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Previous authors have suggested lattice Boltzmann methods for binary mixtures. However, these methods
are limited to fluids with nearly the same molecular weight. In this work, two modified methods are proposed
for simulating fluids with different molecular weights. The first method is based upon the physical principle
that particles with different molecular weights move at different lattice speedssDLSd when at the same
temperature. Therefore, different streaming distances are employed for species with different molecular
weights. A second method is developed by selecting constants in the equilibrium distribution function in such
a way that the speed of sound can be adjusted for each species. In this approach, the species have the same
lattice speedsSLSd. Using multiscale expansions, the methods are shown to reproduce the appropriate species
continuity equation in the macroscopic limit. The accuracy of the methods is evaluated by studying binary
diffusion problems. The DLS method is shown to be able to simulate diffusion in fluids with larger ratios of
molecular weights relative to the SLS method.
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I. INTRODUCTION

Diffusion among different species is important in many
practical applications. These applications include combus-
tion, pollutant dispersion, and chemical reactions. Since the
physics of species diffusion on a macroscopic scale is based
upon phenomena on a microscopic scale, the lattice Boltz-
mann methodsLBM d is a natural choice for studying these
types of problems. Several previous authors have suggested
lattice Boltzmann models for binary mixturesf1–4g. The
model proposed by Luo and Girimajif3,4g is firmly based
upon kinetic theory. However, their model is limited to fluids
with the same molecular weight. In this work, modified mod-
els are proposed that allow for simulating fluids with differ-
ent molecular weights. In the first of the two methods, each
species streams with a different lattice speedsDLSd by using
different lattice streaming distances while maintaining the
same time step. In order to determine the values of the dis-
tribution functions at each lattice node, a second-order inter-
polation scheme is employed. A second method is developed
which achieves binary diffusion of fluids with different mo-
lecular weights by adjusting constants in the equilibrium dis-
tribution functionf1g. In this approach, each species has the
same lattice speedsSLSd, but the speed of sound of each
species is adjusted by making the constants in the equilib-
rium distribution function dependent on the ratio of molecu-
lar weights.

In Sec. II, the two binary mixture models are developed
by employing the ideas suggested by Luo and Girimajif3,4g.
An interpolation scheme for determining the values of the
distribution function for the DLS model is introduced in Sec.
III. The methods are shown to reproduce the appropriate spe-
cies hydrodynamic equations in the macroscopic limit in Sec.

IV. In Sec. V, the accuracy of the methods is evaluated by
studying binary diffusion problems for species with the same
and different molecular weights. The solution for the same
molecular weight computation is compared to the solution
obtained by employing Fick’s law in the macroscopic limit
while the solution for the different molecular weight compu-
tation is compared to the solution from a computation using
a finite difference code with a detailed treatment of multi-
component diffusion. The paper is concluded in Sec. VI.

II. LATTICE BOLTZMANN MODEL FOR BINARY
MIXTURES WITH DIFFERENT MOLECULAR WEIGHTS

The lattice Boltzmann method proposed by Luo and Giri-
maji f4g starts by considering the Boltzmann equation for a
binary system,

]t f
s + j · ¹ fs + as ·¹jf

s = Qss + Qs§, s1d

where f is the probability distribution function,j is the par-
ticle velocity, s and § represent the two species,a is the
acceleration due to a force,Qss is the self-collision term, and
Qs§ is the cross-collision term. In order to convert Eq.s1d
into an LBM model, the equation must be integrated in time.
The advection terms are integrated along the characteristic
directions and the collision terms are integrated using an
explicit Euler method. Then the equations are reduced by
considering a finite, discrete velocity set. This yields the re-
lationshipf4g

fa
ssx + eadt,t + dtd − fa

ssx,td = Ja
ss + Ja

s§dt − Fa
sdt, s2d

where

Ja
ss = −

1

ts

sfa
s − fa

ss0dd, s3d

Ja
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1
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Fa
s = − wars

ea ·as

cs
2 . s5d

Ja
ss and Ja

s§ represent the effects due to self-collisions and
cross collisions, respectively, whileFa

