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Using extensive Monte Carlo simulations, we study the interface localization-delocalization transition of a
thin Ising film with antisymmetric competing walls for a set of parameters where the transition is strongly first
order. This is achieved by estimating the density of statessDOSd of the model by means of Wang-Landau
samplingsWLSd in the space of energy, using both single-spin-flip as well asN-fold way updates. From the
DOS we calculate canonical averages related to the configurational energy, like the internal energy and the
specific heat, as well as the free energy and the entropy. By sampling microcanonical averages during simu-
lations we also compute thermodynamic quantities related to magnetization like the reduced fourth-order
cumulant of the order parameter. We estimate the triple temperatures of infinitely large systems for three
different film thicknesses via finite size scaling of the positions of the maxima of the specific heat, the minima
of the cumulant, and the equal weight criterion for the energy probability distribution. The wetting temperature
of the semi-infinite system is computed with help of the Young equation. In the limit of large film thicknesses
the triple temperatures are seen to converge toward the wetting temperature of the corresponding semi-infinite
Ising model in accordance with standard capillary wave theory. We discuss the slowing down of WLS in
energy space as observed for the larger film thicknesses and lateral linear dimensions. In the case of WLS in
the space of total magnetization we find evidence that the slowing down is reduced and can be attributed to
persisting free energy barriers due to shape transitions.
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I. INTRODUCTION

The restriction of the geometry of a condensed-matter
system has fundamental impact on a phase transition. In a
finite system, sharp phase transitions can no longer occur,
since the free energy is then an analytic function of its inde-
pendent variables and the transition is rounded off and
shifted. A particular realization of a confined geometry ind
=3 dimensions, playing a pivotal role due to its fundamental
importance in material science and technology, are thin films,
infinitely extended in two directions but of finite thicknessD,
where the transition is now not only shifted away from its
bulk value, corresponding toD→`, but also changes its
character from three to two dimensional. As an example we
may consider here a fluid near a gas-liquid coexistence in the
bulk, or similarly, ansA,Bd binary mixture or alloy near
phase coexistence, confined between two parallel walls.

Of particular interest is the case where the two walls of
the system prefer different phases, i.e., one wall favors high-
density liquid sor A particlesd while the other one prefers
low-density gassor B particlesd, which is commonly termed
“competing walls.” A generic model for such systems actu-
ally is the nearest neighbor Ising model in a thin film geom-
etry where one now has two surfaces a distanceD apart, on
which magnetic surface fieldsH1=−HD of opposite sign but
equal magnitude act in order to mimic the competing walls
ssee Fig. 1d. In addition one allows for a different interaction
Js.0 between nearest neighbors located in the surfaces,
while nearest neighbors in the bulk interact with a coupling

J.0. The meaning of the magnetic surface fields becomes
apparent, when reinterpreting the Ising Hamiltonian as a lat-
tice gas for a fluid or a mixture, where Ising spinsSi =−1 or
11 now correspond to lattice sitesi being empty or occu-
pied, or being taken by anA or a B particle, respectively.
Then, surface magnetic fields translate into chemical poten-
tials, i.e., binding energies to the walls.

Remarkably, the transition that one encounters in the Ising
film differs from the transition in the bulk system atTcb
f1–8g: For all finite thicknessesD of the film, the transition
at Tcb is completely rounded off and no singular behavior
shows up, despite the fact that the system is infinite in the

FIG. 1. sad Thin film geometry with two free surfaces atn=1
andD sshaded grayd on which magnetic surface fieldsH1 andHD

act. Here, the surface atn=1 favors spin ups1d, while the surface
at n=D favors spin downs2d. Parallel to theL3L surfaces, peri-
odic boundary conditions are imposed.sbd Delocalized interface.scd
Interface located at either of the two surfaces.
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other directions. Instead, one observes a transition at a lower
temperatureT0sDd,Tcb, at which the system changes from a
state with a delocalized interface running parallel to the walls
in the center of the filmfT0sDd,T,Tcbg, to a twofold de-
generate statefT,T0sDdg, where the interface is now local-
ized near one of the two wallsssee Fig. 1d. Most interest-
ingly, for D→`, the transition temperatureT0sDd of the
interface localization-delocalization does not converge to-
ward the bulk critical temperatureTcb, but toward the wetting
temperatureTwsH1d at which a macroscopically thick liquid
layer sspins pointing upwardd wets the surface in the corre-
sponding semi-infinite system. Thus, the nature of the tran-
sition at finite D is seen to depend on the nature of the
wetting transition in the underlying semi-infinite system.
Upon enhancing the interactionJs of spins in the surfaces
with respect to the bulk interactionJ one can tune the wet-
ting transition and thus the interface transition for finite film
thicknessesD to be of first orderf8g, i.e., T0sDd;TtrsDd is
now a triple point where the three phases shown in Figs. 1sbd
and 1scd coexist. By reducing the film thickness one may
then pass through a tricritical point where the order of the
transition changes from first to second orderf2,8,9g.

Our paper is arranged as follows. First, we briefly intro-
duce the thin film Hamiltonian and give a description of the
employed Wang-Landau samplingsWLSd which aims at
sampling the density of statessDOSd directly. The slowing
down of WLS for our model, encountered especially for
large system sizes is discussed. With regard to these difficul-
ties we then propose to split the DOS into a branch contrib-
uting to the ordered phase and one contributing to the disor-
dered phase, which we normalize separately. We then present
the thermodynamic quantities calculated from the DOS and
compute the infinite lattice triple temperatures from the vari-
ous finite size data. Finally, the wetting temperature of the
semi-infinite system is determined via the Young equation
and the convergence of the triple temperatures towards the
wetting temperature for increasing film thickness is exam-
ined. We close with a brief discussion of our results.

II. MODEL AND SIMULATION METHOD

We consider the Ising Hamiltonian on a cubic lattice in a
L3L3D geometryfsee Fig. 1sadg, whereN=L2D is the to-
tal number of spinsSi swe measure all lengths in units of the
lattice spacing and energy is measured in the same units as
the normalized temperaturekBT and, hence, the ratiosJ/kBT,
etc., are all dimensionlessd:

H = − J o
ki, jlb

SiSj − Jso
ki, jls

SiSj − Ho
i

Si − H1 o
i[surface 1

Si

− HD o
i[surfaceD

Si . s1d

Here, the sumki , jlb runs over all pairs of nearest neighbors
where at least one spin is not located in one of the surfaces
and the sumki , jls runs over all pairs of nearest neighbors
with both spins located in one of the two surfaces. In this
paper we study three different film thicknessesD=6, 8, 12,
and linear lateral dimensions ranging fromL=16 to 128sfor

the two largest choices ofD the minimalL is L=32 and 48,
respectivelyd. We restrict ourselves here to antisymmetric
surface fieldsH1=−HD and bulk fieldH=0. By virtue of the
symmetry there is an exact degeneracy of the phases where
the interface is bound to either of the surfaces, and the triple
point and the phase coexistence belowT0sDd occur atH=0.
We do not study prewettinglike phase coexistence forT
.T0sDd and HÞ0. Specifically we chooseH1/J=0.25 and
Js/J=1.5. For these parameters the interface localization-
delocalization transition is clearly first order for all thick-
nessesD. Already for a smaller surface-to-bulk coupling ra-
tio Js/J=1.45, the transition turned out to be so strongly first
order according to the study of Ferrenberget al. f8g that
lattices withD=8 andL.32 could not be equilibrated using
a standard canonical heat-bath algorithm. The reason for
such difficulties can be seen directly from the canonical
probability distributionPL,DsEd of the energy which devel-
ops two pronounced peaks at the transition point, corre-
sponding to coexisting ordereds2d and disordered phases
s1d which are separated by a deep minimumPL,D

minsEd corre-
sponding to the mixed phase configurationsssee Fig. 2d.
Here, one has additional interfaces in the system which cost
an extra free energyDFL,D=gDL, whereg is of the order of
the interface tension between the two oppositely oriented
domains of spins. This yieldsPL,D

minsEd~exps−bDFL,Dd,
where b=1/kBT denotes the inverse temperature. Hence,
any simulation technique which aims at sampling a
canonical energy probability distribution proportional to
gsEdexps−E/kBTd directly will become trapped in the phase
in which the system was initially prepared and may practi-
cally never escape from there, even in the case of relatively
small systems.

