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Lattice Boltzmann simulation of rarefied gas flows in microchannels
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For gas flows in microchannels, slip motion at the solid surface can occur even if the Mach number is
negligibly small. Since the Knudsen number of the gas flow in a long microchannel can vary widely and the
Navier-Stokes equations are not valid for Knudsen numbers beyond 0.1, an alternative method that can be
applicable to continuum, slip and transition flow regimes is highly desirable. The lattice Boltzmann equation
(LBE) approach has recently been expected to have such potential. However, some hurdles need to be over-
come before it can be applied to simulate rarefied gas flows. The first major hurdle is to accurately model the
gas molecule and wall surface interactions. In addition, the Knudsen number needs to be clearly defined in
terms of LBE properties to ensure that the LBE simulation results can be checked against experimental
measurements and other simulation results. In this paper, the Maxwellian scattering kernel is adopted to
address the gas molecule and surface interactions with an accommodation coefificiadtition to the
Knudsen numbercontrolling the amount of slip motion. The Knudsen number is derived consistently with the
macroscopic property based definition. The simulation results of the present LBE model are in quantitative
agreement with the established theory in the slip flow regime. In the transition flow regime, the model captures
the Knudsen minimum phenomenon qualitatively. Therefore, the LBE can be a competitive method for simu-
lation of rarefied gas flows in microdevices.
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[. INTRODUCTION the Boltzmann equation are too computationally expensive
and impractical for applications where the microscopic de-
The technology associated with microelectromechanicatails are not required. Significant effort has been made to
systems or micro—total analysis systems has developed rapmprove and extend the validity of the Navier-Stokes equa-
idly in the last decade and is set to revolutionize many im-ions beyond Knudsen numbers of 0.1, or to construct com-
portant scientific areas. Of particular importance are chemiplicated constitutive laws involving high order terms of the
cal, biological, and clinical analyses, where miniaturizedKnudsen number, which leads to Burnett-type equatj@hs
systems offer the potential to significantly increase yieldsThe LBE method has the potential to improve this situation
and reduce process time and reagent consumption. For gggca_use it is efficient, comp_arable to NavierTStokes sol\_/er_s,
flows in these devices, the thermodynamic quasiequilibriun®nd it can recover the Navier-Stokes equations. A prelimi-
hypothesis, which leads to the Navier-Stokes equations, mayary link between the LBE and the Burnett-type equations
be inappropriate. This is because the mean free path of tHe2S aso been establishEtD]. In addition, continuum, slip,
gas molecules may be comparable to the characteristic Iengfzrj.‘d transition flow regimes may exist together in microflu-
scale of the microsystem. Recently, the lattice Boltzmanré ic devices, e.g., a long microchannel. Hybrid algorithms

, . Ihat couple DSMC and Navier-Stokes methods have been
equation(LBE) method has been developed as an alternative . ; ;
numerical scheme for fluid flow simulatigd—4], and it has ried to model these mixed flow regimgkl]. However, large

. ) ; errors can arise from inappropriate assumptions regarding,
also simulated gas flow in a microchanié|6] T_he LBE  for example, the velocity distribution for gas molecules at
method usually solves model Boltzmann equations such e matching interface between two solutigdg]. Further-
the Bhatnaga_r—G.ros_s—K_roql_BGK) model on a discrete lat- more, these hybrid algorithms entail intensive computational
tice [7,8]. Its intrinsic kinetic nature makes it an attractive

hod f icrofiuidic fi h both mi , deffort for three-dimensional flow simulations. In principle,
method for microfluidic flows where both microscopic and e | e s valid throughout these mixed flow regimes and

ma:lr(r)]scopr:c ber}?viors_ are coupled. I ._avoids any coupling problem. Consequently, the LBE may be
though gas flows in microsystems are usually creeping, poyar method for gas flows in microdevices, particularly