s represents the effects
due to an external acceleration force,as, anda is the veloc-
ity direction. The weighting function,wa, depends on the
discrete velocity setea. In this work, we will not focus on the
effects of a forcing term such asFa

s. Other authors have
performed more in-depth analyses of forcing termsf5,6g. The
cross-collision term given by Eq.s4d is proportional to the
difference in the species’ velocities, which is equivalent to
the difference in the species’ diffusion velocities. This is rea-

sonable because the larger the velocity difference, the larger
the influence of cross collisions on the equilibrium distribu-
tion function. The equilibrium distribution function,fa

ss0d, is
given by the following equations:

fa
ss0d = F1 +

1

cs
2sea − ud · sus − udG fa

sseqd, s6d

fa
sseqd = warsF1 +

ea ·u

cs
2 +

sea ·ud2

2cs
4 −

u ·u

2cs
2 G . s7d

For the D2Q9 modelea andwa are given by

ea =5
s0,0d, a = 0

ScosF sa − 1dp
2

G,sinF sa − 1dp
2

GD c, a = 1 – 4

Î2ScosF sa − 5dp
2

+
p

4
G,sinF sa − 5dp

2
+

p

4
GD c, a = 5 – 8,

s8d

and

wa = 5 4/9, a = 0

1/9, a = 1 – 4

1/36, a = 5 – 8,

s9d

where the lattice speed,c, is related to the lattice spacing by
c=dx/dt. The macroscopic variables for each species are
found from the moments of the distribution functions, i.e.,

rs = o
a

fa
s = o

a

fa
ss0d, s10d

rsus = o
a

fa
sea = o

a

fa
ss0dea. s11d

The species’ velocities are the sum of the bulk velocity and
the species’ diffusion velocity, i.e.,

us = u + us,dif f . s12d

The total mass density and mass averaged velocity of the
mixture are

r = rs + r§, s13d

ru = rsus + r§u§. s14d

The model presented above is firmly based upon kinetic

theory f7,8g. However, the model above cannot simulate bi-
nary diffusion of fluids with different molecular weights be-
cause the pressure in this model is given by

p = srs + r§dcs
2, s15d

wherecs
2=c2/3. This states that the total pressure is equal to

the sum of the partial pressures. The derivation of the mo-
mentum equation in Sec. IV will show how this expression
enters the equation. From Eq.s15d, it can be seen that in
order for the pressure to be constant the sum of the two
species’ densities must be constant at every location, but this
requirement is not necessary for two species of different mo-
lecular weights. In order to deal with this problem, some
authorsf1g have suggested adjusting the fraction of particles
at rest for each species. We will first develop a model for
binary diffusion following this suggestion, show its limita-
tions, and then develop another model that is more physi-
cally intuitive. In the introduction to this paper, we refer to
the former as the SLS method and the latter as the DLS
method.

In the SLS method, we alter the speed of sound for each
species while maintaining the same lattice speed,c. This
approach is not consistent with thea priori derivation of the
lattice Boltzmann equation from the continuous Boltzmann
equation given in Ref.f9g, but will provide the correct hy-
drodynamic equations in the macroscopic limit if done prop-
erly. Wolf-Gladrow f10g, in chapter 5 of his text, suggests
using the following generic form of the D2Q9 equilibrium
distribution function in order to have maximum control over
the choice of constants,A0

s, A1
s, A2

s, B1
s, B2

s, C1
s, C2

s, D0
s, D1

s,
andD2

s:
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fa
sseqd = 5rssA0

s + D0
su ·ud, a = 0

rssA1
s + B1

sea ·u + C1
ssea ·ud2 + D1

su ·ud, a = 1 – 4

rssA2
s + B2

sea ·u + C2
ssea ·ud2 + D2

su ·ud, a = 5 – 8.

