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We address the issue of internal modes of a stable kink in a discrete sine-Gordon equation. The aim of the
present study is to elucidate the effects due to the detachment of the frequency dependence of antisymmetric
internal mode from the spectrum. We analyze the frequencies of the lowest modes as functions of both the
number of sites and the discreteness parameter. Using a simplified approach we explain the origin of the
spectrum peculiarity, which arises when the frequency dependence detaches from the quasicontinuous spec-
trum at some value of the intersite coupling.
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I. INTRODUCTION

The existence of internal modes in nonintegrable equa-
tions has been known for more than two decadesf1,2g. A
particular example of this phenomenon is the existence of
internal sshaped modes of kinks in the well-known discrete
sine-Gordon equationsDSGEd. This set of differential-
difference equations readssin normalized dimensionless
unitsd

ün + sinun + lfsun − un−1d − sun+1 − undg = 0, s1d

whereunstd is the field variable, which can have a multitude
of physical meaningsf3g, andl is a coupling parameter. The
dot in Eq.s1d means the time derivative and indexn numer-
ates the 1D chain sites. The spectrum of linear waves around
the ground state solutionsun=2pm, with m being an arbi-
trary integerd is given by

v2 = 1 + 4l sin2 k

2
, s2d

wherev is the frequency of linear waves andk is the wave
number. The lowestsgap edged frequency isv=1 sin the
renormalized unitsd.

The features and behavior of kink internal modes for
DSGE, as well as for more general types of the so-called
Frenkel-KontorovasFKd model, have been already studied in
great detailf3–7g. The spectrum of linear waves of DSGE
around a discrete kink contains either one or two localized
modes, depending on the value of parameterl f3,6g. sWe
consider the stable kink centered between the chain sites.d
The frequencies of these modes lie in the gap below the
spectrum.

In general, the phenomenon of the appearance of an inter-
nal modesthe detachment from the spectrumd is quite wide-
spread. The detachment can take place in a number of differ-
ent systems and can occur from both the upper and lower
edges of the spectrumf3,4g. Such effects can be often ob-
served while considering the spectra of Floquet modes
around the discrete breatherssi.e., around the dynamical non-

linear excitationsd. The localization of modes at the impurity
has been known for a long time in the theory of crystal
defectsf8g: the existence or absence of the internal mode is
governed by the Lifshitz criterion. Thus we can also gain the
detachment of the internal mode varying the parameters of
the impurity.

However, to our knowledge, notwithstanding the great
quantity of results nobody so far has concentrated on the
mechanism of the internal mode detachment: only the exis-
tence or absence of this mode has been the chief subject of
interestf2,6,7g. In this paper we shall focus on the concomi-
tant effects due to the detachment of the internal mode fre-
quency from the spectrum. So, the questions addressed are
the following: sid how the splitting of internal modes, which
detach from the spectrum at some nonzero value of coupling
parametersor some other effective parameter altering the
system stated, affects the remaining spectrum of higher
modes andsii d how the localizedsfor largerld mode behaves
before the detachment.

II. STATIC KINK DISTRIBUTION AND SPECTRUM
PECULIARITIES

Static kink. The approximate analytical solution for a
static kink of DSGEs1d can be found in two limiting cases:
the strong coupling limitslarge ld, when the discrete kink
acquires the form of that in the continuous SGE with small
corrections due to discretenessssee, e.g.f9g and references
cited thereind, or in the so-called anticontinuum limitsex-
tremely small values ofld, when the kink distribution can be
found in the form of a series in powers ofl f5,6g. In this
paper we shall deal with the latter casesthe internal modes
for the former one were studied in Refs.f2,7gd. The obvious
“kink” solution sequilibriumd in the uncoupled limitsl=0d is
un

0=2pm for nø0, un
0=2psm+1d for nù1 swe settle the

kink center between the sites “0” and “1”d. By the implicit
function theorem there exists a unique continuationun

0sld,
also called a localized equilibriaf6g, for a nonzerol, which
is exponentially localized in space. The static distribution for
the kink can be found using perturbative iterationsf6g and
for the DSGE it is given up to the first power inl by
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u0
0 = 2ps1 − ld + Osl2d. s3d

The other sites move by at mostOsl2d with the exponential
decay asunu→`.

