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We show that spatial solitons on either phase- or amplitude-modulated backgrounds can change their direc-
tion of motion according to the modulation frequency. A soliton may, therefore, move up or down phase
gradients or remain motionless regardless of where it is in relation to the background modulation. The general
theory is in good agreement with numerical results in a variety of nonlinear systems.
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I. INTRODUCTION

Spatially localized structures are of wide scientific interest
in disciplines as diverse as photonicsf1g, hydrodynamicsf2g,
Bose-Einstein condensationf3g, chemical oscillationsf4g,
and biological morphogenesisf5g. The Swift-Hohenberg,
Ginzburg-Landau, nonlinear Schrödinger, and other proto-
type equations provide common settings for their investiga-
tion and characterizationf6g. Problems related to soliton be-
havior in the presence of perturbations have also been
pursued for a number of yearsssee, for example,f7,8gd. In
optics, studies of the behavior of localized structures and
spatial solitons on inhomogeneous backgrounds have shown
that the breaking of translational invariance leads to their
motion f9–13g. For example, cavity solitons in nonlinear ab-
sorbersf9g and frequency convertersf12,13g move up phase
gradients. Cavity solitons in detuned quadratic media can
also move and come to rest away from extrema of a spatially
varying parameter while seeking resonance with the cavity
or move up phase gradients with oscillating velocitiesf13g.

While the investigation of solitons on modulated back-
grounds is not new, here we point out the existence of pre-
viously unrecognized phenomena associated with certain
types of regular modulation. Specifically, we show that for a
sinusoidal modulation of wave vectorK, the soliton velocity
is proportional to a simple, but nontrivial, function ofK. This
function turns out to be the spatial Fourier transformsFTd of
a function related to the unperturbed soliton itself. When the
FT changes sign upon variation of a control parameter, the
direction of motion is therefore reversed. Furthermore, at fre-
quencies where the FT is zero, solitons are stationary at any
spatial location in spite of the background modulations.
These results are general and are verified here in model equa-
tions such as the Swift-HohenbergsSHd and parametrically
driven Ginzburg-LandausPDGLd equations, as well as mod-
els of photonic systems such as the degenerate optical para-
metric oscillatorf14g and a nonlinear absorber in an optical
cavity f9g. In optics, for example, such knowledge is of cru-
cial importance when constructing robust arrays of solitons
for information processingf1,15g and quantum imagingf16g.

In Sec. II we make a precise statement of the class of
problems we intend to study. We restate the well-known ex-

pression for the velocity of otherwise stationary solutions in
the presence of spatial perturbationsf10,11g. We then point
out novel consequences of this analysis when the perturba-
tion is sinusoidal. In Sec. III we investigate our predictions
in several models of nonlinear optical systems, using both
the perturbative results and numerical integration of the
equations. In Sec. IV we demonstrate the generality of the
phenomena by showing their occurrence in the PDGL and
SH equations. In Sec. V we show briefly how the results can
be generalized to two dimensionss2Dd. Section VI contains
our conclusions.

II. MOTION INDUCED BY COSINUSOIDAL
PERTURBATIONS

Consider a field governed by partial differential equations
of the following general form:

]tW= HsW,¹2Wd + mgsW;xd. s1d

The quantityW represents a column vector of field variables
while H is a function containing both linear and nonlinear
terms, but not depending explicitly on timet or the spatial
coordinates. The real quantitym parametrizes the magnitude
of the spatial-symmetry-breaking term whilegsW;xd may be
either homogeneous or inhomogeneous inW. Many pattern-
forming systems can be described by models of this form,
including optical cavitiesf1g and reaction-diffusion systems
f5g. In the subsequent discussion we will restrict ourselves to
one spatial dimension, so that¹2;]xx. Such a situation is
not unphysical and in optics, for example, could correspond
to a planar waveguide geometry, in which the fields are
tightly confined in one spatial direction. Our results can,
however, be generalized to 2D as we will show.

We assume that Eq.s1d possesses a time-independent, lo-
calized solutionW0sxd whenm is set to zero. Since the only
explicit spatial dependence is now via the operator]xx, Eq.
s1d is invariant under spatial translations, and soW0sx−x0d is
also a solution for anyx0. sWe are also assuming that the
boundary conditions do not break the translational invari-
ance.d This implies

Ls]xW0d = 0, s2d

whereL is the Jacobian ofHsW,¹2Wd evaluated atW0. In
other words,L has at least one zero eigenvalue and corre-
sponding eigenvectorf0sxd~]xW0.*Electronic address: andrew@phys.strath.ac.uk
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Now we consider 0, umu!1, so that the localized solu-
tion persists, and assume thatgsW;xd is not a constant. All
spatial positions are no longer equivalent and, in general, the
localized solution will move. A singular perturbation analysis
of Eq. s1d f11g yields, toOsmd, the velocity of the localized
solution at a pointx:

vsxd = − kc0sadumg„Wsad;a + x…l, s3d

whereL†c0=0 andkc0uf0l=1.
The appealingly straightforward interpretation of Eq.s3d

is that the component ofmgsW;xd along the direction of the
generator of translations forW0sxd fEq. s2dg causes move-
ment of the localized solution by a proportionate amount
f11g.

