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Reciprocity relations between ordinary temperature and the Frieden-Soffer Fisher temperature
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Frieden and Soffer conjectured some years [®tys. Rev. E52, 2274(1995] the existence of a “Fisher
temperature”Tg that would play, with regards to Fisher’s information measuréhe same role that the
ordinary temperatur@& plays in relation to Shannon’s logarithmic measure. Here we exhibit the existence of
reciprocity relations betwe€ef: andT and provide an interpretation with reference to the meanirig:éér the
canonical ensemble.
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I. WHY A FISHER TEMPERATURE? above[2]. The “best” estimator is called thefficientestima-

Frieden and Soffer conjectured some years figd] the tor. Any other esti_mator must have a Iarger mean-square er-
existence of a “Fisher temperatur& that would play, with ~ for. The only proviso to the above result is that all estimators
regards to Fisher’s information measurehe same role that be unbiased—i.e., satisfyf(x))= 6. Thus, Fisher’s informa-
the ordinary temperatur& plays in relation to Shannon’s tion measure has a lower bound, in the sense that, no matter
logarithmic measur&[3,4]. In a series of more recent pub- \hat parameter of the system we choose to measinas to
lications, this conjecture was amply validated by showingpe |arger or equal than the inverse of the mean-square error

that the Legendre transform structure of thermodynamics cagssociated with the concomitant experiment. This result, i.e.,
be replicated without changes if ones substitutder the

Shannon entrop [5—8], which yields then a “Fisher ther- le?=1, (2
modynamics.”

This Fisher thermodynamics is exactly equivalent to th
conventional one, except that instead of the Shanno
Boltzmann-GibbgSBG) entropyS one uses Fisheris[5-8].

A question still lingers, though: we have a SBG p&T)
and a Fisher paifl, Tz). What is the relation betweehand Ill. FORMALISM
Tg? We start by defining the well-known density operator that

mean energy[9], we have(1/Tg)=dl/dU [5-8]. We need a

ds referred to as the Cramer-Rao bound and constitutes a very
ppowerful statistical resulf2].

thermometer to measuré:, and this is best achieved by . % ~
finding a relationship between the two temperatures. In this p=5 exp ~ = XiA |- 3)
Brief Report we purport to provide a first answer with re- =
spects to the relation betwed@nand T. The y; are Lagrangian multipliers associated to teob-
Il. BRIEE EISHER CONSIDERATIONS servablesd;, whose expectation values are given by
Estimation theory 2] provides one with a powerful result (AY=TrpA (i=1,...M), (4)

with reference to a system that is specified by a physical ” .

parameterd. Let x be a stochastic variable amm(x) the ~Where the partition functionZ has the form Z(x;)
probability density for this variable, which depends on the=Tr{exp(-S{;x;A)] [10]. In our present considerations we
parameterd. If an observer(i) makes a measurement »f assume that these multipliehgsive already been determined
and wishes to best infet from this measurement, calling the  Following Mandelbro{f11-13 we (i) associatethe above
resulting estimatgg:“é(x) and (i) wonders how welld can Lagrange multipliers to parameters to be estimated via

be determined, then estimation theory asg@itthat the best  FiSher considerationgnvolving a FIM that depends upgh
. . ~ and (ii) write down this FIM as a sum d¥l terms, each one
possible estimatord(x), after a very large number of

) ) associated to the estimation of the paramgier.e.,
samples is examined, suffers a mean-square efrisom 6, P se

which obeys a relationship involving Fisherls—namely, M alnp 2
le?=1—where the Fisher information measféM) | is of =T, (—> : (5
the form i=1 IXi
alnp,\? where thel’; are suitable constants related to tteenven-
I= (7) . (1) tional) wish of having a dimensionlesls as discussed in

[14,15. After replacing Eq(3) into Eq.(5) we then find that
The FIM is additive[2]. If we haven independent param- | is intimately connected to our observables’ fluctuations, as
etersd;, Eq. (1) becomes a sum of terms of the form given pointed out long ago by Mandelbrft1,16]:
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M . variable¢; and the remaining pa’ does not depend o§.
1= > TW{(A = (A)D. (6) (ii) The functioneg (&) is quadratic iné.
i=1 In these circumstance&;)=kT/2, with k Boltzmann’s

