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A wall equilibrium boundary condition for an implicit lattice-Boltzmann-equation method is proposed to
simulate gas flows in a microchannel with rough surface on the characteristic length of gas molecules. The
boundary condition is based on the assumption that impinging molecules reach equilibrium with the surface.
The molecular mean free path used to define the Knudsen number is determined by the lattice speed and the
relaxation time of the lattice-Boltzmann equation. With the wall equilibrium boundary condition and the
appropriate relation defined for the Knudsen number and the relaxation time, the computed slip velocity and
nonlinear pressure distribution along the microchannel are in excellent agreement with analytical solutions.
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I. INTRODUCTION

The slip velocity of the lattice-Boltzmann-equationsLBEd
method has been observed since its advent. In the simulation
of macroscopic fluid flows, the slip velocity of the LBE
method was considered a numerical error that must be cor-
rected. In this regard, efforts have been made for develop-
ment of the perfect no-slip boundary condition. The bounce-
back rule and the equilibrium boundary condition commonly
adopted in LBE simulations produce a first-order slip veloc-
ity. Even the higher-order boundary conditions that have
been proposed during the last decade are not entirely free
from the slip velocityf1g. Generally, the slip velocity in-
creases with the relaxation time of intermolecular collision to
local equilibrium. At the molecular level, the relaxation time
can be related to the Knudsen number Kn, which is the ratio
of the lattice molecular mean free pathl to the characteristic
dimensionH. Continuum can be realized only in the zero-Kn
limit, while the gas exhibits noncontinuum behaviors such as
rarefaction and compressibility effects as Kn increases. The
slip velocity of the LBE method can be attributed to the
nonzero-Knudsen-number effect. Since the relaxation time is
linearly proportional to Kn as will be shown later, the
zero-Kn limit, viz., zero relaxation time, is a numerically
impossible condition. Nonzero relaxation time implies that
the rarefaction effect is always present to a certain degree in
the LBE simulation, which is the origin of slip velocity. For
a general description of the LBE method and its historical
links with statistical mechanics, readers are referred to Benzi
et al. f2g and Chen and Doolenf3g.

As the characteristic length scale of the system ap-
proaches the mean free path, the continuum hypothesis starts
to break down and so does the no-slip condition, which is
just an empirical finding in the continuum regime. On this
small length scale, the slip velocity due to rarefaction attains
physical grounds, since it originates from the kinetic nature
and mesoscopic dynamics of the LBE method, and thus the

LBE method can be a promising tool for simulation of gas
flows on the microscale. Conducting experiments in
micrometer-size geometries is a big challengef4,5g and the
direct simulation Monte CarlosDSMCd methodf6g usually
requires a tremendous amount of computer time and
memory. The Navier-Stokes simulation can be utilized in the
slip flow regime s0.01,Kn,0.1d, but it must be supple-
mented by some slip velocity boundary conditionsf7g. The
underlying premise of the slip boundary condition is that
flows away from solid boundaries can still be treated as a
continuum. However, the slip boundary condition no longer
holds in the transition flow regimes0.1,Kn,3d, where the
continuum assumption breaks down even away from solid
boundaries.

Recently, Nieet al. f8g applied the LBE method to simu-
lation of microflows in a channel and cavity. They used the
explicit LBE formulationf9g and related the nondimensional
relaxation timete to Kn as Kn=aste−0.5d /rH for a micro-
channel of heightH and gas densityr. The factor 0.5 comes
from the explicit treatment of the collision term anda is
chosen to best match the simulated mass flow rate with ex-
periments. Nieet al. f8g used the halfway bounce-back rule
for the slip effect at the surface. Later, Limet al. f10g pro-
posed a different relation between Kn andte for the explicit
LBE formulation and performed a series of simulations of
microchannel flows with two different boundary conditions.
Their Kn for a long microchannel was defined as Kn
=sdxte/HdsPo/Pd, whereP andPo are the local pressure and
the pressure at the outlet of the channel, respectively. Their
nondimensional relaxation timete, however, did not include
the correction factor of 0.5 as in Nieet al. f8g. The specular
bounce-back rule and the extrapolation scheme were em-
ployed to generate the slip effect. Both boundary conditions
yielded qualitatively similar results.

