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Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas
microchannel
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A wall equilibrium boundary condition for an implicit lattice-Boltzmann-equation method is proposed to
simulate gas flows in a microchannel with rough surface on the characteristic length of gas molecules. The
boundary condition is based on the assumption that impinging molecules reach equilibrium with the surface.
The molecular mean free path used to define the Knudsen number is determined by the lattice speed and the
relaxation time of the lattice-Boltzmann equation. With the wall equilibrium boundary condition and the
appropriate relation defined for the Knudsen number and the relaxation time, the computed slip velocity and
nonlinear pressure distribution along the microchannel are in excellent agreement with analytical solutions.
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[. INTRODUCTION LBE method can be a promising tool for simulation of gas
flows on the microscale. Conducting experiments in

The slip velocity of the Iatuce-BoItzmann—equandrBE) . micrometer-size geometries is a big challefgg] and the

method has been observed since its advent. In the simulatiqf),act simulation Monte CarléDSMC) method[6] usually

of macroscopic flpld flows, the §I|p velocity of the LBE requires a tremendous amount of computer time and
method was considered a numerical error that must be cofemory. The Navier-Stokes simulation can be utilized in the
rected. In this regard, efforts have been made for developsnp flow regime (0.01<Kn<0.1), but it must be supple-
ment of the perfect no-slip boundary condition. The bouncemented by some slip velocity boundary conditidi@ The
back rule and the equilibrium boundary condition commonlyyngerlying premise of the slip boundary condition is that
adopted in LBE simulations produce a first-order slip velocfiows away from solid boundaries can still be treated as a
ity. Even the higher-order boundary conditions that havecontinuum. However, the slip boundary condition no longer
been proposed during the last decade are not entirely frego|ds in the transition flow regim@.1< Kn<3), where the
from the slip velocity[1]. Generally, the slip velocity in-  continuum assumption breaks down even away from solid
creases with the relaxation time of intermolecular collision top4,,ndaries.

local equilibrium. At the molecular level, the relaxation time  Recently, Nieet al. [8] applied the LBE method to simu-
can be related to the Knudsen number Kn, which is the ratiation of microflows in a channel and cavity. They used the
of the lattice molecular mean free patto the characteristic eypjicit BE formulation[9] and related the nondimensional
dimensionH. Continuum can be realized only in the zero-Kn yq|5xation timer, to Kn as Kn=a(7,—0.5/pH for a micro-

limit, while the gas exhibits noncontinuum behaviors such a%hannel of height and gas density. The factor 0.5 comes
rarefaction and compressibility effects as Kn !ncreases. Th?rom the explicit treatment of the collision term andis

slip velocity of the LBE method can be attributed t0 the ;pogen to best match the simulated mass flow rate with ex-
nonzero-Knudsen-number effect. Since the relaxation time 'Beriments. Nieet al. [8] used the halfway bounce-back rule
linearly proportional to Kn as will be shown later, the o q gjip effect at the surface. Later, Liet al. [10] pro-
zero-Kn limit, viz., zero relaxation time, is a numerically posed a different relation between Kn andfor the explicit
impossible condition. Nonzero relaxation time implies that_LBE formulation and performed a series of simulations of

the rarefaction effect is always present to a certain degree ijicrochannel flows with two different boundary conditions.
the LBE simulation, which is the origin of slip velocity. For tpair kn for a long microchannel was defined as Kn
a general description of the LBE method and its h'StO”CaI:(bXTe/H)(PO/P), whereP andP, are the local pressure and
links with statistical mechanics, readers are referred to Benzt'he pressure at the outlet of the channel, respectively. Their
et ZI' [ZI%]andhCherl a_n? Dcrole[rﬁ}]. le of th ¢ nondimensional relaxation time,, however, did not include

s the characteristic lengtn scalé of the SySem aPy,o correction factor of 0.5 as in Ni al.[8]. The specular
proaches the mean free path, the continuum hypothesis S8 \nce-back rule and the extrapolation scheme were em-

FO ?reak dOW_” a}nf(_j j.o d(_)esththe not-_shp COﬂdI'FIOI’l, V(;h'ct?]_' loyed to generate the slip effect. Both boundary conditions
just an empirical finding in the continuum regime. On 'Sg/ielded qualitatively similar results.

