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Frieden and Soffer conjectured some years agofPhys. Rev. E52, 2274s1995dg the existence of a “Fisher
temperature”TF that would play, with regards to Fisher’s information measureI, the same role that the
ordinary temperatureT plays in relation to Shannon’s logarithmic measure. Here we exhibit the existence of
reciprocity relations betweenTF andT and provide an interpretation with reference to the meaning ofTF for the
canonical ensemble.
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I. WHY A FISHER TEMPERATURE?

Frieden and Soffer conjectured some years agof1,2g the
existence of a “Fisher temperature”TF that would play, with
regards to Fisher’s information measureI, the same role that
the ordinary temperatureT plays in relation to Shannon’s
logarithmic measureS f3,4g. In a series of more recent pub-
lications, this conjecture was amply validated by showing
that the Legendre transform structure of thermodynamics can
be replicated without changes if ones substitutesI for the
Shannon entropyS f5–8g, which yields then a “Fisher ther-
modynamics.”

This Fisher thermodynamics is exactly equivalent to the
conventional one, except that instead of the Shannon-
Boltzmann-GibbssSBGd entropySone uses Fisher’sI f5–8g.
A question still lingers, though: we have a SBG pairsS,Td
and a Fisher pairsI ,TFd. What is the relation betweenT and
TF?

In other words, in parallel tos1/Td=dS/dU sU is the
mean energyd f9g, we haves1/TFd=dI /dU f5–8g. We need a
thermometer to measureTF, and this is best achieved by
finding a relationship between the two temperatures. In this
Brief Report we purport to provide a first answer with re-
spects to the relation betweenT andTF.

II. BRIEF FISHER CONSIDERATIONS

Estimation theoryf2g provides one with a powerful result
with reference to a system that is specified by a physical
parameteru. Let x be a stochastic variable andpusxd the
probability density for this variable, which depends on the
parameteru. If an observersid makes a measurement ofx
and wishes to best inferu from this measurement, calling the

resulting estimateũ= ũsxd and sii d wonders how wellu can
be determined, then estimation theory assertsf2g that the best

possible estimatorũsxd, after a very large number ofx
samples is examined, suffers a mean-square errore2 from u,
which obeys a relationship involving Fisher’sI—namely,
Ie2=1—where the Fisher information measuresFIMd I is of
the form

I =KS ] ln pu

]u
D2L . s1d

The FIM is additivef2g. If we haven independent param-
etersui, Eq. s1d becomes a sum ofn terms of the form given

abovef2g. The “best” estimator is called theefficientestima-
tor. Any other estimator must have a larger mean-square er-
ror. The only proviso to the above result is that all estimators

be unbiased—i.e., satisfykũsxdl=u. Thus, Fisher’s informa-
tion measure has a lower bound, in the sense that, no matter
what parameter of the system we choose to measure,I has to
be larger or equal than the inverse of the mean-square error
associated with the concomitant experiment. This result, i.e.,

Ie2 ù 1, s2d

is referred to as the Cramer-Rao bound and constitutes a very
powerful statistical resultf2g.

III. FORMALISM

We start by defining the well-known density operator that
describes a system at equilibriumf3,4g:

r̂ =
1

Z
expS− o

i=1

M

xiÂiD . s3d

The xi are Lagrangian multipliers associated to theM ob-

servablesÂi, whose expectation values are given by

kÂil = Tr r̂Âi si = 1, . . . ,Md, s4d

where the partition functionZ has the form Zsxid
=Trfexps−oi=1

M xiÂidg f10g. In our present considerations we
assume that these multipliershave already been determined.

Following Mandelbrotf11–13g we sid associatethe above
Lagrange multipliers to parameters to be estimated via
Fisher considerationsinvolving a FIM that depends uponr̂
andsii d write down this FIM as a sum ofM terms, each one
associated to the estimation of the parameterxi, i.e.,

I = o
i=1

M

GiKS ] ln r̂

]xi
D2L , s5d

where theGi are suitable constants related to thesconven-
tionald wish of having a dimensionlessI, as discussed in
f14,15g. After replacing Eq.s3d into Eq.s5d we then find that
I is intimately connected to our observables’ fluctuations, as
pointed out long ago by Mandelbrotf11,16g:
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I = o
i=1

M

GiksÂi − kÂild2l. s6d

If we wish to have a dimensionlessI, Gi has the dimension of

f1/dimsÂid2g. Now, it is well known sand straightforwardly
verifiedd that the statistical fluctuations of an observable
obey the relationf11,16g

ksÂi − kÂild2l = −
]kÂil
]xi

s7d

sthe xi have dimension off1/dimsÂidg, which allows us to
recast the Fisher measure in the fashion

