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Lattice Boltzmann methods for binary mixtures with different molecular weights
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Previous authors have suggested lattice Boltzmann methods for binary mixtures. However, these methods
are limited to fluids with nearly the same molecular weight. In this work, two modified methods are proposed
for simulating fluids with different molecular weights. The first method is based upon the physical principle
that particles with different molecular weights move at different lattice spébdS$) when at the same
temperature. Therefore, different streaming distances are employed for species with different molecular
weights. A second method is developed by selecting constants in the equilibrium distribution function in such
a way that the speed of sound can be adjusted for each species. In this approach, the species have the same
lattice speedSLS). Using multiscale expansions, the methods are shown to reproduce the appropriate species
continuity equation in the macroscopic limit. The accuracy of the methods is evaluated by studying binary
diffusion problems. The DLS method is shown to be able to simulate diffusion in fluids with larger ratios of
molecular weights relative to the SLS method.
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I. INTRODUCTION IV. In Sec. V, the accuracy of the methods is evaluated by
. ) L ) studying binary diffusion problems for species with the same
Diffusion among different species is important in many 5 gifferent molecular weights. The solution for the same
practical applications. These applications include combusz,qjecular weight computation is compared to the solution
tion, _poIIutant d?sper_sion_, and chemical reagtions. Si_nce theptained by employing Fick's law in the macroscopic limit
physics of species diffusion on a macroscopic scale is basggije the solution for the different molecular weight compu-
upon phenomena on a microscopic scale, the lattice BOltZgiion js compared to the solution from a computation using
mann methodLBM) is a natural choice for studying these 5 finite difference code with a detailed treatment of multi-

types of problems. Several previous authors have suggested honent diffusion. The paper is concluded in Sec. V.
lattice Boltzmann models for binary mixturgd—4]. The

model proposed by Luo and Girimdj8,4] is firmly based Il. LATTICE BOLTZMANN MODEL FOR BINARY
upon kinetic theory. However, their model is limited to fluids MIXTURES WITH DIFFERENT MOLECULAR WEIGHTS
with the same molecular weight. In this work, modified mod-
els are proposed that allow for simulating fluids with differ-
ent molecular weights. In the first of the two methods, eac
species streams with a different lattice sp€@tS) by using
different lattice streaming distances while maintaining the G+ & Vi7+a, V7=Q7 +Q", (1)
same time step. In order to determine the values of the dis- ) T ] ]

tribution functions at each lattice node, a second-order intefvheref is the probability distribution functiorg is the par-
polation scheme is employed. A second method is developedfle velocity, o and s represent the two speciea,is the
which achieves binary diffusion of fluids with different mo- acceleration due to a forc@’ is the self-collision term, and
lecular weights by adjusting constants in the equilibrium dis-Q” is the cross-collision term. In order to convert Ed)
tribution function[1]. In this approach, each species has thénto an LBM model, the equation must be integrated in time.
same lattice spee@LS), but the speed of sound of each T_he e}dvect|on terms are integrated along the charaqtenstlc
species is adjusted by making the constants in the equi"k}jlrec.:tl.ons and the collision terms are.|ntegrated using an
rium distribution function dependent on the ratio of molecu-xplicit Euler method. Then the equations are reduced by

The lattice Boltzmann method proposed by Luo and Giri-
aji [4] starts by considering the Boltzmann equation for a
inary system,

lar weights. considering a finite, discrete velocity set. This yields the re-
In Sec. II, the two binary mixture models are developed!ationship[4]
by employing the ideas suggested by Luo and Girir@&. Fo(x + e 8, t+ &) — F20x,0) = 377 + I8, - F78,  (2)

An interpolation scheme for determining the values of the
distribution function for the DLS model is introduced in Sec. where
[ll. The methods are shown to reproduce the appropriate spe-

cies hydrodynamic equations in the macroscopic limit in Sec. Joo=- T—(f‘;— fg<°>), (3)
(o8
* . . 1p £
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. e, a, sonable because the larger the velocity difference, the larger
Fo=~Wapy 2 (5 the influence of cross collisions on the equilibrium distribu-
s tion function. The equilibrium distribution functiorig(o), is

