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For gas flows in microchannels, slip motion at the solid surface can occur even if the Mach number is
negligibly small. Since the Knudsen number of the gas flow in a long microchannel can vary widely and the
Navier-Stokes equations are not valid for Knudsen numbers beyond 0.1, an alternative method that can be
applicable to continuum, slip and transition flow regimes is highly desirable. The lattice Boltzmann equation
sLBEd approach has recently been expected to have such potential. However, some hurdles need to be over-
come before it can be applied to simulate rarefied gas flows. The first major hurdle is to accurately model the
gas molecule and wall surface interactions. In addition, the Knudsen number needs to be clearly defined in
terms of LBE properties to ensure that the LBE simulation results can be checked against experimental
measurements and other simulation results. In this paper, the Maxwellian scattering kernel is adopted to
address the gas molecule and surface interactions with an accommodation coefficientsin addition to the
Knudsen numberd controlling the amount of slip motion. The Knudsen number is derived consistently with the
macroscopic property based definition. The simulation results of the present LBE model are in quantitative
agreement with the established theory in the slip flow regime. In the transition flow regime, the model captures
the Knudsen minimum phenomenon qualitatively. Therefore, the LBE can be a competitive method for simu-
lation of rarefied gas flows in microdevices.

DOI: 10.1103/PhysRevE.71.047702 PACS numberssd: 05.10.2a, 47.45.2n, 47.60.1i

I. INTRODUCTION

The technology associated with microelectromechanical
systems or micro–total analysis systems has developed rap-
idly in the last decade and is set to revolutionize many im-
portant scientific areas. Of particular importance are chemi-
cal, biological, and clinical analyses, where miniaturized
systems offer the potential to significantly increase yields
and reduce process time and reagent consumption. For gas
flows in these devices, the thermodynamic quasiequilibrium
hypothesis, which leads to the Navier-Stokes equations, may
be inappropriate. This is because the mean free path of the
gas molecules may be comparable to the characteristic length
scale of the microsystem. Recently, the lattice Boltzmann
equationsLBEd method has been developed as an alternative
numerical scheme for fluid flow simulationf1–4g, and it has
also simulated gas flow in a microchannelf5,6g. The LBE
method usually solves model Boltzmann equations such as
the Bhatnagar-Gross-KrooksBGKd model on a discrete lat-
tice f7,8g. Its intrinsic kinetic nature makes it an attractive
method for microfluidic flows where both microscopic and
macroscopic behaviors are coupled.

Although gas flows in microsystems are usually creeping
so that they are nearly incompressible, the Knudsen number
can vary widely and readily exceed the Navier-Stokes equa-
tion limit of 0.1. For practical applications, only a few mac-
roscopic properties such as viscosity and flow rate are of
interest and can determine the bulk motion characteristics.
Therefore, molecular dynamics, the direct simulation Monte
Carlo sDSMCd method, and direct numerical simulation of

the Boltzmann equation are too computationally expensive
and impractical for applications where the microscopic de-
tails are not required. Significant effort has been made to
improve and extend the validity of the Navier-Stokes equa-
tions beyond Knudsen numbers of 0.1, or to construct com-
plicated constitutive laws involving high order terms of the
Knudsen number, which leads to Burnett-type equationsf9g.
The LBE method has the potential to improve this situation
because it is efficient, comparable to Navier-Stokes solvers,
and it can recover the Navier-Stokes equations. A prelimi-
nary link between the LBE and the Burnett-type equations
has also been establishedf10g. In addition, continuum, slip,
and transition flow regimes may exist together in microflu-
idic devices, e.g., a long microchannel. Hybrid algorithms
that couple DSMC and Navier-Stokes methods have been
tried to model these mixed flow regimesf11g. However, large
errors can arise from inappropriate assumptions regarding,
for example, the velocity distribution for gas molecules at
the matching interface between two solutionsf12g. Further-
more, these hybrid algorithms entail intensive computational
effort for three-dimensional flow simulations. In principle,
the LBE is valid throughout these mixed flow regimes and
avoids any coupling problem. Consequently, the LBE may be
a better method for gas flows in microdevices, particularly
where mixed flow regimes are encountered.