small length scale, the slip velocity due to rarefaction attain Although previous LBE simulations show promising re-

physical grounds, since it originates from the kinetic naturey s to some extent, their conclusions do not converge. The

and mesoscopic dynamics of the LBE method, and thus thaefinition of Kn is still not in consensus. Different boundary

conditions such as the typical bounce-back rule, the specular
bounce-back rule, and the extrapolation scheme are used to
*Electronic address: ching-long-lin@uiowa.edu generate the slip effect and even in some cases, the no-slip
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effect. For instance, the bounce-back rule was used for th8ec. Ill, the Knudsen number and its relation to the relax-
slip effect by Nieet al. [8], while it was considered as a ation time are defined in the framework of the LBE. A wall

no-slip boundary condition by Sucg¢ill]. Generally, the equilibrium boundary condition is then discussed and com-
bounce-back rule is known to satisfy the macroscopic no-sligpared with previously proposed boundary conditions. Section
boundary condition only up to first-order accuracy. The slip|y is devoted to the rarefaction and compressibility effects of

error induced by the bounce-back rule seems to increase wifie present LBE method. Concluding remarks are given in
the relaxation timg12] and is hardly distinguishable from ggc. v/

the physical the slip effect. To produce the slip effect, Succi
introduced the specular bounce-back rule and studied veloc-

ity slip. Furthermore, most of the simulations were carried Il. LATTICE-BOLTZMANN EQUATION
out on very coarse grids, e.dgd,=105x by Nie et al. [8] (5 _ _ _
is the grid spacingand H=108x~206x with fixed L/H A DBE with an external forcing ternf; is proposed by

=10 (L is the channel lengjhby Lim et al.[10]. Fine grid  He et al.[15] and can be written as
calculation has not been reported to our knowledge.

The objective of this paper is to propose a dimensionally af, I Ta= T3 (€= UWFi o
consistent definition of Kn and a boundary condition which — tei =- t— 5t (20
. S . ) at X A cep
generate velocity slip in a physically meaningful manner. We s

assume that gas molecules travel the distance of the lattice

mean free path with the lattice speed=éx/ ét while relax- \c,:vrr(])‘z::eofaicls :;ﬁclpea:/tclaclfci?Istzlsbltjr:g)%gjcr]rgg?:gea;clf/élr;ec;i{nl-
ing to their equilibrium state in the relaxation time The pic p Wi P ¥

definition of Kn is then similar to that of Linet al, but > the speed of sound, andis the relaxation time, whose

consistent, implicit discretization of the discrete BoItzmann't?c\llggs[ib%5 _?Eg :ngmgriﬁfntziestc;ggfif: fﬁﬁgﬁsg&%sf it\t]:npar-
equation (DBE) indicates that the second-order accurate ' q « 159

7-Kn relation requires a correction factor of 0.5 to th&n by

relation proposed by Linet al. [10]. As to the boundary 5

condition, we assume that the impinging molecules repre- fea=g pl 1+ et | (Eai€qj ~ Cs&y)UY 2.2
sented by the particle distribution functions reach equilib- « c§ 2c;1

rium with the surface. Since the surface is rough on the char-
acteristic length scale of gas molecules, the reflection of thé, is a weighting factor ancg is the density. In a nine-
molecules is diffuse and the equilibrium state at the surfac&elocity LBE model on a square lattice, the discrete velocity
can be justified. In fact, Ansumali and Karlji3] recently e, is expressed as
proposed a diffusive boundary condition to ensure the posi-
tivity of the reflected distribution functions and the condition c(0,0) a=0
of detailed balance. They showed that with proper imple- o _| ¢(cosg,,sing,) 6,=(e-1)m/4 «=1,3,57
mentation of the boundary condition, the solution of the LBE * - ) '
method converges to the hydrodynamic limit in the same v2c(cosb,,sinb,) 0o =(a—1ml4 a=2,4,6,8
way as the Boltzmann equation. (2.3