J77 and J7° represent the effects due to self-collisions andgiven by the following equations:
cross collisions, respectively, while represents the effects
due to an external acceleration foreg, and« is the veloc- £(0) [
ity direction. The weighting functionw,, depends on the a 7
discrete velocity set,. In this work, we will not focus on the
effects of a forcing term such &8]. Other authors have
performed more in-depth analyses of forcing teff$]. The foled — { 8 -U . (e,-u)? _u- U]

- ' s . =wW,p,| 1+ + . (7)
cross-collision term given by Ed4) is proportional to the «@ cz 2ct 2c?
difference in the species’ velocities, which is equivalent to
the difference in the species’ diffusion velocities. This is rea-For the D2Q9 mode¢, andw,, are given by

1 +C%<ea— 0) - (U, - u)}f‘je‘”, (©)

S

S

p
(010)1 o= 0
-1 -1
(cos{(a )Tr],sin[(a )Tr]) c, a=1-4
e, =9 2 2 (8)
= -5 ) -5
\Z(CO{M+E],S,H[M+ zD ¢ a-5_s8
L 2 4 2 4
[
and theory[7,8]. However, the model above cannot simulate bi-
nary diffusion of fluids with different molecular weights be-
4/9 a=0 cause the pressure in this model is given by
w,=9y1/9, a=1-4 9)
1/36, a=5-8, P=(p,+p)C, (15)

where the lattice speed, is related to the lattice spacing by
c=4,/ 6. The macroscopic variables for each species ar
found from the moments of the distribution functions, i.e.,

gvherecgzczl 3. This states that the total pressure is equal to
the sum of the partial pressures. The derivation of the mo-
mentum equation in Sec. IV will show how this expression
enters the equation. From E(L5), it can be seen that in
po= >, 7= 190, (100 order for the pressure to be constant the sum of the two
@ @ species’ densities must be constant at every location, but this
requirement is not necessary for two species of different mo-
lecular weights. In order to deal with this problem, some
pol, =2, 178, = 2 7%, (1)) authorg[1] have suggested adjusting the fraction of particles
@ @ at rest for each species. We will first develop a model for
binary diffusion following this suggestion, show its limita-
The species’ velocities are the sum of the bulk velocity andions, and then develop another model that is more physi-

the species’ diffusion velocity, i.e., cally intuitive. In the introduction to this paper, we refer to
the former as the SLS method and the latter as the DLS
U= U+ Ug giff- (12 ~ method.

In the SLS method, we alter the speed of sound for each
species while maintaining the same lattice spexdThis
dpproach is not consistent with tlaepriori derivation of the

lattice Boltzmann equation from the continuous Boltzmann
equation given in Ref{9], but will provide the correct hy-

P=Pst P (13 drodynamic equations in the macroscopic limit if done prop-

erly. Wolf-Gladrow[10], in chapter 5 of his text, suggests

using the following generic form of the D2Q9 equilibrium
pU = polg+ pUs. (14 distribution function in order to have maximum control over

the choice of constantsy, A7, A7, BY, B, C{, C3, DF, D7,
The model presented above is firmly based upon kineti@andD3:

D

The total mass density and mass averaged velocity of th
mixture are
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po(Ag +Dgu - u), a=0
f7€9 =< p (A +BJe, -u+Cj(e,-u)>+DJu-u), a=1-4 (16)
p,(Ag+BJe, -u+Cs(e,-u)?+D3u-u), a=5-8.
[
The constants must be chosen so that mass and momentum D=P(rC§2+PgC§2- (22
are conserved and in such a way as to obtain the proper
momentum flux tensorP"(O) S i€ f" e@, which influ- In order to eliminate pressure gradients due to concentration
ences the macroscopic conservation of momentum equatioflifferences, the speeds of sound should be selected so that
Following the derivation in Ref{10] in order to obtain the
2 o o— o m
propeE1 mome{Ptum fiux tensor, C4c°+2D7+4D3=0, Cj = /—"c‘s’, (23)
=1/2c% andC5=1/8c". Following Ref.[10], we choose to m,