s16d

The constants must be chosen so that mass and momentum
are conserved and in such a way as to obtain the proper
momentum flux tensor,Pij

ss0d=oaeaiea j fa
sseqd, which influ-

ences the macroscopic conservation of momentum equation.
Following the derivation in Ref.f10g in order to obtain the
proper momentum flux tensor, 4C2

sc2+2D1
s+4D2

s=0, C1
s

=1/2c4, andC2
s=1/8c4. Following Ref.f10g, we choose to

restrict the constants so that

A0
s

A1
s =

A1
s

A2
s =

B1
s

B2
s =

D0
s

D1
s = rs. s17d

When including the additional requirement that the macro-
scopic moments are conserved, the following relationships
are obtained:

A0
s =

rs2

srs + 2d2, A1
s =

rs

srs + 2d2, A2
s =

1

srs + 2d2 , s18d

B1
s =

rs

4 + 2rs

1

c2, B2
s =

1

4 + 2rs

1

c2 , s19d

D0
s = −

rs

2 + rs

1

c2, D1
s = −

1

2 + rs

1

c2, D2
s = −

rs − 2

16 + 8rs

1

c2 .

s20d

Now the speed of sound for two species can differ by select-
ing different rs from the relationship

cs
s =Î 2

rs + 2
c. s21d

In this approach, Eq.s16d replaces Eq.s7d, and the speed of
sound in Eq.s6d is now dependent on the species. The pres-
sure in this model follows the equation of state,

p = rscs
s2 + r§cs

§2. s22d

In order to eliminate pressure gradients due to concentration
differences, the speeds of sound should be selected so that

cs
§ =Îms

m§

cs
s, s23d

wherems is the molecular mass of speciess. It is important
to note that the speed of sound of either species,cs

s, cannot
exceed the lattice speed,c. In our simulations, we have no-
ticed that ascs

s approachesc the computations are numeri-
cally less stable. If the slower speed of sound is selected to
be cs

s=c/Î3 whenms.m§, then the maximum density ratio
between the species is 3. Lower values ofcs

s can be em-
ployed. However, these values then limit the maximum nu-
merically stable velocity,uuu, due to the low Mach number
criteria of the LBM.

In light of these limitations, we propose an alternative
physically intuitive approachsreferred to as the DLS method
earlierd to solve the binary diffusion problem by allowing
each species to move with different lattice speeds,cs. This
will give each species a different speed of sound,cs

s=cs /3,
while still employing a standard equilibrium distribution
function that follows thea priori derivationf9g. The simplest
way to allow for two lattice speeds is to have two different
streaming distances and keep the same time step, i.e.,cs

=dx/dt and c§=Îms /m§dx/dt, where the molecular mass of
speciess is the larger of the two species. Speciess has a
streaming distance ofdx, and species§ has a streaming dis-
tance ofÎms /m§dx. The problem of completing the stream-
ing step for computations with two different streaming dis-
tances will be addressed in the next section. The two
different streaming distances lead to a velocity set dependent
on species, i.e.,

ea
s =5

s0,0d, a = 0

ScosF sa − 1dp
2

G,sinF sa − 1dp
2

GDcs, a = 1 – 4

Î2ScosF sa − 5dp
2

+
p

4
G,sinF sa − 5dp

2
+

p

4
GDcs, a = 5 – 8.

s24d
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Now Eqs.s6d ands7d can be written for the modified model
as

fa
ss0d = F1 +

1

cs
s2sea

s − ud · sus − udG fa
sseqd, s25d

fa
sseqd = warsF1 +

ea
s ·u

cs
s2 +

sea
s ·ud2

2cs
s4 −

u ·u

2cs
s2G . s26d

Similarly, Eqs. s2d, s4d, s5d, and s11d can be rewritten to
account for multiple streaming distances by replacingea

with ea
s. The equation of state for this model can be easily

shown to have the following form:

p = rscs
s2 + r§cs

§2 =
1

3
Srs +

ms

m§

r§DSdx

dt
D2

. s27d

This approach is physically consistent because particles with
larger molecular weights move at slower speeds relative to
lighter particles. Hence, their speeds of sound scale
accordingly.