The velocity may vanish at isolated points in space. For
example, with an underlying solutionW0sxd of even parity,
vsxd will vanish at points about whichgsW;xd is symmetric,
where the two possible spatial directions are locally equiva-
lent. This result is in agreement with an independent argu-
ment showing that, in certain cases,vsxd is proportional to
the gradient of an appliedsphased modulation f9g. In the
optics community in particular, both of these approaches
have served to support the view that localized solutions
climb the gradient of any externally applied phase modula-
tion, a phenomenon seen in several theoreticalssee f9,12g
and, for more general parameter perturbations,f13gd and ex-
perimentalf17g contexts.

The result expressed by Eq.s3d is well knownf10,11,13g.
For a physically important class of modulations, however, it
implies a type of novel behavior which has not been reported
before. Consider, therefore, the case of a cosinusoidalsor
sinusoidald perturbationgsW;xd=jsWdcossKxd. In the com-
mon situation where the localized solution is an even func-
tion of space,jsWd is also even whilec0 is odd. Therefore

vsxd = kc0sadumj„Wsad…sinsKadlsinsKxd, s4d

so that the velocity field factorizes into a spatially indepen-
dent amplitude and a sinusoid with the same frequency as,
but different phase from, the perturbationgsW;xd. The am-
plitude term

AsKd ; kc0sadumj„Wsad…sinsKadl s5d

is simply sproportional tod the Fourier sine transform of
c0

* ·mj or, sincec0
* ·mj is odd,

AsKd = − iÎ2pF„c0
* · mjsWd…, s6d

where Fs¯d denotes a FT. From this it can be seen that
gsW;xd couples to the translational mode of the system only
through the Fourier component ofc0

* ·j at the same fre-
quency. IfAsKd changes sign for some value ofK, a solution
which previously moved upsdownd the gradient of the ap-
plied modulation will move in the opposite direction. More-
over, if a particular frequencyK0 is absent from the Fourier
spectrum, thenAsK0d is zero and the velocity vanishes si-
multaneouslyat all points in space. This corresponds to a
function gsW;xd in Eq. s1d which breaks the spatial symme-
try but which is invisible to the underlying localized solu-
tion, at least with respect to its motion.

Although Eq.s3d only approximates the velocity to lowest
order in the parameterm, we will demonstrate in the follow-
ing two sections that changes of signsand hence “vanish-
ings”d of the velocity field can occur in several specific ex-
amples and are well described by Eqs.s4d and s5d.

III. REVERSAL OF SOLITON MOTION IN OPTICAL
SYSTEMS

We first consider the mean-field model for a degenerate
optical parametric oscillatorsDOPOd at resonancef14g:

]tA0 = gf− A0 + EI − A1
2g +

i

2
]xxA0,

]tA1 = − A1 + A0A1
* + i]xxA1, s7d

where A0 and A1 denote thescomplexd amplitudes of the
pump and signal fields, respectively. Time has been normal-
ized by the photon lifetime in the signal cavity and space by
the square root of the diffraction coefficient. The parameter
g=g0/g1 is the ratio between the pump and signal cavity
decay rates andEI is the amplitude of the external pump
field.

In the case of plane-wave pumping,EI is a sreald constant
function of x. Families of stable, localized solutions to Eqs.
s7d scavity solitonsd, distinguished by their widths, exist for
EI .1 and can be viewed as locked pairs of fronts, each of
which asymptotically connects the two solutionsA1

±

; ±ÎEI −1 f12g. We consider the narrowest of such locked
solutions, which is also the most stablef12g. A small phase
modulation of the pump,

EI = E0e
im cossKxd, s8d

induces motion of the soliton. In practice, such a modulation
can be achieved by placing a mask in front of the pump
beam. Equations8d is consistent with the assumptions lead-
ing to Eqs.s7d as long as the wave vectorK is not too large:
specifically, as long asE0mK2=Os1d. In what follows,E0 is
of order 1, and we will takem=0.01 withK always less than
7.