restrict the constants so that ) ) o
wherem,, is the molecular mass of specieslt is important
Ag _A{ _B7_Dg to note that the speed of sound of either sped@gscannot
AT AT Ef Dy = (17 exceed the lattice speed, In our simulations, we have no-
ticed that asc{ approaches the computations are numeri-
When including the additional requirement that the macrocally less stable If the slower speed of sound is selected to
scopic moments are conserved, the following relationshipge Ctr—c/\g whenm, >m,, then the maximum density ratio

are obtained: between the species is 3. Lower valuescffcan be em-

ro2 i o 1 ployed."Howi\l/er, tlrleselv]a\llées thenhlirrlﬂt thISI mﬁximurrb1 nu-

I=———  A%= . A= , (18 merically stable velocity|u|, due to the low Mach number

P (rr+27 (2 T (174 2)? 9 criteria (>J/f the LBM. ’

In light of these limitations, we propose an alternative

o= re 1 Y= 1 1 (19 physically intuitive approackreferred to as the DLS method

17 4+2°¢2 27 442002 earliey to solve the binary diffusion problem by allowing

each species to move with different lattice speets,This
o1 1 1 FF-2 1 will give each species a different speed of soutft;c?/3,
Dg=- -—, Di{=--—2>5, Dij=-———. while still employing a standard equilibrium distribution
2+r%c 2+r%c 16+87c

function that follows thea priori derivation[9]. The simplest
(200 way to allow for two lattice speeds is to have two different
streaming distances and keep the same time step,cf.e.,
Now the speed of sound for two species can differ by select= = 5./, and = m/m Im.5,/ 8, where the molecular mass of

ing differentr from the relationship specieso is the larger of the two species. Speciedas a

2 streaming distance of,, and species has a streaming dis-
Co= e 20- (21 tance ofym,/m.é,. The problem of completing the stream-

ing step for computations with two different streaming dis-
In this approach, Eq.16) replaces Eq(7), and the speed of tances will be addressed in the next section. The two
sound in Eq(6) is now dependent on the species. The presdifferent streaming distances lead to a velocity set dependent

sure in this model follows the equation of state, on species, i.e.,
|
p
(O 0), a=0
1 1
{(0{ )7T:| {(a )WDC", wel4
€= 2 (24)
E cos{(_— + —},sin[w-u WDC" a=5-8.
2 4 2 4
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Now Egs.(6) and(7) can be written for the modified model (c,2") (b,27) (a,a’

)
as | 9/
E/l ®CY D/: b.) ®GEY

1
f7® = {1 + (el -u) - (U, - u)} fed, (29
S

e7-u (e2-u)? u-u
fg(eq):wap0'|:1+ a2 + -

. (26 |
Cg 20g4 2Cg2:| ( ) -—7 _________________________________ :
Similarly, Egs. (2), (4), (5), and (11) can be rewritten to O D/Il E/(I

i
account for multiple streaming distances by replacig :
with €7. The equation of state for this model can be easily i
shown to have the following form: !

” 1 m, \[&)\?
p:pUC52+p§ngz§<p(r+Ep§)<E> N (27) ? ____________ ? ___________?
This approach is physically consistent because particles wit! ‘ | .

larger molecular weights move at slower speeds relative ta
lighter particles. Hence, their speeds of sound scale i
accordingly.
FIG. 1. lllustration of streaming and interpolation for speaies

in the velocity directiona=5 in a D2Q9 lattice mode(squares

VELOCITIES
distribution function at(x,y). Figure 1 shows the lattice

n this section, we propose a_scheme for so_lving. the 'at'setup corresponding to E(8) for «=5 with the following
tice Boltzmann equations with different streaming distancesalues for this model: a-x=a’'-y=6,, x-b=y-b’

fgr each species. We use a lattice structure with a dist.ance gf\;max_a . and x-c=y-c’ :2\5m5x—5x- The
vm,/m.é, between lattice nodes wherem,/m=1. With  gqyare boxes represent the lattice nodes. The interpolation
this arrangement, the distribution function of species polynomial is first used to calculate the distribution function
streams exactly to its neighboring lattice nodes in one timg/ajues at the solid circle locations. Then the value of the
step. However, the distribution function of specieswill  distribution function at the location of the solid square is
stream to some location between the node of its origin andetermined from the distribution function values at the solid
the neighboring lattice node. In order to determine the valuesircles using the interpolation polynomial a second time.