III. SOLVING FOR DIFFERENT STREAMING
VELOCITIES

In this section, we propose a scheme for solving the lat-
tice Boltzmann equations with different streaming distances
for each species. We use a lattice structure with a distance of
Îms /m§dx between lattice nodes whereÎms /m§ù1. With
this arrangement, the distribution function of species§
streams exactly to its neighboring lattice nodes in one time
step. However, the distribution function of speciess will
stream to some location between the node of its origin and
the neighboring lattice node. In order to determine the values
of the distribution function for speciess after the streaming
step at each lattice node, a second-order interpolation scheme
is employed. Previous authorsf11g have suggested using in-
terpolation schemes for implementing nonuniform lattice
spacing. We select a second-order Lagrangian interpolation
polynomial with the following form:

fa
ssxd =

sx − bdsx − cd
sa − bdsa − cd

fa
ssad +

sx − adsx − cd
sb − adsb − cd

fa
ssbd

+
sx − adsx − bd
sc − adsc − bd

fa
sscd, s28d

wherea is thex location of the particle in consideration, i.e.,
the particle starting atsx,yd, after the streaming step,b is the
x location of the neighboring particle, i.e., the particle start-
ing at sx−Îms /m§dt ,yd for a=1, after the streaming step,
andc is thex location of the particle two lattice nodes down-
stream, i.e., the particle startingsx−2Îms /m§dt ,yd for a=1,
after the streaming step. Interpolation schemes for directions
a=1–4 require distribution function values from three lattice
nodes in order to determine the new value at each lattice
node. For streaming directionsa=5–8,values from nine lat-
tice nodes are necessary. The interpolation scheme is first
done in one Cartesian direction, e.g.,y, for three distribution
functions, and then those values are used to calculate the

distribution function atsx,yd. Figure 1 shows the lattice
setup corresponding to Eq.s28d for a=5 with the following
values for this model: a−x=a8−y=dx, x−b=y−b8
=Îms /m§dx−dx, and x−c=y−c8=2Îms /m§dx−dx. The
square boxes represent the lattice nodes. The interpolation
polynomial is first used to calculate the distribution function
values at the solid circle locations. Then the value of the
distribution function at the location of the solid square is
determined from the distribution function values at the solid
circles using the interpolation polynomial a second time.

The solution procedure for the DLS model is to first cal-
culate the effects of collisions, then to stream the particle,
and finally to use interpolation to determine the distribution
function values at the lattice nodes. It is possible to combine
the streaming and interpolation step.

One advantage of employing an interpolation scheme is
that it can increase numerical stability. Another advantage is
that interpolation reduces the resolution requirement of the
LBM, thereby allowing for more efficient computations.
However, as the distanceÎms /m§dx is increased, the accu-
racy of the interpolation decreases due to the increase in
numerical diffusion. This limits the maximum ratio of mo-
lecular weights that can be simulated. From practical expe-
rience, it appears that in order to accurately capture the phys-
ics of binary diffusion,ms /m§ø9 using this model.

It is also important to note that Lallemand and Luof12g
have shown some anisotropy effects to exist when using in-
terpolation schemesf12g. Their work shows that when the
equations are perturbed with a nonzero wave number the
transport coefficients are anisotropic. However, zero-wave-
number perturbations result in isotropic transport coeffi-
cients. The magnitude of these effects has not yet been tested
for this interpolation scheme. Lallemand and Luof12g have
suggested using multiple relaxation time collision terms in
order to mitigate this problem. A similar approach could be
employed in this model.

FIG. 1. Illustration of streaming and interpolation for speciess
in the velocity directiona=5 in a D2Q9 lattice modelssquares
represent lattice nodesd.
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IV. HYDRODYNAMIC EQUATIONS

It is of interest to determine the hydrodynamic equations
associated with the lattice Boltzmann models proposed in
Sec. II. This will allow us to determine the expression for the
binary diffusion coefficient based upon the value oftD in Eq.
s4d. The Chapman-Enskog expansions for both the SLS and
DLS models are similar. The main difference is that in the
SLS model the lattice velocities,ea, do not depend on the
species. The expansions do not take into account the inter-
polation scheme employed in the numerical implementation
of the DLS model during the streaming step. However, the
interpolation scheme is second-order accurate, and the error
associated with it should be similar to the overall order of the
scheme.

