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I. INTRODUCTION

The simulation of systems containing a large number of
mobile charged entities, in which long-range electrostatic
forces play a central dynamical role, is of critical importance
in modern chemical physics and biophysics. In many cases,
the computational load is dominated by the evaluation of the
electrostatic energy of the system, where the long-range
character of the Coulomb interaction greatly complicates the
development of efficient algorithms that scale with system
size in a way that permits study of systems of biophysical
interest. Developments in supercomputing technology aimed
at large-scale biophysical simulations, such as the IBM Blue-
Gene projectf1g, where massively parallel assemblies of pro-
cessor nodes are coupled via a three-dimensional toroidal
topology, suggest that algorithms based on a local energy
functional will be much more efficiently executed on the
next generation of high-end computing platforms than those
involving long-range nonlocal effects.

Recently, Maggs and collaboratorsf2g have suggested an
ingenious procedure for removing the nonlocalslong-rangedd
Coulomb term in equilibrium simulations of Coulomb gases.
By using a completely local Hamiltonian for a system of
mobile charged particles interacting with the electrostatic
field, one avoids the unpleasant scaling characteristics of
conventional Coulomb gas simulations. Unfortunatelysas
pointed out by these authors themselvesf3gd, the algorithm
they propose runs into serious acceptance problems in re-
gions of physical interestsbasically, for strongly fluctuating
systemsd. In this paper, we study the origin of these accep-
tance problems and propose an improved algorithm that al-
lows useful simulations of strongly fluctuating systems in
which mean-fieldsor Poisson-Boltzmannd methods break
down.

In Sec. II we briefly review the original technique of
Maggset al., and explain the origin of the acceptance diffi-
culty for charged particle moves. In Sec. III we explain the
modified update procedure designed to cure, or at least ame-
liorate, the acceptance problem for particle moves. In brief,
the crucial point is to implement a coupled particle-field up-
date in which the electrostatic field is allowed to readjust
itself in tandem with charged particle moves in response to
the changed electrostatic environment. In Sec. IV, the im-

proved procedure is tested in detail on a system that has been
extensively studied in the literaturef4–7g: the osmotic pres-
sure of charged platessor membranesd separated by an ionic
fluid. Finally, in Sec. V we briefly summarize our conclu-
sions.

II. LOCAL LATTICE HAMILTONIANS FOR COULOMB
GAS PROBLEMS

The difficulties incurred by the nonlocal nature of the
Coulomb interaction in realistic simulations of large systems
sfor example, for large biomolecular systemsd are well
known: the computational cost increases as the square of the
number of charged constituents, and although various tech-
niquessEwald summation, fast Fourier transforms, etc.f8gd
can be employed to improve this scaling, the resulting com-
plications in the algorithm often mean that the computation
of the electrostatic energy still consumes essentially all of the
computational effort, greatly limiting the size of the systems
andsin the case of molecular dynamics simulationsd the time
frames over which the simulations can be extended. These
techniques also have difficulties modeling a nonuniform di-
electric constant, which is an important feature of many bio-
physical systemsf9–11g as the dielectric constant in proteins
is ,2–8 while the dielectric constant of water is,80. In the
case of systems at equilibrium, it has been known for some
time f4,12–14g that the nonlocal Coulomb interaction can be
replaced by a completely local interaction via a Hubbard-
Stratonovich transformation, yielding a path integral formal-
ism that connects naturally with the Poisson-Boltzmann
mean-field theory. Unfortunately, for strongly fluctuating
systems perturbation theoryssaddle-point expansionsd breaks
down in this approach, and a direct numerical simulation is
obstructed by a severe sign problem.

