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Improved local lattice approach for Coulombic simulations
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An improved approach to the simulation of strongly fluctuating Coulomb gases, based on a local lattice
technique introduced by Maggs and Ross¢#&oC. Maggs and V. Rossetto, Phys. Rev. Le#8, 196402
(2002], is described and then tested in a problem of biophysical interest. The low acceptance rates for charged
particle moves in regimes of physical interest are increased to a serviceable level by use of a coupled particle-
field update procedure in the new method. Sensitivity of the results to lattice discretization effects is also
studied using asymmetric lattices.
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I. INTRODUCTION proved procedure is tested in detail on a system that has been

The simulation of systems containing a large number oftxtensively studied in the literatufd—7]: the osmotic pres-
mobile charged entities, in which long-range electrostaticSure of charged platesr membranesseparated by an ionic
forces play a central dynamical role, is of critical importancefluid. Finally, in Sec. V we briefly summarize our conclu-
in modern chemical physics and biophysics. In many case$/0ns.
the computational load is dominated by the evaluation of the
electrostatic energy of the system, where the long-range, | 5ca| LATTICE HAMILTONIANS FOR COULOMB
character of the Coulomb interaction greatly complicates the GAS PROBLEMS
development of efficient algorithms that scale with system
size in a way that permits study of systems of biophysical The difficulties incurred by the nonlocal nature of the
interest. Developments in supercomputing technology aime@oulomb interaction in realistic simulations of large systems
at large-scale biophysical simulations, such as the IBM Blue{for example, for large biomolecular systemare well
Gene projectl], where massively parallel assemblies of pro-known: the computational cost increases as the square of the
cessor nodes are coupled via a three-dimensional toroidalumber of charged constituents, and although various tech-
topology, suggest that algorithms based on a local energgiques(Ewald summation, fast Fourier transforms, ¢&)
functional will be much more efficiently executed on the can be employed to improve this scaling, the resulting com-
next generation of high-end computing platforms than thoselications in the algorithm often mean that the computation
involving long-range nonlocal effects. of the electrostatic energy still consumes essentially all of the

Recently, Maggs and collaboratdi®| have suggested an computational effort, greatly limiting the size of the systems
ingenious procedure for removing the nonlogahg-rangedd  and(in the case of molecular dynamics simulatiptie time
Coulomb term in equilibrium simulations of Coulomb gases.frames over which the simulations can be extended. These
By using a completely local Hamiltonian for a system of techniques also have difficulties modeling a nonuniform di-
mobile charged particles interacting with the electrostaticelectric constant, which is an important feature of many bio-
field, one avoids the unpleasant scaling characteristics qfhysical systemf9-11] as the dielectric constant in proteins
conventional Coulomb gas simulations. Unfortunatéhg  is ~2—8 while the dielectric constant of water-s80. In the
pointed out by these authors themsel{8B, the algorithm case of systems at equilibrium, it has been known for some
they propose runs into serious acceptance problems in réime [4,12—14 that the nonlocal Coulomb interaction can be
gions of physical interedtbasically, for strongly fluctuating replaced by a completely local interaction via a Hubbard-
systems In this paper, we study the origin of these accep-Stratonovich transformation, yielding a path integral formal-
tance problems and propose an improved algorithm that aism that connects naturally with the Poisson-Boltzmann
lows useful simulations of strongly fluctuating systems inmean-field theory. Unfortunately, for strongly fluctuating
which mean-field(or Poisson-Boltzmannmethods break systems perturbation theotgaddle-point expansionbreaks
down. down in this approach, and a direct numerical simulation is

In Sec. Il we briefly review the original technique of obstructed by a severe sign problem.