In order to give an example for the strong metastability,
Fig. 3 shows hysteresis loops of the internal energy per spin
kel;kEl /N which were recorded using a conventional Me-
tropolis Monte Carlo algorithm for a system of sizeD=12
and L=48. The simulations were started in the disordered
phase. In case cooling is performed too fastsopen circles in

FIG. 2. Energy probability distributionsPL,D at equal weight.
The peak positionse−sL ,Dd and e+sL ,Dd sindicated forD=6 and
L=128d define the finite volume latent heatsDesL ,Dd=e+sL ,Dd
−e−sL ,Dd. Arrows pointing on the energy axis indicate the interval
Icenter, Eq. s10d, in case ofL=128 andD=6.
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Fig. 3d one reaches the roughening temperatureTR while still
being in the disordered soft-mode phase, i.e., the interface
becomes flat in the center of the film and it becomes impos-
sible to reach the ordered phase upon further cooling. Using
a much larger simulational effortf,107 Monte Carlo steps
sMCSdg one obtains a closed loop—although the observed
hysteresis is still huge—which clearly indicates a phase tran-
sition in the range 0.244,Jbtr,0.341. Locating the exact
transition point in this way would however require an enor-
mous simulational effort even for the moderate system size
at hand. An improvement results from thermodynamic inte-
gration of the low- and high-temperature branches of the
internal energy, which yields the free energy per sitef
f11,12g:

bfsbd = breffsbrefd +E
bref

b

kelb8db8. s2d

For the reference values we have regarded the spins as non-
interacting atJbref=0.000 05, i.e.,fsbrefd=−bref

−1 ln 2, while
on the low-temperature side the free energy was matched
with a series expansion based on the first two excited states
at Jbref=1.100 05. The crossing point of both branches of the
free energy then yields the transition point, which can be
determined with an accuracy of 0.4%.

The result that the correct location of the first-order tran-
sition is not in the middle of the hysteresis loop but very
close to its end at the high-temperature sidesdashed curve in
Fig. 3d is very surprising at first sight. It should be noted,
however, that the hysteresis observed in Monte Carlo simu-
lations has nothing to do with the “Maxwell equal area rule”
of mean field theories, but is of kinetic origin. The almost
free interface in the center of the film is very slowly relaxing
and feels only a very weak potential from the walls, and thus
is much more metastable than the state where the interface is
tightly bound to one of the walls.

A. Wang-Landau sampling

To avoid problems due to metastability and to further in-
crease accuracy, we have decided to use Wang-Landau sam-
pling f13–16g in order to compute thermodynamic quantities
of the systems via estimating the density of states of Hamil-
tonian s1d. Instead of using the canonical ensemble the
Monte Carlo chain generates states with a uniform distribu-
tion over a predetermined energy interval. Using reweighting
techniques one can subsequently reconstruct canonical aver-
ages over a wide range of temperatures. To uniformly sample
the energy, one accepts trial configurations with probability
minf1,gsEd /gsE8dg, wheregsEd is the DOS andE andE8 are
the energies of the current and the proposed configuration,
respectively. Since the DOS is not known in the beginning of
the simulation, it is set equal to 1 for all energiesE. After
each spin-flip trial the DOS is modifiedgsEd→gsEdf i by
means of a modification factorf i which is the same for all
energiesE. For the first stage of the simulation we have
chosen the initial valuef0=e in accord with previous studies
f13,14g wheree is Euler’s constant. Periodically one checks
if the accumulated energy histogram,HsEd, is flat, i.e.,
HsEdùekHsE8dlE8 for all E. These checks were performed
after 102–103 Monte Carlo sweeps. If the histogram is flat,
the modification factor is reduced according tof i+1=Îf i and
the histogram of visited states,HsEd, is then reset to zero and
the procedure is repeated until a flatHsEd is achieved using
a final modification factorf final. The latter value is typically
on the order between 1.0+10−9 and 1.0+10−6. Thus, starting
with the above choice forf0, the WLS passes through a
sequence of at least 20 iterations before the final stage using
f final is performed. In practice one samples a logarithm of the
DOS, i.e., log10 gsEd, sincegsEd may become very large and
modifying the DOS then corresponds to adding a small
modification incrementDsi =log10 f i. The implementation of
the single-spin-flip WLS is straightforward and we refer the
reader to Refs.f13–15g for details. When considering sys-
tems with a large number of distinct energy levels it is useful

FIG. 3. sad Energy hysteresis curves. Coolingsheatingd was performed at a rate ofJDb /perMCS=4.3403310−6 sopen circles, note that
not all data points are plottedd and in steps ofJDb=0.0005, using 100 MCS for equilibration at eachb and another 104 MCS for measuring
the energyssolid lined. The equilibrium curve obtained from WLS in the space of energy is also shown. The roughening temperature
J/kBTR=0.407 58s1d f10g is indicated by an arrow.sbd Low- and high-temperature branches of the free energy per sitef± as obtained from
thermodynamic integration, which yieldsJ/kBTtrsD=12d=0.2511s10d. The relative deviationufWLS− f±u / fWLS between the thermodynamic
integration and the WLS result is plotted in the inset.
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to partition the entire energy range into adjacent subintervals
in order to sample the DOS in a parallel fashion. For energy
intervals that contain states with low degeneracy, e.g., the
ground state, one can further accelerate WLS by combining
it with the rejection-freeN-fold way of Bortzet al. f16,17g.
Here, the underlying idea is to partition all spinsSn,
n[ h1,… ,Nj, into M classescn[ h0,… ,M −1j according to
the change in energyDEcn

caused by flipping a spinSn at site
n. Making explicit use ofH1=−HD and H=0 in the Ising
Hamiltonians1d, we can evaluateDEcn

as follows:

DEcn
= 52sJun + Jsvn + H1dSn if n [ surface 1,

2sJun + Jsvn − H1dSn if n [ surfaceD,

2JunSn else,

s3d

whereSn is the spin value before it is overturned andun and
vn denote sums over the nearest neighbor sitesmsnd of siten:

un = 5 o
msnd

Smsnd if n ¹ surface,

o
msnd¹surface

Smsnd if n [ surface,
s4d

and

vn =H 0 if n ¹ surface,

o
msnd[surface

Sm if n [ surface.
s5d

This results in a number ofM =27 different classes. Within
the context of theN-fold way WLS the probability of any
spin of a classi being overturned is then given by

PsDEid =
nsC,DEid

N
pC→C8, i = 1,…,M , s6d

wherensC ,DEid denotes the number of spins of configuration
C which belong to classi andpC→C8 is given by

pC→C8 = 5minS1,
gsECd
gsEC8d

D if EC8 [ Isub,

0 if EC8 ¹ Isub,

s7d

where Isub denotes the considered energy subinterval over
which the DOS is sampled andEC8=EC+DEi. Classes are
now chosen as follows. First, one computes the integrated
probabilities for a spin flip within the firstm classes:

Qm = o
iøm

PsDEid, m= 1,…,M andQ0 = 0. s8d

By generating a random number 0, r ,QM one then finds
the classm from which to flip a spin via the condition
Qm−1, r ,Qm. The spin to be overturned is chosen from this
class with equal probabilities, whereby log10 gsEd and the
energy histogram are now updated by means of the average
lifetime t=1/QM. A detailed description of the algorithm
was given in Ref.f16g.