so that they are nearly incompressible, the Knudsen numb‘;,\r,here mixed flow regimes are encountered.
can vary widely and readily exceed the Navier-Stokes equa- He and Luo[13] and Abe[14] have demonstrated that the
tion limit of 0.1. For practical applications, only a few mac- BE can be derived from the Boltzmann equation. Shan and
roscopic properties such as viscosity and flow rate are o e [15] also showed that the LBE is a special discrete ve-
interest and can determine the bulk motion characteristic%city method of solving the Boltzmann equation. Although
Therefore, molecular dynamic_s, the direc_t simglation_ Mont&e above work did not produce additional LBE models, the
Carlo (DSMC) method, and direct numerical simulation of theoretical connection between the LBE and the Boltzmann
equation was established. Therefore, the LBE model can be
valid for rarefied gas flows provided the Mach number is
* Author to whom correspondence should be addressed. Email aggmall. Moreover, since the standard BGK equation, a simpli-
dress: Y.Zhang@dl.ac.uk fied model Boltzmann equation, is able to simulate highly
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nonequilibrium gas flows, the lattice BGK model should also 2c(7—0.5

be applicable to rarefied microflows despite the fact that the Kn = W (4)

model is validated only for small Knudsen numbers. Numeri-

cal validation of LBE models against experimental data andrhe lattice velocityc depends on the lattice model which

well accepted DSMC results is needed for rarefied gas miwas provided by Qiaret al. [4], e.g.,c=vV3kT/m for the

croflows in various geometries. d2qg9 and d3g27 models=v2kT/m for the d2q6 model, and
LBE methods have been extensively applied to simulate=2\kT/m for the d2q7 model. Consequently, E4) can be

incompressible fluid flows with the no-slip boundary condi- further simplified, e.g., for the d2g9 or d3q27 lattice model:

tion at the wall. However, little has been done on the simu-
lation of gas flows in microchannels, which are usually in- Kn = \/E(T_ 0'5)_ (5)
compressible but tangentially slip at the wall. In order to 6 H

tackle these flows, we need to model the gas molecule and . .
Because the mean free path depends on microscopic de-

solid surface interactions so that the slip motion at the Wawails of the molecular interaction, especially the collision fre-

boundary can be determined. In addition, the Knudsen NUM: ey, the mean free path based Knudsen number could be
ber should be defined in terms of LBE properties that arel Y, t . P . .

. X L Lok different in various models despite the gases having the same
consistent with the definition used in kinetic theory to ensure

the comparability of the results obtained experimentally,gﬁ](ggsgor\)/';r% rt?sp?rzttl)edse.lslnvs;dﬁreé?j ?grggg:z ttr;:z rriselg:]s fcr)ebé
theoretically, and numerically. y ’

path to be dependent only on the macroscopic properties,
e.g.,|=(u/p)V7kT/2m, where u is the dynamic shear vis-
Il. MATHEMATICAL MODEL cosity andp is the pressure. As a result, the Knudsen number
in the standard BGK model given by E¢(b) needs to be

For the sake of simplicity, the lattice BGK model is set as
rescaled to

an examplg8]:

L kn= /87705 ®)
fix+ 0%, ) = fix0 = = ~[1i(x) = 0], N3 H

From Eq.(6), we can see the relation among Kn,andH

i=01 n 1) can be exactly determined. Similarly, the Knudsen number
B for other lattice models can be obtained; for example, the

wheref;(x,t) is the density distribution function along the ~Knudsen numbers for the d2q6 and d2q7 LBE models are

direction at the lattice sitg at timet; ox is the lattice length given by

andét is the time stepr is the dimensionless LBE relaxation 4 (r-0.5

time given by\/ St whereX is the relaxation timef{is the 3—~ TERE d2q6,
local Maxwellian distribution function; the lattice velocity kn={ \7

i.e., o/ &, is chosen to obey mass, momentum, and energy 42 (- 0.5
conservation. The densify and bulk velocityu can then be 3\_7—7 H d2q7.