Maggset al, and explain the origin of the acceptance diffi-  Recently, Maggs and collaboratdr2] have proposed an
culty for charged particle moves. In Sec. Il we explain thealternative, purely local approach to the simulation of
modified update procedure designed to cure, or at least ameharged condensed systems. They exploit the fact that the
liorate, the acceptance problem for particle moves. In briefnonlocality of the Coulomb interaction is a consequence of a
the crucial point is to implement a coupled particle-field up-particular choice of gauge for describing the electromagnetic
date in which the electrostatic field is allowed to readjustfield, whereas the physically relevant quantity—the electro-
itself in tandem with charged particle moves in response tetatic energy of the system—must clearly be a gauge-
the changed electrostatic environment. In Sec. 1V, the iminvariant object. They propose that the electromagnetic field
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be simulated in terms of gauge-invariant objgsiecifically, ,é )

the electric field, represented on a discrete spatial lattice. In H==> EZ (4)

this respect, the method proposed is essentially the same as 27

that employed for over 20 years by elementary partlcl'e theo\'Nhile the Gauss’ law constraint takes the simple form

rists attacking the problem of strong interactions with the

technique of lattice quantum chromodynamics. For a review > EI =z (5)

see Ref[15]. The main distinction here is that the gauge | '

theory involved is the Abelian one of Maxwellian electrody- o ) .

namics, magnetic effects are not relevant, and the formuld©" the sum of outgoing link fields from any site containing a

tion used is a noncompact orfiee., the electric field vari- charged particle of chargge. ,

ables take unbounded vallies . Tr_le simulation of the system d_eﬁned by thg energy func-
Let us briefly recall the salient points of the formalism of tion in Eq. (4) and the constraint in Ed5) can in principle

Maggset al.[2]. The canonical partition function for a set of P& accomplished by the following algorithm:
mobile charges at locations’; at inverse temperatug@in a (1) Pick starting lattice locationgossibly randomlyfor

medium of dielectric constart may be written the N particles_ of charge;, i=1, - N. Then,. solve G_auss’
law for these fixed charge locations to obtain a starting con-

B = - - Ar — Bel8m [ dTE() figuration of electric link field variables satisfying the Gauss
Z‘f HldriDE(F)H v 'E_?P(F))e plBmfareiny”, constraint. This can easily be done by standard numerical
. ' relaxation method§17].
(1) (2) Update the electric fields by shifting all link variables

along a complete set of independent closed paths by constant
shifts, using either Metropolis or heat-bath procedures to ac-
p(F) = > edsf-r). (2) cept (rejech proposed shifts. The simplest version of this is

i simply to consider all plaquettéanit squareson the lattice,

The delta function constraint in E¢L) enforces Gauss’ law shifting the four link fields ordered around the plaquette by
', the same random amouat the range ofx set so that there

so that the electric fields integrated over correspond to the

. . o . . IS a reasonable acceptance rate for the move. Such a shift
particle locations specified through the density functipn Lo i .
clearly maintains the Gauss’ law constraint.

The formulation is manifestly local, as both the energy func- (3) Update particle locations by visiting in turn every site

tional and Gauss’ law constraint are so. There is no requireﬁ containing a charaed particle of charzieA particle move
ment that the electric fields integrated over be irrotational 9 geap "gen p

and in fact they are not; as shown by Maggsal. [2], the to tht'edne%hbo;mg S'rt]eJr'“ n Ia ra”dO”? direction IS tr(;en' h
transverse part of the electric field simply decouples from thé:ﬁ.r;s' ferﬁ ' ‘IN ere ]E ? partlc;a] ”:.kaei _'S accompanie with &
particle sector and contributes an irrelevant overall prefacto? ift of the electric fields, on the link|=(n—n+ )
to Z. Because this formalism is local, it is easily extended to
model physical systems with a nonuniform dielectric con-
stant[16]. in order to maintain the constraint in E). Here also, one
The functional integral over electric field in E@) can be can employ either Metropolis or heat-bath accégjec)
given a precise definition by introducing a spatial cubicalprocedures.
lattice, which we shall, for the time being, take to be a grid The inclusion of additional force fields, for example soft
of L® points, with lattice spacing (in all directions: the or hard exclusion potentials modeling a finite size for the
modifications needed in case of an asymmetric lattice argarticles, is, in principle, completely straightforward in this
discussed belowand periodic wraparound boundary condi- framework. When patrticles are packed closely together, or
tions in all three spatial directions. The charges i the potential changes rapidly over the scale of a lattice spac-
=1,... Nare assumed to be integer multiples of a basic uniing, then it is important to verify that the observed phenom-
of charge,e=ze, z integer, and reside on the sites of the ena are not distorted by lattice discretization effects. It is
lattice. The componert,,(n) of electric field in directionu  useful to be able to study the effects of lattice discretization
at lattice siten is associated with a real-valued fidiglon the  in such situations by introducing asymmetric lattices, in
oriented link I from A to A+u. Discretizing the three- which the lattice spacing in the various directions differs. As
dimensional integral for the electrostatic energy in the obvi-a specific example, consider a situation in which we may