Although previous LBE simulations show promising re-
sults to some extent, their conclusions do not converge. The
definition of Kn is still not in consensus. Different boundary
conditions such as the typical bounce-back rule, the specular
bounce-back rule, and the extrapolation scheme are used to
generate the slip effect and even in some cases, the no-slip*Electronic address: ching-long-lin@uiowa.edu
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effect. For instance, the bounce-back rule was used for the
slip effect by Nieet al. f8g, while it was considered as a
no-slip boundary condition by Succif11g. Generally, the
bounce-back rule is known to satisfy the macroscopic no-slip
boundary condition only up to first-order accuracy. The slip
error induced by the bounce-back rule seems to increase with
the relaxation timef12g and is hardly distinguishable from
the physical the slip effect. To produce the slip effect, Succi
introduced the specular bounce-back rule and studied veloc-
ity slip. Furthermore, most of the simulations were carried
out on very coarse grids, e.g.,H=10dx by Nie et al. f8g sdx
is the grid spacingd and H=10dx,20dx with fixed L /H
=10 sL is the channel lengthd by Lim et al. f10g. Fine grid
calculation has not been reported to our knowledge.

The objective of this paper is to propose a dimensionally
consistent definition of Kn and a boundary condition which
generate velocity slip in a physically meaningful manner. We
assume that gas molecules travel the distance of the lattice
mean free pathl with the lattice speedc=dx/dt while relax-
ing to their equilibrium state in the relaxation timel. The
definition of Kn is then similar to that of Limet al., but
consistent, implicit discretization of the discrete Boltzmann
equation sDBEd indicates that the second-order accurate
t-Kn relation requires a correction factor of 0.5 to thet-Kn
relation proposed by Limet al. f10g. As to the boundary
condition, we assume that the impinging molecules repre-
sented by the particle distribution functions reach equilib-
rium with the surface. Since the surface is rough on the char-
acteristic length scale of gas molecules, the reflection of the
molecules is diffuse and the equilibrium state at the surface
can be justified. In fact, Ansumali and Karlinf13g recently
proposed a diffusive boundary condition to ensure the posi-
tivity of the reflected distribution functions and the condition
of detailed balance. They showed that with proper imple-
mentation of the boundary condition, the solution of the LBE
method converges to the hydrodynamic limit in the same
way as the Boltzmann equation.

To confirm the relationship between the slip velocity and
Kn, we first consider periodic microchannel flows driven by
a constant external pressure gradient. Although the com-
pressibility effect is absent in the periodic channel flows in-
volved, the computed slip velocity can be treated as a slip
velocity at the outlet in a very long microchannel. We carry
out a series of computations that vary the number of grid
points in a systematic waysH=10dx–320dxd and prove the
second-order accuracy of the relationship between the slip
velocity and Kn. Then, we examine both the rarefaction and
compressibility effects in a long microchannel with pressure
boundary conditions at the inlet and outlet. We compare the
normalized slip velocity and pressure nonlinearity along the
channel with the analytical formula derived by Arkilicet al.
f14g and the numerical results of Limet al. f10g. Unlike
previous LBE resultsf8,10g, which show significant devia-
tion from the analytical formula of Arkilicet al., our results
are generally in excellent agreement with the analytical for-
mula. The disagreement of the previous results can be as-
cribed to the impropert-Kn relations and boundary condi-
tions. Lack of fine grid calculations could be another reason.

The paper is organized as follows. In Sec. II, a formula-
tion of the LBE with external forcing terms is presented. In

Sec. III, the Knudsen number and its relation to the relax-
ation time are defined in the framework of the LBE. A wall
equilibrium boundary condition is then discussed and com-
pared with previously proposed boundary conditions. Section
IV is devoted to the rarefaction and compressibility effects of
the present LBE method. Concluding remarks are given in
Sec. V.

II. LATTICE-BOLTZMANN EQUATION

A DBE with an external forcing termFi is proposed by
He et al. f15g and can be written as