Recently, Maggs and collaboratorsf2g have proposed an
alternative, purely local approach to the simulation of
charged condensed systems. They exploit the fact that the
nonlocality of the Coulomb interaction is a consequence of a
particular choice of gauge for describing the electromagnetic
field, whereas the physically relevant quantity—the electro-
static energy of the system—must clearly be a gauge-
invariant object. They propose that the electromagnetic field
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be simulated in terms of gauge-invariant objectssspecifically,
the electric fieldd, represented on a discrete spatial lattice. In
this respect, the method proposed is essentially the same as
that employed for over 20 years by elementary particle theo-
rists attacking the problem of strong interactions with the
technique of lattice quantum chromodynamics. For a review
see Ref.f15g. The main distinction here is that the gauge
theory involved is the Abelian one of Maxwellian electrody-
namics, magnetic effects are not relevant, and the formula-
tion used is a noncompact onesi.e., the electric field vari-
ables take unbounded valuesd.

Let us briefly recall the salient points of the formalism of
Maggset al. f2g. The canonical partition function for a set of
mobile chargesei at locationsrWi at inverse temperatureb in a
medium of dielectric constante may be written

Z =E p
i=1

N

drWiDEW srWdp
rW

dX¹W ·EW −
4p

e
rsrWdCe−be/8pedrWEW srWd2,

s1d

where the charge densityrsrWd is shorthand for

rsrWd ; o
i

eidsrW − rWid. s2d

The delta function constraint in Eq.s1d enforces Gauss’ law,
so that the electric fields integrated over correspond to the
particle locations specified through the density functionr.
The formulation is manifestly local, as both the energy func-
tional and Gauss’ law constraint are so. There is no require-
ment that the electric fields integrated over be irrotational,
and in fact they are not; as shown by Maggset al. f2g, the
transverse part of the electric field simply decouples from the
particle sector and contributes an irrelevant overall prefactor
to Z. Because this formalism is local, it is easily extended to
model physical systems with a nonuniform dielectric con-
stantf16g.

The functional integral over electric field in Eq.s1d can be
given a precise definition by introducing a spatial cubical
lattice, which we shall, for the time being, take to be a grid
of L3 points, with lattice spacinga sin all directions: the
modifications needed in case of an asymmetric lattice are
discussed belowd and periodic wraparound boundary condi-
tions in all three spatial directions. The chargesei, i
=1, . . . ,N are assumed to be integer multiples of a basic unit
of charge,ei =zie, zi integer, and reside on the sites of the
lattice. The componentEmsnWd of electric field in directionm
at lattice sitenW is associated with a real-valued fieldEl on the
oriented link l from nW to nW +m̂. Discretizing the three-
dimensional integral for the electrostatic energy in the obvi-
ous way, we find

H ;
e

8p
E drWEW srWd2 → a3e

8p
o

l

El
2. s3d

The implementation of the simulation is simplified by in-
troducing dimensionless variables to the greatest extent pos-

sible, so we defineÊl ;sea2/4pedEl and a rescaled inverse

temperatureb̂;4pe2b /ea, in terms of which the energy be-
comes

H =
b̂

2o
l

Êl
2, s4d

while the Gauss’ law constraint takes the simple form

o
l

Êl = zi , s5d

for the sum of outgoing link fields from any site containing a
charged particle of chargezie.

The simulation of the system defined by the energy func-
tion in Eq. s4d and the constraint in Eq.s5d can in principle
be accomplished by the following algorithm:

s1d Pick starting lattice locationsspossibly randomlyd for
the N particles of chargezi, i =1, . . . ,N. Then, solve Gauss’
law for these fixed charge locations to obtain a starting con-
figuration of electric link field variables satisfying the Gauss
constraint. This can easily be done by standard numerical
relaxation methodsf17g.

s2d Update the electric fields by shifting all link variables
along a complete set of independent closed paths by constant
shifts, using either Metropolis or heat-bath procedures to ac-
cept srejectd proposed shifts. The simplest version of this is
simply to consider all plaquettessunit squaresd on the lattice,
shifting the four link fields ordered around the plaquette by
the same random amounta, the range ofa set so that there
is a reasonable acceptance rate for the move. Such a shift
clearly maintains the Gauss’ law constraint.

s3d Update particle locations by visiting in turn every site
nW containing a charged particle of chargezi. A particle move
to the neighboring sitenW +m̂ in a random directionm is then
considered, where the particle move is accompanied with a
shift of the electric fieldEl on the link l =snW →nW +m̂d

Êl → Êl − zi , s6d

in order to maintain the constraint in Eq.s5d. Here also, one
can employ either Metropolis or heat-bath acceptsrejectd
procedures.