To confirm the relationship between the slip velocity and
Kn, we first consider periodic microchannel flows driven by in which the speed of soundi is related to the lattice mo-
a constant external pressure gradient. Although the comecular speedc by c,=c/y3. For this specific model, the
pressibility effect is absent in the periodic channel flows in-weighting factors are given ag=4/9, t;=t;=ts=t,=1/9,
volved, the computed slip velocity can be treated as a sli@and t,=t,=tg=tg=1/36 [17]. The external forcing ternt,
velocity at the outlet in a very long microchannel. We carrycan represent a constant pressure gradient in a periodic chan-
out a series of computations that vary the number of grichel. In the present study, a nine-velocity LBE model on a
points in a systematic wagH =105x—3205x) and prove the square lattice is used.
second-order accuracy of the relationship between the slip The LBE forf,, is obtained by discretizing E¢2.1) along
velocity and Kn. Then, we examine both the rarefaction andharacteristics over the time stép[9]:
compressibility effects in a long microchannel with pressure

boundary conditions at the inlet and outlet. We compare the o e

normalized slip velocity and pressure nonlinearity along the fa(x+e,dtt+at) —f (x.t) = ‘f Tdt

channel with the analytical formula derived by Arkilét al. !

[14] and the numerical results of Lirat al. [10]. Unlike 0 (e, — UWFi en,

previous LBE result$8,10], which show significant devia- +ft Tfaadt .
S

tion from the analytical formula of Arkilieet al., our results

are generally in excellent agreement with the analytical for- (2.9

mula. The disagreement of the previous results can be as-

cribed to the improper-Kn relations and boundary condi- Note that the time integration i, t+ ] is coupled with the

tions. Lack of fine grid calculations could be another reasonspace integration ifx,x+e,ét]. Application of the trapezoi-
The paper is organized as follows. In Sec. Il, a formula-dal rule for second-order accuracy and unconditional stabil-

tion of the LBE with external forcing terms is presented. Inity leads to
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where the nondimensional relaxation tirme\/ &t.

Here, we introduce a modified particle distribution func-

tion f, to facilitate computation:

= fal  ot(en—uw)
2r 2 ¢

S:

.=t Fifea

(2.6)

The above LBE can then be recast in a simpler fohi@]:

J— J— 1 J—
f(x+e,dtt+dt)—f (x,t)=— ———(f, -
dcredts )= fxn == o= )

Tot (eai B L'li)Fi feq
7+0.5 c2p “

(x,t)
(2.7

which can be solved in two steps: the collision step

— — 1 —
f (x,t)=f_(x,t)- ———(f,—f¢
X0 =1 ,(x1) . +o.5( o= 1) ",

T+ 05 Cgp “ (X,t), '
and the streaming step
f(x+e,8t+ o) = (x1). (2.9

PHYSICAL REVIEW E 71, 046706(2009

Ill. KNUDSEN NUMBER AND BOUNDARY CONDITION

For the continuum flow the relaxation time is given)as
=v/c? in which v is the kinematic viscosity, while for the
microflow the relaxation time can be related to Kn as well.
The mean free path is defined by the ratio of the lattice
molecular speed=x/ 8t to the collision frequency of the
particles 1A [19]:

| =c\. (3.1
Typically, \ is a time scale associated with collisional relax-
ation to the local equilibrium, which enables us to relat®
I. Here we use the word “molecular” as a general term to
mean pseudomolecules as understood in particle methods.
The assumption leads to the definition of Kn as by Inamuro
et al.[16]:

Kn=

| cA
—=—, 3.2
H H 3.2
whereH is the channel height in our simulation. Equation
(3.2) can be rewritten in terms of the nondimensional relax-

ation time 7 and nondimensional lattice spaciag/H,

_Ch_Xar_ oxr

K = = 3
"THTaH H 3.3

It is evident that Kn is related to bothand 6x/H.
From Eq.(3.3), the viscosityu of the fluid is given as
follows:

Kn
£ (3.4)
pcH 3
Given EQgs.(3.3) and (3.4), Kn defined in the LBE frame-
work can recover the typical macroscopic relation of Kn with
the Mach and Reynolds numbers:

Ma
Knoo —. (3.5

Re

The density and the velocities are calculated after thdlence, Kn increases as Re decreases or Ma increases. In the

streaming step by taking the zeroth and first momenglpf

p=2 fa

(2.10

— &
puzzeafa+EF, (2.1

case of small Re either the fluid densjpyor the channel
height H is small, whereas in the case of large Ma flow
becomes hypersonic. LBE simulation is valid only for the
former case; thus Ma must be kept small for accuracy.

It is noteworthy thatrin Eq. (3.3) is different from that of
Lim et al. by a factor of 0.5 because the LBE in HG.7) is
derived by using the trapezoidal rule rather than the explicit
Euler method. Specifically, the Kn of Lirat al. can be ex-
pressed by

and the pressure is computed by the ideal gas equation of

stateP=cZp.