]fa

]t
+ eai

]fa

]xi
= −

fa − fa
eq

l
+

seai − uidFi

cs
2r

fa
eq, s2.1d

where fa is the particle distribution function,eai is the mi-
croscopic particle velocity,ui is the macroscopic velocity,cs
is the speed of sound, andl is the relaxation time, whose
inverse is also known as the collision frequency of the par-
ticles f16g. The equilibrium distribution functionfa

eq is given
by

fa
eq= tarF1 +

eaiui

cs
2 +

seaiea j − cs
2di jduiuj

2cs
4 G . s2.2d

ta is a weighting factor andr is the density. In a nine-
velocity LBE model on a square lattice, the discrete velocity
ea is expressed as

ea = 1 cs0,0d a = 0

cscosua,sinuad ua = sa − 1dp/4 a = 1,3,5,7

Î2cscosua,sinuad ua = sa − 1dp/4 a = 2,4,6,8
2 ,

s2.3d

in which the speed of soundcs is related to the lattice mo-
lecular speedc by cs=c/Î3. For this specific model, the
weighting factors are given ast0=4/9, t1= t3= t5= t7=1/9,
and t2= t4= t6= t8=1/36 f17g. The external forcing termFi
can represent a constant pressure gradient in a periodic chan-
nel. In the present study, a nine-velocity LBE model on a
square lattice is used.

The LBE for fa is obtained by discretizing Eq.s2.1d along
characteristics over the time stepdt f9g:

fasx + eadt,t + dtd − fasx,td = −E
t

t+dt fa − fa
eq

l
dt8

+E
t

t+dt seai − uidFi

cs
2r

fa
eqdt8.

s2.4d

Note that the time integration inft ,t+dtg is coupled with the
space integration infx ,x+eadtg. Application of the trapezoi-
dal rule for second-order accuracy and unconditional stabil-
ity leads to
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fasx + eadt,t + dtd − fasx,td = − U fa − fa
eq

2t
U

sx,td

− U fa − fa
eq

2t
U

sx+eadt,t+dtd

+
dt

2
U seai − uidFi

cs
2r

fa
eqU

sx,td

+
dt

2
U seai − uidFi

cs
2r

fa
eqU

sx+eadt,t+dtd
,

s2.5d

where the nondimensional relaxation timet=l /dt.
Here, we introduce a modified particle distribution func-

tion f̄a to facilitate computation:

f̄a = fa +
fa − fa

eq

2t
−

dt

2

seai − uidFi

cs
2r

fa
eq. s2.6d

The above LBE can then be recast in a simpler formf18g:

f̄asx + eadt,t + dtd − f̄asx,td = − U 1

t + 0.5
s f̄a − fa

eqdU
sx,td

+
tdt

t + 0.5
U seai − uidFi

cs
2r

fa
eqU

sx,td
,

s2.7d

which can be solved in two steps: the collision step

f̄asx,td = f̄asx,td − U 1

t + 0.5
s f̄a − fa

eqdU
sx,td

+
tdt

t + 0.5
U seai − uidFi

cs
2r

fa
eqU

sx,td
, s2.8d

and the streaming step

f̄asx + eadt,t + dtd = f̄asx,td. s2.9d

The density and the velocities are calculated after the

streaming step by taking the zeroth and first moments off̄a,

r = o
a

f̄a, s2.10d

ru = o
a

ea f̄a +
dt

2
F, s2.11d

and the pressure is computed by the ideal gas equation of
stateP=cs

2r.
Recall that the above LBE is fully implicit for the relax-

ation term and the forcing term alike and therefore is uncon-
ditionally stable. Whent approaches zero, the amplification
factor of the collision step turns negative and solutions tend
to be oscillatory as a resultf9g.

III. KNUDSEN NUMBER AND BOUNDARY CONDITION

For the continuum flow the relaxation time is given asl
=n /cs

2 in which n is the kinematic viscosity, while for the
microflow the relaxation time can be related to Kn as well.
The mean free pathl is defined by the ratio of the lattice
molecular speedc=dx/dt to the collision frequency of the
particles 1/l f19g:

l = cl. s3.1d

Typically, l is a time scale associated with collisional relax-
ation to the local equilibrium, which enables us to relatel to
l. Here we use the word “molecular” as a general term to
mean pseudomolecules as understood in particle methods.
The assumption leads to the definition of Kn as by Inamuro
et al. f16g:

Kn =
l

H
=

cl

H
, s3.2d

whereH is the channel height in our simulation. Equation
s3.2d can be rewritten in terms of the nondimensional relax-
ation timet and nondimensional lattice spacingdx/H,

Kn =
cl

H
=

dx

dt

dtt

H
=

dxt

H
. s3.3d

It is evident that Kn is related to botht anddx/H.
From Eq. s3.3d, the viscositym of the fluid is given as

follows:

m

rcH
=

Kn

3
. s3.4d

Given Eqs.s3.3d and s3.4d, Kn defined in the LBE frame-
work can recover the typical macroscopic relation of Kn with
the Mach and Reynolds numbers:

Kn ~
Ma

Re
. s3.5d

Hence, Kn increases as Re decreases or Ma increases. In the
case of small Re either the fluid densityr or the channel
height H is small, whereas in the case of large Ma flow
becomes hypersonic. LBE simulation is valid only for the
former case; thus Ma must be kept small for accuracy.