The inclusion of additional force fields, for example soft
or hard exclusion potentials modeling a finite size for the
particles, is, in principle, completely straightforward in this
framework. When particles are packed closely together, or
the potential changes rapidly over the scale of a lattice spac-
ing, then it is important to verify that the observed phenom-
ena are not distorted by lattice discretization effects. It is
useful to be able to study the effects of lattice discretization
in such situations by introducing asymmetric lattices, in
which the lattice spacing in the various directions differs. As
a specific example, consider a situation in which we may
desire a finer discretization in thex direction, relative to the
y- andz directions,ax,ay=az;a. One readily verifies that
with the choice of the dimensionless variables

Êl ;5
ea2

4pe
El l P Lx

eaax

4pe
El l P Ly ø Lz

6 , s7d

whereLa is the set of links in thea direction and, as before
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b̂ =
4pe2

ea
b, s8d

the energy function becomes

H =
b̂

2S o
lPLx

ax

a
Êl

2 + o
lPLy

a

ax
Êl

2 + o
lPLz

a

ax
Êl

2D , s9d

while the Gauss’ law constraint retains its original form
given in Eq.s5d.

Unfortunately, despite the appealing simplicity of the
simulation procedure outlined above, in physically realistic
situations involving strongly charged systems the method
proves impractical, for reasons we now explain. The dimen-

sionless inverse temperature variableb̂ is typically large
compared to unitysin the charged plate and membrane prob-
lem considered in Sec. IV, the value is 87.1d, so that typical
values for the electric field link variables are small compared
to unity. On the other hand, executing a particle move across
a link via Eq.s6d shifts the electric field variable on that link
by an integer, and this generally leads to an unacceptable

energy costson the order ofb̂d. In the univalent caseszi

= ±1d, acceptance rates for particle moves are of the order of
10−4, while for divalent ionsszi = ±2d the acceptance rate is
at best of order 10−6. Thus, the unmodified procedure of
Maggset al. is clearly not a practical approach in situations
approximating real biophysical systems. In the next section,
we discuss a modified simulation algorithm in which this
problem is ameliorated to an acceptable level.

III. SOLVING THE PARTICLE MOVE PROBLEM:
A COUPLED UPDATE PROCEDURE

The problem of very inefficient particle moves mentioned
in the preceding section needs to be resolved before the local
Hamiltonian method can be applied fruitfully to realistic
problems with strongly fluctuating Coulomb gases. Recall
that the Hamiltonian, as a function of the electric field vari-
ablesEl defined on the linksl of the lattice, takes the form

H =
b̂

2o
l

Êl
2, s10d

where the dimensionless inverse-temperature variable,b̂, is
quite large for the systems that we are interested in studying
sin the range of 50–100d. As discussed above, the vast ma-
jority of particle moves with such a Hamiltonian have a high
energy cost leading to an unacceptably low acceptance rate.
In this section we will show that this problem can be sub-
stantially ameliorated—though not completely
eliminated—by a coupled update procedure in which electric
field values on all the plaquettes containing the link along
which the particle move is attempted are simultaneously ad-
justed to reflect the changed electrical environment resulting
from the particle move.

