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Reversible soliton motion
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We show that spatial solitons on either phase- or amplitude-modulated backgrounds can change their direc-
tion of motion according to the modulation frequency. A soliton may, therefore, move up or down phase
gradients or remain motionless regardless of where it is in relation to the background modulation. The general
theory is in good agreement with numerical results in a variety of nonlinear systems.
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I. INTRODUCTION pression for the velocity of otherwise stationary solutions in
) . ) o the presence of spatial perturbatidi®,11]. We then point

Spatially localized structures are of wide scientific interesty i+ novel consequences of this analysis when the perturba-

in disciplines as diverse as photonjds, hydrodynamic$2], o, is sinusoidal. In Sec. Il we investigate our predictions
Bose-Einstein condensatlc{rS]_, chemical O_SCI||atI0nS[4]7 in several models of nonlinear optical systems, using both
and biological morphogenesi]. The Swift-Hohenberg, the perturbative results and numerical integration of the
Ginzburg-Landau, nonlinear Schrodinger, and other protogquations. In Sec. IV we demonstrate the generality of the
type equations provide common settings for their inveStigaphenomena by showing their occurrence in the PDGL and
tion and characterizatioj]. Problems related to soliton be- gp equations. In Sec. V we show briefly how the results can

havior in the presence of perturbations have also beeBe generalized to two dimensiof@D). Section VI contains
pursued for a number of yeatsee, for example,7,8]). In 4+ conclusions.

optics, studies of the behavior of localized structures and

spatial solitons on inhomogeneous backgrounds have shown II. MOTION INDUCED BY COSINUSOIDAL

that the breaking of translational invariance leads to their PERTURBATIONS

motion[9-13]. For example, cavity solitons in nonlinear ab- ) ] S ) )
sorberd 9] and frequency convertef42,13 move up phase Consider a field governed by partial differential equations
gradients. Cavity solitons in detuned quadratic media ca®f the following general form:

also.move and come to rest away from extrema of a spatia_lly W= H(W, V2W) + 1g(W:x). (1)
varying parameter while seeking resonance with the cavity
or move up phase gradients with oscillating velocifi€3]. The quantityW represents a column vector of field variables

While the investigation of solitons on modulated back-while H is a function containing both linear and nonlinear
grounds is not new, here we point out the existence of preterms, but not depending explicitly on timeor the spatial
viously unrecognized phenomena associated with certainoordinates. The real quantify parametrizes the magnitude
types of regular modulation. Specifically, we show that for aof the spatial-symmetry-breaking term whgéw; x) may be
sinusoidal modulation of wave vectt, the soliton velocity  either homogeneous or inhomogeneous\inMany pattern-
is proportional to a simple, but nontrivial, functioniéf This ~ forming systems can be described by models of this form,
function turns out to be the spatial Fourier transfdifit) of  including optical cavitieg1] and reaction-diffusion systems
a function related to the unperturbed soliton itself. When thd5]. In the subsequent discussion we will restrict ourselves to
FT changes sign upon variation of a control parameter, thene spatial dimension, so th&¢=4,,. Such a situation is
direction of motion is therefore reversed. Furthermore, at frenot unphysical and in optics, for example, could correspond
guencies where the FT is zero, solitons are stationary at artp a planar waveguide geometry, in which the fields are
spatial location in spite of the background modulations.tightly confined in one spatial direction. Our results can,
These results are general and are verified here in model equiaewever, be generalized to 2D as we will show.
tions such as the Swift-Hohenbef§H) and parametrically We assume that Eql) possesses a time-independent, lo-
driven Ginzburg-Landa(@PDGL) equations, as well as mod- calized solutionWy(x) when u is set to zero. Since the only
els of photonic systems such as the degenerate optical parexplicit spatial dependence is now via the operaitgr Eq.
metric oscillator[14] and a nonlinear absorber in an optical (1) is invariant under spatial translations, andvBgix—x,) is
cavity [9]. In optics, for example, such knowledge is of cru- also a solution for any,. (We are also assuming that the
cial importance when constructing robust arrays of solitonsoundary conditions do not break the translational invari-
for information processinfl,15] and quantum imaginfl6].  ance) This implies

In Sec. Il we make a precise statement of the class of
problems we intend to study. We restate the well-known ex- L(aWo) =0, (2)

where £ is the Jacobian oH(W, VW) evaluated ai\,. In
other words,£ has at least one zero eigenvalue and corre-
*Electronic address: andrew@phys.strath.ac.uk sponding eigenvectapy(x) o W,.