It is noteworthy thatt in Eq. s3.3d is different from that of
Lim et al. by a factor of 0.5 because the LBE in Eq.s2.7d is
derived by using the trapezoidal rule rather than the explicit
Euler method. Specifically, the Kn of Limet al. can be ex-
pressed by

Kn =
dxte

H
=

dxst + 0.5d
H

, s3.6d

which is only first-order accurate. In a long channel the local
Knudsen number needs to be modified, since the mean free
path is inversely proportional to the pressure,
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Kn = Kno
Po

Psx,yd
s3.7d

where Kno andPo are the Kn and the pressure at the outlet,
respectively. The local nondimensional relaxation timet is
determined by the local Kn.

The tangential momentum accommodation coefficientsv
is a parameter that measures the degree of equilibrium of
impinging molecules with the surfacef20g. Thus,sv is the
fraction of diffusely reflected molecules whose average tan-
gential velocity is zero. If the surface is rough on the char-
acteristic length scale of gas molecules, the reflection of the
molecules will be diffuse andsv approaches unity. Sincesv
of most engineering surfaces is close to unitysfor instance,
air or CO2 on machined brass or shellac hassv=1 and air on
glass hassv=0.89f21gd, the molecules “forget the past”f22g
and reemit after the wall collision with the equilibrium dis-
tribution function. At stationary walls, the equilibrium distri-
bution Eq. s2.2d reduces to diffuse reflection, i.e.,fa

eq= tar.
The condition for the use of the equilibrium distribution
function as a boundary condition of the LBE method is that
we have perfect accommodation. Under controlled test con-
ditions, however, thesv value could be less than unityf14g.
In this case, we may apply a mix of the wall equilibrium
boundary condition and the specular reflection in a similar
manner to that proposed by Succif11g. Succi adopted a mix
of the bounce-back and specular reflection to incorporate
nonunity accommodation effects.

We calculate the equilibrium distribution function using
the surface velocity and the density that is obtained by taking
the zeroth moment of the particle distribution function after
the streaming step with the notion that the impinging par-
ticles are simply bounced back. The equilibrium distribution
function is then assigned to the particle distribution function
at the surface, i.e.,fa= fa

eq. At the inlet and outlet boundary
nodes, the second-order extrapolation schemef23g is utilized
to calculate unknown particle distribution functions. The ve-
locity can then be computed by taking the first moment of
these functions. Implementation of densitysor pressured
boundary condition is not as straightforward as for con-
tinuum incompressible flows. This is because in a long mi-
crochannel, not only is the pressure distribution along the
channel nonlinear but the pressure slightly varies across the
channel due to the existence of the vertical velocity compo-
nent in two-dimensional geometry. Consequently, the pre-
scription of constant density at inlet and outlet boundary
nodes distorts flow fields near the inlet and outlet boundaries.
In order to prevent this unwanted distortion, we approximate
the density at the inlet and outlet boundary nodes by second-
order extrapolation from the interior nodes. The extrapolated
density is then rescaled to the prescribed density such that
the average density across the inlet and outlet boundary
nodes remains the prescribed density, while local density
variation is allowed along the inlet and outlet boundary
nodes.

IV. NUMERICAL EXPERIMENTS

We compare the computed normalized slip velocity with
the analytical results of Arkilicet al. for a long microchan-

nel. In their analysis, Arkilicet al. assumed that the pressure
is constant across the channel, the vertical velocity is zero
everywhere, and the effect of the inertial term is negligible.
The slip velocity normalized to the centerline velocity at the
outlet sUod can be obtained with the aid of the first-order slip
boundary conditionssee Appendix Ad

Ussxd
Uo

=
dP/dx

dPo/dx

sKn

s0.25 +sKnod
, s4.1d

wheres represents the streamwise momentum accommoda-
tion,

s =
2 − sv

sv
. s4.2d

Then, the normalized slip velocity at the outlet is only de-
pendent on Kno at the outlet:

Us,o

Uo
=

sKno

s0.25 +sKnod
. s4.3d

Historically, sv=1 has been used for almost all engineering
calculationsf14g; therefore we takesv=1 throughout the pa-
per. Also note that the analytic results of Arkilicet al.used as
reference solutions in the following sections are obtained for
sv=1. Use of this value is consistent with the applied wall
equilibrium boundary condition.