As an example of a simple procedure that can consider-
ably improve the acceptance rate for particle moves, consider
the situation illustrated in Fig. 1. Here, we are considering

the move of a unit charge particle from the beginningsbot-
tomd site to the endstopd site of the central link associated
with field variableE0. In conjunction with the particle move,
we consider simultaneous electric field updates correspond-
ing to plaquette variable shiftsa1, a2, a3, a4 on the four
plaquettes containing the linkE0, as indicated in the figure.
Such a combined move changes the energy associated with
the illustrated region from

Hbefore =
b̂

2o
l=0

12

Êl
2, s11d

to

Hafter =
b̂

2HSÊ0 + o
i=1

4

ai − 1D2

+ o
l=1

3

sÊl + a1d2 + o
l=4

6

sÊl

+ a2d2 + o
l=7

9

sÊl + a3d2 + o
l=10

12

sÊl + a4d2J . s12d

In practice one finds that the electric field variables equili-
brate to values which are small compared to unity: in the

approximation where we simply setÊl =0 in Eqs.s11d and
s12d, the energy cost of the combined move becomes

DH =
b̂

2
SSo

i=1

4

ai − 1D2

+ 3sa1
2 + a2

2 + a3
2 + a4

2dD . s13d

Minimizing Eq. s13d with respect to theai, we find that the
choiceai =1/7 gives the minimum energy cost

DHmin =
3

7

b̂

2
< 0.43

b̂

2
, s14d

as opposed to the costb̂ /2 if the particle move is unaccom-
panied by any readjustment of nearby link fields. As we shall

see in the next section, ifb̂ is large, this is enough to increase
the acceptance rate for particle moves to a level where con-
figurations can be decorrelated at an acceptable rate. Thus, a
quick and easily implementable improvement of the basic
algorithm can be obtained by a Metropolis acceptsrejectd
step in which the choices for a particle move on a chosen
link are sad do nothingsto particle or fieldsd, or sbd perform
the combined update in which the particle is transferred to
the end site of the link and the fields around the four inter-
secting plaquettes are shifted by 1/7. It is clear that the en-
ergy cost can be further reduced by allowing readjustments

FIG. 1. Local field environment for coupled particle move
updates.
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of plaquettes adjacent to those depicted in Fig. 1. In particu-
lar, if the link E0 in Fig. 1 corresponds to thez direction, then
adding the remainingxz and yz plaquettes that contain the
links E2, E5, E8, andE11, and performing the relevant mini-
mization, one finds however that the reduction in energy cost
is only about 10%, with a considerable complication in the
algorithm. In this paper we have chosen to implement only
the simplestsmost locald version of a coupled move-field
update, corresponding to the situation in Fig. 1.

A more general procedure, in which a heat-bath update on
the combinedsparticle moved+sfield updated space provides
a complete local decorrelation between adjacent Monte Carlo
configurations, can easily be derived as follows. We remind
the reader that, in a heat-bath Monte Carlo update, param-
eters are introduced to characterize a subspace of the con-
figuration space in the neighborhood of the starting configu-
ration, the dependence of the full Boltzmann weight of the
theory on these parameters is extractedsfrom the full Hamil-
toniand, and new values for these parameters are then chosen
sindependent of the original configurationd on the basis of
this Boltzmann weight. In the situation considered here, the
parameter space consists of a single discrete particle move
variable m=0,1 swith m=0 corresponding to no move,m
=1 to a move along a specified linkd, and four continuous
plaquette shift variablesai, i =1, . . . ,4. For the indicated en-
vironment of the central linkE0 in Fig. 1, the relevant part of
the Hamiltonian, as a function ofm and the continuous
plaquette update variablesai, becomes

Hsm,aid =
b̂

2HSÊ0 + o
i=1

4

ai − mzD2

+ o
l=1

3

sÊl + a1d2 + o
l=4

6

sÊl

+ a2d2 + o
l=7

9

sÊl + a3d2 + o
l=10

12

sÊl + a4d2J , s15d

where we have introduced a variablesintegerd valencez to
take care of the casesneeded in the simulations of Sec. IVd
of multivalent ions. In order to implement a heat-bath proce-
dure for this energy function, we need to generate values for
the quintet sm,a1,a2,a3,a4d distributed according to the
Boltzmann weighte−Hsm,aid. Fortunately, a complete analytic
solution to this problem can easily be derived. First, we note
that the energy function in Eq.s15d can be reexpressed