1539-3755/2005/7%)/0466025)/$23.00 046602-1 ©2005 The American Physical Society



SCROGGIEet al. PHYSICAL REVIEW E 71, 046602(2009

Now we consider &|u|<1, so that the localized solu- Although Eq.(3) only approximates the velocity to lowest
tion persists, and assume thl#V; x) is not a constant. All  order in the parametet, we will demonstrate in the follow-
spatial positions are no longer equivalent and, in general, thiag two sections that changes of sigand hence “vanish-
localized solution will move. A singular perturbation analysisings”) of the velocity field can occur in several specific ex-
of Eq. (1) [11] yields, toO(w), the velocity of the localized amples and are well described by E@. and (5).
solution at a poink:

v(X) = = (@) | ug(W(@);a+ X)), ©) lll. REVERSAL OF SOLITON MOTION IN OPTICAL
SYSTEMS
where LTy,=0 and(yy| o) =1. _ _ _
The appealingly straightforward interpretation of E8&) We first consider the mean-field model for a degenerate

is that the component qgig(W;x) along the direction of the optical parametric oscillatoiDOPO at resonancgl4]:
generator of translations foNy(x) [Eqg. (2)] causes move-

. ; . [
ment of the localized solution by a proportionate amount A= HN—- A+ E —A§]+ EaXXAO,
[11].
The velocity may vanish at isolated points in space. For .
example, with an underlying solutioW,(x) of even parity, A= = A+ AgAg 100, (7

v(x) will vanish at points about whicg(W;x) is symmetric,

where Ay and A; denote the(comple¥y amplitudes of the
where the two possible spatial directions are locally equiva Ao ! ( plex P

) Y ) ‘ pump and signal fields, respectively. Time has been normal-
lent. This result is in agreement with an independent argup; ¢ 1y the photon lifetime in the signal cavity and space by
ment showing that, in certain casesx) is proportional 10 o square root of the diffraction coefficient. The parameter
the_ gradient of_an.apphel(bhase modulation[9]. In the y=vo/ v, is the ratio between the pump and signal cavity
optics community in particular, both of these approache%ecay rates and, is the amplitude of the external pump
have served to support the view that localized solutiongijg|q.
qlimb the gradient of any externally applied phase modula- |, the case of plane-wave pumpirfg,is a(rea) constant
tion, a phenomenon seen in several theoretisa®[9,12]  fnction ofx. Families of stable, localized solutions to Egs.
and, for more general parameter perturbation8]) and ex- 7y (cavity solitong, distinguished by their widths, exist for
perimental[17] contexts. , E,>1 and can be viewed as locked pairs of fronts, each of
The result expressed by E) is well known[10,11,13.  \yhich asymptotically connects the two solution:
For a physically important class of modulations, however, it_ +\E,—1 [12]. We consider the narrowest of such locked

implies a type of novel behavior which has not been reporte%olutions, which is also the most staljle2]. A small phase
before. Consider, therefore, the case of a cosinusdal ., qulation of the pump

sinusoidal perturbationg(W;x)=&W)cogKx). In the com- _
mon situation where the localized solution is an even func- E, = Eggl# ©0%K9, (8)
tion of space&(W) is also even whilel, is odd. Therefore

induces motion of the soliton. In practice, such a modulation
v(X) = (p(a)|ué(W(a))sin(Ka))sin(Kx), (4) can be achieved by placing a mask in front of the pump
beam. Equatiori8) is consistent with the assumptions lead-

so that the velocity field factorizes into a spatially mdepen-ing to Egs.(7) as long as the wave vecttris not too large:

dent amplitude and a sinusoid with the same frequency ag, . ifi 2_ :

; _ ) pecifically, as long aE,uK“=0(1). In what follows, Ey is
bgt different phase from, the perturbatigiV; x). The am- of order 1, and we will takg.=0.01 withK always less than
plitude term 7

A(K) = (¢ho(a)| ué(W(a))sin(Ka)) (5) In Fig. 1 we plot the velocity of the soliton, measured at
o ] ) ) the point of the largest phase gradient, as a functidg, dhe
is simply (proportional to the Fourier sine transform of \4ye vector of the modulation, for a fixed value of the pump

