fcc-bcc-fluid: the disordered phase is actu-
ally seen to reenter the phase diagram at high density. As is
also apparent from Fig. 1, them gap between the fcc and bcc
phases is anything but monotonous when plotted as a func-

tion of the pressure. Note that, at low pressures, the bcc
phase is about to become stable as the fluid freezes into a fcc
structure. In fact, this eventually occurs at higher tempera-
tures, in a way not documented before for the GCM.

Upon increasing the temperature, the shallow valley in
mfcc-mbcc moves gradually upwards until a narrow range of
pressure appearssfor T* *0.0030d where a stable bcc phase
slips in between the fluid and the fcc solid phases. This is
possible because the corresponding increase of the freezing
pressure with temperature is not large enough to suppress the
reentrant bcc phase. ForT* .0.0038, the fcc phase ceases to
be stable and a more regular behavior sets in, similar to that
predicted by Lang and co-workersf4g.

All in all, the phase diagram represented in Fig. 2
emerges. If compared with Fig. 9 off4g, two differences
stand out: a definitely lower triple-point temperaturesTtr

*

.0.0031d and the as yet unpredicted reentrance of the bcc
phase when the fcc solid is isothermically expanded for re-
duced temperatures in the 0.0031–0.0037 range. In order to
check whether this latter feature is a spurious effect due to
the finite size of the system, we investigated the bcc-fcc
phase coexistence also for larger samples, but we did not
register any significant change in the location of the transi-
tion pointsssee the inset of Fig. 2d. In the triple-point region,
the density jump is,0.002 across the fluid-solid transition
and ,0.000 15 across the solid-solid transition; the corre-
spondingsabsoluted values of the entropy jump per particle
are ,0.7kB and ,0.1kB, respectively. The freezing line at-
tains its maximum valuesTmax

* .0.008 74d for rmax
* .0.239.

At the maximum, the fluid-solid transition is still first-order

TABLE I. Excess Helmholtz free energy per particlefex, in units
of kBT, calculated for some fccsN=1372d and bccsN=1458d solid
states of the GCM. ForT* =0.003 and 0.006, the tabulated values
refer to systems with 864 and 1024 particles, respectively. For each
state and solid structure, we also displayswithin square bracketsd
the value of the reduced elastic constantc* =cs2/e that intervenes
in the Frenkel-Ladd calculation: for the givenc, the mean square
displacement of the Einstein crystal approximately matches the
mean square deviation of a GCM particle from its reference crystal
site. For a number of selectedr* andT* , we verified that the quan-
tity bfexsNd+ln N/N, with b=skBTd−1, scales linearly withN−1 for
largeN, in agreement with a conjecture formulated inf11g.

r* T* bfex
sFCCd bfex

sBCCd

0.30 0.0020 195.703s2d f0.30g 195.312s1d f0.45g
0.24 0.0030 86.251s2d f0.35g 86.057s1d f0.39g
0.24 0.0033 78.994s1d f0.34g 78.814s1d f0.38g
0.24 0.0035 74.835s1d f0.33g 74.666s1d f0.38g
0.24 0.0037 71.122s2d f0.33g 70.961s1d f0.38g
0.24 0.0038 69.411s2d f0.32g 69.254s1d f0.37g
0.30 0.0040 101.074s2d f0.29g 100.894s1d f0.42g
0.24 0.0060 46.025s2d f0.29g 45.929s1d f0.35g
0.24 0.0080 35.781s2d f0.24g 35.710s1d f0.31g

FIG. 1. Difference between the chemical potentials of pairs of
GCM phases plotted as a function of the pressure along the iso-
therm T* =0.002: bDmfluid,fcc sdashed lined, bDmfluid,bcc sdotted
lined, and bDmfcc,bcc scontinuous lined. Upon increasingP sor rd,
the fluid transforms into a fcc solid; then, a fcc-bcc transition takes
place until the bcc melts into a fluid phase again. The lines are
spline interpolants of the data points. A zoom on the low-pressure
region shows the nonmonotonic behavior ofbDmfcc,bcc, a feature
that is ultimately responsible, at higher temperatures, for the reen-
trance of the bcc phasessee also Fig. 3d.
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with an entropy gap between the two phases equal to 0.79kB.
To have a clue on the extent to which statistical errors

may affect our conclusions, we turn the reader’s attention
back to Fig. 1. LetDmA,BsPd be them gapsat fixed tempera-
tured between two generic phasesA andB. In the triple-point
region, we estimated a maximum statistical error on the
minimum value of bDmfcc,bccsPd approximately equal to
10−2. Of the same order is the maximum error we estimated,
near coexistence, on the values ofbDmfluid,solidsPd. However,
the rate of change of this latter quantity is much larger, im-
plying that its zero is more sharply defined. This means that
fluid-solid coexistence is numerically better defined than
solid-solid coexistence. If we follow the evolution of
bDmfcc,bccsPd as a function ofT ssee Fig. 3d, we realize that,
over the whole stability region of the reentrant bcc phase,
this quantity takes values that are of the order of the esti-
mated numerical errors. However, we can safely argue that
the true errors are in fact much smaller since, otherwise, we
would have hardly obtained the very smooth behavior repre-
sented in Fig. 3 as well as the clear phase portrait shown in
the inset of Fig. 2. The already mentioned absence of any
significant size dependence ofbDmfcc,bccsPd at T* =0.0037 is
a further guarantee of the reliability of the present phase
diagram.