where the charge densip(r) is shorthand for

IAzlﬁ'él‘zi- (6)

ous way, we find desire a finer discretization in thedirection, relative to the
y- andz directions,a,<a,=a,=a. One readily verifies that
€ - ale . : . . :
H=— f drE(F)2 — — >, EZ. (3)  Wwith the choice of the dimensionless variables
8 87
ea’
The implementation of the simulation is simplified by in- R REI le Ly
troducing dimensionless variables to the greatest extent pos- E = , (7)
sible, so we defind, = (ea®/4me)E, and a rescaled inverse f—a"E, lelL, UL,
- ] i e
temperaturg8=4me?p/ ea, in terms of which the energy be- m
comes wherelL, is the set of links in thex direction and, as before
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p=2mg ®) v
= , B
€a By 7 B
the energy function becomes Ey Ey” gy B S
1
A Eg
B Ao ac, aczs A
H=7 > ZEf+ > —Ef+ > —E7|, 9 ™

2 |§x a’ |§y a, gfz a, © T B | A B @1

while the Gauss’ law constraint retains its original form 4

given in Eq.(5).

Unfortunately, despite the appealing simplicity of the
simulation procedure outlined above, in physically realistic
situations involving strongly charged systems the method i ) ,
proves impractical, for reasons we now explain. The dimenthe move of a unit charge particle from the beginnibgt-

. . - . tom) site to the endtop) site of the central link associated
sionless inverse temperature varialeis typically large

compared to unityin the charged plate and membrane prob_With field variableE,. In conjunction with the particle move,
lem considered in Sec. IV, the value is 87.40 that typical we consider simultaneous electric field updates correspond-

values for the electric field link variables are small compared9 {0 Plaquette variable shifte;, a;, as, a, on the four
to unity. On the other hand. executing a particle move gcrojglaquettes containing the link,, as indicated in the figure.
unity. . ’ cuting a pe : uch a combined move changes the energy associated with
a link via Eq.(6) shifts the electric field variable on that link he i .
. . e illustrated region from
by an integer, and this generally leads to an unacceptabfe
~ 12

energy cost(on the order offB). In the univalent caséz H _EE £2 11
=+1), acceptance rates for particle moves are of the order of before ™ o e (1)
1074, while for divalent ions(z = +2) the acceptance rate is

at best of order 1¢. Thus, the unmodified procedure of to

Maggset al. is clearly not a practical approach in situations -
approximating real biophysical systems. In the next section, Hatror = B

FIG. 1. Local field environment for coupled particle move
updates.

R 4 2 3 R 6 R
(E0+2 o - 1) +IE (E, +al)2+|2 (E,
i=1 =1 =4

we discuss a modified simulation algorithm in which this 2
problem is ameliorated to an acceptable level. 9 12
ta)?+ 2 (E+a)’+ 2 (E+a)’ (. (12
1=7 1=10

lll. SOLVING THE PARTICLE MOVE PROBLEM: _ ) o _ -
A COUPLED UPDATE PROCEDURE In practice one finds that the electric field variables equili-

brate to values which are small compared to unity: in the
approximation where we simply s&=0 in Egs.(11) and
2), the energy cost of the combined move becomes

The problem of very inefficient particle moves mentioned
in the preceding section needs to be resolved before the loc
Hamiltonian method can be applied fruitfully to realistic
problems with strongly fluctuating Coulomb gases. Recall B 4 2 s o o
that the Hamiltonian, as a function of the electric field vari- AH=C| 2 a-1] +3(m+aytaztay|. (13
ablesE, defined on the link$ of the lattice, takes the form =1

A Minimizing Eq. (13) with respect to they, we find that the
H = gz =3 (10) choicea;=1/7 gives the minimum energy cost
|