Employing the expansions

fa
ssx + eadt,t + dtd = o

n=0
«ns]t + ea

s · ¹dnfa
ssx,td, s29d

fa
s = o

n=0
«nfa

ssnd, s30d

]t = o
n=0

«n]tn
, s31d

in Eq. s2d signoring Fa
sd yields the following relations for

terms of order«1 and«2, respectively:

s]t0
+ ea

s · ¹dfa
ss0d = −

1

ts

fa
ss1d + Js§, s32d

]t1
fa

ss0d + s]t0
+ ea

s · ¹dS1 −
1

ts
D fa

ss1d

+
1

2
s]t0

+ ea
s · ¹dJs§ = −

1

ts

fa
ss2d. s33d

The following moments of the distribution functions can be
calculated for both modelsf4g sfor the SLS modelea is not
dependent on the speciesd:

o
a

Ja
s§ = 0, s34d

o
a

Ja
s§ea

s = −
1

tD

rsr§

rdt
sus − u§d, s35d

o
a

Ja
s§eai

s ea j
s = −

1

tD

rsr§

rdt
Ssuiduj + ujduid −

1

cs
s2uiuju · duD

< 0, s36d

o
a

fa
ss0deai

s ea j
s = cs

s2rsdi j + rsuiuj + rsSsus − udiuj

+ sus − ud jui −
uiuju · sus − ud

cs
s2 D , s37d

o fa
ss0deai

s ea j
s eak

s = cs
s2rsDi jklulS1 −

u · sus − ud
cs

s2 D
+ cs

s2rsDi jklsus − udl+ ¯ , s38d

wheredu;sus−u§d, dui ;susi −u§id, and

Di jkl = di jdkl + dikd jl + dild jk. s39d

The species mass conservation equations of first and second
order in« can be determined by summing Eqs.s32d ands33d
over the velocity directions,a, which, respectively, yields

]t0
rs + ¹ · srsusd = 0, and s40d

]t1
rs −

1

2
¹ ·S 1

tD

rsr§

rdt
sus − u§dD = 0, s41d

whereoafa
ssnd=0 for n.0. Adding Eq.s40d and« times Eq.

s41d, and setting«=dt gives the species mass conservation
equation,

]trs + ¹ · srsusd =
1

2
¹ ·S 1

tD

rsr§

r
sus − u§dD . s42d

Combining Eq.s42d for each species yields the overall mass
conservation,

]tr + ¹ · srud = 0. s43d

Now we want to find the relationship for the binary dif-
fusion coefficient. Rearranging Eq.s42d gives

]trs + ¹ · srsud = − S1 −
1

2tD
D ¹ · j s, s44d

where

j s = rssus − ud =
rsr§

r
sus − u§d, s45d

using the identity thatrsus−ud=r§sus−u§d. Notice that in
the right-hand side of Eq.s44d the premultiplication factor
has an extra term, 1/2tD, which will result in a correction
factor in the diffusion coefficient expression. In general, the
mass flux vector,j s, including ordinary and pressure diffu-
sion effects issEq. s8.1-7d of f13gd

j s = −
n2

r
msm§Ds§ds, s46d

where the number density,n=ns+n§=rs /ms=r§ /m§. The
diffusion force,ds, has the propertyds=−d§ and the rela-
tionship

ds = ¹ Sns

n
D +

nsn§

nr
sm§ − msd ¹ ln p. s47d

Luo and Girimajif4g have derived the following relationship
for the diffusion force for this lattice Boltzmann model:

sus − u§d = − tDdt
rp

rsr§

ds. s48d

Using Eq.s48d in Eq. s45d, Eq. s44d can be rewritten as
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]trs + ¹ · srsud = S1 −
1

2tD
D ¹ · stDdtpdsd. s49d

In order to get the correct species mass conservation equa-
tion for speciess, i.e.,

]trs + ¹ · srsud = ¹ ·Sn2msm§

r
Ds§dsD , s50d

which would have resulted from using Eq.s46d in Eq. s44d
without the additional 1/2tD term, the binary diffusion coef-
ficient must have the relationship

Ds§ =
rp

n2msm§
StD −

1

2
Ddt. s51d

Notice that in order to simulate the same binary diffusion
coefficient at every location in a computational domain,tD
will depend on the other parameters in Eq.s51d.