of the distribution function for species after the streaming The solution procedure for the DLS model is to first cal-
step at each lattice node, a second-order interpolation schercalate the effects of collisions, then to stream the particle,
is employed. Previous authoil] have suggested using in- and finally to use interpolation to determine the distribution
terpolation schemes for implementing nonuniform latticefunction values at the lattice nodes. It is possible to combine
spacing. We select a second-order Lagrangian interpolatioffie streaming and interpolation step.

polynomial with the following form: One advantage of employing an interpolation scheme is
that it can increase numerical stability. Another advantage is
£(x) = (x=b)(x-¢) (@) + (x—a)(x-c) (b) that interpolation reduces the resolution requirement of the

a (a-b)(a-c) @ (b-a)b-c) « LBM, thereby allowing for more efficient computations.

However, as the distancem,/m.d, is increased, the accu-
(X—a)(X—b)fg(C) (28) racy of the interpolation decreases due to the increase in
(c-a)(c-b) numerical diffusion. This limits the maximum ratio of mo-

) ) o ) o lecular weights that can be simulated. From practical expe-
wherea is thex location of the particle in consideration, i.e., rience, it appears that in order to accurately capture the phys-
the particle starting &ix,y), after the streaming step,is the g of binary diffusion,m,/m,<9 using this model.

x location of the neighboring particle, i.e., the particle start- |t js also important to note that Lallemand and L]

ing at (x-vm,/mé;,y) for a=1, after the streaming step, have shown some anisotropy effects to exist when using in-
andc is thex location of the particle two lattice nodes down- terpolation schemegl2]. Their work shows that when the
stream, i.e., the particle startiig—2\Vm,/m.é,y) for a=1,  equations are perturbed with a nonzero wave number the
after the streaming step. Interpolation schemes for directiongansport coefficients are anisotropic. However, zero-wave-
a=1-4 require distribution function values from three latticenumber perturbations result in isotropic transport coeffi-
nodes in order to determine the new value at each latticeients. The magnitude of these effects has not yet been tested
node. For streaming directions=5-8,values from nine lat-  for this interpolation scheme. Lallemand and Lu&] have

tice nodes are necessary. The interpolation scheme is firstiggested using multiple relaxation time collision terms in
done in one Cartesian direction, e.g. for three distribution  order to mitigate this problem. A similar approach could be
functions, and then those values are used to calculate themployed in this model.
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IV. HYDRODYNAMIC EQUATIONS u -(u - u)
0(0) 0 A0 A0 — A2 B _ g/
. ) . ) . > 7 €4i€i€ak = Cs Polijut| 1 =
It is of interest to determine the hydrodynamic equations Cs
associated with the lattice Boltzmann models proposed in
i + ngpoAijkl(ucr —u)+e, (38)

Sec. II. This will allow us to determine the expression for the
binary diffusion coefficient based upon the valuergfin Eq.  where du=(u,-u,), éu;=(u,—ug), and
(4). The Chapman-Enskog expansions for both the SLS and

DLS models are similar. The main difference is that in the Aijia = 8 G + 8k + G O (39