B. Normalization of the DOS

In order to estimate the DOS using WLS, the considered
energy range

E/JN[ I = fEground/JN,0.2g, s9d

whereEground=−fs3D−5dJ+4JsgN/D, is the twofold degen-
erate ground state energy, was partitioned into several adja-
cent subintervals each containing an order of 102 to 103 dis-
tinct energy levels, which were sampled on a Cray T3E in a
parallel fashion using mostly 64 processors at a time. The
DOS obtained from these simulations was then matched at
the edges and suitably normalized, which we will describe in
detail below. For the system thicknessesD=8 and 12, as well
as for the largest choices ofL in the case ofD=6 sL=96,
128d only one run was performed over the entire energy
ranges9d denoted as the basis run, whereas all further runs
have been restricted to a smaller energy range

E/JN[ Icenter= fE1/JN,E2/JNg, s10d

covering the mixed phase region in between the peaks of the
doubly peaked energy distribution. As an illustration,Icenteris
marked in Fig. 2 by small arrows on the energy axis. Thus,
the entire energy ranges9d is decomposed asI
= I leftø Icenterø I right, where we have I left
=fEground/JN,E1/JNg and I right=fE2/JN,0.2g. Correspond-
ingly, one obtains the density of statesgsEd by joining gsEd
estimated for the intervalsI left staken from the basis rund,
Icenter, andI right sagain taken from basis rund.

The single-spin-flip algorithm is more efficient in the re-
gions covered byIcenterwhich is due to the added expense of
the N-fold way algorithm concerning the bookkeeping of
classes. This was affirmed by a rough comparison between
both implementations forL=128 andD=12. The flatness
parametere varied between 0.8 and 0.95, and the final modi-
fication increment was usually of orderDsfinal,10−9 which
yielded an overall simulational effort of order 106–107 MCS
for estimating the DOS over the ranges9d. As is clear from
the algorithm, WLS only yields a relative density of states;
hence available reference values must be employed in order
to get the absolute DOSgsEd. Normalizing the simulational
outcome first with respect to the twofold degeneracy of the
ground state, i.e., the free energyf will be exact forb→`, it
is instructive to examine how this accuracy for low tempera-
tures carries over to infinite temperaturesb→0d, where the
partition functionZ is dominated by the density of states
aroundE=0, and one has limb→0 bFsbd /N=−s1/Ndln Zsb
=0d=−ln 2. Table I shows the latter quantity for all consid-
ered system sizes. As can be seen from the table there is an
increasing deviation from the exact value with increasing
width of the film D. While the results forD=6 and 8sthe
latter for small sizesLd agree with the expected value, a
deviation for the larger system sizes, especiallyL=128 and
D=12, becomes apparent. This is related to a slowing down
in the equilibration process in the multicanonicalsWang-
Landaud ensemble for decreasing modification increment
Dsi, as illustrated in Fig. 4 forL=32 andD=8, which shows
the visited statessE/JN,M /Nd and the energy histogram
HsEd recorded during Wang-Landau sampling for different
stagesi of the simulation, where the modification increment
Dsi is used to modify the density of states. In case one has a
small number of tunneling events during a certain simulation
stagei, HsEd exhibits a kink at the barrier, since the stage is
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completed once the flatness criterion is satisfied. Corre-
spondingly,gsEd will suffer from large errors in the ordered
phase, in case it is normalized using a reference in the dis-
ordered phase, and vice versa, errors will be enhanced in the
disordered phase when using a reference in the ordered phase
sground stated.

For D=8 sexcludingL=32d andD=12 we therefore em-
ployed the following approach. Utilizing the fact that one has
at least random walk behavior for small modification factor
in each of the phases alone, we normalize the branch of the
density of statesg−sEd contributing to the low-energy or-
dered phase and the branchg+sEd contributing to the high-
energy disordered phase separately, i.e., one has

gsEd = Hg−sEd for E ø Ecut,

g+sEd for E . Ecut,
s11d

where one obtainsg−sEd by normalizing the simulational
outcomegsEd with respect to the ground stategsEgroundd=2
andg+sEd obtained by normalizinggsEd with respect to the
total number of states

o
E

gsEd = 2L2D. s12d

In Eq. s11d, Ecut is taken to be the energy for which the
energy probability distribution, estimated directly from the

simulational outcomegsEd, takes its minimum in between
the peaks at equal weight. Note that in the sumoEgsEd
=oEøEcut

g−sEd+oE.Ecut
g+sEd the termoEøEcut

g−sEd is negli-
gible.

The additional error that is introduced by this normaliza-
tion procedure then depends on the contribution of the mixed
phase configurations to the energy distributionsand the
choice ofEcutd. However, since these mixed phase configu-
rations are exponentially suppressed at the transition point,
the error is expected to be also exponentially small, and con-
comitant error due to the choice ofEcut as well. Note that
already forL=32 andD=8 the double Gaussian approxima-
tion to the energy probability distribution, which neglects
any mixed phase contribution, provides a reasonably good
approximation to the measured distribution, apart from small
deviations in the tailsssee Fig. 5d.

C. Shape transitions

In Ref. f18g, Neuhaus and Hager addressed the severe
problem of slowing down in simulations of first-order tran-
sitions in the multicanonical ensemblef19g. This was exem-
plified by studying the two-dimensional Ising model onL
3L square latticessperiodic boundary conditionsd below the
critical bulk temperature on the whole magnetization interval
f−L2,L2g whereby the sampling of configurations with mag-
netizationM =oiSi was biased with the inverse probability
distribution of the magnetizationg−1sMd. Specifically, it was
found in Ref. f18g that these simulations suffered from a
slowing down due to a discontinuous droplet-to-strip transi-

TABLE I. Logarithm of the partition function −s1/Ndln Zb=0 of
a thin Ising film for different linear dimensionsL andD, in case the
density of states is normalized with respect to the ground state. The
value in parentheses states the standard deviation. The exact value
and the deviations from the latter are listed in the last two columns,
respectively. ForL=32 andD=8 the run showing the largest devia-
tion from the exact valuef−s1/Ndln Zb=0=−0.692 624g was ex-
cluded from data analysis. Then one has −s1/Ndln Zb=0

=−0.693 07s9d. Under “No. of runs” we have listed the number of
independent simulations.