Now we will derive the conservation of momentum equa-
tion associated with the SLS and DLS models. The Euler
level conservation of momentum equation is found by sum-
ming ea

s times Eq.s32d over the velocity directions, which in
the incompressible limit gives

]t0
srsusd + srsus · ¹du = − ¹ ps −

1

tDdt

rsr§

r
sus − u§d,

s52d

whereps=rscs
s2. In this derivation, we use the argument that

in general the diffusion velocities of the two species are
small relative to the mass averaged velocity. We may then
neglect terms of the ordersus−udiuj anduidui. The second-
order expansion in« yields the conservation of momentum
equation which is determined by summingea

s times Eq.s33d
over the velocity directions, which yields

]t1
srsusd =

1

dt
vs¹2srsusd −

1

2
]t0S 1

tD

rsr§

rdt
sus − u§dD ,

s53d

where the viscosity,vs, is

vs = cs
s2Sts −

1

2
Ddt. s54d

The last term in Eq.s53d can be evaluated by applying a
chain rule and using Eqs.s40d and s42d. However, we are
interested in the mass averaged momentum equations. The
momentum equation for each species is found by adding Eq.
s52d to « times Eq.s53d to yield

]tsrsusd + srsus · ¹du = − ¹ ps + vs¹2srsusd − S1 +
«

2
]t0D

3S 1

tD

rsr§

rdt
sus − u§dD . s55d

The mass averaged momentum equation is found by adding
together Eq.s55d for each species, which gives

]tsrud + sru · ¹du = − ¹ p + vs¹2srsusd + v§¹
2sr§u§d,

s56d

wherep=ps+p§.

V. BINARY DIFFUSION

In order to evaluate the DLS model, two sets of compu-
tations are carried out. The simpler case is that of two gases
with the same properties diffusing into each other. For simu-
lations of fluids with identical molecular weights, the DLS
model is essentially identical to the SLS model. The results
from calculations using the DLS LBM are compared to the
solution obtained by applying Fick’s law in the macroscopic
limit. In this computation, the properties of nitrogen at 300 K
and 1 bar are employed for both gases. The binary diffusion
coefficient,Ds§, is 0.68 cm2/s which leads to a value oftD
=1.1. The computational domain has 500 lattice nodes in the
y direction with periodic boundary conditions on the hori-
zontal boundaries and bounce-back boundary conditions on
the vertical boundaries. The lattice parameters have the fol-
lowing values:dx=3.85mm anddt=44 ns. The initial den-
sity profile for each species is assumed to have a hyperbolic
tangent profile with the form

rssyd =
1

2
3srs,h + rs,ld + srs,h − rs,ldtanh1y −

1

2
ymax

dth
24 ,

s57d

r§syd =
1

2
3sr§,h + r§,ld + sr§,l − r§,hdtanh1y −

1

2
ymax

dth
24 ,

s58d

whereymax is the domain length anddth is the thickness of
the diffusion profile. For this computation,dth=0.1 mm. The
minimum and maximum densities arers,h=r§,h
=1.123 kg/m2 andrs,l =r§,l =0.07 kg/m2.

The Fick’s law computations are based upon a discretized
form of the equation

]trs = − Ds§]yyrs. s59d

The length of the domain is divided into 500 equally spaced
nodes. Figure 2 shows the density profile of each species att
50, 0.044, 0.088, and 0.176 ms, for both the LBM and
Fick’s law computations. The results from Fick’s law and the
LBM model compare well with less than 1% error at all
locations and times.