Recall that the above LBE is fully implicit for the relax-

X71o _ X(7+0.9

Kn= ,
H H

(3.6

ation term and the forcing term alike and therefore is uncon-
ditionally stable. Whenr approaches zero, the amplification which is only first-order accurate. In a long channel the local
factor of the collision step turns negative and solutions tendKnudsen number needs to be modified, since the mean free

to be oscillatory as a resyl9].

path is inversely proportional to the pressure,
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o nel. In their analysis, Arkilieet al. assumed that the pressure
Kn= KnOP(x v (3.7 s constant across the channel, the vertical velocity is zero
' everywhere, and the effect of the inertial term is negligible.
where Kny and P, are the Kn and the pressure at the outlet,The slip velocity normalized to the centerline velocity at the
respectively. The local nondimensional relaxation timis  outlet(U,) can be obtained with the aid of the first-order slip

determined by the local Kn. boundary conditior(see Appendix A

The tangential momentum accommodation coefficignt
is a parameter that measures the degree of equilibrium of Ugx) _ dP/dx  oKn 4.
impinging molecules with the surfad@0]. Thus, o, is the U, dP/dx(0.25+0Kn,)’ '

fraction of diffusely reflected molecules whose average tan- .

gential velocity is zero. If the surface is rough on the char-v."here‘r represents the streamwise momentum accommoda-

acteristic length scale of gas molecules, the reflection of thdon.

molecules will be diffuse and-, approaches unity. Sinae, 2—o

of most engineering surfaces is close to urfyr instance, o= o 4.2

air or CO, on machined brass or shellac hgs=1 and air on

glass hasr,=0.89[21]), the molecules “forget the pagt?2]  Then, the normalized slip velocity at the outlet is only de-

and reemit after the wall collision with the equilibrium dis- pendent on Kgat the outlet:

tribution function. At stationary walls, the equilibrium distri-

bution Eq.(2.2) reduces to diffuse reflection, i.ef5 =t p. Yso - &_ (4.3)

The condition for the use of the equilibrium distribution U, (0.25+0Kn,)

function as a boundary condition of the LBE method is that, . . . _ . :
Historically, o,=1 has been used for almost all engineering

we have perfect accommodation. Under controlled test con- - ) _
ditions, however, ther, value could be less than unifg4]. calculationd14]; therefore we taker, =1 throughout the pa

In this case, we may apply a mix of the wall equilibrium per. Also note that the analytic results of Arkikt al. used as

e Co .. _reference solutions in the following sections are obtained for
boundary condition and the specular reflection in a similar

manner to that proposed by Su¢iti]. Succi adopted a mix o-,}=.1'. L_Jse of this value isiqonsistent with the applied wall
of the bounce-back and specular reflection to incorporattgqUIIIbrIum boundary condition.
nonunity accommodation effects.

We calculate the equilibrium distribution function using
the surface velocity and the density that is obtained by taking
the zeroth moment of the particle distribution function after  To begin with, we study gas flows in a periodic micro-
the Streaming Step with the notion that the |mp|ng|ng par_channel driven by a constant external pressure gradient in
ticles are simply bounced back. The equilibrium distributionorder to validate the second-order spatial accuracy of the
function is then assigned to the particle distribution functionwall equilibrium boundary condition and theKn relation.
at the surface, i.ef, = At the inlet and outlet boundary The periodic boundary condition is applied in the streamwise
nodes, the second-order extrapolation schE28gis utilized direction. In this case the compressibility effect becomes
to calculate unknown particle distribution functions. The ve-negligible and only the rarefaction effect is accounted for.
locity can then be computed by taking the first moment ofSince a periodic channel can be regarded as an infinitely long
these functions. Implementation of densitgr pressurg  channel, Eq.(4.3) is also valid for the prediction of slip
boundary condition is not as straightforward as for con-velocity in a periodic channel under an external pressure gra-
tinuum incompressible flows. This is because in a long midient. Two different channel heights are considered to exam-
crochannel, not only is the pressure distribution along théne grid effects:H=500x and 10@x. The external pressure
channel nonlinear but the pressure slightly varies across th@radient is implemented by settifg=—-dP/x in Eq. (2.7).
channel due to the existence of the vertical velocity compoThe slip velocity computed from the LBE simulation is ob-
nent in two-dimensional geometry. Consequently, the pretained using the following formula:
scription of constant density at inlet and outlet boundary 2
nodes distorts flow fields near the inlet and outlet boundaries. U(y) = 4UC<X - y_2> + U, (4.9
In order to prevent this unwanted distortion, we approximate H H

