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First-order interface localization-delocalization transition in thin Ising films
using Wang-Landau sampling
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Using extensive Monte Carlo simulations, we study the interface localization-delocalization transition of a
thin Ising film with antisymmetric competing walls for a set of parameters where the transition is strongly first
order. This is achieved by estimating the density of stéB3S) of the model by means of Wang-Landau
sampling(WLS) in the space of energy, using both single-spin-flip as welNdsld way updates. From the
DOS we calculate canonical averages related to the configurational energy, like the internal energy and the
specific heat, as well as the free energy and the entropy. By sampling microcanonical averages during simu-
lations we also compute thermodynamic quantities related to magnetization like the reduced fourth-order
cumulant of the order parameter. We estimate the triple temperatures of infinitely large systems for three
different film thicknesses via finite size scaling of the positions of the maxima of the specific heat, the minima
of the cumulant, and the equal weight criterion for the energy probability distribution. The wetting temperature
of the semi-infinite system is computed with help of the Young equation. In the limit of large film thicknesses
the triple temperatures are seen to converge toward the wetting temperature of the corresponding semi-infinite
Ising model in accordance with standard capillary wave theory. We discuss the slowing down of WLS in
energy space as observed for the larger film thicknesses and lateral linear dimensions. In the case of WLS in
the space of total magnetization we find evidence that the slowing down is reduced and can be attributed to
persisting free energy barriers due to shape transitions.
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I. INTRODUCTION J>0. The meaning of the magnetic surface fields becomes
apparent, when reinterpreting the Ising Hamiltonian as a lat-
The restriction of the geometry of a condensed-mattefice gas for a fluid or a mixture, where Ising spis -1 or
system has fundamental impact on a phase transition. In &1 now correspond to lattice sitésbeing empty or occu-
finite system, sharp phase transitions can no longer occupied, or being taken by aA or a B particle, respectively.
since the free energy is then an analytic function of its indeThen, surface magnetic fields translate into chemical poten-
pendent variables and the transition is rounded off andials, i.e., binding energies to the walls.
shifted. A particular realization of a confined geometrydin Remarkably, the transition that one encounters in the Ising
=3 dimensions, playing a pivotal role due to its fundamentakilm differs from the transition in the bulk system at,
importance in material science and technology, are thin films;1—g]: For all finite thicknesse® of the film, the transition
infinitely extended in two directions but of finite thickneBs at ch is Comp|ete|y rounded off and no Singu|ar behavior

where the transition is now not only shifted away from its shows up, despite the fact that the system is infinite in the
bulk value, corresponding t® — o, but also changes its

character from three to two dimensional. As an example we (@) (b) ) AN
may consider here a fluid near a gas-liquid coexistence in the _D iE:
bulk, or similarly, an(A,B) binary mixture or alloy near A \- | P
phase coexistence, confined between two parallel walls. ' : \;

the system prefer different phases, i.e., one wall favors high- -2
density liquid (or A particles while the other one prefers .
low-density gagor B particles, which is commonly termed sl =D AT D i
“competing walls.” A generic model for such systems actu- el o(D)<T<Teo ()

ally is the nearest neighbor Ising model in a thin film geom-

etry where one now has two surfaces a distaDcgpart, on FIG. 1. () Thin film geometry with two free surfaces at1
which magnetic surface fields; =—Hp, of opposite sign but  andp (shaded grayon which magnetic surface fields, and Hp
equal magnitude act in order to mimic the competing wallsact. Here, the surface at1 favors spin ug+), while the surface
(see Fig. 1 In addition one allows for a different interaction at n=D favors spin down(—). Parallel to theL X L surfaces, peri-
Js>0 between nearest neighbors located in the surfacesdic boundary conditions are imposéb) Delocalized interface(c)
while nearest neighbors in the bulk interact with a couplinginterface located at either of the two surfaces.
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Of particular interest is the case where the two walls of Hi| & Ho
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other directions. Instead, one observes a transition at a lower 20
temperatur@ (D) < T, at which the system changes from a
state with a delocalized interface running parallel to the walls

in the center of the filnf Ty(D) <T<T,l, to a twofold de- 15
generate statgT <Ty(D)], where the interface is now local-

ized near one of the two wallsee Fig. 1 Most interest- my
ingly, for D—<, the transition temperaturgyD) of the D_E 10

interface localization-delocalization does not converge to-

ward the bulk critical temperatuig,, but toward the wetting
temperatureT,,(H;) at which a macroscopically thick liquid 5
layer (spins pointing upwandwets the surface in the corre-
sponding semi-infinite system. Thus, the nature of the tran-
sition at finite D is seen to depend on the nature of the
wetting transition in the underlying semi-infinite system.
Upon enhancing the interactioly of spins in the surfaces
with respect to the bulk interactiahone can tune the wet- FIG. 2. Energy probability distribution®_p at equal weight.
ting transition and thus the interface transition for finite film The peak positiong™(L,D) ande*(L,D) (indicated forD=6 and
thicknesseD to be of first ordef8], i.e., To(D)=T,(D) is  L=128 define the finite volume latent heatse(L,D)=¢"(L,D)
now a triple point where the three phases shown in Fi. 1 -e(L,D). Arrov_vs pointing on the energy axis indicate the interval
and 1c) coexist. By reducing the film thickness one may 'cener E0-(10), in case ofL. =128 andD=6.

then pass through a tricritical point where the order of the . - L
transition changes from first to second or{2/8,d. the two largest choices @ the minimalL is L=32 and 48,

Our paper is arranged as follows. First, we briefly intro- respectively. We restrict ourselves here to antisymmetric

duce the thin film Hamiltonian and give a description of thesurface f'EIdSHF._HD and bulk fieldH =0. By virtue of the
employed Wang-Landau samplingVLS) which aims at symmetry there is an exact degeneracy of the phases where

; . : . the interface is bound to either of the surfaces, and the triple
sampling the density of statd®OS) directly. The slowing . . ’ ~
down of WLS for our model, encountered especially forpOInt and the phase coexistence bef@D) occur atH=0.