In Fig. 1 we plot the velocity of the soliton, measured at
the point of the largest phase gradient, as a function ofK, the
wave vector of the modulation, for a fixed value of the pump
amplitude,E0. These results were obtained by integrating
Eqs.s7d on a 1024-, 4096-, or 8192-point gridsdepending on
resolution constraintsd using a split-step method and with
periodic boundary conditions. The size of the integration do-
main was varied to allow sufficient resolution ofK. Also
shown are the values ofAsKd calculated using Eq.s5d. From
Eq. s8d, j is a constant vector, and the component ofc0
corresponding to ImsA0d is the only one which couples to the
field to produce soliton motionsinset to Fig. 1d. Both the
simulations and Eq.s3d indicate local extrema ofA separated
by zeros atK.0.351,0.497,1.02,1.66, whereFsc0

* ·jd van-
ishes. At such points the coupling between the modulation
and translational mode of the field vanishes, and there is no
induced motion. Whether a zero ofA actually occurs or not
depends on the details of the underlying solution, which
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change with the parameters of the system. Figure 2 shows
the collision and mutual annihilation of the first two zeros as
the pump amplitude is increased. Note that these phenomena
persist away from cavity resonance.

The fact that the velocityv→0 asK→` is to be expected
on physical grounds: below a certain length scale the soliton

cannot distinguish the fine structure of the perturbation and
only responds to its average value. At the other extreme, as
K→0, the phase modulation is almost constant on the scale
of c0, and the phase gradient on which the soliton moves
becomes shallower and shallower, causing the velocity to go
to zero once again.

We can perform a similar analysis for a two-level atomic
medium placed in an optical cavity, described by the equa-
tion f9,18g

]tE = − s1 + iudE + EI + GsuEu2dE + i]xxE,

GsuEu2d = −
2Cs1 − iDd

1 + D2 + uEu2
, s9d

whereE is the intracavity optical field,u is the cavity detun-
ing, D is the detuning of the light field from atomic reso-
nance,EI is, again, an external driving field, and time and
space are scaled to the photon lifetime and the diffraction
length, respectively.

Equations9d is known to possess cavity soliton solutions
soptical bullet holesd f9,18g. If we select one such solution,
modulate the pump phasefEq. s8dg, and perform the same
analysis as for the DOPO, using Eq.s3d, we find similar
behavior: a zero of the velocity and concomitant difference
in the direction of motion on either side of the zerosFig. 3d.
Numerical integration of Eq.s9d confirms that forK,2.5
sK.2.5d solitons ascendsdescendd the applied phase gradi-
ent. If we redefineG in Eq. s9d asGsuEu2d= i uEu2, the resulting
equation describes an optical cavity containing asself-
focusingd Kerr medium. Again, this system exhibits soliton

FIG. 1. Plot ofAsKd for the DOPO models7d. The solid line is
obtained from Eq.s5d; the diamonds indicate values taken from
simulations.AsKd=0 is indicated by the horizontal dotted line. Pa-
rameters areE0=1.2 andm=0.01. The inset shows the component
of c0 corresponding to ImsA0d.

FIG. 2. Locations of the first two zeros ofAsKd for the DOPO
as a function of the pump amplitude,E0. The data are taken from
simulations of Eqs.s7d. All other parameters as in Fig. 1.

FIG. 3. Plot of AsKd for the two-level ssolid lined and Kerr
sdashed lined cavity models. For the two-level cavity,u=−1.2, C
=5.4, andE0=6.65. For the Kerr cavity,u=1.6 andE0=1.15. In
both casesm=0.01. The inset showsAsKd for the SH equations10d.
Parameters arez=1, a=0.5, D=0, E0=1.4, andm=0.01.
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solutionsf19g, but for a typical soliton, no zeros in the ve-
locity are observedsFig. 3d. This illustrates the fact that,
although the phenomenon is general, it is not universal, even
among systems which are structurally similar.

Because the operatorL fEq. s2dg is not in general self-
adjoint, we usually cannot calculate the adjoint null eigen-
vectorc0 which appears in Eq.s6d. Empirically, however, we
often notice a strong resemblance between the components
of c0 and those off0, the null eigenvector ofL. Sincef0 is
just the spatial derivative of the solitonfEq. s2dg, a zero in
the FT of a component off0 sexcept atK=0d implies a zero
in the FT of the corresponding component of the soliton
itself. A zero in the FT of the unperturbed soliton is, there-
fore, a good indicator of the existence and location of a value
of K at which the soliton motion vanishesscompare Figs. 4
and 3d. This means that the soliton itself can be used as a
good diagnostic for the occurrence of reversible motion,
without recourse toL† and its eigenvectors. From an experi-
mental point of view, only the soliton data are accessible or
even meaningful. Such an indicator, approximate though it
may be, is therefore potentially extremely useful.