the density at the inlet and outlet boundary nodes by seconqghere the centerline velocity, and the slip velocityJ, are
order extrapolation from the interior nodes. The extrapolate¢g|cylated by least squares fitting the numerical results. The
density is then rescaled to the prescribed density such thghp velocity U is normalized to the centerline velocity.
the average density across the inlet and outlet boundary Figure 1 compares the computed slip veloditynormal-
nodes remains the prescribed density, while local densitye( to the centerline velocity, with Eq. (4.3). The normal-
variation is allowed along the inlet and outlet boundaryjzeq slip velocity is in excellent agreement with the analyti-
nodes. cal prediction in the regime below Kn0.1, although the
IV. NUMERICAL EXPERIMENTS computed _slip velocity starts to devigte from the analy_ti_cal
result at higher Kn. Generally, the slip boundary condition
We compare the computed normalized slip velocity withused in[14] does not hold in the transition flow regime
the analytical results of Arkiliet al. for a long microchan- (0.1<Kn<3). The results obtained from differehitare vir-

A. Gas flows in a periodic microchannel
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FIG. 1. Slip velocity in a periodic channel as a function of Kn.

Flow is driven by external pressure gradient. FIG. 2. Grid convergence of the normalized slip velocity.

tually identical. The dependence of the slip velocity on the The error of the solution based on the profile of the
Kn suggested by Niet al. [8] is also shown in Fig. 1. In streamwise veloc!tw(y) is examined as well. In order to
terms of the definition of the slip velocity given in E@.4), demonstrate spatial accuracy, calculations are performed on

the normalized slip velocity of Niet al. in the periodic three systematically refined griddenoted by the subscripts

the ratio of the grid spacing on successive grids is 2, the

U 8.7K? order of the schemey, can be estimated frof24]
S .

== 4.
U, 0.25+8.7KR’ .5

_ In[ (Uph = Ugn)/(Up = Upp) ]
B In2

: (4.7

in which the coefficient 8.7 is calculated to fit their numerical . . . '

results. As will be discussed later, the Kn of Neeal. re-  Which yieldsp=2 for Eq.(3.2). This confirms the second-
quires a tunable parameter that must be chosen to best matgffier accuracy of the definition of Kn as well as the bound-
the simulated mass flow rate with experiments and may ndt"Y and'F'on' A .

be dimensionless. In Fig. 1, their normalized slip velocity validation of the wall equilibrium boundary condition and
increases more rapidly at higher Kn than Arkilic's formula (€ definition of Kn proposed in the previous section is per-

due to quadratic dependence of the slip velocity on Kn in quorr_ned by comparing the_LBE results With those_ of th? lin-
(4.5, although less degree of slip is observed at lower Kn_earlzed Boltzmann equatidr25] and the direct simulation
onte Carlo methodf22] for Kn=0.1. For this purpose, the

This is because the bounce-back boundary condition adoptéﬂ ; . : . .
by Nie et al. is expected to allow less degree of slip at g Streamwise velocity profiléJ(y) is normalized to the local
given Kn. In the bounce-back scheme, when a particle disaveraged velocityJ. Analytical prediction due to the first-
tribution function streams to a wall node, the particle distri-order slip condition can be made by considering the local
bution function scatters back to the node it comes from. Colvolumetric flow rate and takes the form of
lision does not occur on the solid boundaries. UGy)  (yIH - y2IH2+ okn)

Grid convergence of the present LBE method is shown U*(y) — _y - Y y ogrn
in Fig. 2. Kn is fixed at 0.1 and calculations are per- U 1/6 +oKn
formed on four systematically refined grids(H

=108%, 208x, 406, 806x). The relative error to the fine grid In Fig. 3(a), the velocity profiles obtained by the LBE, both
result is measured by first- and second-order slip conditioh22], the linearized

Boltzmann equation, and the DSMC method are displayed
for comparison. The error in Fig.(B) is measured by the
Uso/Uo(H) = Uso/Uo(Hine) (4.6)  deviation from the solution of the linearized Boltzmann

Uso/Uo(Hfine) ’ equation, i.e., (erron=U"-U}, goizmans ThE assumption

made in the linearized Boltzmann simulation is that the gas

where H;;,.=3205%. As is shown in the figure, the second- molecules are reflected diffusely on the boundary, and the
order spatial accuracy of the scheme is verified for theDSMC simulations are carried out for a nominal value of
present definition of Kn, i.e., Eq3.2). TheKn relation Eq.  o,=1. In general, the LBE solution is in excellent agreement
(3.6) of Lim et al. is also tested. Figure 2 shows that Eq. with others. The error of the LBE solution is smallest around
(3.6) gives only slightly better results than first-order accu-the centerline of the microchannel and increases near the
rate solutions. boundaries.