large system sizes is discussed. With regard to these di1°ficuwe do not study prewgt_tlnghke phase coexistence Tor
ties we then propose to split the DOS into a branch contrib->T0(D) andH 0. Specifically we Cho_OSbill‘]:O‘% gnd_
uting to the ordered phase and one contributing to the disors/J=1.5. For these parameters the interface localization-
dered phase, which we normalize separately. We then preseg]@locallzatmn transition is clearly first order for aII.thlck—
the thermodynamic quantities calculated from the DOS andl€SSe®P. Already for a smaller surface-to-bulk coupling ra-
compute the infinite lattice triple temperatures from the vari-l0 Js/J=1.45, the transition turned out to be so strongly first
ous finite size data. Finally, the wetting temperature of thePrder according to the study of Ferrenbergal. [8] that
semi-infinite system is determined via the Young equatiorlattices withD=8 andL > 32 could not be equilibrated using
and the convergence of the triple temperatures towards tHe Standard canonical heat-bath algorithm. The reason for
wetting temperature for increasing film thickness is exam-Such difficulties can be seen directly from the canonical
ined. We close with a brief discussion of our results. probability distributionP, p(E) of the energy which devel-
ops two pronounced peaks at the transition point, corre-
sponding to coexisting ordered-) and disordered phases
Il. MODEL AND SIMULATION METHOD (+) which are separated by a deep minimefi)(E) corre-
We consider the Ising Hamiltonian on a cubic lattice in asSPonding to the mixed phase configuratioisee Fig. 2
L XL XD geometrysee Fig. 1a)], whereN=L2D is the to- Here, one has additional interfaces in th_e system which cost
tal number of spin§ (we measure all lengths in units of the @n extra free energyF, p=7yDL, wherey is of the order of
lattice spacing and energy is measured in the same units 43¢ interface tension between the two oppositely oriented
the normalized temperatukgT and, hence, the ratigikgT, ~ domains of spins. This yieldsP(E)«exp(-BAF, p),

2.2

etc., are all dimensionless where B=1/kgT denotes the inverse temperature. Hence,
any simulation technique which aims at sampling a
H=-J> SS - > SS - H>S-H, > S canonical energy probability distribution proportional to
(i ip (i.i)s [ i€surface 1 g(E)exp(—E/kgT) directly will become trapped in the phase
in which the system was initially prepared and may practi-
-Ho X S (1)

cally never escape from there, even in the case of relatively
small systems.

Here, the sundi, j), runs over all pairs of nearest neighbors  In order to give an example for the strong metastability,
where at least one spin is not located in one of the surfaceig. 3 shows hysteresis loops of the internal energy per spin
and the sum(i,j)s runs over all pairs of nearest neighbors (e)=(E)/N which were recorded using a conventional Me-
with both spins located in one of the two surfaces. In thistropolis Monte Carlo algorithm for a system of sipe=12
paper we study three different film thicknesdes6, 8, 12, and L=48. The simulations were started in the disordered
and linear lateral dimensions ranging franx 16 to 128(for  phase. In case cooling is performed too fagien circles in

iesurfaceD
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FIG. 3. (a) Energy hysteresis curves. Cooliffgeating was performed at a rate i\ 8/perMCS=4.340% 10°® (open circles, note that
not all data points are plott¢@nd in steps oA 8=0.0005, using 100 MCS for equilibration at egéland another TOMCS for measuring
the energy(solid line). The equilibrium curve obtained from WLS in the space of energy is also shown. The roughening temperature
J/kgTg=0.407 581) [10] is indicated by an arrowb) Low- and high-temperature branches of the free energy pefsés obtained from
thermodynamic integration, which yieldg¢ksT,(D=12)=0.251110). The relative deviationfyy, s—f*|/fy, s between the thermodynamic
integration and the WLS result is plotted in the inset.

Fig. 3 one reaches the roughening temperaftyevhile still A. Wang-Landau sampling

being in the disordered soft-mode phase, i.e., the interface ) . .
becomes flat in the center of the film and it becomes impos- 10 @void problems due to metastability and to further in-
sible to reach the ordered phase upon further cooling. Usin§r€ase accuracy, we have decided to use Wang-Landau sam-
a much larger simulational effoft~107 Monte Carlo steps ling [13-1§ in order to compute thermodynamic quantities

(MCS)] one obtains a closed loop—although the observedf the systems via estimating the density of states of Hamil-
tonian (1). Instead of using the canonical ensemble the

hysteresis is still huge—which clearly indicates a phase tran X X . o
sition in the range 0.244 JB,<0.341. Locating the exact Monte Carlo chain generates states with a unlform d!StI’IbU-
transition point in this way would however require an enor-tion over a predetermined energy interval. Using reweighting

mous simulational effort even for the moderate system siz&Chniques one can subsequently reconstruct canonical aver-

at hand. An improvement results from thermodynamic inte-29€S OVer & wide range of temperatures. To uniformly sample

gration of the low- and high-temperature branches of th hg energy, one, accepts trial _configurations with prlobability
internal energy, which yields the free energy per site Min(1.0(E)/g(E")], whereg(E) is the DOS and andE’ are
[11,12: the energies o_f the current famd the proppsed conﬂgu_rauon,
respectively. Since the DOS is not known in the beginning of
the simulation, it is set equal to 1 for all energiesAfter
B each spin-flip trial the DOS is modified(E) — g(E)f; by
BH(B) = Brert (Bred) + f (€)pdB’. 2 means of a modification factdr which is the same for all
Pret energiesk. For the first stage of the simulation we have
chosen the initial valué,=e in accord with previous studies

For the reference values we have regarded the spins as ndd-3:14 wheree is Euler’s constant. Periodically one checks
interacting atJB,e=0.000 05, i.e.f(Be)=—B&In 2, while if the accumulated energy histograrhl(E), is flat, i.e.,
on the low-temperature side the free energy was matcheld(E)=€&H(E"))e: for all E. These checks were performed
with a series expansion based on the first two excited statedfter 16—10° Monte Carlo sweeps. If the histogram is flat,
atJB.=1.100 05. The crossing point of both branches of thethe modification factor is reduced accordingftp = \f; and
free energy then yields the transition point, which can bethe histogram of visited stateld(E), is then reset to zero and
determined with an accuracy of 0.4%. the procedure is repeated until a fi&¢E) is achieved using
The result that the correct location of the first-order tran-a final modification factoff;,,. The latter value is typically
sition is not in the middle of the hysteresis loop but veryon the order between 1.0+T0and 1.0+ 10°. Thus, starting
close to its end at the high-temperature Sidashed curve in  with the above choice foffy,, the WLS passes through a
Fig. 3 is very surprising at first sight. It should be noted, sequence of at least 20 iterations before the final stage using
however, that the hysteresis observed in Monte Carlo simuks,, iS performed. In practice one samples a logarithm of the
lations has nothing to do with the “Maxwell equal area rule” DOS, i.e., logyg(E), sinceg(E) may become very large and
of mean field theories, but is of kinetic origin. The almost modifying the DOS then corresponds to adding a small
free interface in the center of the film is very slowly relaxing modification incremenfAs;=log;, f;. The implementation of
and feels only a very weak potential from the walls, and thughe single-spin-flip WLS is straightforward and we refer the
is much more metastable than the state where the interfacelisader to Refs[13-15 for details. When considering sys-
tightly bound to one of the walls. tems with a large number of distinct energy levels it is useful
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to partition the entire energy range into adjacent subintervals E/JNE | = [EgrounJJ N,0.2], (9)

in order to sample the DOS in a parallel fashion. For energy )

intervals that contain states with low degeneracy, e.g., th&hereEgound™—{(3D-5)J+4JIN/D, is the twofold degen-
ground state, one can further accelerate WLS by combinin&rate ground state energy, was partitioned into several adja-

it with the rejection-freeN-fold way of Bortzet al. [16,17].