If we wish to have a dimensionlessI'; has the dimension of constant andT the temperature. This is the equipartition
[l/dlm(Ai)Z]. Now, it is well known (and straightforwardly theorem[9]. The mean value of each independent quadratic

verified that the statistical fluctuations of an observableterm in the energye eq_ualskT/2 where@ .1/kT Is 'ghe
. (Shannon-Boltzmann-Gibbd.agrange multiplier associated
obey the relatiorf11,16|

with the the mean-energy constraiid) = fd+fE. Its demon-

L (9<A_> stration assumes that the thermal equilibrium Boltzmann-
(A - (AND=- TXI (7)  Gibbs equilibrium probability distribution
i
N 1
(the x; have dimension of1/dim(A))], which allows us to f= ze_BE, (11)
recast the Fisher measure in the fashion

M - with dr the phase-space volume element. Setfirgl /k?T2,

1=-ST, KA) ®) with Ty an arbitrary but fixed reference temperature, yields a
B = o dimensionless Fisher information meas(8gfor the canoni-
cal ensemble:
1 aB w2
IV. EXTREMIZATION OF | SUBJECT kZTé 9B .

TO CONSTRAINTS

As stated above, the thermodynamics Legendre structure
can be neatly re-obtained if one extremizes FIM subject to VI. RECIPROCITY
constraints instead of doing this using the Boltzmann entropy

[5—-8]. We deal then with the same mean valyds used

above, but, of course, different Lagrange multipliers will en- (BE)=NpH, (13
sue. Let us call these new Fisher multipliersand borrow

Since we assume equipartition, we immediately fiaif

from the well-known thermodynamic relation that links in- implying

formation measure, Lagrange multiplie(sere the Fisher <E) ~ <E>2

ones, and expectation valug8,5]: B N 2= N’ (14)
yi = Jl _ (9) entailing that, according to Eq10), the Fisher multiplier
XA (defined asy=1/kT) is

It is now clear that, introducing the above result into E8), 1 1 9 KE)_ 2

we get an expression for the Fisher multipliefsn terms of v (19

ke KT2HE) 9B K2T2B
the Shannon onel;):

Since the multipliers are inverse temperatures, we obtain the

9 KA . interesting relationship
y=-2 Fj_A<—Q; dim(y) =dim(1/4), (10 ,
=1 KA X T
Te=71, (16)
2T

a relation which could be used to determine them. It might

seem at this point natural to ask what happens if we considesur main result here, which, on reflection, should not sur-
a canonical distribution in which the Lagrange multlpllers pr|se anyone since it is a well-known fact that wheneler
are they; instead of they;. We discuss this question below ?rows Shannon's decreases and vice verg2l. Note that

for classical systems within the strictures of the canonicathe Fisher informatio12) adopts now the following appear-
ensemble. ance:

= (E)? a 2
V. EQUIPARTITION THEOREM = Nk2T2' XE) = szgB.

where we have used equipartitiofE)=N/B), leading to

17

In classical statistical mechanics there exists a useful gen-
eral result concerning the energyof a system expressed as
a function of N generalized coordinates (for instance N 1 K2 4l
coordinates; and N momentap;). Thus, E=E(&q, ... ,&n)- E = T@'
The result holds in the case of the followiiiiyequen} oc-
currence. With reference to Eq(15), let us introduce now the Fisher

(i) The energy splits additively into the forfE=¢(&) result y=2/(k’T38) as the multiplier entering the canonical
+E'(&, .. &-1, vy - - E0n), Whereg (&) involves only the  probability distributionf in Eq. (11) and repeat the preceding

(E) = (E)p. (18)
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discussion, starting with the relation that takes now the plac8oltzmann-Gibbs-Shannon temperature that verfii¢sEq.

of Eq. (13), here
(B),=Ny™. (19)
One has
2
%:—N —2:—%. (20)

We ask ourselves what is now the new Fisher multipligr
The answer is, using Eq&19) and (15),

L1 0 X8, 2@, (6,
KTeKE), dy KTa N RRGEEENC

Y2=

yZZBv (22)

which is indeed consistent with E¢L8). Here we encounter
reciprocity. The “Fisher multiplier” v, is the inverse

7]
1 _, 4B
kT PT KE),’
1 _,-9B
Ke |~ AE)s 23

in self-explanatory notation. Equatigh?7) can be written in
either the 8" language or in the ¥’ one, indistinctly.

VII. CONCLUDING REMARKS

We have in this Brief Report provided two results that we
deem important for the Fisher practitioners: namédy, Tr
=T2/ 2T, with T, an arbitrary but fixed reference Boltzmann
temperature, andb) the reciprocity relations given by Eq.
(23).
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