A. Gas flows in a periodic microchannel

To begin with, we study gas flows in a periodic micro-
channel driven by a constant external pressure gradient in
order to validate the second-order spatial accuracy of the
wall equilibrium boundary condition and thet-Kn relation.
The periodic boundary condition is applied in the streamwise
direction. In this case the compressibility effect becomes
negligible and only the rarefaction effect is accounted for.
Since a periodic channel can be regarded as an infinitely long
channel, Eq.s4.3d is also valid for the prediction of slip
velocity in a periodic channel under an external pressure gra-
dient. Two different channel heights are considered to exam-
ine grid effects:H=50dx and 100dx. The external pressure
gradient is implemented by settingFx=−]P/]x in Eq. s2.7d.
The slip velocity computed from the LBE simulation is ob-
tained using the following formula:

Usyd = 4UcS y

H
−

y2

H2D + Us, s4.4d

where the centerline velocityUc and the slip velocityUs are
calculated by least squares fitting the numerical results. The
slip velocity Us is normalized to the centerline velocity.

Figure 1 compares the computed slip velocityUs normal-
ized to the centerline velocityUc with Eq. s4.3d. The normal-
ized slip velocity is in excellent agreement with the analyti-
cal prediction in the regime below Kn,0.1, although the
computed slip velocity starts to deviate from the analytical
result at higher Kn. Generally, the slip boundary condition
used in f14g does not hold in the transition flow regime
s0.1,Kn,3d. The results obtained from differentH are vir-
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tually identical. The dependence of the slip velocity on the
Kn suggested by Nieet al. f8g is also shown in Fig. 1. In
terms of the definition of the slip velocity given in Eq.s4.4d,
the normalized slip velocity of Nieet al. in the periodic
channel can be written asssee Appendix Bd

Us

Uc
=

8.7Kn2

0.25 + 8.7Kn2
, s4.5d

in which the coefficient 8.7 is calculated to fit their numerical
results. As will be discussed later, the Kn of Nieet al. re-
quires a tunable parameter that must be chosen to best match
the simulated mass flow rate with experiments and may not
be dimensionless. In Fig. 1, their normalized slip velocity
increases more rapidly at higher Kn than Arkilic’s formula
due to quadratic dependence of the slip velocity on Kn in Eq.
s4.5d, although less degree of slip is observed at lower Kn.
This is because the bounce-back boundary condition adopted
by Nie et al. is expected to allow less degree of slip at a
given Kn. In the bounce-back scheme, when a particle dis-
tribution function streams to a wall node, the particle distri-
bution function scatters back to the node it comes from. Col-
lision does not occur on the solid boundaries.

Grid convergence of the present LBE method is shown
in Fig. 2. Kn is fixed at 0.1 and calculations are per-
formed on four systematically refined gridssH
=10dx,20dx,40dx,80dxd. The relative error to the fine grid
result is measured by

serrord = UUs,o/UosHd − Us,o/UosHfined
Us,o/UosHfined

U , s4.6d

whereHfine=320dx. As is shown in the figure, the second-
order spatial accuracy of the scheme is verified for the
present definition of Kn, i.e., Eq.s3.2d. Thet-Kn relation Eq.
s3.6d of Lim et al. is also tested. Figure 2 shows that Eq.
s3.6d gives only slightly better results than first-order accu-
rate solutions.

The error of the solution based on the profile of the
streamwise velocityusyd is examined as well. In order to
demonstrate spatial accuracy, calculations are performed on
three systematically refined gridssdenoted by the subscripts
4h for H=20dx, 2h for H=40dx, andh for H=80dxd. Since
the ratio of the grid spacing on successive grids is 2, the
order of the scheme,p, can be estimated fromf24g

p =
lnfsu2h − u4hd/suh − u2hdg

ln 2
, s4.7d

which yields p=2 for Eq. s3.2d. This confirms the second-
order accuracy of the definition of Kn as well as the bound-
ary condition.