Here, the underlying idea is to partition all spirs,

ve{l,...,N}, into M classex,€{0,...,M-1} according to
the change in energ&ECV caused by flipping a spi§, at site
v. Making explicit use ofH;=—Hp and H=0 in the Ising
Hamiltonian(1), we can evaluatAECV as follows:

2(Ju,+Jw,+H,)S, if v& surface 1,
2(Ju,+Jw,—H,y)S, if v& surfaceD,
2Ju,S, else,

whereS, is the spin value before it is overturned amdand
v, denote sums over the nearest neighbor gifes of site v:

> Su
w(v)

AE, = )

if v ¢ surface,
u,= (4)

E Suw if ve surface,
w(v) ¢surface
and
0 if v & surface,
= 5
Uv E S. if v € surface. ®

m(v)Esurface

This results in a number d¥1=27 different classes. Within
the context of theN-fold way WLS the probability of any
spin of a class being overturned is then given by

n(C,AE;)

P(AE) = i=1,...,M, (6)

Pc—cr

cent subintervals each containing an order of tt010® dis-

tinct energy levels, which were sampled on a Cray T3E in a

parallel fashion using mostly 64 processors at a time. The
DOS obtained from these simulations was then matched at
the edges and suitably normalized, which we will describe in

detail below. For the system thicknes§®s8 and 12, as well

as for the largest choices &f in the case oD=6 (L=96,

128 only one run was performed over the entire energy

range(9) denoted as the basis run, whereas all further runs
have been restricted to a smaller energy range

E/IN € | enter= [E1/IN,Ex/IN], (10

covering the mixed phase region in between the peaks of the
doubly peaked energy distribution. As an illustratiQyeriS
marked in Fig. 2 by small arrows on the energy axis. Thus,
the entire energy range(9) is decomposed asl
=liert Ul centel Irighty where we have et
=[Eground IN,E1/IN] and I,ign=[E,/JIN,0.2]. Correspond-
ingly, one obtains the density of statgE) by joining g(E)
estimated for the intervalke (taken from the basis rgn
lcenter @Nd g (@gain taken from basis riin

The single-spin-flip algorithm is more efficient in the re-
gions covered by enerWhich is due to the added expense of
the N-fold way algorithm concerning the bookkeeping of
classes. This was affirmed by a rough comparison between
both implementations fot. =128 andD=12. The flatness
parametek varied between 0.8 and 0.95, and the final modi-
fication increment was usually of ordéis;,, ~ 107° which
yielded an overall simulational effort of order 1.0’ MCS
for estimating the DOS over the ran¢®. As is clear from

wheren(C,AE;) denotes the number of spins of configurationthe algorithm, WLS only yields a relative density of states;

C which belong to class andp._.c: is given by

. 9(Ec) ) .
min| 1,=——= | if Ex € lgyp
= ( 9(Ecr) ¢ sub

0 if Ecr & |Sub!

)

Pe—c

hence available reference values must be employed in order
to get the absolute DO§(E). Normalizing the simulational
outcome first with respect to the twofold degeneracy of the
ground state, i.e., the free enerfywill be exact forg— oo, it

is instructive to examine how this accuracy for low tempera-
tures carries over to infinite temperatu@— 0), where the

where |, denotes the considered energy subinterval ovepartition functionZ is dominated by the density of states

which the DOS is sampled anf, =E.+AE;. Classes are

aroundE=0, and one has lig1.o BF(8)/N=-(1/N)In Z(3

now chosen as follows. First, one computes the integrateg0)=—In 2. Table | shows the latter quantity for all consid-

probabilities for a spin flip within the firain classes:

Qn= 2> P(AE),

i=sm

m=1,...,M andQ,=0. (8)

By generating a random numberQ <Q,, one then finds
the classm from which to flip a spin via the condition

ered system sizes. As can be seen from the table there is an
increasing deviation from the exact value with increasing
width of the film D. While the results foD=6 and 8(the
latter for small sized.) agree with the expected value, a
deviation for the larger system sizes, especiallyl28 and
D=12, becomes apparent. This is related to a slowing down

Qn-1<r <Q,. The spin to be overturned is chosen from thisin the equilibration process in the multicanoniq&Vang-

class with equal probabilities, whereby lgg(E) and the

Landay ensemble for decreasing modification increment

energy histogram are now updated by means of the averags;, as illustrated in Fig. 4 fot =32 andD =8, which shows
lifetime 7=1/Q,,. A detailed description of the algorithm the visited state§E/JN,M/N) and the energy histogram

was given in Ref[16].

B. Normalization of the DOS

H(E) recorded during Wang-Landau sampling for different
staged of the simulation, where the modification increment
As is used to modify the density of states. In case one has a

In order to estimate the DOS using WLS, the consideredmall number of tunneling events during a certain simulation

energy range

stagei, H(E) exhibits a kink at the barrier, since the stage is
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TABLE I. Logarithm of the partition function (1/N)In Z,-, of
a thin Ising film for different linear dimensiorisandD, in case the

density of states is normalized with respect to the ground state. ThE 0

value in parentheses states the standard deviation. The exact val
and the deviations from the latter are listed in the last two columns
respectively. Fot. =32 andD =8 the run showing the largest devia-
tion from the exact valug—(1/N)In Z;-,=-0.692 624 was ex-
cluded from data analysis. Then one had1AN)InZgs,
=-0.693 079). Under “No. of runs” we have listed the number of

PHYSICAL REVIEW E 71, 046705(2009

9

0.5 B
1.5x10°MCS  As=0.434

e
-2 -1.5

-0.5
-1

710°'MCS  As,=5.425x10°

independent simulations. 1.5
6
D L No.of _INZgy — INZZE InZyo-In 2z e
runs exac
N N [In Zﬁ=0T 9x10°MCS
I I
6 16 6  —0.69375 —0.693147 0.0076% 2 18
6 24 3 —0.69314) —0.693147 0.0061% 6.3x10°MCS  As,=4.139x107
6 32 3 —0.69323) —0.693147 0.0082%
6 48 3 —0.693185) —0.693147 0.0048% . i | |
6 64 5 —0.693116) —0.693147 0.0049% ) -ZE/JN -1.5 10 _2E/JN -1.5
6 96 2  —0.6931122) -0.693147 0.0051%
6 128 6 —0.6931449) —0.693147 0.00042% FIG. 4. Visited state$E/IJN,M/N) (left hand sidg¢ and energy
8 132 4 —0.693@2) —0.693147 0.027% histogramH(E) (right hand sidg recorded during WLS in the
8 48 2 _06931Q4) _0693147 00075% Space Of enel’gy over the |nterVEV\]NE[_24414,_1220]7f0r
different stages of the simulation. The system size lis=32 and
_ — 0,
8 64 3 0.693126) 0.693147 0'0032/0 D=8. The simulation used 3.84410" MCS in total, with a flatness
8 96 1 —0.69301  —0.693147 0.020% criterion for the energy histogram @£0.9 and a final modification
8 128 1 —0.69304 —0.693147 0.016% increment ofAsg,~4.139x 1077,
12 48 3 —0.6924@2) —0.693147 0.107%
12 64 1 —0.692544 —0.693147 0.087% simulational outcomey(E), takes its minimum in between
12 96 2  —0.6926863) —0.693147 0.067% the peaks at equal weight. Note that in the sigg(E)
12 128 10 —0.692814) —0.693147 0.048% :EESECmg—(E)+EE>Ecutg+(E) the termZEﬁEwtg_(E) is negli-