Yo- € Or, sincedy- ué is odd, amplitude, E,. These results were obtained by integrating
A(K) = _iv,zﬂ_.(%  é(W)), (6) Eqgs.(7) on a 1024-, 4096-, or 8192-point gridepending on

resolution constrainjsusing a split-step method and with
where F(---) denotes a FT. From this it can be seen thatperiodic boundary conditions. The size of the integration do-
g(W;x) couples to the translational mode of the system onlymain was varied to allow sufficient resolution & Also
through the Fourier component afy-¢ at the same fre- shown are the values of(K) calculated using E¢5). From
quency. If A(K) changes sign for some valuel§f a solution  Eq. (8), £ is a constant vector, and the componentygf
which previously moved ugdown) the gradient of the ap- corresponding to litA) is the only one which couples to the
plied modulation will move in the opposite direction. More- field to produce soliton motioiiinset to Fig. 1. Both the
over, if a particular frequencl, is absent from the Fourier simulations and Eq3) indicate local extrema ofl separated
spectrum, thend(Ky) is zero and the velocity vanishes si- by zeros aK=0.351,0.497,1.02,1.66, wheﬂé(l,lfg-g) van-
multaneouslyat all points in spaceThis corresponds to a ishes. At such points the coupling between the modulation
function g(W;x) in Eq. (1) which breaks the spatial symme- and translational mode of the field vanishes, and there is no
try but which is invisible to the underlying localized solu- induced motion. Whether a zero gf actually occurs or not
tion, at least with respect to its motion. depends on the details of the underlying solution, which
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FIG. 1. Plot of A(K) for the DOPO mode(7). The solid line is
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FIG. 3. Plot of A(K) for the two-level(solid line) and Kerr

obtained from Eq.(5); the diamonds indicate values taken from (dashed ling cavity models. For the two-level cavitg=-1.2, C
simulations.4(K)=0 is indicated by the horizontal dotted line. Pa- =5.4, andE,=6.65. For the Kerr cavityf=1.6 andEy=1.15. In
rameters aré&,=1.2 andu=0.01. The inset shows the component both caseg.=0.01. The inset showd(K) for the SH equatioti10).
of ¢, corresponding to IifAg). Parameters arg=1, a=0.5,A=0, Ey=1.4, andu=0.01.

change with the parameters of the system. Figure 2 show
the collision and mutual annihilation of the first two zeros as
the pump amplitude is increased. Note that these phenome
persist away from cavity resonance.

Sannot distinguish the fine structure of the perturbation and
rc])nly responds to its average value. At the other extreme, as
K”‘—>O, the phase modulation is almost constant on the scale

The fact that the velocity — 0 asK — =« is to be expected

on physical grounds: below a certain length scale the solito
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FIG. 2. Locations of the first two zeros of(K) for the DOPO
as a function of the pump amplitudgg. The data are taken from
simulations of Eqs(7). All other parameters as in Fig. 1.

n

of i, and the phase gradient on which the soliton moves
becomes shallower and shallower, causing the velocity to go
to zero once again.

We can perform a similar analysis for a two-level atomic
medium placed in an optical cavity, described by the equa-
tion [9,18]

GE=-(1+iOE+E + g(‘E|2)E+ 10yE,

2C(1 -iA)
T 9

2y _ = T1a)
G(EP) = 1+A%+|E

whereE is the intracavity optical fieldd is the cavity detun-
ing, A is the detuning of the light field from atomic reso-
nance,E, is, again, an external driving field, and time and
space are scaled to the photon lifetime and the diffraction
length, respectively.

Equation(9) is known to possess cavity soliton solutions
(optical bullet holes[9,18]. If we select one such solution,
modulate the pump phagé&qg. (8)], and perform the same
analysis as for the DOPO, using E@), we find similar
behavior: a zero of the velocity and concomitant difference
in the direction of motion on either side of the z€Fag. 3).
Numerical integration of Eq(9) confirms that forK <2.5
(K>2.5) solitons ascenddescengthe applied phase gradi-
ent. If we redefing in Eq. (9) asG(|E[?) =i|E|?, the resulting
equation describes an optical cavity containing(self-
focusing Kerr medium. Again, this system exhibits soliton
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FIG. 5. Time sequence of an SH solitpiqg. (10)] descending
the gradient of an amplitude modulated pufdashed ling Param-

FIG. 4. The imaginary part of the Fourier transformcjE for ~ eters arg/=1,a=0.5,A=0, Ey=1.4, andu=0.01, as in the inset to
the two-level cavity soliton[Eq. (9)]. #=-1.2, C=5.4, andE,  Fig. 3. The soliton is shown ata) t=0, (b) t=30000, and
=6.65, as in Fig. 3. (c) t=120 000 cavity lifetimes.

solutions[19], but for a typical soliton, no zeros in the ve- geneous solutiong/, = +(E-1)/{ for E>1, domain walls
locity are observedFig. 3). This illustrates the fact that, connecting them, and locked pairs of domain walls in the
although the phenomenon is general, it is not universal, eveform of solitons. In this case, since the field is real, we con-
among systems which are structurally similar. sider an amplitude modulated driving termE