3B 3@
. . . LA AHin === =0.43-, 14
where the dimensionless inverse-temperature varighlés mne72 2 (49

quite large for the systems that we are interested in studying -
(in the range of 50-1Q0As discussed above, the vast ma- as opposed to the cogt'2 if the particle move is unaccom-
jority of particle moves with such a Hamiltonian have a high panied by any readjustment of nearby link fields. As we shall
energy cost leading to an unacceptably low acceptance ratsee in the next section, #is large, this is enough to increase
In this section we will show that this problem can be sub-the acceptance rate for particle moves to a level where con-
stantially ameliorated—though not completely figurations can be decorrelated at an acceptable rate. Thus, a
eliminated—by a coupled update procedure in which electriquick and easily implementable improvement of the basic
field values on all the plaquettes containing the link alongalgorithm can be obtained by a Metropolis accégijec)
which the particle move is attempted are simultaneously adstep in which the choices for a particle move on a chosen
justed to reflect the changed electrical environment resultingink are (a) do nothing(to particle or fieldg or (b) perform
from the particle move. the combined update in which the patrticle is transferred to
As an example of a simple procedure that can considerthe end site of the link and the fields around the four inter-
ably improve the acceptance rate for particle moves, considesecting plaquettes are shifted by 1/7. It is clear that the en-
the situation illustrated in Fig. 1. Here, we are consideringergy cost can be further reduced by allowing readjustments
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of plaquettes adjacent to those depicted in Fig. 1. In particu- etc. (20

lar, if the link Eq in Fig. 1 corresponds to thedirection, then . . . .
adding the remainingz and yz plaquettes that contain the -€- the variable®;, i=1,2,3,4 arqust the plaquette fields
links E,, Es, Eg, andE,,, and performing the relevant mini- obtained by summing the electric link variables around each
mization, one finds however that the reduction in energy cos?f the four plaquettes containing the central link of Fig. 1,

is only about 10%, with a considerable complication in the@"d the 4<4 matrix M;;

algorithm. In this paper we have chosen to implement only M;; =38 + 1, (21)
the simplest(most local version of a coupled move-field ) i
update, corresponding to the situation in Fig. 1. is easily found to have inverse
A more general procedure, in which a heat-bath update on 1 1
the combinedparticle move+ (field update space provides M= 5(@ - ;) (22

a complete local decorrelation between adjacent Monte Carlo

configurations, can easily be derived as follows. We remind Completing the square in E¢16), we find thatH takes
the reader that, in a heat-bath Monte Carlo update, paranthe form

eters are introduced to characterize a subspace of the con- ’AB 12
figuration space in the neighborhood of the starting configu- .., _ P} ~ 5 M. £ VR £2
ration, the dependence of the full Boltzmann weight of the H=5) Bomm2 +% &M ¢ %)\'M” N ;1 B[
theory on these parameters is extradfedm the full Hamil-
tonian, and new values for these parameters are then chosen
(independent of the original configurationn the basis of
this Boltzmann weight. In the situation considered here, the &=a+ 2 M\ (24)
parameter space consists of a single discrete particle move j

variablem=0, 1 (with m=0 corresponding to no moven  The dependence of the local energy on the discrete move
=1 to a move along a specified ligkand four continuous  yariablem arises from the first and third terms in E@3);
plaquette shift variables;, i=1, ... ,4. For the indicated en- the corresponding Boltzmann weight determining the rela-

vironment of the central link, in Fig. 1, the relevant part of tjye probability of a particle movém=1) versus no move
the Hamiltonian, as a function af and the continuous (m=0) is therefore

plaguette update variables, becomes

(23

B 4 2 3 6 exp[ §<2I§02— 222 - %zz Pi)m] , (25)
H(m, ) = (Eo+2ai—mz) +2 (E+a)’+ 2 (E '
=1 =1 =4 where we have used the fact that the move variatkd , 1
° 2 so thatm?=m. A heat-bath update of the variabteis there-
+a)?+ > (B +ag)?+ > (B +ag?(, (15  fore trivial to implement.
1=7 1=10 The continuousy; variables can be generated easily from