D L No. of
runs

−
ln Zb=0

N
−

ln Zb=0
exact

N

uln Zb=0− ln Zb=0
exactu

uln Zb=0
exactu

6 16 6 20.6932s5d 20.693147 0.0076%

6 24 3 20.6931s4d 20.693147 0.0061%

6 32 3 20.6932s3d 20.693147 0.0082%

6 48 3 20.69318s5d 20.693147 0.0048%

6 64 5 20.69311s6d 20.693147 0.0049%

6 96 2 20.693112s2d 20.693147 0.0051%

6 128 6 20.693144s9d 20.693147 0.00042%

8 32 4 20.6930s2d 20.693147 0.027%

8 48 2 20.69310s4d 20.693147 0.0075%

8 64 3 20.69312s6d 20.693147 0.0038%

8 96 1 20.69301 20.693147 0.020%

8 128 1 20.69304 20.693147 0.016%

12 48 3 20.69240s2d 20.693147 0.107%

12 64 1 20.692544 20.693147 0.087%

12 96 2 20.692686s3d 20.693147 0.067%

12 128 10 20.69281s4d 20.693147 0.048%

FIG. 4. Visited statessE/JN,M /Nd sleft hand sided and energy
histogramHsEd sright hand sided, recorded during WLS in the
space of energy over the intervalE/JN[ f−2.4414,−1.2207g for
different stagesi of the simulation. The system size isL=32 and
D=8. The simulation used 3.8443107 MCS in total, with a flatness
criterion for the energy histogram ofe=0.9 and a final modification
increment ofDsfinal<4.139310−7.
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tion f20g, i.e., t~exps2RsLd, wheret is the tunneling time
between droplet and strip configurations,s is the interfacial
tension, andR was measured to beR=0.121s14d. Note that
one hasR<1 for nonmulticanonical simulations.

Of course, one needs a fairly good approximation to
gsMd, in order to sample the considered Hamiltonian in the
multicanonical ensemble. Within the framework of WLS one
may therefore simulate the system at a certain inverse tem-
peratureb of interest by employing the flipping probability
ssingle-spin-flip Metropolisd

pC→C8 = minF1,
gsMCd
gsMC8d

exps− bfEC8 − ECgdG , s13d

for the transition from the stateC to the stateC8. Each time a
state with magnetizationM is visited, one updatesgsMd ac-
cording togsMd→gsMdf i in complete analogy to the case
wheregsEd is used. Once this procedure has renderedgsMd
accurate enough, one makes a production run, wheregsMd is
not altered anymore. Thermodynamic quantities can then be
obtained by reweighting to the canonical ensemble.

For the first-order interface transitions in thin Ising films
as studied here, we have found evidence that geometrical
transitions in the ensemble realized by Wang-Landau sam-
pling in the space of magnetization indeed hamper the simu-
lations. While this poses no problem for the smaller systems
like D=8 and L=32 where WLS usinggsMd yields very
good resultsssee Fig. 5d, we observe pronounced effects for
the largest considered system size. This is shown in Fig. 6sbd
where part of a time series is depicted which was recorded
for D=12 andL=128 during WLS in the space of total mag-
netization. The simulation was restricted to the interval
m=M /N[ f−0.559 49,−0.457 76g after monitoring
the time series of m for a much larger interval
m[ f−0.915 53,0.101 73g where Dsi decreased from 5.0
310−3 to 7.629310−8 over a simulation time of 1.632
3107 MCS atJ/kBT=0.2497 19. The distributiongsMd was
then further iterated on the intervalm[ f−0.559 49,
−0.457 76g whereDsi was refined from 1.0310−5 to 1.953
310−8 within 7.273106 MCS and finally held fixed such
that the depicted time series could be recorded. Configura-
tions were thereby monitored along the estimated position of
the barrierm<−103 000/N=−0.523 885. Figures 6sad and

FIG. 5. sad shows the double Gaussian approximations25d to the energy probability distributionPL,Dsed for the system of sizeL=32 and
D=8 at the finite volume transition pointfbtrsL ,Dd=0.247 255s10dg as obtained from WLS in the space of magnetizationssingle spin flipd
by reweighting back to the canonical ensemble.sbd shows the corresponding full joint energy–order parameter distributionPL,Dse,md.
Contour lines forPse,md=10 and 0.025 are drawn in thee-m plane.scd shows the projection onto the magnetization axis.

FIG. 6. sad Droplet at surface
n=D where the positive field
HD /J=0.25 acts.sbd Selected part
of a time series of the total mag-
netization per spinm=M /N as
produced by WLS ssingle-spin-
flipd in the space of magnetization.
scd Percolated striplike droplet.
Note that insad and scd only the
positive spins are displayed as
small spheres. Those spins closest
to the shownL3L surface are the
lightest.
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6scd show snapshots of the two possible coexisting structures
which are the three-dimensional analogssin the presence of a
surfaced to the droplet and strip shapes as studied in Ref.
f18g. In case Wang-Landau sampling is performed in the en-
ergy space, the governing mechanism of the slowing down is
not determined up to now. From the joint energy–order pa-
rameter distributionsFig. 7d, however, recorded for Wang-
Landau sampling in the space of energy, one can at least
conclude that one suffers from the fact that the ordered and
the disordered phases are not distinctly separated in energy,
as can be seen by inspecting the distribution of magnetiza-
tion salong lines of constant energyd which shows a notice-
able three-peak structure around energiese/J<−1.7. Thus,
the WLS usinggsEd does not remove the barriers between
the ordered and disordered states. These barriers are much
larger than the barrier encounter during the WLS usinggsMd
sdue to shape transitionsd and result in a severe slowing
down of the WLS usinggsEd compared to WLS usinggsMd.
Further studies are clearly necessary in order to clarify
whether there are connections to droplet related phenomena.

III. SIMULATION RESULTS

A. Thermodynamic quantities

From the simulated DOS, as depicted in Fig. 8, we have
calculated the first and second moments of the energy per
spin

kenl =
1

NnZsbdoE EngsEdexps− bEd, s14d

and the specific heat

c =
N

kBT2ske2l − kel2d. s15d

Furthermore, important quantities like the free energy per
spin can be directly computed,

f = −
1

Nb
ln Zsbd = −

1

Nb
lnFo

E

gsEde−bEG , s16d

and the entropy per spin can be obtained from the internal
energys14d and the free energys16d,

s=
kel − f

T
. s17d

By measuring microcanonical averagesk·lE during the last
stage of a one-dimensional random walk in energy space,
wheregsEd is updated with the smallest incrementDsfinal we
can also compute canonical averages of the order parameter
sand higher momentsd

umu =
1

N
uMu =

1

N
Uo

i=1

N

SiU , s18d

i.e.,

kumunl =

o
E

kumunlEgsEde−bE

o
E

gsEde−bE
. s19d

Thus quantities like the finite lattice susceptibilityx

x =
N

kBT
skm2l − kumul2d, s20d

as well as the fourth-order cumulantU4 on which we con-
centrate in the following and which is defined as

U4 = 1 −
km4l

3km2l2 , s21d

become accessible.

FIG. 7. Joint energy–order parameter distributionPse,md as ob-
tained from WLS in the space of energy for a system size ofD
=6 andL=16. Contour lines forPse,md=1 and 0.12 are drawn in
the e-m plane. The distribution was recorded using a fixed DOS
gsEd, which was taken from the usual adaptive WLS.