Linear spectrum properties. Let us now summarize the
results on the existence of internal modes in the DSGE con-
taining a single kink. For smalll only the lowest symmetric
Pierls-NabarrosPNd mode, associated with the kink oscilla-
tions in the PN relief, has the frequency inside the gap: it
corresponds to the translational kink mode of the continuous
SGE activated due to the discreteness. This mode remains
the internal mode for the whole interval of kink stability.
sFor a finite system with free ends the instability occurs
when the characteristic spatial scale of the kink outgrows the
size of the system. For a large system the PN mode softens at
some critical value ofl,L2, whereL@1 is the system size
f10g.d The properties of this mode are well understood and
studied f3,5g, and we shall be mainly concerned with the
other internal mode. For largersbut still weakd l there exists
the “critical” point ld, where one moresantisymmetricd
mode dependence detaches from the continuous spectrum
f6g: this mode corresponds to the oscillation of the kink
width. sMore complicated on-site FK-type potentials may
have a larger variety of localized internal eigenmodesf4g or,
for the case of more than one kink in the chain, the DSGE
may possess a larger number of internal modes as wellf3g.d
The existence of the second internal mode for largel obvi-
ously matches the criterion given by Kivsharet al. in Ref. f2g
for nearly integrable SGEssee also Ref.f7g for detailsd: the
magnitude of the detachment is of the order ofl−1.

Calculation of the spectrum. First we suppose that our
system has 2N sites and substituteunstd=un

0+vne
ivt in Eq.

s1d. Then we linearize the obtained equations with respect to
vn noting that for the antisymmetric modes the symmetry is
vn=−v−n+1 srecall that the kink center is settled between the
sites “0” and “1”d. After that one gains the following linear
system: for the site “1” we have

sv2 − 3l − cosu1
0dv1 + lv2 = 0, s4ad

for other sites

sv2 − 2l − cosun
0dvn + lsvn−1 + vn+1d = 0, s4bd

and for the free end site

sv2 − l − cosuN
0dvN + lvN−1 = 0. s4cd

For the symmetric modessvn=v−n+1d the first equations4ad
is to be replaced with

sv2 − l − cosu1
0dv1 + lv2 = 0. s4dd

Then we found numerically the static kink distribution and
resolved the linear eigenvalue problem given by Eqs.
s4ad–s4dd. The spectrum of several lowest modes in the vi-
cinity of the detachment point is shown in Fig. 1. In fact, the
plots of the frequency dependencies for smalll sinvolving
the detachment regiond have been already presented in Refs.
f3,6g, where, however, a large scale was used and a big num-
ber of dependencies was plotted simultaneously. At the same
time, magnifying the spectrum region close to the detach-
ment point we can see some interesting peculiarities: as the

internal mode frequency goes back to the spectrum for small
l, it brings about a conspicuous change in the behavior of
higher modes; see Fig. 1sad. However only the dependencies
of odd modessthe mode number corresponds to the number
of eigenfunction nodesd “feel” the return of the localized first
antisymmetric mode to the spectrum. The modes with even
number of eigenfunction nodes were not influenced by the
detachment of this mode. So, we can infer that only those
modes that have the same symmetry as the mode which de-
taches from the spectrum, experience a pronounced change
fwhich can also be seen in the behavior of the derivatives,
Figs. 1sbd and 1scdg. This change becomes less and less
abrupt with the increase of mode number. In addition, as can
be seen in the inset of Fig. 1sad, the dependence of the first
antisymmetric mode indeed enters the spectrum: it crosses
the band edge frequencyv=1 at the pointld<0.26 sof
course, it crosses only the band threshold but none of the
frequency dependenciesd. For smallerl the dependence of
the former antisymmetric localized mode belongs to the
spectrum of usual delocalized waves, tending to coalesce
with the dependence of secondssymmetricd mode.