gible.
o o The additional error that is introduced by this normaliza-
completed once the flatness criterion is satisfied. Corretion procedure then depends on the contribution of the mixed
spondingly,g(E) will suffer from large errors in the ordered phase configurations to the energy distributiand the
phase, in case it is normalized using a reference in the dighoice ofE,,). However, since these mixed phase configu-
ordered phase, and vice versa, errors will be enhanced in thations are exponentially suppressed at the transition point,
disordered phase when using a reference in the ordered phagg error is expected to be also exponentially small, and con-
(ground statg comitant error due to the choice &, as well. Note that
For D=8 (excludingL=32) andD=12 we therefore em- gjready forL =32 andD=8 the double Gaussian approxima-
ployed the following approach. Utilizing the fact that one hastion to the energy probability distribution, which neglects
at least random walk behavior for small modification factorany mixed phase contribution, provides a reasonably good
in each of the phases alone, we normalize the branch of thgpproximation to the measured distribution, apart from small
density of stategy (E) contributing to the low-energy or- deviations in the tailésee Fig. 5.

dered phase and the brangh(E) contributing to the high-
energy disordered phase separately, i.e., one has

_]9(B) for E=Ey,
" | gu(E) for E> Eqy,

C. Shape transitions

g(E) (11)

In Ref. [18], Neuhaus and Hager addressed the severe
problem of slowing down in simulations of first-order tran-

where one obtaing_(E) by normalizing the simulational
outcomeg(E) with respect to the ground staggEyo,nd =2
andg,(E) obtained by normalizing(E) with respect to the
total number of states

> g(E)=2-"P. 12
E

In Eq. (11), E.; is taken to be the energy for which the
energy probability distribution, estimated directly from the

sitions in the multicanonical ensemil&9]. This was exem-
plified by studying the two-dimensional Ising model @n

X L square latticegperiodic boundary conditiondbelow the
critical bulk temperature on the whole magnetization interval
[-L?,L?%] whereby the sampling of configurations with mag-
netizationM=%,§ was biased with the inverse probability
distribution of the magnetizatiog '(M). Specifically, it was
found in Ref.[18] that these simulations suffered from a
slowing down due to a discontinuous droplet-to-strip transi-
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FIG. 5. (a) shows the double Gaussian approximati@8) to the energy probability distributioR|_ p(e) for the system of siz&=32 and
D=8 at the finite volume transition poifB,(L,D)=0.247 25510)] as obtained from WLS in the space of magnetizatigingle spin flip
by reweighting back to the canonical ensemlf®. shows the corresponding full joint energy—order parameter distribiRjgs(e, m).
Contour lines forP(e,m)=10 and 0.025 are drawn in tleem plane.(c) shows the projection onto the magnetization axis.

tion [20], i.e., r<exp2Rol), where 7 is the tunneling time For the first-order interface transitions in thin Ising films
between droplet and strip configuratiomsjs the interfacial as studied here, we have found evidence that geometrical
tension, andR was measured to b@=0.12114). Note that transitions in the ensemble realized by Wang-Landau sam-
one hasR= 1 for nonmulticanonical simulations. pling in the space of magnetization indeed hamper the simu-
Of course, one needs a fairly good approximation tolgtions. While this poses no problem'for the smaller systems
g(M), in order to sample the considered Hamiltonian in thellké D=8 andL=32 where WLS usingy(M) yields very
multicanonical ensemble. Within the framework of WLS oneg00d resultdsee Fig. 3 we observe pronounced effects for
may therefore simulate the system at a certain inverse tenibe largest considered system size. This is shown in Kig. 6

peratureﬂ of interest by emp|0ying the f||pp|ng probab”'ty where pal’t of a time Series is de_piCted which was recorded
(single-spin-flip Metropolis for D=12 andL=128 during WLS in the space of total mag-

netization. The simulation was restricted to the interval
g(Mo) m=M/N€&[-0.55949,-0.457 76  after monitoring
Pe—c =min| 1,=———exp(—- B[Ex» —E;]) |, (13 the time series ofm for a much larger interval
9(M¢1) m&[-0.91553,0.101 7B where As; decreased from 5.0
X102 to 7.629x10°8 over a simulation time of 1.632
for the transition from the stateto the state’. Each time a  x 10’ MCS atJ/kgT=0.2497 19. The distributiog(M) was
state with magnetizatioM is visited, one updateg(M) ac-  then further iterated on the intervain€[-0.559 49,
cording tog(M)—g(M)f; in complete analogy to the case -0.457 7§ where As was refined from 1.8 107 to 1.953
whereg(E) is used. Once this procedure has rendg@d)  x 1078 within 7.27x 10° MCS and finally held fixed such
accurate enough, one makes a production run, whidve is  that the depicted time series could be recorded. Configura-
not altered anymore. Thermodynamic quantities can then bgons were thereby monitored along the estimated position of
obtained by reweighting to the canonical ensemble. the barrierm=-103 000N=-0.523 885. Figures(6) and

b
® FIG. 6. (a) Droplet at surface
n=D where the positive field
Hp/J=0.25 acts(b) Selected part
of a time series of the total mag-
netization per spinm=M/N as
produced by WLS(single-spin-
flip) in the space of magnetization.
(c) Percolated striplike droplet.
Note that in(a) and (c) only the
positive spins are displayed as
small spheres. Those spins closest
to the showrL X L surface are the
lightest.