FIG. 8. Logarithm of the energy density of states log10fgsEdg for
thicknessesD=6,8,12 and linear dimensionsL=64,96,128. Smaller
choices forL sin case ofD=6 and 8d are omitted in order to pre-
serve clarity. Also indicated by an arrow is the region whereEcut,
appearing in Eq.s11d, is typically located. Here, both branches of
the density of statesg− andg+, are joinedsD=8,12d. In the case of
D=6, gsEd was normalized solely with respect to the ground state
degeneracy.
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The distinctive feature of first-order phase transitions are
phase coexistence and metastability. For the interface
localization-delocalization transition considered here, this is
reflected by jump discontinuities in the internal energykel as
well as thesabsoluted magnetizationkumul per site, which are
depicted in Figs. 9 and 10, respectively, and also by hyster-
esis effects encountered when heating and cooling the system
as exemplified in Fig. 3. Considering the internal energy
sFig. 9d for fixed D and varying linear dimensionL, one can
clearly see that one actually does not observe discontinuous
jumps of the quantities in question but a continuous behavior
that sharpens to the asserted steplike behavior with increas-

ing linear system sizeL. This rounding is related to the fact
that a true phase transition can only occur in the thermody-
namic limit, where in equilibrium, approaching the transition
temperature from above, the energy of the system discon-
tinuously jumps frome+ sinterface in the center of the filmd
to e− sinterface tightly bound to the walld, while for a finite
volume the system may jump back and forth between the
latter states and the observed equilibrium behavior is thus
continuous in temperature. The rounding of the transition in
finite systems can also be observed for the specific heatc
depicted in Fig. 11 which exhibits narrow peaks that are
remnants of thed-function singularities one would get when
differentiating the discontinuous energy in the infinite vol-
ume limit. Apart from the finite size rounding, one can see
that the positions of the maxima ofc and the minimum of the
fourth-order cumulantU4 sFig. 12d are systematically shifted
towards higherb values for increasing linear dimensionL.

From the crossings of the energy curves for different lin-
ear dimensionsL, one can get a first idea about the achieved
accuracy for the different film thicknessesD, because they
should cross to a very good approximation in the pointf21g

„btrsDd,se+ + 2e−d/3…, s22d

wherebtrsDd is the infinite system transition point. Hence,
the crossing points for differentL,

kesbcross,L,Ddl = kesbcross,L8,Ddl, s23d

actually provide an estimator for the infinite system transi-
tion temperature, which is expected to deviate frombtrsDd
only by an amount exponentially small in system sizef21g.
As can be seen from the inset of Fig. 9sad in the case ofD
=6, the various crossings are indeed scattered in a narrow
region around the extrapolated infinite volume transition
point for Lù32. For smaller values ofL exponential correc-

FIG. 9. Internal energykel for different linear dimensionsL and film thicknessesD. Lines are obtained from reweighting the results of
the WLS. Estimates for the inverse temperatureJbtrsDd=J/kBTtrsDd of the triple point are indicated by arrows. The horizontal solid lines
mark the valuese++2e−d /3 where the curves are expected to cross. Insbd the data obtained from WLS usinggsMd sD=8 andL=32d are
plotted for comparison. Here,gsEd for D=8 andL=32 was normalized solely with respect to the ground state. Within the inverse tempera-
ture range displayed in the inset ofsad, the average relative errors inkel for D=6 amount to 0.17%, 0.54%, 0.55%, 0.42%, and 0.45% for
L=16,… ,128, respectively. ForD=8 andL=32 the average error amounts to 0.18% in the range 0.2455øJ/kBTø0.2485, when using
gsMd while it is 1.0% within the same range when usinggsEd. Note that forD=8 andL=96,128, as well as forD=12 andL=64 the DOS
was determined only once; hence no error bars are displayed.

FIG. 10. Average absolute magnetization per spinkumul of a thin
Ising film for different linear dimensionsL and film thicknessesD.
Within the inverse temperature range displayed in the inset ofsad,
the average relative errors inkumul for D=6 amount to 1.0%, 5.2%,
6.3%, 6.1%, and 9.3% forL=16,… ,128, respectively.
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tions still make a noticeable contribution. For the larger
thicknessesDù8 the region where the energy curves cross is
noticeably larger. Particularly, one obtains that the errors re-
sulting from averaging over different runs are too small to
fully account for the deviationsfexcludingL=32 for which
gsMd was employedg. This is related to the fact that for the
thicknessesD=8 and 12 only a single run was performed
over the entire energy ranges9d while further runs were re-
stricted to the mixed phase region in between the peaks,
because the slowing down, as described in the preceding
subsection, was not foreseen. When one uses the normaliza-
tion conditions11d, the proper strategy would certainly be to
enhance the simulational effort in the pure phases, down to
the ground state and up toE=0, since the reference density
of states is known forT=0 andb=0. This is necessary, in
order to minimize the accumulation of errors in the density
of states, since the Wang-Landau method and similar adap-
tive algorithms, do not in general exhibit an error distribution

that is flat in energy.1 Hence, forD=8 fexcluding the simu-
lation usinggsMdg andD=12, we believe the true errors to
be larger than the error bars displayed in Figs. 9sbd, 9scd,
12sbd, 11sbd, and 11scd and when quantitatively referring to
errors of the thermodynamic quantities, we thus restrict our-
selves here toD=6, where we have reliable error estimates
for L=16, 24, 32, 48, and 64.

Exponential corrections to the crossing points are presum-
ably much smaller than the scatter in the energy crossings for
Dù8 and one may therefore conclude that the deviations in
the crossings forDù8 are not due to corrections to scaling,
but reveal the actual error in the density of states for this
region. This is also the case for the other quantities like the

1Recently, an adaptive algorithm was proposedf35g which aims at
maximizing the number of round trips between both edges of an
energy interval which has the additional benefit of exhibiting a flat
error distribution.

FIG. 11. Specific heatc of a thin Ising film for different linear dimensionsL and film thicknessesD. In the interval 0.2400øJ/kBT
ø0.2415 the average relative error forD=6 amounts to 3.9%, 9.6%, 12.0%, 5.4%, and 15.9% forL=32,… ,128, respectively. ForD=8 and
L=32, Wang-Landau sampling ingsMd yields an average error of 2.6% within the range 0.2455øJ/kBTø0.2480. Note that we have no
statistics forD=8 andL=96,128sbd, as well as forD=12 in case ofL=64 scd.

FIG. 12. Reduced fourth-order cumulant of a thin Ising film for different linear dimensionsL and film thicknessesD. The inset ofsad
shows the region where the cumulants for the various linear sizesL crosssD=6d. In the vicinity of the minima positions, the relative errors
in U4 in the case ofD=6 amount to 11%, 30%, 17%, 11%, and 7% forL=24,… ,128, respectively. WLS in the space of total magnetization
M with fixed gsMd yields an error of 4%sD=8,L=12d. Note that for the data corresponding toD=8, as plotted insbd, we have no statistics
for L=96 andL=128, i.e., for the latter sizes the DOS was estimated only once.
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specific heat for examplefFigs. 11sbd and 11scdg. Thus, the
analysis of the systems with larger thicknessesD=8 and 12
is certainly more difficult and less accurate.

One can however roughly estimate the order of magnitude
of the latter uncontrolled error, which also serves to support
the above picture. For example, from the density of states of
the largest systemsD=12 andL=128d, one can estimate that
a relative error in the density of statesgsEd of the order
,10−1 freferring to the results for the 50350 two-
dimensionals2Dd Ising model in Ref.f16g this seems to be a
reasonable assumptiong, in the narrow region corresponding
to the peak of the ordered phase of the energy probability
distribution, can result in a displacementDb of the peak
positionbcmax of the specific heat and also of the step loca-
tion of the internal energy, which is approximately of the
order Db /bcmax,10−4. In the case ofD=12 andL=48, a
relative deviation of this order could already be caused by a
relative error ingsEd which is of the order,10−2 in the
above region. These considerations comply well with the ob-
served scatter.