Hsm,aid =
b̂

2HsÊ0 − mzd2 + o
i,j

aiMija j + 2o
i

liai + o
l=1

12

Êl
2J ,

s16d

where

li ; Pi − mz, s17d

P1 = Ê0 + Ê1 + Ê2 + Ê3, s18d

P2 = Ê0 + Ê4 + Ê5 + Ê6, s19d

etc. s20d

i.e., the variablesPi, i =1,2,3,4 arejust the plaquette fields
obtained by summing the electric link variables around each
of the four plaquettes containing the central link of Fig. 1,
and the 434 matrix Mij

Mij = 3di j + 1, s21d

is easily found to have inverse

Mij
−1 =

1

3
Sdi j −

1

7
D . s22d

Completing the square in Eq.s16d, we find thatH takes
the form

H =
b̂

2HsÊ0 − mzd2 + o
i j

jiMijj j − o
i j

liMij
−1l j + o

l=1

12

Êl
2J ,

s23d

ji ; ai + o
j

Mij
−1l j . s24d

The dependence of the local energy on the discrete move
variablem arises from the first and third terms in Eq.s23d;
the corresponding Boltzmann weight determining the rela-
tive probability of a particle movesm=1d versus no move
sm=0d is therefore

expF b̂

2S2Ê0z−
3

7
z2 −

2

7
zo

i

PiDmG , s25d

where we have used the fact that the move variablem=0,1
so thatm2=m. A heat-bath update of the variablem is there-
fore trivial to implement.

The continuousai variables can be generated easily from
the Gaussian distribution of theji. The eigenvalues ofMij
are easily foundsthey are 7,3,3,3d, as are the eigenvectors,
and we find that the contribution of the second term in Eq.
s23d to the Boltzmann weight can be rewritten

expF−
b̂

2
s7h1

2 + 3h2
2 + 3h3

2 + 3h4
2dG , s26d

where

h1 =
1

2
sj1 + j2 + j3 + j4d, s27d

h2 =
1
Î2

sj1 − j2d, s28d

h3 =
1
Î2

sj3 − j4d, s29d

h4 =
1

2
sj1 + j2 − j3 − j4d. s30d

The heat-bath procedure for the plaquette shiftsai therefore
amounts to generating the independent Gaussian distributed
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variableshi according to the weights26d, where theai can
be reconstructed via Eqs.s27d–s30d and

ai = ji − o
j

Mij
−1l j s31d

=ji −
1

3
li +

1

21oj

l j . s32d

To summarize, the algorithm for a coupled particle/field
heat-bath update is implemented as follows:

s1d Calculate the plaquette sumsPi, i =1,2,3,4 fEqs.
s18d–s20dg for the four plaquettes interfacing the link along
which we desire to move the particle.

s2d Choose the move variablem=0,1 with weight given
by Eq. s25d.

s3d Generate independent Gaussian variableshi, i
=1,2,3,4according to Eq.s26d.

s4d Solve Eqs.s27d–s30d for the ji, i =1,2,3,4.
s5d Computeli from Eq. s17d and use Eq.s32d to obtain

the desired plaquette shiftsai, i =1,2,3,4,which are then

used to update the electric fieldsÊl, l =0, . . . ,12 as indicated
in Eq. s15d ssee Fig. 1d.

s6d If m=1 then move the particle across the considered
link while updating the electric field on the link according to
Eq. s6d.

Recently, the problem of low acceptance rates for particle
moves was noted by Maggset al. in Ref. f3g. They present
an alternative solution to the problem where each charge,
instead of residing on a single lattice site, is broken into
pieces and resides on the lattice sites in ann3n3n cube. In
order to move a particle, all of the pieces of the particle must
be moved in unison. They have shown that the inverse tem-
perature that they are able to simulate efficiently grows asn3

using this method. The advantage of this method is that it is
effective at increasing the acceptance rate, and that the size
of the cube can be chosen to give the desired acceptance rate.
The disadvantage of this method is that the charges are
spread out so that, for systems that are sensitive to the spatial
location of the charges, the lattice must be made finer by a
factor of n in every direction to obtain the same charge lo-
cality as the lattice with unbroken particles. Using the meth-
ods discussed in this work, the charges remain on a single
lattice site so there are no difficulties arising from the
breakup of the ions onto different lattice sites.