-0.45

\u IH \ M “ H‘

TimrimwL P

0 200000 400000
MCS
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OC=MNWhOo N

FIG. 7. Joint energy—order parameter distributiR{e, m) as ob- FIG. 8. Logarithm of the energy density of statesipg(E)] for
tained from WLS in the space of energy for a system sizéof thicknesse®=6,8,12 and linear dimensiohs=64,96,128. Smaller
=6 andL=16. Contour lines folP(e,m)=1 and 0.12 are drawn in choices forL (in case ofD=6 and 8 are omitted in order to pre-
the e-m plane. The distribution was recorded using a fixed DOSserve clarity. Also indicated by an arrow is the region whegg,
g(E), which was taken from the usual adaptive WLS. appearing in Eq(11), is typically located. Here, both branches of
the density of stateg- andg,, are joined(D=8,12. In the case of

=6, g(E) was normalized solely with respect to the ground state

6(c) show snapshots of the two possible coexisting structure
egeneracy.

which are the three-dimensional analdgsthe presence of a
surface to the droplet and strip shapes as studied in Ref.
[18]. In case Wang-Landau sampling is performed in the en- 1 1 e

ergy space, the governing mechanism of the slowing down is f=- ngn 2(p) =~ ngn[% g(Ee” ] ’ (16)

not determined up to now. From the joint energy—order pa-

rameter distribution(Fig. 7), however, recorded for Wang- and the entropy per spin can be obtained from the internal
Landau sampling in the space of energy, one can at leasnergy(14) and the free energ§l6),

conclude that one suffers from the fact that the ordered and

the disordered phases are not distinctly separated in energy, s= (e}_—f. (17)

as can be seen by inspecting the distribution of magnetiza- T

tion (along lines of constant energwhich shows a notice- B . : ical during the last
able three-peak structure around energik$~-1.7. Thus, y measuring m|f:rocar.10n|ca averageg: grmg € 1as

the WLS usingg(E) does not remove the barriers betweenStage of a one-dimensional random walk in energy space,

the ordered and disordered states. These barriers are muWIli]ereg(E) Is updated W't.h the smallest incremeXgn, we
larger than the barrier encounter during the WLS usjtig) can also compute canonical averages of the order parameter

(due to shape transitionsand result in a severe slowing (and higher moments

down of the WLS usingy(E) compared to WLS using(M). 1 1|
Further studies are clearly necessary in order to clarify Im ==|M|== >s, (18)
whether there are connections to droplet related phenomena. N N1iz
ie.,
ll. SIMULATION RESULTS
_BE
A. Thermodynamic quantities % <|m|“>Eg(E)e
From the simulated DOS, as depicted in Fig. 8, we have (mi") = > g(E)e #E ' (19
calculated the first and second moments of the energy per E
spin
Thus quantities like the finite lattice susceptibiljgy
1
(€)= > E"g(E)exp(- BE), (14) N
N"Z(B) ‘e X= k—(<m2> =(Im)?), (20
sl
and the specific heat as well as the fourth-order cumulabl, on which we con-
N centrate in the following and which is defined as
c=—= (%) - (e)?). 15
I(BT2(< )= (e)) (15 1 (f o

Furthermore, important quantities like the free energy per
spin can be directly computed, become accessible.
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FIG. 9. Internal energye) for different linear dimensionk and film thicknesseB. Lines are obtained from reweighting the results of
the WLS. Estimates for the inverse temperatigg(D)=J/kgT(D) of the triple point are indicated by arrows. The horizontal solid lines
mark the valuge*+2e7)/3 where the curves are expected to crosgb)nthe data obtained from WLS usirgfiM) (D=8 andL=32) are
plotted for comparison. HergyE) for D=8 andL=32 was normalized solely with respect to the ground state. Within the inverse tempera-
ture range displayed in the inset @, the average relative errors {B) for D=6 amount to 0.17%, 0.54%, 0.55%, 0.42%, and 0.45% for
L=16,..., 128, respectively. Fob=8 andL=32 the average error amounts to 0.18% in the range 0243k T<0.2485, when using
g(M) while it is 1.0% within the same range when usigi@). Note that forD=8 andL=96,128, as well as fdb=12 andL=64 the DOS
was determined only once; hence no error bars are displayed.

The distinctive feature of first-order phase transitions ardéng linear system sizé. This rounding is related to the fact
phase coexistence and metastability. For the interfacéhat a true phase transition can only occur in the thermody-
localization-delocalization transition considered here, this isiamic limit, where in equilibrium, approaching the transition
reflected by jump discontinuities in the internal enetgyas  temperature from above, the energy of the system discon-
well as the(absolut¢ magnetizatior{|m|) per site, which are tinuously jumps frome* (interface in the center of the film
depicted in Figs. 9 and 10, respectively, and also by hystefto € (interface tightly bound to the wajlwhile for a finite
esis effects encountered when heating and cooling the systey@lume the system may jump back and forth between the
as exemp”ﬁed in F|g 3. Considering the internal energy'&tter states and the observed equilibrium behavior is thus
(Fig. 9) for fixed D and varying linear dimensioh, one can ~ continuous in temperature. The rounding of the transition in
clearly see that one actually does not observe discontinuolf#lite systems can also be observed for the specific beat
jumps of the quantities in question but a continuous behavioflepicted in Fig. 11 which exhibits narrow peaks that are

that sharpens to the asserted steplike behavior with increagémnants of thes-function singularities one would get when
differentiating the discontinuous energy in the infinite vol-

ume limit. Apart from the finite size rounding, one can see
that the positions of the maxima ofand the minimum of the
fourth-order cumulant, (Fig. 12 are systematically shifted
towards highers values for increasing linear dimensian
From the crossings of the energy curves for different lin-
ear dimensiong&, one can get a first idea about the achieved
accuracy for the different film thickness&s because they
should cross to a very good approximation in the po&i]

(Bu(D),(e" +2€7)/3), (22)

where B,(D) is the infinite system transition point. Hence,
the crossing points for differerit,

{ \ . ) (&(BerossL, D)) = (&(BerossL ", D)), (23
0.23 0.24 0.25 0.26 0.27

Jik, T actually provide an estimator for the infinite system transi-
B tion temperature, which is expected to deviate frepiD)

FIG. 10. Average absolute magnetization per ¢pim) of athin ~ Only by an amount exponentially small in system gi2].
Ising film for different linear dimensionk and film thicknesse®. ~ As can be seen from the inset of Figapin the case oD
Within the inverse temperature range displayed in the ins¢a)pf =6, the various crossings are indeed scattered in a narrow
the average relative errors {fm|) for D=6 amount to 1.0%, 5.2%, region around the extrapolated infinite volume transition
6.3%, 6.1%, and 9.3% fdr=16,...,128, respectively. point for L=32. For smaller values df exponential correc-

02F

resmrnran N
8.24 0.2405 0.241
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FIG. 11. Specific heat of a thin Ising film for different linear dimensioris and film thicknesse®. In the interval 0.2408:J/kgT
=<0.2415 the average relative error 9=6 amounts to 3.9%, 9.6%, 12.0%, 5.4%, and 15.9% foB2,...,128, respectively. FdD=8 and
L=32, Wang-Landau sampling (M) yields an average error of 2.6% within the range 0.249%kzT<0.2480. Note that we have no
statistics forD=8 andL=96,128(b), as well as folD=12 in case ol.=64 (c).

tions still make a noticeable contribution. For the largerthat is flat in energy? Hence, forD=8 [excluding the simu-
thicknesse® = 8 the region where the energy curves cross idation usingg(M)] andD=12, we believe the true errors to
noticeably larger. Particularly, one obtains that the errors rebe larger than the error bars displayed in Fig&).99(c),
sulting from averaging over different runs are too small to12(b), 11(b), and 11c) and when quantitatively referring to
fully account for the deviationgexcludingL=32 for which  errors of the thermodynamic quantities, we thus restrict our-
g(M) was employedl This is related to the fact that for the selves here t® =6, where we have reliable error estimates
thicknessedD=8 and 12 only a single run was performed for L=16, 24, 32, 48, and 64.