the Gaussian distribution of thg. The eigenvalues of;
where we have introduced a varialiietege) valencez to  are easily foundthey are 7,3,3)8 as are the eigenvectors,
take care of the cas@eeded in the simulations of Sec.)IV and we find that the contribution of the second term in Eq.
of multivalent ions. In order to implement a heat-bath proce{(23) to the Boltzmann weight can be rewritten

dure for this energy function, we need to generate values for N
the quintet(m, a4, ay, a3, ,) distributed according to the B 2 2 5
Boltzmann weighe (™M) Fortunately, a complete analytic expl = 5 (7o + 3m; + 373+ 377y) | (26)
solution to this problem can easily be derived. First, we note
that the energy function in Eq15) can be reexpressed where
1
B - 12 7]1:§(§1+§2+§3+§4)1 (27)
H(m, o) = 5 (Eg—m2?+ 2 aiMjjaj + 22 Ny + X E7
ij i I=1
1
(16) 7= =&~ &), (28)
V2
where
1
=—=(& - &), 29
)\i = Pi -mz (17) 73 \3’2(53 §4) ( )
e 1
P,=Ey+E; +E,+Eg, (18) 774=5(§1+§z—§3-§4)- (30
o The heat-bath procedure for the plaquette shifttherefore
P,=Eg+E;+ E5+ Eg, (199  amounts to generating the independent Gaussian distributed
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variables, according to the weigh{26), where thea; can  nient criterion[7] for a strongly fluctuating system is that the

be reconstructed via Eq&7)—(30) and Bjerrum length £, times the square of the ion valenegbe
smaller than the Gouy-Chapman length In the systems we
a =&~ 2 M\ (81)  are considering®¢g/ u is as large as 33. We have considered
]

both divalent and univalent ions, as in previous work it was
seen that there is a repulsive pressure in the univalent case
}}\‘ . iz N (32) and anattractive pressure in the divalent ca$é,6,7]. It is
37 21 j It shown in Ref[4] that the Poisson-Boltzmann calculations of
the osmotic pressure in the divalent case break down and
To summarize, the algorithm for a coupled particle/fieldcannot even predict the sign of the osmotic pressure.
heat-bath update is implemented as follows: Our basic system consists of a 880X 50 lattice with
(1) Calculate the plaquette sunfd, i=1,2,3,4[Eqgs. periodic boundary conditions in all three dimensions. Posi-
(18—~20)] for the four plaquettes interfacing the link along tive charges are free to move on two fixed plates separated in

=& -

which we desire to move the particle. thex direction, which extend the entire extent of the lattice in
(2) Choose the move variabfe=0, 1 with weight given  they- andz directions, while the region between the plates

by Eq. (25). contains mobile counterions ensuring overall neutrality. The
(3) Generate independent Gaussian variablgs i periodicity in thex direction is not critical, as quantities ob-

=1,2,3,4according to Eq(26). served are insensitive to field fluctuations far outside the
(4) Solve Eqs.(27)—30) for the &, 1=1,2,3,4. plates. We choose a lattice spacing of 1 A, so that we can

(5) Compute\; from Eq.(17) and use Eq(32) to obtain  study plate separations in the range of interest. Using the
the desired plaquette shiftg, i=1,2,3,4,which are then dielectric constant of watefe=80.0 and room temperature