Validation of the wall equilibrium boundary condition and
the definition of Kn proposed in the previous section is per-
formed by comparing the LBE results with those of the lin-
earized Boltzmann equationf25g and the direct simulation
Monte Carlo methodsf22g for Kn=0.1. For this purpose, the
streamwise velocity profileUsyd is normalized to the local

averaged velocityŪ. Analytical prediction due to the first-
order slip condition can be made by considering the local
volumetric flow rate and takes the form of

U*syd ;
Usyd

Ū
=

sy/H − y2/H2 + sKnd
1/6 +sKn

. s4.8d

In Fig. 3sad, the velocity profiles obtained by the LBE, both
first- and second-order slip conditionsf22g, the linearized
Boltzmann equation, and the DSMC method are displayed
for comparison. The error in Fig. 3sbd is measured by the
deviation from the solution of the linearized Boltzmann
equation, i.e., serrord=U* −Ulin Boltzmann

* . The assumption
made in the linearized Boltzmann simulation is that the gas
molecules are reflected diffusely on the boundary, and the
DSMC simulations are carried out for a nominal value of
sv=1. In general, the LBE solution is in excellent agreement
with others. The error of the LBE solution is smallest around
the centerline of the microchannel and increases near the
boundaries.

FIG. 1. Slip velocity in a periodic channel as a function of Kn.
Flow is driven by external pressure gradient. FIG. 2. Grid convergence of the normalized slip velocity.
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The wall equilibrium boundary condition is further vali-
dated for the solution of the Kramers’ problem, where the
analytic solution of the continuous Boltzmann equation is
available. The Kramers’ problem is a plane Couette flow in
which the distance of the wallsH tends to infinity, while the
speedU` of the upper wall also goes to infinity withH such
that the shear ratek=U` /H remains finite. The analytic so-
lution for the macroscopic slip velocityUs can be obtained in
closed form and is given byUs=s1.016 15dkl f26g, l being
the mean free path. Figure 4 compares the computed normal-
ized macroscopic slip velocities with the analytic solution.
As above, periodic boundary condition is applied in the
streamwise direction and two different channel heights are
considered to examine grid effects:H=50dx and 100dx. The

shear rate is fixed atk=0.001 for both cases. The normalized
slip velocitiesUs/U` are calculated by least squares fitting
the numerical results. The normalized slip velocities are in
excellent agreement with the analytical solution in the re-
gime below Kn,0.1.

B. Gas flows in a long microchannel with pressure boundary
condition

We now consider a long microchannel case with pre-
scribed pressure boundary conditions at both inlet and outlet,
which is commonly found in practical applications. Due to
the rarefaction and compressibility effects, the pressure dis-
tribution along the microchannel is nonlinear. The pressure
distribution along the channel predicted from the above first-
order slip boundary condition is given byf14g

P/Po = − 6sKno + Îs− 6sKnod2 + s1 + 12sKnodx/L + sP2 + 12sKnoPds1 − x/Ld, s4.9d

where the inlet-to-outlet-pressure ratio isP=Pi /Po. Figure 5
shows the normalized slip velocity and nonlinearity of pres-
sure along the microchannel atP=2.0 with H=50dx. Wall
boundaries are located halfway between two grid points for
second-order accuracyf8g. The slip velocityUs is obtained in
the same way as in the periodic channel case and is normal-
ized to the outlet centerline velocityUo. The pressure devia-
tion from the linear distributionsP−Pincompd is normalized to
the outlet pressurePo. L /H is taken inversely proportional to
Kno such that the reference velocity of the system is kept
constant. The reader is reminded that the LBE is second-
order accurate in Mach number as well as time and space.
We take the reference velocity as the centerline velocity of

the incompressible flow without rarefaction effect, which can
be written as

UR = −
H2

8m

Po − Pi

L
. s4.10d

The reference velocity is fixed atUR=0.0625 for all the test
cases in the present section.