He and Luof13g and Abef14g have demonstrated that the
LBE can be derived from the Boltzmann equation. Shan and
He f15g also showed that the LBE is a special discrete ve-
locity method of solving the Boltzmann equation. Although
the above work did not produce additional LBE models, the
theoretical connection between the LBE and the Boltzmann
equation was established. Therefore, the LBE model can be
valid for rarefied gas flows provided the Mach number is
small. Moreover, since the standard BGK equation, a simpli-
fied model Boltzmann equation, is able to simulate highly
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nonequilibrium gas flows, the lattice BGK model should also
be applicable to rarefied microflows despite the fact that the
model is validated only for small Knudsen numbers. Numeri-
cal validation of LBE models against experimental data and
well accepted DSMC results is needed for rarefied gas mi-
croflows in various geometries.

LBE methods have been extensively applied to simulate
incompressible fluid flows with the no-slip boundary condi-
tion at the wall. However, little has been done on the simu-
lation of gas flows in microchannels, which are usually in-
compressible but tangentially slip at the wall. In order to
tackle these flows, we need to model the gas molecule and
solid surface interactions so that the slip motion at the wall
boundary can be determined. In addition, the Knudsen num-
ber should be defined in terms of LBE properties that are
consistent with the definition used in kinetic theory to ensure
the comparability of the results obtained experimentally,
theoretically, and numerically.

II. MATHEMATICAL MODEL

For the sake of simplicity, the lattice BGK model is set as
an examplef8g:

f isx + dxi,t + dtd − f isx,td = −
1

t
ff isx,td − f i

eqsx,tdg,

i = 0,1, . . . ,n s1d

where f isx,td is the density distribution function along thei
direction at the lattice sitex at timet; dx is the lattice length
anddt is the time step;t is the dimensionless LBE relaxation
time given byl /dt wherel is the relaxation time;f i

eq is the
local Maxwellian distribution function; the lattice velocityc,
i.e., dx/dt, is chosen to obey mass, momentum, and energy
conservation. The densityr and bulk velocityu can then be
determined fromoi=0

n f i and oi=0
n f ici /r, respectively. For

square lattice models, the LBE relaxation timet can be re-
lated to the kinematic viscosityn by sdx2/dtdst−0.5d /3. The
factor −0.5 is the correction to make the LBE a second order
method for solving incompressible flowsf4g.

In kinetic theory, the viscosity is linearly proportional to
the mean free pathl, which is the mean distance a molecule
travels between two consecutive collisions. As given by Ref.
f16g, n= 1

2c̄l where the mean velocity of the moleculec̄ is
Î8kT/pm sk is the Boltzmann constant,T is the absolute
temperature, andm is the molecular massd. Therefore, the
Knudsen number can be expressed by

Kn =
l

Hch
=

2n

c̄Hch

, s2d

whereHch is the channel height. Introducing a dimensionless
channel heightH=Hch/dx, Eq. s2d becomes

Kn =
2n

c̄Hdx
. s3d

Sincen=sdx2/dtdst−0.5d /3 andc=dx/dt, Eq. s3d becomes

Kn =
2cst − 0.5d

3c̄H
. s4d

The lattice velocityc depends on the lattice model which
was provided by Qianet al. f4g, e.g., c=Î3kT/m for the
d2q9 and d3q27 models,c=Î2kT/m for the d2q6 model, and
c=2ÎkT/m for the d2q7 model. Consequently, Eq.s4d can be
further simplified, e.g., for the d2q9 or d3q27 lattice model:

Kn =Îp

6

st − 0.5d
H

. s5d

Because the mean free path depends on microscopic de-
tails of the molecular interaction, especially the collision fre-
quency, the mean free path based Knudsen number could be
different in various models despite the gases having the same
macroscopic properties. In order to compare the results ob-
tained by various models, we need to define the mean free
path to be dependent only on the macroscopic properties,
e.g., l =sm /pdÎpkT/2m, wherem is the dynamic shear vis-
cosity andp is the pressure. As a result, the Knudsen number
in the standard BGK model given by Eq.s5d needs to be
rescaled to

Kn =Î 8

3p

st − 0.5d
H

. s6d

From Eq.s6d, we can see the relation among Kn,t, andH
can be exactly determined. Similarly, the Knudsen number
for other lattice models can be obtained; for example, the
Knudsen numbers for the d2q6 and d2q7 LBE models are
given by

Kn =5
4

3Îp

st − 0.5d
H

, d2q6,

4Î2

3Îp

st − 0.5d
H

, d2q7.6
Nie et al. f5g gave Kn=ast−0.5d /Hr sa is a constant to be
determined numericallyd and Lim et al. f6g asserted Kn
=t /H. In the present work, no free parameter is in the model
to be tuned to produce desirable simulation results. Here, we
need to emphasize that the Knudsen number differs by a
constant factor among various lattice models.