B. Finite size scaling

When one deals with second-order phase transitions, the
characteristic feature is a divergent spatial correlation length
j at the transition pointbc swhere one observes fluctuations
on all length scalesd implying power-law singularities in
thermodynamic functions such as the correlation length,
magnetization, specific heat and susceptibility. This is in
sharp contrast to a first-order transition where the correlation
length in the coexisting pure phases remains finite and con-
cerning finite size scaling the volume of the system turns out
to be the relevant quantity. For a thin film geometry where
one has fixedD and varying linear dimensionL, finite size
scaling will thus involve the quantityL2. This can be shown
by approximating the energy distributionPL,Dsed of the pure
phases by a Gaussianf21–23g centered around the infinite-
lattice energy per spinkel

PL,Dsed =Î L2D

2pkBT2c
expF se− keld2

2kBT2c
L2DG , s24d

wherec denotes the infinite-lattice specific heat. Since one
has phase coexistence at a first-order transition, the probabil-

ity distribution of the energy will be double peaked at the
transition pointbtrsDd=1/kBTtrsDd, wherekel jumps frome−

slow-energy phases, interface at one of the two wallsd to e+

ssingle high-energy phase, interface centered in the middle of
the filmd, i.e., the free energy branchesf± intersect at a finite
angle in the infinite system, as can be seen from Fig. 13sad,
when inspecting the curves around the transition pointfcf.
also Fig. 3sbdg It is essentially this nonanalyticity in the free
energy, which gives rise to the discontinuous behavior of the
internal energy. In a finite system however, the free energy
remains differentiable and the intersection is rounded.

Hence, at the transition point,PL,Dsed is a superposition of
two Gaussianss24d centered atkel=e±, while slightly away
from the transition atT=Ttr+DT they are centered at ener-
gies e±+c±DT, wherec± are the specific heats in the disor-
dereds1d and ordered phasess2d, which are assumed to be
constant in the vicinity of the transition, i.e., for sufficiently
small DT. Each of the Gaussians is then weighted by Boltz-
mann factors of the corresponding free energiesf±, and one
thus arrives at

PL,Dsed = AH a+

Îc+
expF−

fe− se+ + c+DTdg2

2kBT2c+ L2DG
+

a−

Îc−
expF−

fe− se− + c−DTdg2

2kBT2c− L2DGJ , s25d

where the weightsa± are given by

a± = q± expF7
f+ − f−

2kBT
L2DG , s26d

andA reads

A = expF−
sf+ + f−d

2kBT
L2DGÎ L2D

2pkBT2 . s27d

Since we have a single high-energy phase and two low-
energy ordered phases we setq+=1 and q−;q=2 in the
following. At the transition all phases have equal weight
f21,24g such that the area under the peak ate− is q times the
area under the peak ate+ which is satisfied by Eq.s25d.
Within the framework of the ansatzs25d one then proceeds
by calculating the energy moments as usual viaf22g

FIG. 13. sad Free energy per spinf of a thin Ising film for different linear dimensionsL and film thicknessesD. Note that insad only the
data forL=128 are plotted, whilesbd showsf on a finer scale. In the range 0.23øJ/kBTø0.27, the average relative error in the free energy
sD=6d is 0.0143%, 0.011%, and 0.000 26% forL=16, 32, and 128, respectively.scd Entropy per spins for D=6. The error ins amounts to
0.64%, 0.64%, 0.47%, and 0.47%, within the range depicted in the inset ofscd.
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kenl =
E de8e8nPL,Dse8d

E de8PL,Dse8d
. s28d

Computing thenkel at the transition point by means of Eq.
s28d we obtain

kel =
e+ + qe−

1 + q
s29d

shorizontal lines in Fig. 9d, which is exact, apart from expo-
nential corrections due to mixed phase contributions which
are neglected in the double Gaussian approximation. Upon
using the fluctuation relations15d or c=dkel /dT in conjunc-
tion with Eq.s28d one can calculate the specific heat to lead-
ing order,

c =
a+c+ + a−c−

a+ + a− +
fe+ − e− + sc+ − c−dDTg2

sa+ + a−d2

a+a−

kBT2L2D,

s30d

which is seen to take its maximum fora+=a− in Eq. s25d.
The position of the latter is thereby shifted away from the
infinite-lattice transition temperature by an amount of

DT = TcmaxsD,Ld − TtrsDd = kBTtr
2 ln q

DeD

1

L2 , s31d

and the height of the peak is found to be

cmax=
c+ + c−

2
+

De2D

4kBTtr
2 L2, s32d

where De;e+−e− is the latent heat. For convenience we
may reexpress Eq.s31d in terms of the inverse temperature
b=1/kBT which yields

bcmaxsD,Ld = btrsDd −
ln 2

DeD

1

L2 . s33d

Thus, the inverse temperaturebcmaxsDd at which the specific
heat peaks provides a definition for a finite-latticespseudod
transition temperature from which the infinite-lattice transi-
tion temperature can be estimated via finite size scaling, i.e.,
by extrapolatingL→`.

A similar argumentation applies to the distribution of the
order parameterPL,Dsmd f25g yielding the same scaling be-
havior for the susceptibilityx, i.e.,

bxmaxsD,Ld − btrsDd ~ sL2Dd−1, s34d

xmax~ L2D, s35d

and one can show that the fourth order cumulantU4 sFig. 12d
takes a minimum value at an inverse temperaturebU4

minsD ,Ld
which is again shifted

bU4
minsD,Ld − btrsDd ~ sL2Dd−1, s36d

while the minimumU4
min obeys

U4
min ~ − L2D. s37d

Furthermore it was shownf25g that the shift in the crossing
points of the cumulants for different system sizes is propor-
tional to N−2, which is negligibly small on the scale ofN
=L2D. Figure 14sbd now shows the maximum values of the
response functionscmax,xmax, and the minimumU4

min of the
cumulant as function of 1/L2 for the three different thick-
nessesD=6,8,12. As can be seen from the plots, the data
comply well with the behavior predicted by expressionss32d,
s35d, ands37d. Considering the fourth-order cumulantU4 in
the case ofD=6, one observes that subleading corrections to
scaling are still present for the smaller linear dimensionsL,
but the expected linear behavior inL2 is created for the three
largest choices ofL.

The definition for the finite-lattice transition temperature
considered so far, e.g., Eq.s33d, involves leading order cor-

FIG. 14. sad Extrapolation of peak positionsbmax,minsD ,Ld of the specific heatcmax and the fourth-order cumulantU4
min for the different

film thicknessesD. sbd Maxima of specific heatcmax and susceptibilityxmax, as well as minimum of the fourth-order cumulantU4
min as

functions ofL2.
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rections of 1/L2. An alternative definition of the transition
temperature which has the additional benefit that the latter
corrections are absent was given in Ref.f26g. Here, it is
utilized that at the infinite-lattice transition pointbtrsDd all
phases coexist, which implies that the sum of the weights of
the q ordered phases equalsq times the weight of the disor-
dered phase, i.e.,

Rsbew,L,Dd ;
o

eøecut

PL,Dse,bewd

o
e.ecut

PL,Dse,bewd
= q, s38d

wherePL,Dsed is thesfinite-sized energy probability distribu-
tion, andbewsD ,Ld differs from btrsDd only by corrections
exponentially small in system size. The energyecut appearing
in Eq. s38d is taken to be the internal energy at the tempera-
ture where the specific heat is maximalf26g.