used to update the electric fielfs 1=0,...,12 as indicated (T=300 K) gives a dimensionless inverse temperatygre
in Eq. (15) (see Fig. 1 =87.1, too large to effectively simulate with simple particle
(6) If m=1 then move the particle across the consideregnoves that do not adjust the electric field on neighboring
link while updatlng the electric field on the link accordlng to p|aquettes We p|aced 34 posmve univalent Charges on each
Eq. (6). of the plates to give a surface-charge density of
Recently, the problem of low acceptance rates for particley 2176 C m?, approximately that used in Refst,6]. These
moves was noted by Magg@ al. in Ref. [3]. They present charges are allowed to move during the simulation, but are
an alternative solution to the problem where each chargeyot allowed to leave the plate. To make the system electri-
instead of residing on a single lattice site, is broken intOCa”y neutral, 68 negaﬂve|y Charged ions are p|aced between
pieces and resides on the lattice sites imamtn X ncube. In  the plates in the univalent case, and 34 negatively charged
order to move a particle, all of the pieces of the particle musions in the divalent case. Two ions are forbidden from being
be moved in unison. They have shown that the mverse tempn the same lattice site. The charges on the plates are initially
perature that they are able to simulate efficiently grows®as randomly distributed on the plates, and the ions between the
using this method. The advantage of this method is that it iplates are initially distributed with half of the ions on the
effective at increasing the acceptance rate, and that the siggpsest allowed plane to the right plate, and half on the clos-
of the cube can be chosen to give the desired acceptance raggt allowed plane to the left plate. All runs are composed of
The disadvantage of this method is that the charges ampo0 Monte Carlo equilibration steps followed by 20 000
spread out so that, for systems that are sensitive to the spatijleasurement steps. Each Monte Carlo step is composed of a
location of the charges, the lattice must be made finer by @oupled Metropolis update of the electric field around each
factor of n in every direction to obtain the same charge lo-plaquette(200x number of charges on the plateattempted
Ca“ty as the lattice with unbroken partides. USing the methmoves of a partide on the p|ate chosen at random, and
ods discussed in this work, the charges remain on a singl@0 000< number of charges in solutipattempted moves of
lattice site so there are no difficulties arising from the g particle in solution. As pointed out by Maggsal.[16], a

breakup of the ions onto different lattice sites. global update of the electric field is also included to ensure
rigorous ergodicity.
IV. APPLICATIONS: STRONGLY FLUCTUATING FIELDS To investigate the importance of the mobility of the
BETWEEN CHARGED PLATES AND MEMBRANES charges on the plates, we have also performed a set of simu-

lations with the positive charges on plates fixed at a random

To test these algorithms on a strongly charged systermitial distribution. There were no qualitative differences be-
where correlation effects play a major role, we have considtween the results of these simulations and the results of the
ered a system of charged conducting plates with ions besimulations with mobile ions on the plates that we present
tween the plates. While the system is electrically neutralhere.
there is an osmotic pressure between the plates that dependsTo investigate the errors due to lattice effects, we have
on the electrostatic interaction between the particles and oalso studied an asymmetric lattice where the lattice spacing
the correlations between the particles. This system has beéfna factor of 2 smaller in the dimension separating the plates.
extensively studied both theoreticall¢,5] and numerically  This is a 100< 50X 50 asymmetric lattice with a lattice spac-
[6,7], and is known to be a strongly fluctuating system withining of 0.5 A in thex direction so that the total volume of the
the parameter ranges in which we are interested. A convesystem remains constant. Two ions are again forbidden from
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being on the same lattice site. In the asymmetric case this 4450 [
corresponds to a different hard-sphere interaction betweel
the ions than in the symmetric lattice, but these differences
are in practice unimportant, as the ions are so sparsely dis
tributed that collision between ions is rare. < 38000 - 50x50x50 lattice

The ions between the plates will naturally accumulate on€ | = -—--— 100x50x50 lattice
the planes of lattice sites close to the plates. As the electri
potential changes rapidly in this region, the results of our g .|
simulation will depend on the details of the discretization in
this region. As the discreteness of the lattice has the larges
effect in the region close to the plates, we have chosen tc
forbid the ions from coming within 1 A of the plates. This 1000
will soften slightly the potential seen by the ions. On the .
symmetric lattice, we do not allow ions on the planes of
lattice sites closest to the plates. On the asymmetric lattice,
ions are not allowed on the two planes of lattice sites closest FIG. 2. Osmotic pressure from simulations of univalent ions at a
to the plates. range of plate separations.