over the entire energy rang@) while further runs were re- Exponential corrections to the crossing points are presum-
stricted to the mixed phase region in between the peakgbly much smaller than the scatter in the energy crossings for
because the slowing down, as described in the precedind=8 and one may therefore conclude that the deviations in
subsection, was not foreseen. When one uses the normalizéhe crossings foD =8 are not due to corrections to scaling,
tion condition(11), the proper strategy would certainly be to but reveal the actual error in the density of states for this
enhance the simulational effort in the pure phases, down teegion. This is also the case for the other quantities like the
the ground state and up ®=0, since the reference density

of states IS I_<n(_)wn for=0 and,B?O. This is necessary, in lRecentIy, an adaptive algorithm was propoE&s| which aims at
order to minimize the accumulation of errors in the densityy,ayimizing the number of round trips between both edges of an
of states, since the Wang-Landau method and similar adagnergy interval which has the additional benefit of exhibiting a flat
tive algorithms, do not in general exhibit an error distributiongrror distribution.

0 =

- _50__ |: -

> | -100f .

1 150 -

10 - (la) | 0.24:08 1 0.24019 1 JllkBTtr $ - : (bu) 1 L 1 " | Ju/kBT‘rI l:

] 0.234 0.236 0.238 0.24 0.243 0244 0.245 0246 0.247
kT kT

FIG. 12. Reduced fourth-order cumulant of a thin Ising film for different linear dimendiossd film thicknesse®. The inset of(a)
shows the region where the cumulants for the various linear kizesss(D=6). In the vicinity of the minima positions, the relative errors
in U, in the case oD =6 amount to 11%, 30%, 17%, 11%, and 7%lfer24,...,128, respectively. WLS in the space of total magnetization
M with fixed g(M) yields an error of 4%D=8,L=12). Note that for the data correspondingD&8, as plotted ir(b), we have no statistics
for L=96 andL=128, i.e., for the latter sizes the DOS was estimated only once.
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FIG. 13. (a) Free energy per spihof a thin Ising film for different linear dimensiorisand film thicknesseB. Note that in(a) only the
data forL=128 are plotted, whiléb) showsf on a finer scale. In the range 023/ksT<0.27, the average relative error in the free energy
(D=6) is 0.0143%, 0.011%, and 0.000 26% for 16, 32, and 128, respectivelg) Entropy per spirs for D=6. The error ins amounts to
0.64%, 0.64%, 0.47%, and 0.47%, within the range depicted in the ingef. of

specific heat for examplgFigs. 11b) and 11c)]. Thus, the ity distribution of the energy will be double peaked at the
analysis of the systems with larger thicknesBes8 and 12  transition point3,(D)=1/kgT,(D), where(e) jumps frome™
is certainly more difficult and less accurate. _ (low-energy phases, interface at one of the two vyabise®

One can however roughly estimate the order of magnitudesingle high-energy phase, interface centered in the middle of
of the latter uncontrolled error, which also serves to supporfne film), i.e., the free energy branché&sintersect at a finite
the above picture. For example, from the density of states Oéngle in the infinite system, as can be seen from Figa)13
the largest systerfD=12 andL. =128, one can estimate that \yen inspecting the curves around the transition pffit
a relzitlve error in the density of statgtE) of the order 5154 Fig. 3h)] It is essentially this nonanalyticity in the free
~10" [referring to the results for the 5050 two-  gnergy, which gives rise to the discontinuous behavior of the

dimensional2D) Ising model in Ref[16] this seems to be @ jytemal energy. In a finite system however, the free energy
reasonable assumptiprin the narrow region corresponding remains differentiable and the intersection is rounded.

to the peak of the ordered phase of the energy probability pence, at the transition poirf, () is a superposition of
distribution, can result in a displacemea of the peak 4, Gaussian$24) centered a(e>¥e1, while slightly away
position B.max of the specific heat and also of the step Ioca'from the transition al'=T,+AT they are centered at ener-
tion of the internal energy, which is approximately of the gies et+CAT, wherect a;re the specific heats in the disor-

104 — _
or;j(i.r A'%/Bc.mf:. 1(Tf fh'ln th; caselgiDl—li aEdL—48,dab dered(+) and ordered phasés-), which are assumed to be
relative deviation of this order could already be caused by @qngtant in the vicinity of the transition, i.e., for sufficiently

. - S 1072 i . - :

relative error ing(E) which is of the order~10%in the g\ AT Each of the Gaussians is then weighted by Boltz-
above region. These considerations comply well with the Obfnann factors of the corresponding free enerdiesand one
served scatter. thus arrives at

B. Finite size scaling a [e-(e"+Cc*AT)]? 5
When one deals with second-order phase transitions, the PLo(e) =A \Eex - 2ksT2C LD
characteristic feature is a divergent spatial correlation length B o )
¢ at the transition poinf, (where one observes fluctuations + & o - [e— (e +CcAT)] LZDH (25)
on all length scalgsimplying power-law singularities in \F 2kg T?C™ ’

thermodynamic functions such as the correlation length, ) )
magnetization, specific heat and susceptibility. This is inwhere the weights®* are given by
sharp contrast to a first-order transition where the correlation *_f-
length in the coexisting pure phases remains finite and con- a'=q* exp{i T
cerning finite size scaling the volume of the system turns out B
to be the relevant quantity. For a thin film geometry whereand A reads
one has fixedD and varying linear dimensioh, finite size

pos]

LZD] , (26)

scaling will thus involve the quantity?. This can be shown
by approximating the energy distributiéh (e) of the pure
phases by a Gaussigd1-23 centered around the infinite-
lattice energy per spike)

+y e 2
() 2} L2D 27

2kg T 2mkg T2

Since we have a single high-energy phase and two low-
energy ordered phases we sgt=1 andq =q=2 in the
L2D (e-(e))? 5 following. At the transition all phases have equal weight
PLo(e) = T2 & kT2 NP |- (24)  [21,24 such that the area under the pealkals q times the
B B area under the peak & which is satisfied by Eq(25).

where c denotes the infinite-lattice specific heat. Since onéWithin the framework of the ansai25) one then proceeds
has phase coexistence at a first-order transition, the probablby calculating the energy moments as usual[2i2)
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FIG. 14. (a) Extrapolation of peak position8max mi{D, L) of the specific heat™® and the fourth-order cumulamﬂ‘fi” for the different
film thicknesseD. (b) Maxima of specific heat™ and susceptibilityy™® as well as minimum of the fourth-order cumuldnf" as
functions ofL2.