C. Transition temperatures

Now, we can extract the infinite-volume transition point
btrsDd from the finite-size data, i.e., as Eqs.s33d ands36d and
suggests by fitting the peak positions for fixedD to

bmax,minsD,Ld = bmax,minsD,`d +
a

L2 , s39d

wherebmax,minsD ,Ld stands for the location of the maximum
of the specific heatbcmaxsD ,Ld and the location of the mini-
mum bU4

minsD ,Ld of the fourth-order cumulant at finiteL,
while bmax,minsD ,`d denotes the infinite-volume limitsL
→`d of the corresponding inverse temperatures, which is an
estimate of the infinite-system transition pointbtrsDd. Alter-
natively, we have also employed the finite-volume estimator
bewsD ,Ld of the transition point, as defined by the condition
s38d.

The individual results for the infinite-system transition
points are summarized in Table II. In the last column of
Table II we state our final estimate of the infinite-system
transition pointbtrsDd, based on weighted averages over the
estimates listed in columns 2–4. Concerning the error in our
final estimate ofbtrsDd we have also accounted for the scat-
ter in the crossings of the energy curves as depicted in Fig. 9

and the crossings in the fourth-order cumulantU4 ssee Fig.
12d. While we find that the order of magnitude of the error as
determined from the various finite-lattice estimators consid-
ered above complies well with all the data forD=6, espe-
cially the latter crossing points, we may have uncontrolled
errors in case of the larger thicknessesD=8 and 12, due to
the aforementioned lack of statistics deep in the pure phases.
In these cases we consider here as a conservative error esti-
mate the extremal crossing points as an upper bound to the
transition point, which results in the error ofbtrsDù8d as
given in the last column of Table II. Fitting the locations of
the maxima of the specific heat to Eq.s39d, as depicted in
Fig. 14sad, one can also determine the latent heatDe which
is, however, less accurate than computingDe from the dis-
tribution PL,DsEd via f27g

DesL,Dd = DesDd + const3 L−2, s40d

which yields the values stated in column 2 of Table II. Con-
cerning the extrapolations39d of the positions of the minima
U4

min and the maximacmax we have used only data forL
.32 in the case ofD=6. For these lattices, exponential cor-
rections tobewsD ,Ld cannot be resolved within the achieved
accuracy. This is also the case for the larger film thicknesses
D and all choices ofL. Hence, the values listed in Table II
for bewsDd are simply averages over the various lateral sys-
tem sizesL sL.32 in the case ofD=6d.

D. Wetting temperature of the semi-infinite system

In order to determine the wetting temperaturebw
=limD→` btrsDd of the semi-infinite system, we have studied
Hamiltonians1d with D=12 andL=48 along the branch of
positive bulk magnetization at the inverse temperatureb
=0.251 near the expected location of the wetting temperature
bwsH1d. We have performed simulations for five different
sets of surface fieldsssymmetric, i.e.,H1=HDd, namely,
H1/J=−0.25,20.125, 0, 0.125, and 0.25, utilizing a conven-
tional Metropolis algorithm in order to measure the surface
magnetizationkm1l=koi[surface 1Sil /N using up to 107 MCS
for averaging. This selection of surface fields allows one to
reweight all fields in the rangef−0.25J,0.25Jg for a range of
inverse temperaturesJb[ f0.249,0.253g. Note that the meta-
stability is strong enoughscf. Fig. 3d that the system remains
in the ordered phasesinitially all spins upd even forH1/J=
−0.25. According to the Young equationf29g the walls are
wetted by spin down, if the differenceDsw between the sur-
face free energy of the wall with respect to a positively mag-
netized bulksw+ and the surface free energy against a nega-
tively magnetized bulksw− exceeds the interfacial tensions
of the 3D Ising modelf28g at an infinite distance from the
wall,

Dsw = sw+ − sw− . s. s41d

By symmetrysw−s−H1d equalssw+sH1d, i.e., the free energy
cost of a wall favoring spin up with respect to a positively
magnetized bulk. Thus we can perform a thermodynamic
integrationf30g

TABLE II. Estimates for the latent heatsDesDd and the inverse
transition temperatures of the first-order interface localization-
delocalization transition for different film thicknessesD.
bcmaxsD ,`d andbU4

minsD ,`d are the estimates of the transition point
btrsDd originating from an extrapolation of peak positions as de-
scribed in the text, whilebewsD ,`d denotes the estimate from the
equal weight rules38d. The final estimate of the inverse temperature
btrsDd of the triple point is stated in the last column.

D DesDd /J JbcmaxsDd JbU4
minsDd JbewsDd JbtrsDd

6 0.261s6d 0.24082s2d 0.24079s4d 0.24082s1d 0.24082s4d
8 0.300s2d 0.24726s3d 0.24716s7d 0.24725s2d 0.24725s10d
12 0.236s3d 0.25115s4d 0.25109s4d 0.25117s2d 0.25115s10d
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Dsw = sw+s− H1d − sw+sH1d =E
−H1

H1

dH18km1sH18dlb,

H1 = 0.25J, s42d

and determine the wetting temperaturebwsH1d by the condi-
tion Dsw=s, which yieldsJbwsH1d=0.252 12s5d as depicted
in Fig. 15sad.

Describing the semi-infinite system by means of the wet-
ting film thicknessl leads to the effective interface potential
f5g

Veffsld = a exps− kld − b exps− 2kld + c exps− 3kld,

s43d

which has the meaning of a free energy cost when placing a
sflatd interface at distancel from the wall. Upon minimizing
Veffsld with respect tol one finds the equilibrium position of
the interface. Equations43d includes only the lowest powers
of exps−kld which are necessary to describe a first-order wet-
ting transition in the semi-infinite system. The coefficienta
explicitly depends on temperature, while the temperature de-
pendence ofb andc is neglectedsc.0 in the followingd. 2

All coefficients have the same magnitude as the interfacial
tension between bulk phases and one finds a first order wet-
ting transition forb.0 at aw=b2/4c, where the interface

jumps discontinuously into the bulkf9,31g. Now, for a film
one has an additional contribution from the second wall and
the effective potential readsf32g

DVeff,filmsld = Veffsld + VeffsD − ld − 2VeffsD/2d

= cfm̃2sm̃2 − rd2 + tm̃2g, s44d

with

r =
b − 6c exps− kD/2d

2c
s45d

and

t =
a − aw − b exps− kD/2d

c
. s46d

In Eq. s44d we have utilized the auxiliary variable

m̃= 2 exps− kD/2dhcoshfksl − D/2dg − 1j

= sexps− kD/4dkfl − D/2gd2 + fhigher orders ofsl − D/2dg.

s47d

In the film, r .0 gives rise to first-order interface
localization-delocalization transitions andt=0 then denotes
the triple temperature. Hence, for largeD we have from Eq.
s46d

atr = awet + b exps− kD/2d, s48d

i.e., the triple temperature differs from the wetting tempera-
ture only by a term exponentially small inkD /2 and is larger
than the wetting temperaturesb.0d. Within mean field
theory k would have to be identified with the inverse bulk
correlation lengthjb f5g. However, from the two-field Hamil-
tonian approach developed in Ref.f33g we know thatk /2
has to be replaced by

k

2
=

1

2jbu
, u = 1 +veff/2, s49d

whereveff is the effective wetting parameter which becomes
limT→Tw

+ veff=kBT/4psjb
2 upon lowering the temperatureT

toward the wetting temperatureTw f34g. From a simple ex-
ponential fit of the forms48d we getk /2=0.430s8d. fNote
that this has to be regarded as an effective value since we
neglect any temperature dependence ofk within our range of
triple temperaturesbtrsDdg. Evaluating nowu at Tw/Tcb

=0.88 where we employjb,0.88 f28g yields u,1.3, which
is compatible with the values extracted foru by Parryet al.
f34g and clearly differs from the valueu=1 expected from
mean field theory. Of course, making more quantitative state-
ments would require data from additional film thicknessesD,
but the above considerations clearly indicate that our data
nicely support the asserted functional dependence ofbtrsDd
on D, i.e., Eq.s48d.