(4.9

(erron =
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(a) (b) =
1.5 ° :
e Lin. Boltzmann 0.09
F o DSMC e hd LBE L — — & — - Present (H = 1006x)
st .
- v 17-order slip 3 —%—— Present (H = 5068x)
| Y o 2™-order slip - ——=—— Cercignani
—0.05 L
1 8 -
=0.06 i
- o ~
Y ) L
I a®7 0 =4 L
) a &
I o, | @ I
L . . 0.03
g-ge @0 r
0.5 : [ ) |
L f( * Y M -
- - 1™-order slip M | I N
_____ 2“d_°rderslip DD 0| I Ll ool ! L1l
i LBE a 107 107° Kn 107 107
oL l l 1 l l l l 1 1 ~0.05
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5~ . N . .
v/H v/H FIG. 4. Normalized macroscopic slip velocity at the stationary

wall in the simulation of Kramers’ problem. Shear r&teU../H
FIG. 3. (a) Nondimensional velocity distribution in half of a =0.001 and slip velocityJs=(1.016 15kl [26].
microchannel. The linearized Boltzmann solution is from Ohwada

et al.[25] and the DSMC solution is from Karniadakis and Beskok shear rate is fixed &=0.001 for both cases. The normalized
[22]. (b) Deviations from the linearized Boltzmann solution. slip velocitiesU4/U., are calculated by least squares fitting

the numerical results. The normalized slip velocities are in

The wall equilibrium boundary condition is further vali- . . o
dated for the solution of the Kramers’ problem, where th excellent agreement with the analytical solution in the re-

analytic solution of the continuous Boltzmann equation isgime below Kn<0.1.

available. The Kramers’ problem is a plane Couette flow in

which the distance of the walld tends to infinity, while the g Gas flows in a long microchannel with pressure boundary
speedJ,, of the upper wall also goes to infinity witH such condition

that the shear ratk=U../H remains finite. The analytic so-

lution for the macroscopic slip velocitys can be obtained in We now consider a long microchannel case with pre-
closed form and is given by =(1.016 15kl [26], | being  scribed pressure boundary conditions at both inlet and outlet,
the mean free path. Figure 4 compares the computed normakhich is commonly found in practical applications. Due to
ized macroscopic slip velocities with the analytic solution.the rarefaction and compressibility effects, the pressure dis-
As above, periodic boundary condition is applied in thetribution along the microchannel is nonlinear. The pressure
streamwise direction and two different channel heights arelistribution along the channel predicted from the above first-
considered to examine grid effectd=500x and 10®x. The  order slip boundary condition is given hg4]

PIP, = - 6aKn, + \(= 6aKny)2 + (1 + 120Kn,)x/L + (P?+ 120Kn,P)(1 - X/L), (4.9

where the inlet-to-outlet-pressure ratios P,/ P,. Figure 5  the incompressible flow without rarefaction effect, which can
shows the normalized slip velocity and nonlinearity of pres-be written as
sure along the microchannel &=2.0 with H=506x. Wall H2p _p
boundaries are located halfway between two grid points for Ug=-——>—.
second-order accura¢8]. The slip velocityU, is obtained in 8u L
the same way as in the periodic channel case and is norm P -

ized to the outlet centerline velocity,. The pressure devia- ai:éaerse];ﬁ rg}r;c;r\g;l:ﬁtlt)sléiﬁfgxrs d &15=0.0625 for all the test
tion from the linear distributioitP —Pincomp is normalized to In Fig. 5, the compressibility effect results in the negative
the outlet pressurB,. L/H is taken inversely proportional to  curvature of pressure distribution, while the rarefaction effect
Kn, such that the reference velocity of the system is kepteduces it[7]. Figure 5 also indicates that the rarefaction
constant. The reader is reminded that the LBE is secondeffect of the LBE simulation increases slightly faster than the
order accurate in Mach number as well as time and spacenalytical solutions of Arkilicet al.[14] and the nonlinearity
We take the reference velocity as the centerline velocity obf the pressure is weaker at high KrLim et al. [10] ob-