n21
f de'e’"P p(e') Bemax(D,L) = By(D) — EP (33
=" (28)
f de'P, o(€) Thus, the inverse temperatuBama{D) at which the specific
LP heat peaks provides a definition for a finite-lattipseudo

transition temperature from which the infinite-lattice transi-
Computing then(e) at the transition point by means of Eq. tion temperature can be estimated via finite size scaling, i.e.,
(28) we obtain by extrapolating. — .
A similar argumentation applies to the distribution of the
e'+qe order parameteP_p(m) [25] yielding the same scaling be-
1+q (29) havior for the susceptibility, i.e.,

BXmax(DrL) - Btr(D) o (LZD)_ll (34)

(&)=

(horizontal lines in Fig. 8 which is exact, apart from expo-
nential corrections due to mixed phase contributions which max 1 2
are neglected in the double Gaussian approximation. Upon X" LD, (35
using the fluctuation relatio(iL5) or c=d(e)/dT in conjunc-  5nd one can show that the fourth order cumulagtFig. 12
tion with Eq(28) one can calculate the SpeCifiC heat to |ead-takes a minimum value at an inverse temperaﬁu’@n(D,L)
ing order, which is again shifted )

_a'c+ac . [ —e +(c'—c)AT]Pa'a %D Bumin(D,L) — By(D) = (L?D)7Y, (36)
- +t 4o + 1 97)2 2 ’ )
ara @ +a) ke T while the minimumUj" obeys
(30) min 2
UM o - L2D. (37)

which is seen to take its maximum fai*=a" in Eq. (25).
The position of the latter is thereby shifted away from the
infinite-lattice transition temperature by an amount of

Furthermore it was showi25] that the shift in the crossing
points of the cumulants for different system sizes is propor-
tional to N™2, which is negligibly small on the scale &
=L2D. Figure 14b) now shows the maximum values of the

AT =TanadD,L) = T,(D) = kBTﬁln—q%, (31)  response functions™ ™ and the minimumJ;" of the
AeDL cumulant as function of 17 for the three different thick-
) ) nessed =6,8,12. As can be seen from the plots, the data
and the height of the peak is found to be comply well with the behavior predicted by expressi(d®),
L (35), and(37). Considering the fourth-order cumulady, in
cmax— RN Ae’D L2 (32) the case 0D =6, one observes that subleading corrections to
2 akgTe scaling are still present for the smaller linear dimensibns

but the expected linear behaviorlif is created for the three
where Ae=e"—¢ is the latent heat. For convenience we largest choices of.
may reexpress Ed31) in terms of the inverse temperature  The definition for the finite-lattice transition temperature
B=1/kgT which yields considered so far, e.g., E(B3J), involves leading order cor-

046705-11



SCHULZ, BINDER, AND MULLER PHYSICAL REVIEW E71, 046705(2009

TABLE Il. Estimates for the latent heatse(D) and the inverse and the crossings in the fourth-order cumulaht(see Fig.
transition temperatures of the first-order interface localization-12). While we find that the order of magnitude of the error as
delocalization transition for different film thicknesse®.  determined from the various finite-lattice estimators consid-
Bemax(D , ) and,BUTin(D,oo) are the estimates of the transition point ered above complies well with all the data o=6, espe-
By(D) originating from an extrapolation of peak positions as de-cially the latter crossing points, we may have uncontrolled
scribed in the text, whilg8e,(D,>) denotes the estimate from the grrors in case of the larger thickness2s 8 and 12, due to
equal weight rulé38). The final estimate of the inverse temperature the aforementioned lack of statistics deep in the pure phases.

Bu(D) of the triple point is stated in the last column. In these cases we consider here as a conservative error esti-
_ mate the extremal crossing points as an upper bound to the
D AeD)/J JpmadD)  Iypn(D)  JfenD) JBx(D) transition point, which results in the error @,(D=8) as

6 0.2616) 0.240872) 0.240794) 0.240821) 0.240824) given in the last column of Table Il. Fitting the locations of
8 03002 0.247263) 0.247167) 0.2472%2) 0.2472%10) the maxima of the specific heat to E@9), as depicted in

Fig. 14@), one can also determine the latent h&atwhich
12 0.23g3) 0.2511%4) 0.251094) 0.251172) 0.2511%10) isghoj\fezler less accurate than computixe from the dis-

tribution P_p(E) via [27]

rections of 1L2. An alternative definition of the transition
temperature which has the additional benefit that the latter

C?Ir.rec(;u:rr]\st arteﬂ?bs_efr)t.tvva}sttgvetn In .?BG]' Here[,) It :Is which yields the values stated in column 2 of Table Il. Con-
utiized that at the Infinite-lattice transition poipk(D) a erning the extrapolatio(89) of the positions of the minima
phases coexist, which implies that the sum of the weights of jmin

; . , 4" and the maximac™ we have used only data fdr
the g ordered phases equajgimes the weight of the disor- >32 in the case oD=6. For these lattices, exponential cor-

Ae(L,D) = Ae(D) + constx L2, (40)

dered phase, i.e., rections tog,(D,L) cannot be resolved within the achieved
> PL o Ben) accuracy. This_ is also the case for the Iarg_er ﬁlm thicknesses
iy T D and all choices ot.. Hence, the values listed in Table I
R(BewL,D) = =q, (38)  for B.,(D) are simply averages over the various lateral sys-
2 Pio@Bew tem sizes (L>32 in the case oD=6).
€>€cut
whereP_ p(e) is the (finite-sizg energy probability distribu- D. Wetting temperature of the semi-infinite system

tion, and B.(D,L) differs from B,(D) only by corrections ) )
exponentially small in system size. The eneegy appearing In order to determine the wetting temperatufgy

in Eq. (38) is taken to be the internal energy at the tempera=IMp— B(D) of the semi-infinite system, we have studied

positive bulk magnetization at the inverse temperatg@re
- =0.251 near the expected location of the wetting temperature
C. Transition temperatures Bw(H1). We have performed simulations for five different

Now, we can extract the infinite-volume transition point Sets of surface field¢symmetric, i.e.,H,;=Hp), namely,
By(D) from the finite-size data, i.e., as E483) and(36) and  H1/J=-0.25,-0.125, 0, 0.125, and 0.25, utilizing a conven-

suggests by fitting the peak positions for fixBdo tional Metropolis algorithm in order to measure the surface
magnetization’m,)=(Z;cqurtace S)/N using up to 10 MCS
- a for averaging. This selection of surface fields allows one to
i{D,L) = ifD,) + =, 39 ; 4 ;
Bmaxmid D:L) = Brmasmir D) L2 (39 reweight all fields in the range-0.25),0.25]] for a range of

inverse temperaturei3&[0.249,0.253 Note that the meta-

WNETEBmaxmid D, L) stands for the location of the maximum stability is strong enougfcf. Fig. 3 that the system remains

of the specific heaBma{D,L) and the location of the mini- in the ordered phasénitially all spins up even forH,/J=

mum Sypn(D,L) of the fourth-order cumulant at finite, — _q 55 According to the Young equatid@9] the walls are
while Braymid D) denotes the infinite-volume limifL  \yetted by spin down, if the differencko,, between the sur-