SLS model the lattice velocities,, do not depend on the The species mass conservation equations of first and second
species. The expansions do not take into account the intefyder ine can be determined by summing E¢82) and(33)

polation scheme employed in the numerical implementationyyer the velocity directionsy, which, respectively, yields
of the DLS model during the streaming step. However, the

interpolation scheme is second-order accurate, and the error dpot V - (psUs) =0, and (40)
associated with it should be similar to the overall order of the
scheme. 1 1 pyps
Employing the expansions dypo= 5V - T—E(Uo— uy)|=0, (41)
D
fo(x +e,8,t+8) =2 e"(d+ €] V)X, D), (29 whereZ,,f?™=0 for n>0. Adding Eq.(40) ande times Eq.
n=0 (41), and settings=46; gives the species mass conservation
equation,
fo =2 "o, 30
= 2o (30 g (L,
atpzr+ \Y '(pouo')_ V. (ua us) . (42)
2 ™ P
a=2, a”&tn, (31 Combining Eq.(42) for each species yields the overall mass
n=0 conservation,

in Eq. (2) (ignoring F) yields the following relations for dp+ V -(pu)=0. (43

terms of orders’ and&?, respectively: _ _ _ _ _
¢ P 4 Now we want to find the relationship for the binary dif-

1 fusion coefficient. Rearranging E(2) gives
(8t0 + eg . V)fZ(O) - — _fz(l) + ‘](rg, (32) g g Cﬂ' ) g
o 1
dpst+ V -(pUU)=—<1—2—)V o (44)
)
1
‘?tlfg(O) *+ (G, €5 V)(l - _> foy where
T(T
; PoP
+ %(ﬁto e V)T = - Lo (33 Jo=polUy—U) = Tg(ua— ug), (45)

using the identity thap(u,-u)=p.(u,—u,). Notice that in
the right-hand side of Eq44) the premultiplication factor
has an extra term, 143, which will result in a correction
factor in the diffusion coefficient expression. In general, the
S ys=0 (34) mass flux vectorj,, including ordinary and pressure diffu-
~ ' sion effects iSEq. (8.1-7) of [13])

The following moments of the distribution functions can be
calculated for both modelg!] (for the SLS modek, is not
dependent on the specjes

2
) n
1 J(r == _m0m§D0 d(rv (46)
S amer=- T—p"—g:(ug— uy), (35) p ’
« b P where the number densityy=n,+n.=p,/m,=p./m,. The
diffusion force,d,, has the propertyl ,.=—d. and the rela-

1 p, 1 tionshi
> arserer = — =P (usu + uou) - —5uuu - o P
a Caiaj | J o2 J
a D pat C.

S

n n,n
d,=V|—=]+-—"—=(m-my) Vinp. 47
~0, (36 o <n> np(m ;) Vinp (47
Luo and Girimaji[4] have derived the following relationship

for the diffusion force for this lattice Boltzmann model:
> fZ(O)egiegj = ngpaéij + psUilj po'((uo — Uiy,

() (U= == 4, (48)
+(U, =) ACZ—) (37 Pobs

Using Eq.(48) in Eq. (45), Eq. (44) can be rewritten as

S
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1 d(pu) + (pu - V)u=- V p+0v,V4p,u,) +v.V%(p.uy,),
i+ V -<pgu>:<1——27 )V (mapd,). (a9 T P g
D

(56)
In order to get the correct species mass conservation equatherep=p,+p..
tion for speciess, i.e.,
2 V. BINARY DIFFUSION
V(o =V - Tp g (50)
hpg Pot) = p os-o | In order to evaluate the DLS model, two sets of compu-

. . . tations are carried out. The simpler case is that of two gases
which would have resulted from using E@6) in Eq. (44)  with the same properties diffusing into each other. For simu-
without the additional 1/Z; term, the binary diffusion coef- |ations of fluids with identical molecular weights, the DLS

ficient must have the relationship model is essentially identical to the SLS model. The results
from calculations using the DLS LBM are compared to the

= ZP_F’(TD _ }> 5. (51) s_o[ution o'btained by gpplying Fick’s 'Iaw in t'he macroscopic

n“m,m, 2 limit. In this computation, the properties of nitrogen at 300 K

and 1 bar are employed for both gases. The binary diffusion
coefficient,D,., is 0.68 cnd/s which leads to a value af,
=1.1. The computational domain has 500 lattice nodes in the
: . ; y direction with periodic boundary conditions on the hori-

_ Now we will derive the conservation of momentum equa-qa| houndaries and bounce-back boundary conditions on
tion assomated. with ihe SLS and DLS. m9de'3- The Euletyq \ertical boundaries. The lattice parameters have the fol-
level conservation of momentum equation is found by Sum]owing values:5,=3.85 um and =44 ns. The initial den-

ming &; times Eq.(32) over the velocity directions, which in - iy, hrofile for each species is assumed to have a hyperbolic
the incompressible limit gives tangent profile with the form

Notice that in order to simulate the same binary diffusion
coefficient at every location in a computational domaig,
will depend on the other parameters in Eg1).