(4.10
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FIG. 5. Comparison of slip velocity and nonlinearity of pressure  FIG. 6. Comparison of slip velocity and nonlinearity of pressure
at P=2.0, H=50. L/H=20, 40, and 80 for Kg=0.1, 0.05, and at P=3.0, H=50. L/H=40, 80, and 160 for Ky=0.1, 0.05, and
0.025, respectivelya) Slip velocity normalized to the outlet cen- 0.025, respectively(a) Slip velocity normalized to the outlet cen-
terline velocity, and(b) deviation of the pressure from the linear terline velocity, and(b) deviation of the pressure from the linear
pressure distribution normalized to the outlet pressure. pressure distribution normalized to the outlet pressure.

served a similar trend in the rarefaction effect. Figure 6streamwise velocity at solid boundaries by a second-order
shows the results @=3.0 with H=508x. The outlet slip  extrapolation scheme, and the unknown distribution func-
velocity at P=3.0 is virtually identical to that aP=2.0, tions at the wall are approximated by their equilibrium func-
since it follows from Eq.(4.3) that the outlet slip velocity is tions. Figure 7 shows that the slip velocity obtained by Lim
only a function of Kg. This observation is consistent with et al. is generally much lower than both Arkiliet al's and
the slip velocity computed in a periodic microchannel in Fig.the present results. In addition the predicted peak of the non-
5. The deviation from the analytical solution at higifeiis  linearity is more severely skewed toward the outlet. lém
smaller as compared with Fig. 5. The nonlinearity of theal. argued that mere incorporation of a first-order slip bound-
pressure due to the enhanced compressibility effect is mucary condition in the Navier-Stokes equations would not suf-
more evident at higher pressure ratio and the curvature of thigciently and accurately account for the slip phenomenon.
slip velocity along the channel increases accordingly. The derivation of the analytical formula is based upon the
In Fig. 7, the slip velocity and the pressure nonlinearity atassumptions that the pressure across the channel is constant
Kn,=0.05 are compared with those of Liet al. [10]. Two  and the effect of the inertial term is negligible, which may
types of boundary conditions were used in their work. Thebecome invalid as Knincreases. The presence of the inertial
first one is the specular boundary conditi@8pec.” in the term generally enhances the slip velocity and reduces the
figure), which is analogous to a reflection of a particle hitting pressure nonlinearity. It is expected that the effect of the
a wall specularly. The other is an extrapolation sché€the inertial term would become more evident with increasing
Ext.” in the figure, which approximates the density and the slip velocity and Kg as well.
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(a) marized in Table I. The Kn of Niet al. requires a tunable
parameter that must be chosen to best match the simulated
mass flow rate with experiments. In the case thats a
dimensionless parameter, Kn is no longer a dimensionless
number. The Kn of Limet al. is only first-order accurate as
shown above. Compared with the wall equilibrium boundary
condition that assumes diffuse reflection, the bounce-back
a boundary condition used by Niet al. is expected to allow
N less degree of slip at a given Kn. In the bounce-back scheme,
¥ when a particle distribution function streams to a wall node,
4 the particle distribution function scatters back to the node it
NS comes from. Collision does not occur on the solid bound-
aries. As can be seen in Fig. 1, the normalized slip velocity
L obtained from the bounce-back boundary condition of &tie
al. is much lower than the analytical formula and that from
0 0.25 0.5 0.75 1 the wall equilibrium boundary condition. The specular
x/L bounce-back boundary condition used by Létal. suppos-
edly allows more slip effect, although their specular bounce-
0.08 back scheme is not perfectly specular. Collision occurs on
the solid boundaries and the distribution functions parallel to
the solid boundaries are calculated by LBE. Therefore, their
specular model still has some momentum deposited on the
wall and only the unknown distribution functions are defined
by their corresponding specular directidd$]. By compari-
son, the perfect specular slip boundary condition used by
Succi[11] does not consider collision on the solid bound-
aries. Consequently, the specular bounce-back scheme of
Lim et al. still results in weaker slip effect than the analytical
formula and the wall equilibrium boundary condition as in
Fig. 7. The extrapolation scheme has less physical ground,
but Lim et al. used it to investigate the direct effects of
boundary treatments on slip velocity.