The second study is that of two gases with different mo-
lecular weights diffusing into each other. The properties of
nitrogen at 273 K and 1 bar are employed for one gas, and
the properties of helium at 273 K and 1 bar are employed for
the other gas. The binary diffusivity isDs§=0.632 cm2/s.
The corresponding value oftD at each location is calculated
using Eq.s51d. The computational domain has 500 lattice
nodes in they direction and boundary conditions are the
same as in the previous study. The lattice spacing isÎ7dx
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with dx=2 mm anddt=3 ns. The initial gas density for each
species follows Eqs.s57d and s58d with dth=0.05 mm,rs,h
=1.250 kg/m2, r§,h=1.123 kg/m2, rs,l =0.0007 kg/m2,
and r§,l =0.0001 kg/m2. The LBM results are compared to
computations using a one-dimensionals1Dd diffusion code,
which solves the macroscopic species diffusion equation for
multicomponent mixturesf14g. This code solves the transient
multicomponent species equations for reacting mixtures.
Here convection is not considered. Reactions are neglected.
The equations are spatially discretized with a second-order
central-difference scheme and temporally with a first-order
scheme. Figure 3 illustrates the density profile for each spe-
cies at t 5 0, 0.02, 0.05, and 0.1 ms from both the LBM
computations employing the DLS method and the 1D diffu-
sion code computations. The two solutions compare well
with a difference of less than 1% for all locations and times.

Now we compare the DLS and SLS models. As men-
tioned in Sec. II, the SLS model is not able to simulate fluids
with molecular weight ratios greater than 3 when the speed
of sound of the heavier species is given bycs

s=1/Î3c. There-
fore, we simulate two gases with a molecular weight ratio of
2 diffusing into each other. As with the previous studies, the
initial gas density for each species follows Eqs.s57d ands58d

FIG. 2. Density profile for binary diffusion of two species with
the same molecular weight at several timesssolid lines - Fick’s law,
symbols–DLS LBMd.

FIG. 3. Density profile for binary diffusion of two species with
molecular weight ratio of 7/1 at several timesssolid lines - diffusion
code, symbols–DLS LBMd.

FIG. 4. Density profile for binary diffusion of two species with
molecular weight ratio of 2/1 at several timesssolid lines–DLS
LBM, symbols–SLS LBMd.
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with dth=0.05 mm, rs,h=1.250 kg/m2, r§,h=0.625 kg/m2,
rs,l =0.0007 kg/m2, and r§,l =0.000 35 kg/m2. The lattice
spacing for the SLS model isdx with a total of 500 nodes
in the y direction, while the lattice spacing for the DLS
model isÎ2dx with 354 nodes in they direction. For both
models,dx=2 mm, dt=3 ns, andDs§=0.632 cm2/s. Figure 4
shows the density profile for each species att 5 0, 0.02,
0.05, and 0.1 ms for both the DLS and SLS computations.
Similar to the previous computations, the two solutions have
a difference of less than 1%.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed two lattice Boltzmann
models for simulating diffusion of gases with different mo-
lecular weights based upon the general model of Luo and
Girimaji f3,4g. The same lattice spacingsSLSd method em-
ployed the same streaming distance and time step for each
fluid, but altered the equilibrium distribution function in or-
der to simulate different speeds of sound. The different lat-
tice spacingsDLSd method varied the streaming distance for
each species, while maintaining the same time step. This
approach is physically intuitive since lighter molecules move
at larger velocities than heavier molecules. In this way, the
speed of sound is naturally altered for each species and the
equilibrium distribution function is consistent with kinetic

theory. Both models were shown to reproduce the correct
macroscopic hydrodynamic equations.

The models were tested on binary diffusion problems. The
DLS method was employed to simulate self-diffusion and
N2-He diffusion. The results compared well with the solution
of the macroscopic Fick’s law for self-diffusion and the so-
lution of the macroscopic, multicomponent species diffusion
equations for N2-He diffusion with differences of less than
1% in both cases. The SLS model was compared to the DLS
model for computing binary diffusion between fluids with a
ratio of molecular weights of 2. The difference between den-
sity profiles of the two methods was less than 1%.

The DLS model is deemed superior to the SLS model
because it is able to simulate higher ratios of molecular
weights for the same speed of sound. The DLS model also
has a more rigorous physical basis. The use of interpolation
limits the maximum attainable ratio of molecular weights for
the DLS model, but the ratio is still greater than for the SLS
model. The DLS model has been employed to conduct initial
studies of transient mixing layersf15,16g.
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