IV. APPLICATIONS: STRONGLY FLUCTUATING FIELDS
BETWEEN CHARGED PLATES AND MEMBRANES

To test these algorithms on a strongly charged system
where correlation effects play a major role, we have consid-
ered a system of charged conducting plates with ions be-
tween the plates. While the system is electrically neutral,
there is an osmotic pressure between the plates that depends
on the electrostatic interaction between the particles and on
the correlations between the particles. This system has been
extensively studied both theoreticallyf4,5g and numerically
f6,7g, and is known to be a strongly fluctuating system within
the parameter ranges in which we are interested. A conve-

nient criterionf7g for a strongly fluctuating system is that the
Bjerrum length,,B, times the square of the ion valence,z, be
smaller than the Gouy-Chapman length,m. In the systems we
are consideringz2,B/m is as large as 33. We have considered
both divalent and univalent ions, as in previous work it was
seen that there is a repulsive pressure in the univalent case
and anattractive pressure in the divalent casef4,6,7g. It is
shown in Ref.f4g that the Poisson-Boltzmann calculations of
the osmotic pressure in the divalent case break down and
cannot even predict the sign of the osmotic pressure.

Our basic system consists of a 50350350 lattice with
periodic boundary conditions in all three dimensions. Posi-
tive charges are free to move on two fixed plates separated in
thex direction, which extend the entire extent of the lattice in
the y- andz directions, while the region between the plates
contains mobile counterions ensuring overall neutrality. The
periodicity in thex direction is not critical, as quantities ob-
served are insensitive to field fluctuations far outside the
plates. We choose a lattice spacing of 1 Å, so that we can
study plate separations in the range of interest. Using the
dielectric constant of waterse=80.0d and room temperature

sT=300 Kd gives a dimensionless inverse temperatureb̂
=87.1, too large to effectively simulate with simple particle
moves that do not adjust the electric field on neighboring
plaquettes. We placed 34 positive univalent charges on each
of the plates to give a surface-charge density of
0.2176 C m−2, approximately that used in Refs.f4,6g. These
charges are allowed to move during the simulation, but are
not allowed to leave the plate. To make the system electri-
cally neutral, 68 negatively charged ions are placed between
the plates in the univalent case, and 34 negatively charged
ions in the divalent case. Two ions are forbidden from being
on the same lattice site. The charges on the plates are initially
randomly distributed on the plates, and the ions between the
plates are initially distributed with half of the ions on the
closest allowed plane to the right plate, and half on the clos-
est allowed plane to the left plate. All runs are composed of
5000 Monte Carlo equilibration steps followed by 20 000
measurement steps. Each Monte Carlo step is composed of a
coupled Metropolis update of the electric field around each
plaquettes2003 number of charges on the platesd, attempted
moves of a particle on the plate chosen at random, and
s20 0003 number of charges in solutiond attempted moves of
a particle in solution. As pointed out by Maggset al. f16g, a
global update of the electric field is also included to ensure
rigorous ergodicity.

To investigate the importance of the mobility of the
charges on the plates, we have also performed a set of simu-
lations with the positive charges on plates fixed at a random
initial distribution. There were no qualitative differences be-
tween the results of these simulations and the results of the
simulations with mobile ions on the plates that we present
here.

To investigate the errors due to lattice effects, we have
also studied an asymmetric lattice where the lattice spacing
is a factor of 2 smaller in the dimension separating the plates.
This is a 100350350 asymmetric lattice with a lattice spac-
ing of 0.5 Å in thex direction so that the total volume of the
system remains constant. Two ions are again forbidden from
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being on the same lattice site. In the asymmetric case this
corresponds to a different hard-sphere interaction between
the ions than in the symmetric lattice, but these differences
are in practice unimportant, as the ions are so sparsely dis-
tributed that collision between ions is rare.