IV. SH AND PDGL EQUATIONS

The true generality of the phenomena reported in the pre-
vious two sections is demonstrated by looking at models not
particular to optics. We first consider the real SH equation,
one of the standard model equations in the study of pattern
formation f2,6g, which we write in the form

]tw = sE − 1dw − zw3 − asD + ¹2d2w s10d

and in which all variables and parameters are real. As with
Eq. s7d for the DOPO, Eq.s10d possesses equivalent homo-

geneous solutionsw±= ±ÎsE−1d /z for E.1, domain walls
connecting them, and locked pairs of domain walls in the
form of solitons. In this case, since the field is real, we con-
sider an amplitude modulated driving termE
=E0 expfm cossKxdg.

A typical example ofAsKd is given in the inset to Fig. 3.
Again, we note the presence of zerossat K.0.45,1.36d and
changes of sign, as well as the fact that solitons descend the
gradient of the amplitude modulation for smallK, in contrast
with the previous examples. These predictions are again con-
firmed by direct simulation of Eq.s10d. For example, Fig. 5
shows a time sequence of a soliton descending the gradient
of the amplitude-modulated pump, in agreement with Fig. 3.

Figure 3 demonstrates the existence of the phenomenon,
not only in yet another model, but also for amplitudesas
opposed to phased modulation. Indeed, adding an analogous
amplitude modulation to the pump term in Eqs.s7d produces
a curve similar in appearance to that in Fig. 3. This is not
surprising, since Eq.s10d is the order parameter equation
describing the DOPO close to threshold and foruD1u!1,
whereD1 is the signal field detuningf12,20g. We also note
that, over certain ranges of wave vectorK, it is sometimes
possible for the modulation to destabilize the narrowest soli-
ton in favor of the next highest-order solitonf12g. This de-
stabilization can also occur in the PDGL equation below, but
is outside the scope of this paper and will be discussed else-
where.

As a second example of the generality of the phenomena,
we mention the PDGL equationf21,22g

]tA = hA − zuAu2A + D¹2A + pA* , s11d

where the parameters can be complex. Stationary solutions
of Eq. s11d again include localized states in the form of

FIG. 4. The imaginary part of the Fourier transform ofdxE for
the two-level cavity solitonfEq. s9dg. u=−1.2, C=5.4, andE0

=6.65, as in Fig. 3.

FIG. 5. Time sequence of an SH solitonfEq. s10dg descending
the gradient of an amplitude modulated pumpsdashed lined. Param-
eters arez=1, a=0.5,D=0, E0=1.4, andm=0.01, as in the inset to
Fig. 3. The soliton is shown atsad t=0, sbd t=30 000, and
scd t=120 000 cavity lifetimes.
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locked pairs of domain walls. When, for example, a cosinu-
soidal amplitude modulation is added to the parameterp,
application of Eq.s3d or direct simulation of Eq.s11d again
indicate the reversal of motion and existence of zeros of the
velocity of these solitons for certain values ofK fwe omit a
plot of AsKd for the PDGL equation to avoid repetitiong.

V. TWO DIMENSIONS

It is straightforward to generalize our results to two spa-
tial dimensions and “square” perturbations of the formf9g

gsW;x,yd = jsWdfA cossK1xd + B cossK2ydg, s12d

whereA and B are constants. In this case the Jacobian has
two independent null eigenvectors, corresponding to motion
in the x and y directions. Each translational mode couples
only to the appropriate cosine term in Eq.s12d and the com-
ponents of velocity in thex and y directions can each be
expressed in the form of Eq.s4d:

vx = Amkc0xsax,ayduj„Wsax,ayd…sinsK1axdlsinsK1xd,

vy = Bmkc0ysax,ayduj„Wsax,ayd…sinsK2aydlsinsK2yd.

s13d

In particular, it is possible to choose values ofK1 and K2
such that a localized structure climbs the modulation gradi-
ent in one spatial direction and descends itsor remains sta-

tionaryd in the orthogonal direction. This has been confirmed
in simulations of the 2D version of Eq.s9d.

VI. CONCLUSIONS

In conclusion, we have shown that localized solutions of a
large class of equations may move up or down the gradient
of an imposed cosinusoidal perturbation, depending on the
wave vector of the modulation. More surprisingly, there may
exist modulation frequencies at which the motion of the lo-
calized solutions vanishes identically, at every point in space.
This behavior owes its existence to changes of sign in the
Fourier spectrum of a function associated with the localized
solution itself. We have demonstrated these phenomena in
models specific to optics, where such phase and amplitude
modulations have been proposedf9,13g and employedf17g
to control the positions of spatial solitons. The behavior is
more general, however, as evidenced by its existence in the
SH and PDGL models. It could also occur in BEC solitons
on modulated backgrounds, such as optical lattices.
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