We are primarily interested in observing the osmotic pres-
sure between the plates as we change the separation, both fiives the average number of ions in & 50x 50 A rectan-
the univalent and divalent ions in solution. As derived in Ref.gular box centered between the plates. Figure 4 shows the
[6], the osmotic pressure can be calculated using the expresecond term of Eq(33). The differences in results from the
sion two lattice sizes are modest, showing that the errors due to

AB lattice discretization are small. Figure 5 shows the concen-
Posm= KTC(0) + F"/(areq, (33)  tration profiles of the ions in solution from the simulations

whereC(0) is the ion concentration at the midplane &P~ ©N the 50< 50X 50 Iattllce. The ions are_attracted to the
is the average electrostatic force between the left half of th@ates, but a small density of ions remains in the center of the
system and the right half of the system. In the continuum9aP between the planes. )
this force could be written as For the divalent ions we only consider the >60x 50
lattice. Here, we use the heat-bath method for moving the
12 B particles and updating the electric fields. There are 10 000
FRB==2 > UlmXind T (34)  equilibration steps and 200000 measurement steps, and
€m n other parameters are the same as the univalent case. The

whereA is the set of all charges to the left of the midplane,solid line in Fig. 6 shows the pressure in the divalent case,
B is the set of all charges to the right of the midplang,,,  While the dashed line and dashed-dotted line show the first

is the separation between the charges inxlérection, and

10 12 14 16
Plate Separation (A)

I'mn IS the distance between the charges. In order to take intc 6000 I\ %
account lattice effects and correctly treat the periodic bound- \ , Jg
ary conditions, we have calculated the force using the lattice N oo, ?géigéig(;a}g'tﬁge 2
Coulomb force. This is done simply by replacing the con- 3 g
tinuum quantityAxmn/r?Tm in Eq. (34) by the corresponding £ £
lattice expression 5 4000 I~ 6 3
R s x

.. KT = 8

AL_Z i sm(fwkx-/L)ez | 35 g g

K0 42i=1 sinf(mrki/L) 38 4 5
wherek;=0,1,2,...L-1. ‘% 2000 I~ %
Although the osmotic pressure could be calculated by ob-© > g
serving the change in free energy as the separation of thi 38
plates is changed, work in Rg6] has shown that the pres- g
sure calculated using E¢33) has fewer fluctuations than the §

pressure calculated using the free-energy difference. 0 ;3 1'0 1'2 1'4 1'6 0

The pressure for univalent ions is shown in Fig. 2 for a Plate Separati

\ paration (A)

range of plate separations. Results are shown from both the
50X 50X 50 lattice and the 108 50X 50 lattice. The ions FIG. 3. Concentration of charges at the plane between the
are moved using the coupled Metropolis update method de:harges from simulations of univalent ions. Left axis has the same
scribed in Sec. lll, as the heat-bath method is difficult tounits as the pressure results. Right axis gives the number of charges
adapt to the asymmetric lattice. Figure 3 shows the first ternan the center plang50x 50X 50 lattice or center two planes
of Eq. (33), the concentration of ions on the plane between(100x 50x 50 lattice. This is one of the terms contributing to the
the plates, for the same simulations. The left axis of this plobsmotic pressure.

046702-6



IMPROVED LOCAL LATTICE APPROACH FOR..

-625 |-

F2B/(area x RT) (mM)

-1875 |

-1250 |

50x50x50 lattice
————— 100x50x50 lattice

Pressure contributions (mM)

PHYSICAL REVIEW E 71, 046702(2005

1000
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Total pressure
Center concentration term

Center Concentration (2500 x Number of ions/ A3)

-2500 ' ' ' ' L F4B/(area x RT)
10 12 14 16 200 F 7/ 4 -3
Plate Separation (A) /./
FIG. 4. Electrostatic force between the halves of the system for f ' ' ' '
8 10 12 14 16

univalent ions. This is the second term contributing to the osmotic

pressure. Plate Separation (A)

d dt fE®3 tivel litativel FIG. 6. Results from simulations on divalent ions at a range of
and second terms of E(B3), respectively. Qualitatively, our late separations on a 560X 50 lattice. Shown with a solid line

results agree with previous theoretical and Monte Carlqg e tota1 osmotic pressure divided BY. Shown with a dashed
work, although a direct quantitative comparison is difficult jine and a dotted-dashed line are the two terms that contribute to it,
because of the differences in how the interaction with thene jon concentration on the center plane and the electrostatic force
plate is treated. The concentration profiles of the ions in sopetween the two halves of the system. The axis on the left gives the
lution for these simulations are shown in Fig. 7. Note that theyalues in units of micromolars; the axis on the right gives the con-
ions are much more tightly bound to the plates in the divalententration on the center plane in terms of the number of ions in our
case as compared with the univalent case. system on the center plane.