We also note another interesting feature of the eigenfre-
quency dependencies. Before the detachment of the antisym-
metric mode, forl close to zero the dependencies for odd
modes tend to coalesce with those ofhighereven modes, i.e.,
the frequencies of modes with numbers 2n+1 come closer
and closer to those for the modes with numbers 2n+2. How-

FIG. 1. sColor onlined Numerical results for DSGE containing
250 sites with a kink centered in the middle of the chain between
the sites.sad The dependencies of frequencies on the value ofl for
several lowest modessthe dependence for the lowest PN mode is
not presentedd; the numbers correspond to the mode number, i.e., to
the number of nodes for the corresponding eigenfunction. The inset
shows the magnified region in the vicinity of the detachment value
ld sthe bandgap threshold is marked by the dashed lined . The
bottom panels show the behavior ofsbd dv /dl andscd d2v /dl2 for
the three lowest antisymmetric modess1, 3, and 5d.
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ever, after the detachment, for largel the dependencies for
odd modes with numbers 2n+1 tend to coalesce with the
dependencies forlower even modes, i.e., with those having
numbers 2n. Thus the inflection of the odd modes dependen-
cies and peculiarities of their derivatives in the vicinity ofld
is merely a manifestation of this change in the tendency for
coalescence, i.e., of the spectrum renormalization due to the
detachment of one mode.

It is interesting to note that the features observed can be
found in other physical situations: the spectrum of Floquet
eigenmodes around a discrete breather in the nonlinear
Klein-Gordon chain may involve the detachments of fre-
quency dependencies. The spectrum renormalization de-
scribed above can be seen in the magnified region of the
spectrum near the detachment point; see Fig. 1sbd of Ref.
f11g.

It is also worth mentioning that the typical peculiarities of
the DSGE spectrum persist in the case of small number of
coupled DSGEs. We checked the systems of two, four, etc.
coupled DSGEs with the stable kink in the middle and found
that the lowest antisymmetric mode dependence initially
went up but then dropped down in the “gap.” However the
detachment point valueld was changing in these cases
gradually tending to its saturation valueld<0.26 with the
increase of the number of sites. The changes of the behavior
of the higher mode dependencies due to the detachment were
less pronounced for a small number of sites.

From our analysis it became evident that the spectrum
renormalization property and frequency peculiarities, which
occur in the computer studies where finite systems are used,
are size- and symmetry-dependent. Thus it is interesting
what changes in this typical frequency behavior we should
expect when the system size is varied. In the next section
with the use of the simplified modelsan idealized two-site
kinkd we shall examine how these observed spectrum pecu-
liarities relate to the size of the system.

III. STUDY OF SPECTRUM WITH THE USE
OF TWO-IMPURITY MODEL

For smalll we can use the approximate expressions for
un

0 Eq. s3d, and in the leading approximation substitute in
Eqs. s4ad: cosu1

0<1−2p2l2, cosun
0<1 for n.1. This

means that we effectively replaced the kink with two isotopic
impurities located at sites “1” and “0,” and the “strength” of
these impurities changes asl is varied. Evidently, in the
limit l→0 this approach has to give the asymptotically cor-
rect results. Of course, the usage of the two-impurity model
is less justified in the vicinity ofld. Therefore this model
would only do as an example system possessing the spec-
trum features similar to those of DSGE and having the same
spectrum asymptotics in the weak coupling limit. The results
given by such a simplified approach in the vicinity ofld can
be taken for the qualitative explanations and then have to be
compared with the numerical data for the DSGE.