The ions between the plates will naturally accumulate on
the planes of lattice sites close to the plates. As the electric
potential changes rapidly in this region, the results of our
simulation will depend on the details of the discretization in
this region. As the discreteness of the lattice has the largest
effect in the region close to the plates, we have chosen to
forbid the ions from coming within 1 Å of the plates. This
will soften slightly the potential seen by the ions. On the
symmetric lattice, we do not allow ions on the planes of
lattice sites closest to the plates. On the asymmetric lattice,
ions are not allowed on the two planes of lattice sites closest
to the plates.

We are primarily interested in observing the osmotic pres-
sure between the plates as we change the separation, both for
the univalent and divalent ions in solution. As derived in Ref.
f6g, the osmotic pressure can be calculated using the expres-
sion

posm= kTCs0d + Fx
AB/saread, s33d

whereCs0d is the ion concentration at the midplane andFx
AB

is the average electrostatic force between the left half of the
system and the right half of the system. In the continuum,
this force could be written as

Fx
AB =

1

e
o
m

A

o
n

B

qnqmDxmn/rmn
3 , s34d

whereA is the set of all charges to the left of the midplane,
B is the set of all charges to the right of the midplane,Dxmn
is the separation between the charges in thex direction, and
rmn is the distance between the charges. In order to take into
account lattice effects and correctly treat the periodic bound-
ary conditions, we have calculated the force using the lattice
Coulomb force. This is done simply by replacing the con-
tinuum quantityDxmn/ rmn

3 in Eq. s34d by the corresponding
lattice expression

4p

L3 o
kWÞ0

i sins2pkx/Lde2pikW·rWmn

4oi=1

3
sin2spki/Ld

, s35d

whereki =0,1,2, . . . ,L−1.
Although the osmotic pressure could be calculated by ob-

serving the change in free energy as the separation of the
plates is changed, work in Ref.f6g has shown that the pres-
sure calculated using Eq.s33d has fewer fluctuations than the
pressure calculated using the free-energy difference.

The pressure for univalent ions is shown in Fig. 2 for a
range of plate separations. Results are shown from both the
50350350 lattice and the 100350350 lattice. The ions
are moved using the coupled Metropolis update method de-
scribed in Sec. III, as the heat-bath method is difficult to
adapt to the asymmetric lattice. Figure 3 shows the first term
of Eq. s33d, the concentration of ions on the plane between
the plates, for the same simulations. The left axis of this plot

gives the average number of ions in a 1350350 Å rectan-
gular box centered between the plates. Figure 4 shows the
second term of Eq.s33d. The differences in results from the
two lattice sizes are modest, showing that the errors due to
lattice discretization are small. Figure 5 shows the concen-
tration profiles of the ions in solution from the simulations
on the 50350350 lattice. The ions are attracted to the
plates, but a small density of ions remains in the center of the
gap between the planes.

For the divalent ions we only consider the 50350350
lattice. Here, we use the heat-bath method for moving the
particles and updating the electric fields. There are 10 000
equilibration steps and 200 000 measurement steps, and
other parameters are the same as the univalent case. The
solid line in Fig. 6 shows the pressure in the divalent case,
while the dashed line and dashed-dotted line show the first

FIG. 2. Osmotic pressure from simulations of univalent ions at a
range of plate separations.

FIG. 3. Concentration of charges at the plane between the
charges from simulations of univalent ions. Left axis has the same
units as the pressure results. Right axis gives the number of charges
on the center planes50350350 latticed or center two planes
s100350350 latticed. This is one of the terms contributing to the
osmotic pressure.
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and second terms of Eq.s33d, respectively. Qualitatively, our
results agree with previous theoretical and Monte Carlo
work, although a direct quantitative comparison is difficult
because of the differences in how the interaction with the
plate is treated. The concentration profiles of the ions in so-
lution for these simulations are shown in Fig. 7. Note that the
ions are much more tightly bound to the plates in the divalent
case as compared with the univalent case.