— ) of the corresponding inverse temperatures, which is aface free energy of the wall with respect to a positively mag-
estimate of the infinite-system transition pofit(D). Alter-  netized bulks,,, and the surface free energy against a nega-
natively, we have also employed the finite-volume estimatotively magnetized bulls,,- exceeds the interfacial tensien
Bew(D, L) of the transition point, as defined by the condition of the 3D Ising mode[28] at an infinite distance from the

(39). wall,
The individual results for the infinite-system transition
points are summarized in Table II. In the last column of AOy = Oys = Oy > 0. (41

Table Il we state our final estimate of the infinite-system

transition pointB,(D), based on weighted averages over theBy symmetryo,,_(-H,;) equalss,.(H,), i.e., the free energy
estimates listed in columns 2—4. Concerning the error in outost of a wall favoring spin up with respect to a positively
final estimate of3,(D) we have also accounted for the scat- magnetized bulk. Thus we can perform a thermodynamic
ter in the crossings of the energy curves as depicted in Fig. Britegration[30]
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FIG. 15. (a) Shown are the interfacial tensienof the 3D Ising
model[Hasenbusch-PinfHP)| taken from Ref[28], fitted by an

eight-degree polynomial in order to smoothly interpolate between

the data points as well as the the quantlty,, appearing in the

Young equation(41). The position of the crossing point yields the

wetting temperaturdg,,(H,)=J/kgT,,(H1)=0.252 125). (b) Tran-
sition temperaturedy,, as a function of film thicknes®), and fit to
the expected exponential dependence.

Hy
Aoy, = owi(—Hy) = oy (Hy) = f dHi<m1(Hi)>5,

H, = 0.25), (42)

and determine the wetting temperat#ig(H,) by the condi-
tion Ao, =0, which yieldsJg,,(H;)=0.252 125) as depicted
in Fig. 15a).

Describing the semi-infinite system by means of the wet- K 1
ting film thicknesd leads to the effective interface potential

(5]
Ver(l) =aexp(— «l) — b exp(— 2«l) + c exp(— 3«l),
(43)

PHYSICAL REVIEW E 71, 046705(2009

jumps discontinuously into the bul(l®,31]. Now, for a film
one has an additional contribution from the second wall and
the effective potential read82]

AV(-:'ff,film(l) = Veff(l) + Veff(D - I) - 2Veff(D/2)

= [ A(fP = r)? + ], (44)
with
(= b - 6¢ exp(— kD/2) (45
2c
and
(= a-a, —b exp-«D/2) . (46)

c
In Eqg. (44) we have utilized the auxiliary variable
m= 2 exg— «kD/2){cosh «(l — D/2)] - 1}
= (exp(— kD/4)«[| — D/2])? + [higher orders ofl — D/2)].
(47)

In the film, r>0 gives rise to first-order interface
localization-delocalization transitions and0 then denotes
the triple temperature. Hence, for larBewe have from Eqg.

(46)

Ay = ayer+ b exp(— kD/2), (48)

i.e., the triple temperature differs from the wetting tempera-
ture only by a term exponentially small kD/2 and is larger
than the wetting temperaturé>0). Within mean field
theory k would have to be identified with the inverse bulk
correlation lengthg, [5]. However, from the two-field Hamil-
tonian approach developed in R¢83] we know thatx/2
has to be replaced by

e = h=1+wl2,
27 26,0 et

(49
wherewg is the effective wetting parameter which becomes
limy_7+ wei=KgT/4maé&; upon lowering the temperatuf®
toward the wetting temperatui®, [34]. From a simple ex-
ponential fit of the form(48) we getx/2=0.43@8). [Note

which has the meaning of a free energy cost when placing that this has to be regarded as an effective value since we

(flat) interface at distancefrom the wall. Upon minimizing

neglect any temperature dependence wifithin our range of

V(1) with respect td one finds the equilibrium position of triple temperaturess,(D)]. Evaluating nowé at T, /T,
the interface. Equatiof43) includes only the lowest powers =0.88 where we emplog,~ 0.88[28] yields 6~ 1.3, which
of exp(—«l) which are necessary to describe a first-order wetis compatible with the values extracted @by Parryet al.

ting transition in the semi-infinite system. The coefficient

[34] and clearly differs from the valué=1 expected from

explicitly depends on temperature, while the temperature denean field theory. Of course, making more quantitative state-

pendence ob andc is neglectedc>0 in the following. 2

ments would require data from additional film thicknesBes

All coefficients have the same magnitude as the interfaciabut the above considerations clearly indicate that our data
tension between bulk phases and one finds a first order wegicely support the asserted functional dependencg, (D)
ting transition forb>0 at a,=b?/4c, where the interface onD, i.e., Eq.(48).

%The description of the interface in terms of the effective interface
potentialVq follows from the sharp-kink approximation to the cap-

illary wave Hamiltonian Hex=[dp[(a/2)(V1)?+Veill(p}] where
fluctuations of the local interface position are neglected.

IV. CONCLUSION

We have studied the interface localization-delocalization
transition in a thin Ising film1) for a choice of parameters,
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where the transition is pronounced first order for all studiedcapillary wave Hamiltonian, provided the length scalés
thicknesse® =6, 8, and 12. Checking for the correct behav-identified with the results of Parry and co-workers, i.e., Eq.
ior of the logarithm of the partition function [ which  (49).

should converge taN In 2 as 8—0, we find reasonable  When one compares the present results based on Wang-
agreement foD=6 within error bars(cf. Table ). In con- | andau sampling13-1§ to the first study of first-order in-
trast, forD>6 we see rather clear deviations from the ex-terface localization-delocalization transition] where
pected value with relative deviations up to 10We attribute  simple Metropolis and heat-bath Monte Carlo algorithms
this behavior to a slowing down encountered in the flatyere ysed, a major improvement of accuracy is clearly seen.
energy-histogram ensemble. Difficulties also arise, when ong), ihe other hand. the systematic problems due to entropic
considers to sample a flat magnetization distribution, albarriers described ,in our work show that it would be prob-

though simulation results suggest that the slowing down i?ematic to apply the Wang-Landau algorithm to larger sys-
R&ms than used here. Note that the largest sizes used by us,

less severe. Here, we find evidence for a discontinuous sha
transition, as studied by Neuhaus and Hags]. For the 128x 128% 12~ 1.97X 10° Ising spins, distinctly exceed the
sizes analyzed in most previous applications of this algo-

larger thicknesse$D >6) we therefore suggest employing

an additional reference for the disordered ph@stal num- rithm [13-16
ber of statef in order to get the proper relative weight be- '
tween the coexisting phases, thus correcting for the lack of

tunneling events, in the late stages of the algorithm. The

triple temperatureg, (D) of the interface localization delo- ACKNOWLEDGMENTS

calization transition can then be determined with a relative This work was supported in part by the Deutsche
accuracy of the order 16 while the relative error in the Forschungsgemeinschaft under Grants No. Bi314/17. Help-
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