Seeking the solution of Eq.s4d in the form vn=Aekn

+Be−kn, with constantA andB, from Eq. s4bd one obtains a
spectral dependence forvskd in the form s2d, wherek=ik.
Then using the consistency condition for two remaining

equations, Eqs.s4ad and s4cd, after some straightforward al-
gebra we arrive at the relation which defines the allowed
values ofk for antisymmetric modes:

s1 − 2p2ldsinhfksN − 1dg + 2p2l sinhfkNg − sinhfks1 + Ndg

= 0. s5d

Expanding this relation in the vicinity ofk=0 skN!1d up to
k5 we determine the allowed values ofk for the frequency of
first antisymmetric mode,v1, and for the next, third mode,
v3, from the biquadratic equation:ak4+bk2+c=0. The ex-
pressions for the coefficients are

a=
sl − ldd + 5s2N2 + N4dsl − ldd − 5ls2N3 + Nd

60
,

b= sl − ldd/3 +N2sl − ldd − Nl,
c= 2sl − ldd,

and the detachment point isld=1/p2. The notable fact,
which can be extracted from Eq.s5d, is the following: if l is
close to zero,l!N−1, we havek2=−k2,N−2, and for this
value of coupling parameter one finds the expressions for
frequency dependencies as

v1
2 < 1 + 2ls3 −Î3dN−2, s6ad

v3
2 < 1 + 2ls3 +Î3dN−2. s6bd

So, initially, for smalll, the lowest antisymmetric mode, Eq.
s6ad, goes up being inside the spectrum. The next antisym-
metric mode, Eq.s6bd, goes up as well. However quite a
different situation occurs if one moves inside the region
where the inequalityul−ldu!N−1 holds, i.e., in the close
vicinity of ld. In this region one obtainsk2,N−1 shere the
inequalitykN!1 is true because of the additional smallness
provided by the factorfl−ldgd. Then for the frequency de-
pendencies we have

v1
2 < 1 − 2sl − lddN−1, s7ad

v3
2 < 1 − 4sl − lddN−1 + 6ldN

−2. s7bd

The second derivative ofv1 at the pointl=ld involves the
term independent onN: d2v1/dl2=−4ld

−1. Therefore we can
conclude that in the limitN→` the splitting of this depen-
dence from the lower boundary of the spectrum must have a
parabolic form. From the expressionss6ad, s6bd, s7ad, and
s7bd it becomes evident what brings about the peculiarity as
l approachesld, i.e., as the first antisymmetric mode de-
taches from the spectrum. Forl close to zero we have
dv1,3/dl,N−2, whereas in the vicinity ofld the different
dependence takes place:dv1,3/dl,N−1. sNote that the sign
of the first derivative also changes.d Because of this the ini-
tial weak s,N−2d growth for small values ofl changes to
more rapids,N−1d decrease in the close vicinity ofld. The
dependencies for the absolute value of first derivatives atl
=ld on the number of sites are shown in Fig. 2. ForN8
=2N*30 they are in a good agreement with analytical re-
sults s7ad and s7bd. With the increase ofN this agreement
becomes better inasmuch as we omitted the higherswith re-
spect toN−1d terms in Eqs.s7ad and s7bd. In the regionl
,ld there must be an extremum pointlext, dvi /dlulext

=0,
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for both dependenciesv1,3sld, at which the monotonic
growth changes to decreasing. These extremum points,lext,
tend told asN gets bigger:sld−lextd,N−1. The dependen-
cies of the value of difference,sld−lextd, on the number of
sites N are presented in the inset panel of Fig. 2. Forl
.ld the first antisymmetric mode gets into the spectrum gap
and becomes an internal mode. However the dependence for
the next, third antisymmetric mode, in spite of its tendency
to drop down, cannot cross the dependence of the preceding
secondssymmetricd mode and therefore these two dependen-
cies get closer and closer to each other.

Now consider an infinite system. We seek the solution in
the form of localized wave,vn,e−kn, k . 0. Whereupon the
only condition defining the allowed values ofk for antisym-
metric modes becomes as follows:

e−k + 2p2l − 3 − 4l sinh2 k

2
= 0. s8d

Expanding this relation we arrive at the dependence:k1
=2ld

−1sl−ldd, and then one finds the expression for the fre-
quency of the antisymmetric localized mode as

Hv1
2 = 1 , for l , ld ,

v1
2 < 1 − 4ld

−1sl − ldd2, for l . ld,
s9d

in agreement with this dependence given in Ref.f12g and in
consistency with the result for the finite system. The charac-
teristic spatial scale for the eigenfunction of this internal
mode is l1=k1

−1. Obviously, the smallerl1, the better the
eigenfunction is localized. We see that at the outset, as this
mode detaches,l1,sl−ldd−1.