The most important issue for extending LBE models to
simulate rarefied flows is to model the boundary conditions
at the walls capturing the underlying physics of gas molecule
and surface interactions. A difference in boundary conditions
will significantly affect the simulation resultsf17g. In order
to solve the LBE, the distribution function of gas molecules
f+ leaving the wall surface requires to be related to the inci-
dent molecule distribution functionf−. Generally, a scatter-
ing kernel is needed to determinef+, and the details can be
seen in Refs.f18,19g. The most widely applied kernel is the
diffusive scattering model which can be interpreted as the
gas molecules losing all information of their state before col-
lisions and being reflected obeying a Maxwellian distribution
function. Recently, this diffusive scattering kernel has been
implemented into the LBE model and the numerical results
show good agreement with the analytical solution of the
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Boltzmann equation for Kramer’s problem as the Knudsen
number tends to zerof20g. However, for microflows, the
Knudsen number can vary widely and gas surface interac-
tions can be between diffusive and specular reflections.
Therefore, more general boundary conditions are necessary
for LBE models. Maxwellf21g expanded the diffusive kernel
to a partly diffusive,a, and partly specular,s1−ad kernel.
This accommodation coefficienta is the most important pa-
rameter in describing a solid surface interaction with gas
molecules. It is 1.0 for diffusive reflection and 0 for specular
reflection. With the information about the accommodation
coefficient for various surface conditions available in the lit-
erature, we may establish a gas surface interaction model for
the LBE method with practical implications. Since the Max-
wellian scattering kernel has been applied and tested in solv-
ing Boltzmann equations, we propose to implement this gas
surface interaction model and assess its effect on the simu-
lation results.

A representative group of particles colliding with the wall
is shown in Fig. 1; the postcollision direction is usually be-
tween the normal directionn and the specular reflection di-
rections, which could be characterized by the accommoda-
tion coefficient a. If this Maxwellian kernel is to be
implemented into a LBEsd2q9d model, the boundary condi-
tion at the upper wall can be expressed by

f8sx,y,t + dtd = s1 − adf5sx − dx,y,td,

f7sx,y,t + dtd = s1 − adf6sx + dx,y,td,

f4sx,y,t + dtd = af5sx − dx,y,td + af6sx + dx,y,td + f2sx,y,td.

s7d

This implementation of gas molecule and wall collisions
is simple but captures the underlying physics, which is in
contrast to the empirical bounce back rule. It can be gener-
alized to various geometric conditions and lattice models. A
similar boundary condition can be obtained for the lower
wall. Succif17g has used a combination of the bounce back
rule and specular reflection to generate the slip effect at the
wall. A reflection parameter is included which has recently
been connected to the accommodation coefficientf22g.

III. RESULTS AND DISCUSSION

Cercignani f23g used the BGK approximation and ob-
tained a second order slip model for rarefied gas flows. As a

hard sphere gas has been generally accepted to be close to
real gas flows in microsystems, Hadjiconstantinouf24g res-
caled and improved the model for a hard sphere gas by con-
sidering Knudsen layer effects:

uuuwall = 1.1466lU ]u

]n
U

wall
− 0.31l2U ]2u

]n2U
wall

, s8d

where u is the slip velocity at the wall,n is the normal
direction to the wall, andl is the mean free path given by
sm /pdÎpkT/2m; here diffusive reflection was assumed. In
the literature, the value of the second order slip coefficient,
which is 0.31 in Eq.s8d, varies widely. For example, it is
0.647 in Ref.f23g. In the flow regime with Kn,0.1, where
the Navier-Stokes equation is valid, the difference of the sec-
ond slip coefficient has little effect on flow prediction. The
comparison between the present LBE results and analytical
solutions of the second order slip model is shown in Fig. 2,
where the velocity is nondimensionalized by the mean veloc-
ity. Excellent agreement has been achieved especially at
small Knudsen number. The deviation starts at Kn=0.25
where the validity of the Navier-Stokes equation with second
order slip boundary condition is questionable. In the calcu-
lation, the gas flow is isothermal with Mach numbers well
below 0.1. Tests have been carried out with lattice numberH
of 21, 27, and 35 respectively and the numerical results are
found to beH independent. Along the channel, the lattice
number is fixed at 50H and the pressure boundary condition
is used.