The simulations discussed here would be difficult or im-
possible to perform with the simple particle Metropolis
move, which does not adjust the field on neighboring
plaquettes. By using the coupled Metropolis updating move
described in this work, we are able to increase the acceptance
rate for particle moves in the univalent case to 0.13 from
10−4, and in the divalent case to 0.0056 from less than 10−6.
The anisotropy of the 100350350 lattice affects the accep-
tance rates. In this case the univalent acceptance rates using
the coupled Metropolis move increases to 0.48 in thex di-
rection, but the acceptance rate for particle moves perpen-
dicular to thex direction drops to 0.0061. This asymmetry

occurs because the coupled update procedure is no longer
able to effectively spread the change in electric field when a
particle is moved in they or z directions.

When using the heat-bath approach to moving the par-
ticles, the acceptance rates0.10 for univalent ions and 0.0045
for divalent ionsd is lower than the coupled Metropolis move
acceptance rate, but still has a much greater acceptance rate
than the simple Metropolis particle move, which does not
adjust the electric field on neighboring plaquettes. The ad-
vantage of the heat-bath approach is that it better decorre-
lates the system so that the observables have a shorter auto-

FIG. 4. Electrostatic force between the halves of the system for
univalent ions. This is the second term contributing to the osmotic
pressure.

FIG. 5. Concentration profile of the univalent ions in solution
for a range of plate separations. For eachx, the average number of
ions in the system a distancex from the center plate is shown. The
ion concentration is 0 outside of the range shown.

FIG. 6. Results from simulations on divalent ions at a range of
plate separations on a 50350350 lattice. Shown with a solid line
is the total osmotic pressure divided byRT. Shown with a dashed
line and a dotted-dashed line are the two terms that contribute to it,
the ion concentration on the center plane and the electrostatic force
between the two halves of the system. The axis on the left gives the
values in units of micromolars; the axis on the right gives the con-
centration on the center plane in terms of the number of ions in our
system on the center plane.

FIG. 7. Concentration profile of the divalent ions in solution for
a range of plate separations. For eachx, the average number of ions
in the system a distancex from the center plate is shown. The ion
concentration is 0 outside of the range shown.
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correlation time. The autocorrelation function of an
observableAt is given by

Cstd =
1

N − t
o
j=1

N−t

sAj − ĀdsAj+t − Ād, s36d

whereĀ is the average ofAt. The autocorrelation function of
the pressure is shown in Fig. 8 for plate separations of 8 and
14 with divalent ions using both the coupled Metropolis par-
ticle move update and the heat-bath particle move update.
Although the autocorrelation timesobtained by integrating
the autocorrelation functiond increases with the larger plate

separation, the autocorrelation time with the heat-bath update
is consistently smaller than the autocorrelation time for the
coupled Metropolis update. Across all plate separations, the
autocorrelation times from heat-bath updates were five to ten
times smaller than the autocorrelation times from coupled
Metropolis updates. This more than compensates for the ad-
ditional computational cost per sweepsapproximately twice
that of the coupled Metropolis updated of the heat-bath up-
date.

V. CONCLUSIONS

The development of efficient local algorithms for Monte
Carlo simulation of Coulomb systems with nonuniform di-
electric constants is crucial for the study of the larger and
more physically realistic biophysical systems of interest to
researchersf9–11g. The technique of Maggset al. shows
great promise in fulfilling these goals, but it must be shown
to be efficient and accurate in physically interesting param-
eter ranges. Studying a system of parallel plates screened by
ion with a large dimensionless inverse temperature, we see
that the simplest method of moving particles, where the elec-
tric field is only modified on the link traversed by the par-
ticle, gives unusably small acceptance rates. By updating the
electric field on plaquettes neighboring the traversed link, we
can increase the acceptance rates to a usable level. Using a
heat-bath approach reduces the autocorrelation time of the
simulation.
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FIG. 8. Comparison of pressure autocorrelation functions using
the coupled Metropolis move update, and the heat-bath particle
move update. These autocorrelation functions are all from simula-
tions with divalent ions.
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