The simulations discussed here would be difficult or im-
possible to perform with the simple particle Metropolis occurs because the coupled update procedure is no longer
move, which does not adjust the field on neighboringable to effectively spread the change in electric field when a
plaquettes. By using the coupled Metropolis updating moveparticle is moved in the or z directions.
described in this work, we are able to increase the acceptance When using the heat-bath approach to moving the par-
rate for particle moves in the univalent case to 0.13 fromticles, the acceptance rat& 10 for univalent ions and 0.0045
104, and in the divalent case to 0.0056 from less thar?.10 for divalent ion$ is lower than the coupled Metropolis move
The anisotropy of the 100 50X 50 lattice affects the accep- acceptance rate, but still has a much greater acceptance rate
tance rates. In this case the univalent acceptance rates usitigan the simple Metropolis particle move, which does not
the coupled Metropolis move increases to 0.48 inxthdi-  adjust the electric field on neighboring plaquettes. The ad-
rection, but the acceptance rate for particle moves perpervantage of the heat-bath approach is that it better decorre-
dicular to thex direction drops to 0.0061. This asymmetry lates the system so that the observables have a shorter auto-

25

Plate separation 16A
Plate separation 12A
Plate separation 8A

20

Plate separation 16A
Plate separation 12A
Plate separation 8A

‘
‘v
‘v
v
)
A\ '
‘
'
'
'

15 \

10 |

Concentration (2500 x Number of ions/A%)
Concentration (2500 x Number of ions/A3)

6 5 -4 3 -2 A1 0 1 2 3 4 5 6
x (relative to center plane, in A)

x (relative to center plane, in A)

FIG. 5. Concentration profile of the univalent ions in solution  FIG. 7. Concentration profile of the divalent ions in solution for
for a range of plate separations. For eaclthe average number of a range of plate separations. For eacthe average number of ions
ions in the system a distangerom the center plate is shown. The in the system a distancefrom the center plate is shown. The ion
ion concentration is 0 outside of the range shown. concentration is O outside of the range shown.
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1F separation, the autocorrelation time with the heat-bath update
is consistently smaller than the autocorrelation time for the
separation 14, metropolis method H H
os ki T___. separation 8, meiropelis mefhod coupled MeFropqlls update. Across all plate separat'lons, the
= PN e separation 14, heat-bath method autocorrelation times from heat-bath updates were five to ten
3 i T separation 8, heat-bath method times smaller than the autocorrelation times from coupled
c - . .
s o8t Metropolis updates. This more than compensates for the ad-
< 3 s . . .
® ; ditional computational cost per sweéppproximately twice
g 04l that of the coupled Metropolis updatef the heat-bath up-
5 i date.
<
02|
V. CONCLUSIONS
o, T : The development of efficient local algorithms for Monte
0 200 200 500 800 1000 1200 Carlo simulation of Coulomb systems with nonuniform di-

MonteCarlo sweeps t electric constants is crucial for the study of the larger and

more physically realistic biophysical systems of interest to
FIG. 8. Comparison of pressure autocorrelation functions USinQesearcheriQ—ll]. The technique of Maggst al. shows

the coupled Metropolis move update, and the heat-bath particlgreat promise in fulfilling these goals, but it must be shown
move update. These autocorrelation functions are all from simulayg pe efficient and accurate in physically interesting param-

tions with divalent ions.

eter ranges. Studying a system of parallel plates screened by
ion with a large dimensionless inverse temperature, we see

correlation time. The autocorrelation function of an that the simplest method of moving particles, where the elec-

observableA,; is given by tric field is only modified on the link traversed by the par-
Nt ticle, gives unusably small acceptance rates. By updating the
1 — — electric field on plaquettes neighboring the traversed link, we
Ct) = ﬁ,% (A= A (A=A, (38)  can increase the acceptance rates to a usable level. Using a

heat-bath approach reduces the autocorrelation time of the

whereA is the average oA. The autocorrelation function of simulation.

the pressure is shown in Fig. 8 for plate separations of 8 and

14 with divalent ions using both the coupled Metropolis par- ACKNOWLEDGMENTS
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