For most LBE applications, the nonslip boundary condi-
tion is usually imposed by the so-called bounce back rule.
When Kn increases, the bulk velocity is no longer zero at the
wall and the empirical bounce back rule may not be valid.
Lim et al. f6g used a specular reflection model and captured
the slip motion of fluid at the wall for Knudsen numbers up
to 0.155. However, a specular reflection indicates that there
is no friction in the tangential direction, so that a pluglike
bulk velocity in the microchannels will appear. At Kn=0.01
where the slip starts, the impact of the accommodation coef-
ficient on the velocity profile is shown in Fig. 3. If the
bounce back collision is used, there is no slip motion at the
wall while the velocity profile is pluglike as expected if a
specular reflection model is assumed. With decreasing ac-

FIG. 1. Schematic diagram of gas surface interactions and ve-
locity directions of a two-dimensionals2Dd sd2q9d model in a mi-
crochannel, wherevi is the incident velocity andv is the reflected
velocity of a representative group of molecules. Here,n is the nor-
mal direction ands refers to the specular reflection direction.

FIG. 2. Comparison of the velocity profiles of the fully devel-
oped flows. The lines represent the results of the Cercignani second
order slip model while the symbols represent the simulation results
of the present LBE model.
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commodation coefficienta, we can see that the slip at wall is
increasing. Therefore, an accurate determination of this co-
efficient is essential for LBE simulation results. Fortunately,
this coefficient for many surface conditions is available in
the literature; hence the proposed gas surface interaction
model could promote the LBE model as a design tool for
microsystems.

By applying the present boundary condition, we can cap-
ture the famous Knudsen paradoxsKnudsen minimumd phe-
nomenon. Toschi and Succif25g have recently independently
reproduced the Knudsen paradox. Figure 4 shows that the
minimum mass flow rate occurs at Kn<0.5, where the flow
rate is nondimensionalized by the flow rate at Kn=0.1. Al-
though the present LBE model prediction is more accurate
than the Cercignani second order slip model at large Knud-
sen numbers, it starts to differ from the results reported by
Ohwadaet al. f26g at Kn<0.4. When Kn is large, Eq.s6d
suggests that either the relaxation timet is large or the chan-
nel heightH is small. In simulation,H needs to be main-
tained at a reasonable value for resolution; the only way to
have a large Kn is to maket large. Unfortunately, larget
will introduce significant numerical error, which needs to be
tackled in order to extend the LBE model to simulate flows
covering a broad range of Knudsen number.

In summary, a slip boundary condition has been proposed
by adopting the Maxwellian scattering kernel to describe gas
surface interactions. The accommodation coefficient has sig-
nificant impact on the simulation results. The Knudsen num-
ber has been defined in terms of the LBE properties to be
consistent with the macroscopic property based definition
commonly used in kinetic theory. This work has demon-
strated that the LBE model is able to simulate isothermal gas
flows in microchannels with large Knudsen numbers. In the
slip flow regime, the present LBE model has achieved good
agreement with the established analytical solutions, and it
also captures the Knudsen minimum phenomenon qualita-
tively in the transition flow regime. Therefore, we may con-
clude that the LBE is a viable method to simulate rarefied
gas flows in microsystems. Finally, we need to emphasize
that the present work has only tackled isothermal rarefied gas
flows in a simple geometry. Further work is required to ex-
tend current LBE models to be able to simulate rarefied ther-
mal flows in complex geometries.
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FIG. 3. The effect of the accommodation coefficienta on the
slip motion where the flow is fully developed with Kn=0.01.

FIG. 4. Nondimensional flow rate as a function of the Knudsen
number for fully developed flows. The data denoted by the solid
squares were reported by Ohwadaet al. f26g. The solid triangles
represent the analytical solution of the Navier-Stokes equation with
Cercignani’s second order slip boundary conditionf23g.
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