I = − o
i=1

M

Gi
]kÂil
]xi

. s8d

IV. EXTREMIZATION OF I SUBJECT
TO CONSTRAINTS

As stated above, the thermodynamics Legendre structure
can be neatly re-obtained if one extremizes FIM subject to
constraints instead of doing this using the Boltzmann entropy

f5–8g. We deal then with the same mean valueskÂil used
above, but, of course, different Lagrange multipliers will en-
sue. Let us call these new Fisher multipliersgi and borrow
from the well-known thermodynamic relation that links in-
formation measure, Lagrange multipliersshere the Fisher
onesd, and expectation valuesf3,5g:

gi =
]I

]kÂil
. s9d

It is now clear that, introducing the above result into Eq.s8d,
we get an expression for the Fisher multipliersgi in terms of
the Shannon onessx jd:

gi = − o
j=1

M

G j
]

]kÂil

]kÂjl
]x j

; dimsgid = dims1/Âid, s10d

a relation which could be used to determine them. It might
seem at this point natural to ask what happens if we consider
a canonical distribution in which the Lagrange multipliers
are thegi instead of thexi. We discuss this question below
for classical systems within the strictures of the canonical
ensemble.

V. EQUIPARTITION THEOREM

In classical statistical mechanics there exists a useful gen-
eral result concerning the energyE of a system expressed as
a function of 2N generalized coordinatesji sfor instance,N
coordinatesr i and N momentapid. Thus,E=Esj1, . . . ,j2Nd.
The result holds in the case of the followingsfrequentd oc-
currence.

sid The energy splits additively into the formE=eisjid
+E8sj1, . . . ,ji−1,ji+1, . . . ,j2Nd, whereeisjid involves only the

variableji and the remaining partE8 does not depend onji.
sii d The functioneisjid is quadratic inji.
In these circumstanceskeil=kT/2, with k Boltzmann’s

constant andT the temperature. This is the equipartition
theoremf9g. The mean value of each independent quadratic
term in the energyE equalskT/2, whereb=1/kT is the
sShannon-Boltzmann-Gibbsd Lagrange multiplier associated
with the the mean-energy constraintkEl=edtfE. Its demon-
stration assumes that the thermal equilibrium Boltzmann-
Gibbs equilibrium probability distribution

f =
1

Z
e−bE, s11d

with dt the phase-space volume element. SettingG=1/k2T0
2,

with T0 an arbitrary but fixed reference temperature, yields a
dimensionless Fisher information measures8d for the canoni-
cal ensemble:

I = −
1

k2T0
2

]kEl
]b

. s12d

VI. RECIPROCITY

Since we assume equipartition, we immediately findf9g

kEl = Nb−1, s13d

implying

]kEl
]b

= − Nb−2 = −
kEl2

N
, s14d

entailing that, according to Eq.s10d, the Fisher multiplier
sdefined asg=1/kTFd is

g =
1

kTF
= −

1

k2T0
2

]

]kEl
]kEl
]b

=
2

k2T0
2b

. s15d

Since the multipliers are inverse temperatures, we obtain the
interesting relationship

TF =
T0

2

2T
, s16d

our main result here, which, on reflection, should not sur-
prise anyone since it is a well-known fact that wheneverI
grows, Shannon’sS decreases and vice versaf2g. Note that
the Fisher informations12d adopts now the following appear-
ance:

I =
kEl2

Nk2T0
2,

]I

]kEl
=

2

k2T0
2b

, s17d

where we have used equipartitionskEl=N/bd, leading to

1

b
=

k2T0
2

2

]I

]kEl
, kEl ; kElb. s18d

With reference to Eq.s15d, let us introduce now the Fisher
result g=2/sk2T0

2bd as the multiplier entering the canonical
probability distributionf in Eq. s11d and repeat the preceding
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discussion, starting with the relation that takes now the place
of Eq. s13d, here

kElg = Ng−1. s19d

One has

]kElg

]g
= − Ng−2 = −

kElg
2

N
. s20d

We ask ourselves what is now the new Fisher multiplierg2.
The answer is, using Eqs.s19d and s15d,

g2 = −
1

k2T0
2

]

]kElg

]kElg

]g
=

2

k2T0
2

kElg

N
= gb

kElg

N
, s21d

i.e.,

g2 = b, s22d

which is indeed consistent with Eq.s18d. Here we encounter
reciprocity. The “Fisher multiplier” g2 is the inverse

Boltzmann-Gibbs-Shannon temperature that verifiesfcf. Eq.
s17dg

1

kT
= b =

]Isgd
]kElg

,

1

kTF
= g =

]Isbd
]kElb

, s23d

in self-explanatory notation. Equations17d can be written in
either the “b” language or in the “g” one, indistinctly.

VII. CONCLUDING REMARKS

We have in this Brief Report provided two results that we
deem important for the Fisher practitioners: namely,sad TF
=T0

2/2T, with T0 an arbitrary but fixed reference Boltzmann
temperature, andsbd the reciprocity relations given by Eq.
s23d.
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