In Fig. 5, the compressibility effect results in the negative
curvature of pressure distribution, while the rarefaction effect
reduces itf7g. Figure 5 also indicates that the rarefaction
effect of the LBE simulation increases slightly faster than the
analytical solutions of Arkilicet al. f14g and the nonlinearity
of the pressure is weaker at high Kno. Lim et al. f10g ob-

FIG. 4. Normalized macroscopic slip velocity at the stationary
wall in the simulation of Kramers’ problem. Shear ratek=U` /H
=0.001 and slip velocityUs=s1.016 15dkl f26g.FIG. 3. sad Nondimensional velocity distribution in half of a

microchannel. The linearized Boltzmann solution is from Ohwada
et al. f25g and the DSMC solution is from Karniadakis and Beskok
f22g. sbd Deviations from the linearized Boltzmann solution.
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served a similar trend in the rarefaction effect. Figure 6
shows the results atP=3.0 with H=50dx. The outlet slip
velocity at P=3.0 is virtually identical to that atP=2.0,
since it follows from Eq.s4.3d that the outlet slip velocity is
only a function of Kno. This observation is consistent with
the slip velocity computed in a periodic microchannel in Fig.
5. The deviation from the analytical solution at higherP is
smaller as compared with Fig. 5. The nonlinearity of the
pressure due to the enhanced compressibility effect is much
more evident at higher pressure ratio and the curvature of the
slip velocity along the channel increases accordingly.

In Fig. 7, the slip velocity and the pressure nonlinearity at
Kno=0.05 are compared with those of Limet al. f10g. Two
types of boundary conditions were used in their work. The
first one is the specular boundary conditions“Spec.” in the
figured, which is analogous to a reflection of a particle hitting
a wall specularly. The other is an extrapolation schemes“U
Ext.” in the figured, which approximates the density and the

streamwise velocity at solid boundaries by a second-order
extrapolation scheme, and the unknown distribution func-
tions at the wall are approximated by their equilibrium func-
tions. Figure 7 shows that the slip velocity obtained by Lim
et al. is generally much lower than both Arkilicet al.’s and
the present results. In addition the predicted peak of the non-
linearity is more severely skewed toward the outlet. Limet
al. argued that mere incorporation of a first-order slip bound-
ary condition in the Navier-Stokes equations would not suf-
ficiently and accurately account for the slip phenomenon.
The derivation of the analytical formula is based upon the
assumptions that the pressure across the channel is constant
and the effect of the inertial term is negligible, which may
become invalid as Kno increases. The presence of the inertial
term generally enhances the slip velocity and reduces the
pressure nonlinearity. It is expected that the effect of the
inertial term would become more evident with increasing
slip velocity and Kno as well.

FIG. 5. Comparison of slip velocity and nonlinearity of pressure
at P=2.0, H=50. L /H=20, 40, and 80 for Kno=0.1, 0.05, and
0.025, respectively.sad Slip velocity normalized to the outlet cen-
terline velocity, andsbd deviation of the pressure from the linear
pressure distribution normalized to the outlet pressure.

FIG. 6. Comparison of slip velocity and nonlinearity of pressure
at P=3.0, H=50. L /H=40, 80, and 160 for Kno=0.1, 0.05, and
0.025, respectively.sad Slip velocity normalized to the outlet cen-
terline velocity, andsbd deviation of the pressure from the linear
pressure distribution normalized to the outlet pressure.
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Even though only the rarefaction effect is accounted for in
Arkilic et al.’s solution by incorporating a first-order slip, our
results are in excellent agreement with the analytical for-
mula. The disagreement between the analytical formula and
the previous LBE results by others may be attributed to the
definition of Kn and the boundary conditions. By introducing
the proper Kn and the wall equilibrium boundary condition,
the LBE method can deal with gas flows in the higher-Kn
regime as well as in the slip flow regime. Various definitions
of Kn, boundary conditions, and numbers of grid used in the
previous computations as well as the present work are sum-

marized in Table I. The Kn of Nieet al. requires a tunable
parametera that must be chosen to best match the simulated
mass flow rate with experiments. In the case thata is a
dimensionless parameter, Kn is no longer a dimensionless
number. The Kn of Limet al. is only first-order accurate as
shown above. Compared with the wall equilibrium boundary
condition that assumes diffuse reflection, the bounce-back
boundary condition used by Nieet al. is expected to allow
less degree of slip at a given Kn. In the bounce-back scheme,
when a particle distribution function streams to a wall node,
the particle distribution function scatters back to the node it
comes from. Collision does not occur on the solid bound-
aries. As can be seen in Fig. 1, the normalized slip velocity
obtained from the bounce-back boundary condition of Nieet
al. is much lower than the analytical formula and that from
the wall equilibrium boundary condition. The specular
bounce-back boundary condition used by Limet al. suppos-
edly allows more slip effect, although their specular bounce-
back scheme is not perfectly specular. Collision occurs on
the solid boundaries and the distribution functions parallel to
the solid boundaries are calculated by LBE. Therefore, their
specular model still has some momentum deposited on the
wall and only the unknown distribution functions are defined
by their corresponding specular directionsf10g. By compari-
son, the perfect specular slip boundary condition used by
Succi f11g does not consider collision on the solid bound-
aries. Consequently, the specular bounce-back scheme of
Lim et al.still results in weaker slip effect than the analytical
formula and the wall equilibrium boundary condition as in
Fig. 7. The extrapolation scheme has less physical ground,
but Lim et al. used it to investigate the direct effects of
boundary treatments on slip velocity.