Let us proceed to studying the symmetric modes. The
relation which defines the allowed values ofk for those reads

s1 + 2p2ldsinhfksN − 1dg − 2s1 + p2ldsinhfkNg

+ sinhfks1 + Ndg = 0. s10d

Then we again expand this relation forkN!1 up to the fifth
power and determinek from the biquadratic equation:dk4

+gk2+ f =0, where

d=
5Nsl + ldd + 10N3sl + ldd − ls5N4 + 10N2 + 1d

60
,

f = Nsl + ldd − sN2 + 1/3dl,

g = − 2l.

In the regionl!N−1 one obtains

v0
2 < 1 − 2ld

−1lN−1 , v2
2 < 1 + 6lN−2. s11d

The dependencies for symmetric modes have neither an in-
flection point nor any peculiarity atl=ld.

For the infinite system the relation fork is written as
follows:

e−k + 2p2l − 1 − 4l sinh2 k

2
= 0. s12d

Then we arrive at the dependence for PN mode for weak
coupling in the form

v0
2 < 1 − 4ld

−2l3, s13d

which is in agreement with this dependence given in Refs.
f5,12g. The localization distance now is:l0=k0

−1,l−3/2. Thus
we can infer that the localization for PN mode with the
growth of coupling valuel develops faster than for the an-
tisymmetric internal mode.

The results for the frequency dependenciess9d and s13d
could also be obtained with the use of the Green function
sLifshitzd technique for a linear chain with impuritiesssee
the monographf8gd, which was employed in Refs.f4,5g.

IV. CONCLUSION

To sum up, we investigated the features of spectrum and
kink internal modes of DSGE. The detachment of the anti-
symmetric internal mode brought about the renormalization
of the linear spectrum and caused the inflections of the de-
pendencies of the odd modes in the vicinity ofld. The ob-
served effects are size and symmetry dependent. We gave an
analytical explanation of this fact using the two-impurity
modelsi.e., regarding an idealized two-site kinkd. The analy-
sis within the framework of such a simplified approach is not
asymptotically correct in the vicinity ofld and can in general
give only qualitative results. However, we found a good
quantitative correspondence of our analysis with the numeri-
cal data for largeN. For the infinite system the dependence
of first antisymmetric mode detaches smoothlyswith zero
first derivatived from the band edge, but for the finite system
it does cross the bandgap threshold. For extremely small val-
ues ofl the first antisymmetric mode belongs to the spec-
trum of delocalized waves. The initial weak growths,N−2d
of lowest antisymmetric modes frequencies with the increase

FIG. 2. sColor onlined The dependencies for the absolute values
of the derivative at the pointl=ld on the number of sites for the
first santisymmetricd mode and for the next, third mode. The digits
correspond to the mode number. Dashed curves for each mode
show the analytical prediction obtained by virtue of Eqs.s7ad and
s7bd. The inset shows the dependence of deviationld−lext of the
extremal point from the detachment point as a function of the num-
ber of sitesN8=2N.
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of the value of coupling then changes to more rapid
s,N−1d decrease in the vicinity of the detachment point. The
extremum points of these lowest odd-modes dependencies,
lext, approach the detachment pointld as the number of sites
gets bigger:sld−lextd,N−1. At l=ld the first antisymmetric
mode drops into the spectrum gap. The higher antisymmetric
modes come closer and closer to the preceding symmetric
modes with the increase of coupling but the renormalization
is less pronounced and develops slower for higher modes.
The symmetric modes do not reveal any peculiarity atld.

The spectrum renormalization due to the detachment of one
mode seems to be quite a typical property and can be ob-
served in other systems as wellsindependently on the bound-
ary conditionsd.
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