determined from=,f; and =,fici/p, respectively. For

square lattice models, the LBE relaxation timean be re- Nie et al. [5] gave Kn=(7-0.5/Hp (a is a constant to be

lated to the kinematic viscosity by (x?/ 8t)(7—0.5)/3. The  determined numericallyand Lim et al. [6] asserted Kn

factor —0.5 is the correction to make the LBE a second ordefr 7/H. In the present work, no free parameter is in the model

method for solving incompressible flovi4]. to be tuned to produce desirable simulation results. Here, we
In kinetic theory, the viscosity is linearly proportional to need to emphasize that the Knudsen number differs by a

the mean free path which is the mean distance a molecule constant factor among various lattice models.

travels between two consecutive collisions. As given by Ref. The most important issue for extending LBE models to

[16], v=2cl where the mean velocity of the molecudeis ~ Simulate rarefied flows is to model the boundary conditions

V8KT/mm (K is the Boltzmann constant, is the absolute at the walls capturing the underlying physics of gas molecule
temperature, andh is the molecular mags Therefore, the and surface interactions. A difference in boundary conditions

Knudsen number can be expressed by will significantly affect the simulation resull[i?]. In order
to solve the LBE, the distribution function of gas molecules
2w f* leaving the wall surface requires to be related to the inci-
Kn= H_ch _?Hch, 2 dent molecule distribution functiofi. Generally, a scatter-

ing kernel is needed to determiri& and the details can be
whereHg, is the channel height. Introducing a dimensionlessseen in Refs[18,19. The most widely applied kernel is the

channel heighH=H,/ &%, Eq. (2) becomes diffusive scattering model which can be interpreted as the
gas molecules losing all information of their state before col-
Kn = 2v 3) lisions and being reflected obeying a Maxwellian distribution

function. Recently, this diffusive scattering kernel has been
implemented into the LBE model and the numerical results
Sincev=(&x?/ 8t)(7—0.5/3 andc=6x/ &, Eq. (3) becomes  show good agreement with the analytical solution of the

T CHX
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FIG. 1. Schematic diagram of gas surface interactions and ve- 5 03 Kn=0.02 Kn=0.05
locity directions of a two-dimension&PD) (d2q9 model in a mi- .

crochannel, where' is the incident velocity and is the reflected
velocity of a representative group of molecules. Herés the nor- | y

mal direction ands refers to the specular reflection direction.
FIG. 2. Comparison of the velocity profiles of the fully devel-

Bolt tion for K , bl the Knud oped flows. The lines represent the results of the Cercignani second
oftzmann equation for Kramers probiem as the rnudsen, .. slip model while the symbols represent the simulation results