IV. CONCLUSION

We have studied the interface localization-delocalization
transition in a thin Ising films1d for a choice of parameters,

2The description of the interface in terms of the effective interface
potentialVeff follows from the sharp-kink approximation to the cap-
illary wave Hamiltonian Heff=edrfss /2ds¹ld2+Veffhlsrjg where
fluctuations of the local interface position are neglected.

FIG. 15. sad Shown are the interfacial tensions of the 3D Ising
model fHasenbusch-PinnsHPdg taken from Ref.f28g, fitted by an
eight-degree polynomial in order to smoothly interpolate between
the data points as well as the the quantityDsw appearing in the
Young equations41d. The position of the crossing point yields the
wetting temperatureJbwsH1d=J/kBTwsH1d=0.252 12s5d. sbd Tran-
sition temperatures,Ttr, as a function of film thickness,D, and fit to
the expected exponential dependence.
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where the transition is pronounced first order for all studied
thicknessesD=6, 8, and 12. Checking for the correct behav-
ior of the logarithm of the partition function lnZ which
should converge toN ln 2 as b→0, we find reasonable
agreement forD=6 within error barsscf. Table Id. In con-
trast, forD.6 we see rather clear deviations from the ex-
pected value with relative deviations up to 10−3. We attribute
this behavior to a slowing down encountered in the flat
energy-histogram ensemble. Difficulties also arise, when one
considers to sample a flat magnetization distribution, al-
though simulation results suggest that the slowing down is
less severe. Here, we find evidence for a discontinuous shape
transition, as studied by Neuhaus and Hagerf18g. For the
larger thicknessessD.6d we therefore suggest employing
an additional reference for the disordered phasestotal num-
ber of statesd, in order to get the proper relative weight be-
tween the coexisting phases, thus correcting for the lack of
tunneling events, in the late stages of the algorithm. The
triple temperaturesbtrsDd of the interface localization delo-
calization transition can then be determined with a relative
accuracy of the order 10−4 while the relative error in the
latent heats is of the order 10−2. The triple temperatures are
seen to differ from the wetting temperature of the semi-
infinite system by a term exponentially small in film thick-
nessD as predicted by the sharp-kink approximation to the

capillary wave Hamiltonian, provided the length scalek is
identified with the results of Parry and co-workers, i.e., Eq.
s49d.

When one compares the present results based on Wang-
Landau samplingf13–16g to the first study of first-order in-
terface localization-delocalization transitionsf8g where
simple Metropolis and heat-bath Monte Carlo algorithms
were used, a major improvement of accuracy is clearly seen.
On the other hand, the systematic problems due to entropic
barriers described in our work show that it would be prob-
lematic to apply the Wang-Landau algorithm to larger sys-
tems than used here. Note that the largest sizes used by us,
1283128312,1.973105 Ising spins, distinctly exceed the
sizes analyzed in most previous applications of this algo-
rithm f13–16g.

ACKNOWLEDGMENTS

This work was supported in part by the Deutsche
Forschungsgemeinschaft under Grants No. Bi314/17. Help-
ful and stimulating discussions with D. P. Landau and P.
Virnau are gratefully acknowledged. We thank the
NICTR6/A5 Jülich and the HLR Stuttgart for a grant of com-
puter time.

f1g A. O. Parry and R. Evans, Phys. Rev. Lett.64, 439 s1990d.
f2g M. R. Swift, A. L. Owczarek, and J. O. Indekeu, Europhys.

Lett. 14, 475 s1991d.
f3g J. O. Indekeu, A. L. Owczarek, and M. R. Swift, Phys. Rev.

Lett. 66, 2174s1991d.
f4g A. O. Parry and R. Evans, Phys. Rev. Lett.66, 2175s1991d.
f5g A. O. Parry and R. Evans, Physica A181, 250 s1992d.
f6g K. Binder, D. P. Landau, and A. M. Ferrenberg, Phys. Rev.

Lett. 74, 298 s1995d.
f7g K. Binder, D. P. Landau, and A. M. Ferrenberg, Phys. Rev. E

51, 2823s1995d.
f8g A. M. Ferrenberg, D. P. Landau, and K. Binder, Phys. Rev. E

58, 3353s1998d.
f9g M. Müller, E. V. Albano, and K. Binder, Phys. Rev. E62,

5281 s2000d.
f10g M. Hasenbusch and K. Pinn, J. Phys. A30, 63 s1997d.
f11g K. Binder, Z. Phys. B: Condens. Matter45, 61 s1981d.
f12g R. Liebmann, Z. Phys. B: Condens. Matter45, 243 s1982d.
f13g F. Wang and D. P. Landau, Phys. Rev. Lett.86, 2050s2001d.
f14g F. Wang and D. P. Landau, Phys. Rev. E64, 056101s2001d.
f15g B. J. Schulz, K. Binder, M. Müller, and D. P. Landau, Phys.

Rev. E 67, 067102s2003d.
f16g B. J. Schulz, K. Binder, and M. Müller, Int. J. Mod. Phys. C

13, 477 s2002d.
f17g A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys.

17, 10 s1975d.
f18g T. Neuhaus and S. Hager, J. Stat. Phys.113, 47 s2003d.

f19g B. A. Berg, U. Hansmann, and T. Neuhaus, Phys. Rev. B47,
497 s1993d.

f20g K.-T. Leung and R. K. P. Zia, J. Phys. A23, 4593s1990d.
f21g C. Borgs, R. Kotecky, and S. Miracle-Sole, J. Stat. Phys.62,

529 s1991d.
f22g M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B34,

1841 s1986d.
f23g C. Borgs and K. Kotecky, J. Stat. Phys.61, 79 s1990d.
f24g C. Borgs and J. Z. Imbrie, Commun. Math. Phys.123, 305

s1989d.
f25g K. Vollmayt, J. D. Reger, M. Scheucher, and K. Binder, Z.

Phys. B: Condens. Matter91, 113 s1993d.
f26g C. Borgs and W. Janke, Phys. Rev. Lett.68, 1738s1992d.
f27g A. Billoire, T. Neuhaus, and B. Berg, Nucl. Phys. B413, 795

s1994d.
f28g M. Hasenbusch and K. Pinn, Physica A203, 189 s1994d.
f29g T. Young, Philos. Trans. R. Soc. London5, 65 s1805d.
f30g M. Müller and K. Binder, Macromolecules31, 8323s1998d.
f31g M. Müller, K. Binder, and E. V. Albano, Physica A279, 188

s2000d.
f32g M. Müller and K. Binder, Phys. Rev. E63, 021602s2001d.
f33g A. O. Parry and C. J. Boulter, Physica A218, 109 s1995d.
f34g A. O. Parry, C. J. Boulter, and P. S. Swain, Phys. Rev. E52,

R5768s1995d.
f35g S. Trebst, D. A. Huse, and M. Troyer, e-print cond-mat/

0401195.

SCHULZ, BINDER, AND MÜLLER PHYSICAL REVIEW E71, 046705s2005d

046705-14