1 p.p 1
ato(p(rua) + (poua' ' V)U == V pO'_ ETS(UJ_ u§)1 1 y - —ymax
Pa(Y) = (pzr,h + po’,l) + (pa,h - po’,l)tan - < ’
(52 2 S
wherep,=p,cZ?. In this derivation, we use the argument that (57)
in general the diffusion velocities of the two species are
small relative to the mass averaged velocity. We may then 1
neglect terms of the ordéu,—u)u; anduidy;. The second- 1 Y= 5 Ymax
order expansion it yields the conservation of momentum  ps(Y) =5 (Psn ¥ ps) + (ps) = psp)tan — /|
equation which is determined by summie§times Eq.(33) th
over the velocity directions, which yields (58)
1 1 1 whereynax is the domain length andy, is the thickness of
3 (poU,) = =v,V(pyU,) — =6, (—%(ug— u§)>, the diffusion profile. For this computatiod,,=0.1 mm. The
! & 2 \1p péy minimum and maximum densities arep,,=p.n
(53)  =1.123 kg/nt and p,,;=p,;=0.07 kg/n?.
) . . The Fick's law computations are based upon a discretized
where the viscosityy,,, is form of the equation
1 Opy="D s OyPo- 59
Uy = Cg2<70-_ E) 5’[ (54) tPo as yypo ( )

The length of the domain is divided into 500 equally spaced
nodes. Figure 2 shows the density profile of each species at
=0, 0.044, 0.088, and 0.176 ms, for both the LBM and

interested in the mass averaged momentum equations. TII]:'ck’s law computations. The results from Fick’s law and the
. . . . 1 0,
momentum equation for each species is found by adding Eq: M model compare well with less than 1% error at all

; ; ocations and times.
(52) to & times Eq.(53) to yield The second study is that of two gases with different mo-

e lecular weights diffusing into each other. The properties of
d(poUy) + (poU, - VIU= =V p,+0,V(p,U,) = (1 +§ﬁto> nitrogen at 273 K and 1 bar are employed for one gas, and
the properties of helium at 273 K and 1 bar are employed for
PoPs the other gas. The binary diffusivity i®,,=0.632 cni/s.
T_DE(U"_ ug) |- 59 The corresponding value of, at each location is calculated
using Eqg.(51). The computational domain has 500 lattice
The mass averaged momentum equation is found by addingodes in they direction and boundary conditions are the
together Eq(55) for each species, which gives same as in the previous study. The lattice spacing7i,

The last term in Eq(53) can be evaluated by applying a
chain rule and using Eq$40) and (42). However, we are
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1.2

et=0ms
at=.044 ms
mt=.088 ms

et=_176 ms

P/ P (kg/m?)

12 et=0ms
0 . . at=0.02ms
0 0.0005 0.001 0.0015 0.002 ut<0.05ms
y (m) 1 et=0.1ms

FIG. 2. Density profile for binary diffusion of two species with
the same molecular weight at several tintgslid lines - Fick's law,
symbols-DLS LBM.