number tends to zer20]. However, for microflows, the of the present LBE model.
Knudsen number can vary widely and gas surface interac-
tions can be between diffusive and specular reflections,
Therefore, more general boundary conditions are necessa rd sphere gas h"’.‘S been generallyﬂacceptec.i to be close to
for LBE models. Maxwel[21] expanded the diffusive kernel real gas ﬂ(_)WS in microsystems, Hadjiconstantingd] res-
to a partly diffusive,a, and partly specularl-a) kernel. c_aled_ and improved the model.for a hard sphere gas by con-
This accommodation coefficiemtis the most important pa- sidering Knudsen layer effects:
rameter in describing a solid surface interaction with gas Ju JAu
molecules. It is 1.0 for diffusive reflection and 0 for specular Ulwar = 1.1466 —| -0.317 o
reflection. With the information about the accommodation N wail :
coefficient for various surface conditions available in the lit-where u is the slip velocity at the wallp is the normal
erature, we may establish a gas surface interaction model fafirection to the wall, and is the mean free path given by
the LBE method with practical implications. Since the Max- (w/p)\7kT/2m; here diffusive reflection was assumed. In
wellian scattering kernel has been applied and tested in sol\the literature, the value of the second order slip coefficient,
ing Boltzmann equations, we propose to implement this gaghich is 0.31 in Eq.(8), varies widely. For example, it is
surface interaction model and assess its effect on the sim@:.647 in Ref[23]. In the flow regime with Kr< 0.1, where
lation results. the Navier-Stokes equation is valid, the difference of the sec-
A representative group of particles colliding with the wall ond slip coefficient has little effect on flow prediction. The
is shown in Fig. 1; the postcollision direction is usually be-comparison between the present LBE results and analytical
tween the normal direction and the specular reflection di- solutions of the second order slip model is shown in Fig. 2,
rections, which could be characterized by the accommodawhere the velocity is nondimensionalized by the mean veloc-
tion coefficient a. If this Maxwellian kernel is to be ity. Excellent agreement has been achieved especially at
implemented into a LBEd2g9 model, the boundary condi- small Knudsen number. The deviation starts at Kn=0.25
tion at the upper wall can be expressed by where the validity of the Navier-Stokes equation with second
order slip boundary condition is questionable. In the calcu-
falxy,t+8) = (1 —a)fs(x = ox,y.0), lation, th% gas rov?// is isothermalqwith Mach numbers well
below 0.1. Tests have been carried out with lattice nuriber
of 21, 27, and 35 respectively and the numerical results are
found to beH independent. Along the channel, the lattice
fax,y,t+ dt) = afs(x = ox,y,t) +afg(x+ ox,y,t) + fa(xy,1). number is fixed at 38 and the pressure boundary condition
(7) s used.
For most LBE applications, the nonslip boundary condi-
This implementation of gas molecule and wall collisionstion is usually imposed by the so-called bounce back rule.
is simple but captures the underlying physics, which is inwhen Kn increases, the bulk velocity is no longer zero at the
contrast to the empirical bounce back rule. It can be genefya|| and the empirical bounce back rule may not be valid.
alized to various geometric conditions and lattice models. A jm et al.[6] used a specular reflection model and captured
similar boundary condition can be obtained for the lowerihe slip motion of fluid at the wall for Knudsen numbers up
wall. Succi[17] has used a combination of the bounce backg 0.155. However, a specular reflection indicates that there
rule and specular reflection to generate the slip effect at thg no friction in the tangential direction, so that a pluglike
wall. A reflection parameter is included which has recentlypyk velocity in the microchannels will appear. At Kn=0.01
been connected to the accommodation coeffidi2at. where the slip starts, the impact of the accommodation coef-
IIl. RESULTS AND DISCUSSION ficient on the ve_lo_city. profile is shqwn in .Fig. 3_. If the
bounce back collision is used, there is no slip motion at the
Cercignani[23] used the BGK approximation and ob- wall while the velocity profile is pluglike as expected if a
tained a second order slip model for rarefied gas flows. As apecular reflection model is assumed. With decreasing ac-

. (8

wall

f(x,y,t+8) = (1 —a)fg(x+ oxy,t),
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) o number for fully developed flows. The data denoted by the solid
_FIG. 3. The effect of the accommodation coefficienon the  squares were reported by Ohwaelaal. [26]. The solid triangles
slip motion where the flow is fully developed with Kn=0.01. represent the analytical solution of the Navier-Stokes equation with

commaodation coefficierd, we can see that the slip at wall is Cercignani's second order slip boundary condi@s].