The effect of rarefaction on mass flow rate is investigated
by comparison of the LBE result with experimental data as
well as analytical predictions. The nondimensional mass flow

FIG. 7. Comparison of slip velocity and nonlinearity of pressure rateM” can be expressed as a function of pressure faéie
with those in Limet al.[10] Kn,=0.05 andP=2.0. Appendix A
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Even though only the rarefaction effect is accounted for in M = M -1+ 120& (4.11)
Arkilic et al’s solution by incorporating a first-order slip, our P+1’ '
results are in excellent agreement with the analytical for-
mula. The disagreement between the analytical formula anth Fig. 8, the nondimensional mass flow rate computed by
the previous LBE results by others may be attributed to thehe LBE method folUgz=0.0625 is compared with the first-
definition of Kn and the boundary conditions. By introducing order analytical prediction Eq4.11) and the experimental
the proper Kn and the wall equilibrium boundary condition, data of Arkilic et al.[14]. In their experiments, Arkiliet al.
the LBE method can deal with gas flows in the higher-Kninvestigated helium gas flow having kKn0.165. For all
regime as well as in the slip flow regime. Various definitionscases, slip effects become less pronounced with increasing
of Kn, boundary conditions, and numbers of grid used in thepressure ratio. Equatidd.11) deviates from the experiments
previous computations as well as the present work are sunespecially at low pressure ratios. The LBE results generally

Mno slip

TABLE |. Comparison of computational conditions in the literature.

Kn? Boundary condition Channel heighi( 5x)
Nie et al.[8] Kn=ar/pH® Bounce back 16x
Lim et al.[10] Kn=x(7+0.5 /H(P,/P) Specular bounce back and extrapolation SXEO205%
Present work Kn=xr/H(P,/P) Wall equilibrium 1Q9x—3205%

ar defined in Eq(2.7).
bw is chosen to best match the simulated mass flow rate with experiments.
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FIG. 8. Mass flow rate normalized to no-slip mass flow rate as a

function of pressure ratio at Kr0.165. The experimental data are
from Arkilic et al. [14].
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APPENDIX A

The streamwise velocity profile with rarefaction effect is
given by Arkilic et al. [14]:
s

2 dx

2
X—y—+a'Kn>,

U(x,y) = o HE

(A1)

whose coordinate system is located at the bottom of the inlet.

The streamwise velocity profile normalized to the centerline

velocity at the outlefU,) is

U(x,y) _ dP/dx (y/H - y*H?+ oKn)
U, dPJdx (0.25+0Kn,)

The mass flow rate corresponding to HA.1) is com-
puted by multiplying Eq(Al) by the density and integrating

(A2)

agree well with the experiments and show slightly moreacross the channel. The dimensional mass flow rate is given

mass flow rate at high pressure ratios.

V. CONCLUDING REMARKS

by
M = LF%[(732 - 1)+ 120Kn,(P - 1)] (A3)
 24uRTL ° ’

In the paper, we demonstrate that the LBE simulation OiwherePE P,/ P,. The mass flow rate without the rarefaction
gas flows in a microchannel can be successful if the propeffTects is

definition of Kn and the wall equilibrium boundary condition

are applied. Second-order spatial accuracy of the LBE
method in the microchannel application is verified. In the

H3P2

Mpo slip™ m(PZ -1).

(A4)

slip flow regime, the computed slip velocity and the pressure

nonlinearity are in excellent agreement with the analytical

formula by Arkilic et al. [14]. As the size of the microfluidic
devices becomes smaller, the transition flow regif@el

<Kn<10) draws more attention. In this intermediate-to-

high-Kn flow, virtual wall collisionsproposed by Toschi and
Succi[27] can be a promising approach.

APPENDIX B

The definition of the slip velocity in Niet al. [8] origi-
nally takes the form

2
u(y) :vo(ﬁ - +vs>, (B1)

Future research areas may include investigation of the
boundary condition for the case of the nonzero tangentialvhose coordinate system is located at the bottom of the inlet.

momentum accommodation coefficigdfl]. Thermal effects
[28] and irregular geometrig®] are other examples of ur-

They fitted the data by the least squares method tovget
=8.7Kr§, which leads to Eq4.5), if Us=V,V,is normalized

gent research directions of the LBE method in microsystemso the outlet centerline velocity,(0.25+V,).
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