with §,=2 um and ;=3 ns. The initial gas density for each
species follows Eqs57) and (58) with &;,=0.05 mm,p,
=1.250 kg/m, p.n=1.123 kg/n8,  p,;=0.0007 kg/mH,
and p,;=0.0001 kg/m. The LBM results are compared to
computations using a one-dimensioiiaD) diffusion code,
which solves the macroscopic species diffusion equation for
multicomponent mixturegl4]. This code solves the transient
multicomponent species equations for reacting mixtures.
Here convection is not considered. Reactions are neglectec
The equations are spatially discretized with a second-orde!
central-difference scheme and temporally with a first-order
scheme. Figure 3 illustrates the density profile for each spe-
cies att = 0, 0.02, 0.05, and 0.1 ms from both the LBM
computations employing the DLS method and the 1D diffu-
sion code computations. The two solutions compare well
with a difference of less than 1% for all locations and times.
Now we compare the DLS and SLS models. As men-
tioned in Sec. Il, the SLS model is not able to simulate fluids
with molecular weight ratios greater than 3 when the speec
of sound of the heavier species is givend§yt1/\530. There-
fore, we simulate two gases with a molecular weight ratio of

PHYSICAL REVIEW E 71, 046704(2009

1.4
) et=0ms
1.2 ]
at=0.02ms
1] nt=0.05ms
“— ot=0.1ms
£
& 0.8
=
&os
=]
a
0.4
0.2
0
0 0.0002 0.0004 0.0006 0.0008 0.001
y (m)

FIG. 3. Density profile for binary diffusion of two species with
molecular weight ratio of 7/1 at several timeslid lines - diffusion
code, symbols-DLS LBW

1.4

o
)

b
o

Po/pe (kgim?)

0.4

0.2

0.0002

0.0004  0.0006
y (m)

0.0008

0.001

FIG. 4. Density profile for binary diffusion of two species with

2 diffusing into each other. As with the previous studies, themolecular weight ratio of 2/1 at several timésolid lines—-DLS

initial gas density for each species follows E@s7) and(58)

LBM, symbols—SLS LBM.
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with 8,=0.05 mm, p,,=1.250 kg/n, p,,=0.625 kg/nd,  theory. Both models were shown to reproduce the correct
p,;=0.0007 kg/m, and p,;=0.000 35 kg/m. The lattice macroscopic hydrodynamic equations.
spacing for the SLS model i§, with a total of 500 nodes The models were tested on binary diffusion problems. The
in the y direction, while the lattice spacing for the DLS DLS method was employed to simulate self-diffusion and
model is 28, with 354 nodes in the direction. For both  N,-He diffusion. The results compared well with the solution
models,8,=2 um, =3 ns, and,,=0.632 cn?/s. Figure 4  of the macroscopic Fick’s law for self-diffusion and the so-
shows the density profile for each speciest at 0, 0.02, lution of the macroscopic, multicomponent species diffusion
0.05, and 0.1 ms for both the DLS and SLS computationsequations for N-He diffusion with differences of less than
Similar to the previous computations, the two solutions havel% in both cases. The SLS model was compared to the DLS
a difference of less than 1%. model for computing binary diffusion between fluids with a
ratio of molecular weights of 2. The difference between den-
sity profiles of the two methods was less than 1%.
VI. DISCUSSION AND CONCLUSIONS The DLS model is deemed superior to the SLS model

In this paper, we have proposed two lattice BoltzmanrP€cause it is able to simulate higher ratios of molecular
models for simulating diffusion of gases with different mo- Weights for the same speed of sound. The DLS model also

lecular weights based upon the general model of Luo and@S @ more rigorous physical basis. The use of interpolation
Girimaji [3,4]. The same lattice spacingLS method em- Imits the maximum attamaplg rat|_o of molecular weights for

ployed the same streaming distance and time step for ead€ DLS model, but the ratio is still greater than for the SLS

fluid, but altered the equilibrium distribution function in or- Model- The DLS model has been employed to conduct initial
der to simulate different speeds of sound. The different latStudies of transient mixing layef25,18.

tice spacing DLS) method varied the streaming distance for

each species, while maintaining the same time step. This
approach is physically intuitive since lighter molecules move The authors thank Dr. Kannan Premnath, Dr. Venkatesh
at larger velocities than heavier molecules. In this way, theGopalakrishnan, and Dr. Li-Shi Luo for useful discussions
speed of sound is naturally altered for each species and thiuring the course of this work. They thank Information Tech-
equilibrium distribution function is consistent with kinetic nologies at Purdue University.
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