increasing. Therefore, an accurate determination of this co- |n summary, a slip boundary condition has been proposed
efficient is essential for LBE simulation results. Fortunately,py adopting the Maxwellian scattering kernel to describe gas
this coefficient for many surface conditions is available insyrface interactions. The accommodation coefficient has sig-
the literature; hence the proposed gas surface interactiofificant impact on the simulation results. The Knudsen num-
model could promote the LBE model as a design tool forher has been defined in terms of the LBE properties to be
microsystems. N consistent with the macroscopic property based definition
By applying the present boundary condition, we can captommonly used in kinetic theory. This work has demon-
ture the famous Knudsen parad@nudsen minimumphe-  strated that the LBE model is able to simulate isothermal gas
nomenon. Toschi and Sudd5] have recently independently fiows in microchannels with large Knudsen numbers. In the
reproduced the Knudsen paradox. Figure 4 shows that thelip flow regime, the present LBE model has achieved good
minimum mass flow rate occurs at Kr0.5, where the flow agreement with the established analytical solutions, and it
rate is nondimensionalized by the ﬂOW rat(? at Kn=0.1. Al-a|so Captures the Knudsen minimum phenomenon qua”ta-
though the present LBE model prediction is more accuratgjvely in the transition flow regime. Therefore, we may con-
than the Cercignani second order slip model at large Knudcjude that the LBE is a viable method to simulate rarefied
sen numbers, it starts to differ from the results reported b)gas flows in microsystems. Finally, we need to emphasize
Ohwadaet al. [26] at Kn=~0.4. When Kn is large, Eq6)  that the present work has only tackled isothermal rarefied gas
suggests that either the relaxation tims large or the chan-  flows in a simple geometry. Further work is required to ex-
nel heightH is small. In simulationH needs to be main- tend current LBE models to be able to simulate rarefied ther-
tained at a reasonable value for resolution; the only way tenal flows in complex geometries.
have a large Kn is to make large. Unfortunately, large-

will introduce significant numerical error, which needs to be ACKNOWLEDGMENT
tackled in order to extend the LBE model to simulate flows This work is financially supported by U.K. Medical Re-
covering a broad range of Knudsen number. search Council under Grant No. 57719.

[1] G. McNamara and G. Zanetti, Phys. Rev. Le@l, 2332 [16] S. Chapman and T. G. Cowlinghe Mathematical Theory of

(1988. Non-Uniform GasesCambridge University Press, Cambridge,
[2] F. J. Higuera and J. Jiménez, Europhys. L6;t663(1989. U.K., 1970.
[3] F. J. Higuereet al,, Europhys. Lett.9, 345(1989. [17] S. Succi, Phys. Rev. Let89, 064502(2002.

[4] Y. Qianet al, Europhys. Lett.21, 255 (1992.
[5] X. Nie et al,, J. Stat. Phys107, 279(2002.
[6] C. Y. Lim et al, Phys. Fluids14, 2299(2002.

[18] C. CercignaniTheory and Application of the Boltzmann Equa-
tion (Scottish Academic, Edinburgh, 1975

[7] R. Benziet al, Phys. Rep.222, 145 (1992, [19] C. Cercignani, R. lliner, and M. PulvirenfLhe Mathematical
[8] S. Chen and G D. Doolen, Annu. Rev. Fluid Med0, 329 Theory of Qilute Gase@pringer, New York, 1994
(1998. [20] S. Ansumali and I. V. Karlin, Phys. Rev. &6, 026311(2002.
[9] D. A. Lockerbyet al, PhyS Rev. E70, 017303(2004) [21] J.C. Maxwe!l, Philos. Trang. R. SOC LpnddﬁQ 231(1879.
[10] Y. H. Qian and Y. Zhou, Phys. Rev. E1, 2103(2000. [22] M. Sbragaglia and S. Succi, e-print nlin.CG/0410039.
[11] R. Rovedaet al, J. Spacecr. Rocketd7, 753 (2000. [23] C. Cercignani, University of California, Berkeley, Institute of
[12] D. B. Hash and H. A. Hassan, J. Thermophys. Heat Transfer ~ Engineering Research Report No. AS-64-19 196#pub-
10, 242(1996. lished.
[13] X. He and L.-S. Luo, Phys. Rev. B5, R6333(1997. [24] N. G. Hadjiconstantinou, Phys. Fluids5, 2352(2003.
[14] T. Abe, J. Comput. Phys131, 241 (1997. [25] F. Toschi and S. Succi, Europhys. Le@9, 549 (2005.
[15] X. Shan and X. He, Phys. Rev. Lei0, 65 (1998. [26] T. Ohwadaet al.,, Phys. Fluids A1, 2041(1989.

047702-4