Because the operatat [Eq. (2)] is not in general self- =Egexdu cogKx)].
adjoint, we usually cannot calculate the adjoint null eigen- A typical example ofA(K) is given in the inset to Fig. 3.
vector ¢, which appears in Eq6). Empirically, however, we  Again, we note the presence of zefas K =0.45,1.36 and
often notice a strong resemblance between the componentdanges of sign, as well as the fact that solitons descend the
of iy and those ofpy, the null eigenvector of. Since¢yis  gradient of the amplitude modulation for smkllin contrast
just the spatial derivative of the solitdiq. (2)], a zero in  with the previous examples. These predictions are again con-
the FT of a component ab, (except atk =0) implies a zero  firmed by direct simulation of Eq10). For example, Fig. 5
in the FT of the corresponding component of the solitonshows a time sequence of a soliton descending the gradient
itself. A zero in the FT of the unperturbed soliton is, there-of the amplitude-modulated pump, in agreement with Fig. 3.
fore, a good indicator of the existence and location of a value Figure 3 demonstrates the existence of the phenomenon,
of K at which the soliton motion vanishésompare Figs. 4 not only in yet another model, but also for amplitutss
and 3. This means that the soliton itself can be used as @pposed to phagenodulation. Indeed, adding an analogous
good diagnostic for the occurrence of reversible motionamplitude modulation to the pump term in E¢8) produces
without recourse taC" and its eigenvectors. From an experi- a curve similar in appearance to that in Fig. 3. This is not
mental point of view, only the soliton data are accessible osurprising, since Eq(10) is the order parameter equation
even meaningful. Such an indicator, approximate though itlescribing the DOPO close to threshold and [ <1,
may be, is therefore potentially extremely useful. whereA; is the signal field detunin§l2,20. We also note

that, over certain ranges of wave vectér it is sometimes
V. SH AND PDGL EQUATIONS possible for the modulatio_n to destabilize_the narrowest soli-
: ton in favor of the next highest-order solitgh2]. This de-

The true generality of the phenomena reported in the prestabilization can also occur in the PDGL equation below, but
vious two sections is demonstrated by looking at models nd# outside the scope of this paper and will be discussed else-
particular to optics. We first consider the real SH equationWhere.
one of the standard model equations in the study of pattern As a second example of the generality of the phenomena,
formation[2,6], which we write in the form we mention the PDGL equatidi21,22

aw=(E-Dw- e -a(A + V2w (10)

and in which all variables and parameters are real. As wittwhere the parameters can be complex. Stationary solutions
Eq. (7) for the DOPO, Eq(10) possesses equivalent homo- of Eq. (11) again include localized states in the form of

A=A - [|A?A+ DV?A+ pA’, (11)
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locked pairs of domain walls. When, for example, a cosinudionary) in the orthogonal direction. This has been confirmed
soidal amplitude modulation is added to the parameter in simulations of the 2D version of E¢9).
application of Eq.(3) or direct simulation of Eq(11) again

indicate the reversal of motion and existence of zeros of the VI. CONCLUSIONS
velocity of these solitons for certain valuesKfwe omit a . . .
plot of A(K) for the PDGL equation to avoid repetitibn In conclusion, we have shown that localized solutions of a

large class of equations may move up or down the gradient
of an imposed cosinusoidal perturbation, depending on the
V. TWO DIMENSIONS wave vector of the modulation. More surprisingly, there may
exist modulation frequencies at which the motion of the lo-
calized solutions vanishes identically, at every point in space.
This behavior owes its existence to changes of sign in the
g(W;x,y) = EW)[A cogK,x) + BcogK,y)], (12)  Fourier spectrum of a function associated with the localized
solution itself. We have demonstrated these phenomena in
whereA and B are constants. In this case the Jacobian hagodels specific to optics, where such phase and amplitude
two independent null eigenvectors, corresponding to motiofmnodulations have been proposgj13] and employed17]
in the x andy directions. Each translational mode couplesto control the positions of spatial solitons. The behavior is
only to the appropriate cosine term in E42) and the com-  more general, however, as evidenced by its existence in the
ponents of velocity in thex andy directions can each be SH and PDGL models. It could also occur in BEC solitons
expressed in the form of E¢4): on modulated backgrounds, such as optical lattices.

vy = Al diox(ax ay) [E(W(ay, ay))sin(K,ay))sin(Kx),

It is straightforward to generalize our results to two spa-
tial dimensions and “square” perturbations of the fd@h
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