The fcc phase of the GCM is energetically favored at low
densitiessr* less than<0.17d, for temperatures up toT*

=0.008. This may actually explain why the fcc-bcc coexist-
ence locus found in Ref.f4g is an almost vertical line in the
r-T plane, which leads to a more extended region of fcc

stability. In fact, Lang and co-workers used the Gibbs-
Bogoliubov inequality to optimize a strictly harmonic model
of both solid phases. This method may actually enhance the
crystallinity and give, at the same time, an inadequate repre-
sentation of the entropic contribution to the solid free ener-
gies. Considering that the fcc-bcc transition occurs for rather
small densities, the harmonic approximation seems a severe
limitation of the theory. In fact, the variational technique
basically propagates to higher temperatures the relative sta-
bility condition valid atT=0. We also note that the fcc-to-
bcc transition undergone, with increasing temperatures, by
the GCM at low densities is to be ascribed to the higher
entropy of the bcc phase, that is likely due to the presence of
a larger number of soft shear modes. Even below the triple-
point temperature, bcc-ordered grains tend to form in the
liquid that is about to freeze, a phenomenon that substan-
tially slows down crystallization.

The low-density and low-temperature phase behavior of
the GCM, with a triple point separating a region where the
fluid freezes into a fcc structure from another region where
these two phases are bridged by an intermediate bcc phase,
is rather common among model systems with softly repul-
sive interactions, such as the inverse-power potential,
vnsrd=Ass / rdn f13,14g, and the Yukawa potential,v,srd
=B exps−r /,d / r f15–17g. The phase diagram of the above
two models is typically unfolded by one or twospossibly
rescaledd thermodynamic quantities and by the relevant con-
trol parameter of the interaction, i.e., the inverse-power-law
exponent 1/n or the Yukawa length,. The crystalline pattern
produced by such potentials is critically determined by their
degree of softness, the bcc phase being promoted by a suffi-
ciently soft interaction. A criterion to relate the phase behav-

FIG. 2. sColord Phase diagram of the GCM in thesr ,Td plane,
with a zoom on the triple-point regionsinsetd. The transition densi-
ties for each phase are shown for various temperatures: fluidsN
=1372, black open circlesd, fcc sN=1372, blue solid squaresd, and
bcc sN=1458, red solid trianglesd. The black crosses refer to simu-
lations of larger systemssN=2048, fluid and fcc;N=2000, bccd at
T* =0.0037. The continuous lines drawn through the data points are
a guide for the eye. We also plotted the freezing and the fcc-bcc
coexistence loci calculated inf4g sblack dashed linesd, and the or-
dering threshold predicted by a one-phase entropy-based criterion
sblue dotted lined f12g.

FIG. 3. Temperature evolution ofbDmfcc,bcc, the chemical-
potential gap between the fccsN=1372d and bccsN=1458d phases,
plotted as a function of the pressure. ForT* =0.003 and 0.006, the
systems investigated were smallers864 and 1024 particles, respec-
tivelyd. The dotted line refers to a calculation carried out atT*

=0.0037 using larger samplessfcc: N=2048; bcc:N=2000d, and
was plotted for a comparison with the smaller-sizes calculation at
the same temperature.
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ior of vnsrd and v,srd to that of the GCM is to require the
logarithmic derivatives of such potentials to match that of the
Gaussian potentialfEq. s1dg, at least for separations close to
the mean interparticle distance,r̄ =r−1/3. The values ofn and
, that enforce this mapping are

ñ = 2r*−2/3 and ,̃ =
r*1/3s

2 − r*2/3 . s2d

When r* increases along the GCM freezing line, the bcc
phase becomes eventually stable. The same effect occurs
with the inverse-power and Yukawa potentials when 1/n and
, change with the freezing density according to Eq.s2d. In
this respect, 1 /n and , play a role analogous to that of an
effective temperature. For instance, dilute solutions of
charged colloids with counterionsf18g, which constitute a
practical realization ofv,srd, show this kind of behavior as a
function of the Debye screening length.

The phase diagram of the GCM shows some resemblance
also with the phase behavior of star-polymer solutionsf8g. At

low densities, the arm numberf plays the role of an effective
inverse temperaturesfor two reasons: the strength of the po-
tential increases withf and its range increases withf−1d. For
not too huge values off, the Yukawa repulsion yields a
phase-stability scenario that is very similar to that of the
GCM. Only for star-polymer packing fractions larger than
,0.7 swhich is where the nearest-neighbor distance in a bcc
solid is,sd will the peculiarities of the short-distance repul-
sion make a difference, stabilizing other cubic phases that are
likely unstable in the GCM.

In this paper, we discussed the phase diagram of the GCM
that was redrawn using current best-quality numerical-
simulation tools. We predicted the existence of a narrow
range of temperatures within which the sequence of stable
phases exhibited by the GCM upon isothermal compression
is fluid, bcc, fcc, bcc again, and finally fluid again. We also
rationalized these findings in terms of the properties of other
softly repulsive potentials, with an emphasis on the phase
behavior of star-polymer solutions.

We acknowledge some useful discussions with Gianpiero
Malescio.
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