The effect of rarefaction on mass flow rate is investigated
by comparison of the LBE result with experimental data as
well as analytical predictions. The nondimensional mass flow
rateM* can be expressed as a function of pressure ratiossee
Appendix Ad

M* =
Ṁ

Ṁno slip

= 1 + 12s
Kno

P + 1
. s4.11d

In Fig. 8, the nondimensional mass flow rate computed by
the LBE method forUR=0.0625 is compared with the first-
order analytical prediction Eq.s4.11d and the experimental
data of Arkilic et al. f14g. In their experiments, Arkilicet al.
investigated helium gas flow having Kno=0.165. For all
cases, slip effects become less pronounced with increasing
pressure ratio. Equations4.11d deviates from the experiments
especially at low pressure ratios. The LBE results generally

FIG. 7. Comparison of slip velocity and nonlinearity of pressure
with those in Limet al. f10g Kno=0.05 andP=2.0.

TABLE I. Comparison of computational conditions in the literature.

Kna Boundary condition Channel heightHsdxd

Nie et al. f8g Kn= at/ rHb Bounce back 10dx

Lim et al. f10g Kn= dxst+0.5d/H s Po/ Pd Specular bounce back and extrapolation 10dx–20dx

Present work Kn=dxt /H s Po/ Pd Wall equilibrium 10dx–320dx

at defined in Eq.s2.7d.
ba is chosen to best match the simulated mass flow rate with experiments.
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agree well with the experiments and show slightly more
mass flow rate at high pressure ratios.

V. CONCLUDING REMARKS

In the paper, we demonstrate that the LBE simulation of
gas flows in a microchannel can be successful if the proper
definition of Kn and the wall equilibrium boundary condition
are applied. Second-order spatial accuracy of the LBE
method in the microchannel application is verified. In the
slip flow regime, the computed slip velocity and the pressure
nonlinearity are in excellent agreement with the analytical
formula by Arkilic et al. f14g. As the size of the microfluidic
devices becomes smaller, the transition flow regimes0.1
,Kn,10d draws more attention. In this intermediate-to-
high-Kn flow, virtual wall collisionsproposed by Toschi and
Succi f27g can be a promising approach.

Future research areas may include investigation of the
boundary condition for the case of the nonzero tangential
momentum accommodation coefficientf11g. Thermal effects
f28g and irregular geometriesf9g are other examples of ur-
gent research directions of the LBE method in microsystems.
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APPENDIX A

The streamwise velocity profile with rarefaction effect is
given by Arkilic et al. f14g:

Usx,yd = −
H2

2m

dP

dx
S y

H
−

y2

H2 + sKnD , sA1d

whose coordinate system is located at the bottom of the inlet.
The streamwise velocity profile normalized to the centerline
velocity at the outletsUod is

Usx,yd
Uo

=
dP/dx

dPo/dx

sy/H − y2/H2 + sKnd
s0.25 +sKnod

. sA2d

The mass flow rate corresponding to Eq.sA1d is com-
puted by multiplying Eq.sA1d by the density and integrating
across the channel. The dimensional mass flow rate is given
by

Ṁ =
H3Po

2

24mRTL
fsP2 − 1d + 12sKnosP − 1dg, sA3d

whereP; Pi /Po. The mass flow rate without the rarefaction
effects is

Ṁno slip=
H3Po

2

24mRTL
sP2 − 1d. sA4d

APPENDIX B

The definition of the slip velocity in Nieet al. f8g origi-
nally takes the form

Usyd = VoS y

H
−

y2

H2 + VsD , sB1d

whose coordinate system is located at the bottom of the inlet.
They fitted the data by the least squares method to getVs
=8.7Kno

2, which leads to Eq.s4.5d, if Us;VoVs is normalized
to the outlet centerline velocityVos0.25+Vsd.
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