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Internal modes in sine-Gordon chain
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We address the issue of internal modes of a stable kink in a discrete sine-Gordon equation. The aim of the
present study is to elucidate the effects due to the detachment of the frequency dependence of antisymmetric
internal mode from the spectrum. We analyze the frequencies of the lowest modes as functions of both the
number of sites and the discreteness parameter. Using a simplified approach we explain the origin of the
spectrum peculiarity, which arises when the frequency dependence detaches from the quasicontinuous spec-
trum at some value of the intersite coupling.
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I. INTRODUCTION linear excitations The localization of modes at the impurity

The existence of internal modes in nonintegrable equahas been known for a long time in the theory of crystal
tions has been known for more than two decafleg]. A defects[8]: the existence or absence of the internal mode is

articular example of this phenomenon is the existence o overned by the Lifshitz criterion. Thus we can also gain the
p P pnhen . etachment of the internal mode varying the parameters of
internal (shape¢ modes of kinks in the well-known discrete

. . : . ; the impurity.
SI_ne-Gordon eqL_Jatlor(DSG_E). This s_et of _d|ffer¢nt|al- However, to our knowledge, notwithstanding the great
difference equations readén normalized dimensionless

units quantity_of results_nobody so far has concentrated on the
mechanism of the internal mode detachment: only the exis-
O, + SinU, + A[(Uy = Up_g) = (Upeg — U] = 0, (1)  tence or absence of this mode has been the chief subject of
interest{2,6,7]. In this paper we shall focus on the concomi-
whereu,(t) is the field variable, which can have a multitude tant effects due to the detachment of the internal mode fre-
of physical meaningE3], and\ is a coupling parameter. The quency from the spectrum. So, the questions addressed are
dot in Eqg.(1) means the time derivative and indehumer-  the following: (i) how the splitting of internal modes, which
ates the 1D chain sites. The spectrum of linear waves aroundketach from the spectrum at some nonzero value of coupling
the ground state solutiofu,=27m, with m being an arbi- parameter(or some other effective parameter altering the

trary integey is given by system state affects the remaining spectrum of higher
modes andii) how the localizedfor larger\) mode behaves
w2=1+ 4\ sir? '5‘ ) before the detachment.
wherew is the frequency of linear waves akds the wave II. STATIC KINK DISTRIBUTION AND SPECTRUM
number. The lowestgap edgg frequency isw=1 (in the PECULIARITIES

renormalized units _ o Static kink The approximate analytical solution for a
The features and behavior of kink internal modes forgiaric kink of DSGE(1) can be found in two limiting cases:
DSGE, as well as for more general types of the so-calleghg srong coupling limitlarge 1), when the discrete kink
Frenkel-KontorovaFK) model, have been already studied in 50 jires the form of that in the continuous SGE with small
great detail[3-7]. The spectrum of linear waves of DSGE ¢ rections due to discretene@e, e.g[9] and references
around a discrete kink contains either one or two localizeg,jieq therein, or in the so-called anticontinuum limiex-
modes, depending on the value of parametd3,6]. (We  yremely small values of), when the kink distribution can be
consider the stable kink centered between the chain )siteS,nd in the form of a series in powers af[5,6]. In this

The frequencies of these modes lie in the gap below the her we shall deal with the latter cagbe internal modes
spectrum. _ for the former one were studied in Ref&,7]). The obvious

In general, the phenomenon of the appearance of an inté#gjni” solution (equilibrium) in the uncoupled limit =0) is
nal mode(the detachment from the spectruis quite wide-  jo_»_ ¢ h<( W=2m(m+1) for n=1 (we settle the
spread. The detachment can take place in a number of diffef- '

ent systems and can occur from both the upper and Iowell.%nk center between the sites “0” and 1By the implicit
edges of the spectrufi8,4]. Such effects can be often ob- nction theorem there exists a unique contmuatuﬁ(?\),

served while considering the spectra of Floquet modeé"llso called a localized equilibri], for a nonzerch, which

- . . ~Is exponentially localized in space. The static distribution for
around the discrete breathér®., around the dynamical non the kink can be found using perturbative iteratid6% and
for the DSGE it is given up to the first power by

0_ 2
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uS=2m(1-\) +O(\?). (3)

The other sites move by at maS(\?) with the exponential 1.004 L
decay agn|— ce.

Linear spectrum propertiedet us now summarize the
results on the existence of internal modes in the DSGE con-
taining a single kink. For smaN only the lowest symmetric S
Pierls-Nabarrd PN) mode, associated with the kink oscilla-
tions in the PN relief, has the frequency inside the gap: it
corresponds to the translational kink mode of the continuous
SGE activated due to the discreteness. This mode remains gggsgl
the internal mode for the whole interval of kink stability.
(For a finite system with free ends the instability occurs
when the characteristic spatial scale of the kink outgrows the
size of the system. For a large system the PN mode softens at
some critical value ok ~L?, whereL>1 is the system size
[10].) The properties of this mode are well understood and
studied[3,5], and we shall be mainly concerned with the
other internal mode. For largéut still weak \ there exists
the “critical” point Ny, where one moreg(antisymmetrig¢
mode dependence detaches from the continuous spectrum (o) %% A 035
[6]: this mode corresponds to the oscillation of the kink
width. (More complicated on-site FK-type potentials may FIG. 1. (Color onling Numerical results for DSGE containing
have a larger variety of localized internal eigenmodgor, 250 sites with a kink centered in the middle of the chain between
for the case of more than one kink in the chain, the DSGREhe sites(a) The dependencies of frequencies on the valuk fufr
may possess a larger number of internal modes as[®Ell several lowest modeghe dependence for the lowest PN mode is
The existence of the second internal mode for laxgsovi- not presentexl the numbers correspond to the mode number, i.e., to
ously matches the criterion given by Kivstetral.in Ref.[2] the number of anes for Fhe F:orresppnding eigenfunction. The inset
for nearly integrable SGEsee also Ref[7] for detailg: the shows the magnified region in the vicinity of the detachment value
magnitude of the detachment is of the ordenct. \g (the bandgap threshold |s_marked by the dast;ed) Ilrzféhe

Calculation of the spectrumFirst we suppose that our bottom panels show_the beha.wor(hﬁ dw/d\ and(c) d“w/d\= for
system has 18 sites and substitute,(t)=uw+v,€°t in Eq.  © three lowest antisymmetric modds 3, and 5.

(1). Then we linearize the obtained equations with reSpeCt.t?nternal mode frequency goes back to the spectrum for small

v“_ni)tmg that fo”r tﬁe alr]]t|sl¥mkmetr|c mpdes lthgz Eymmetryhl , it brings about a conspicuous change in the behavior of
gint;s lf,(‘)?,"gr(]rdefi,) t A?ttetr t?]atlnongegg?r:slst;eetftoﬁlowﬂgﬁﬁgz;r Chigher modes; see Fig(d. However only the dependencies
system: for the s'ite “1" we have of o_dd mode§(the mode number corresponds to t.he ngmber
’ of eigenfunction nodgsfeel” the return of the localized first
(w? =3\ = cosud)v; + \v, =0, (4a)  antisymmetric mode to the spectrum. The modes with even
number of eigenfunction nodes were not influenced by the
detachment of this mode. So, we can infer that only those

1.002

1.000+

(@)

-0.03

for other sites

(@2 =2\ = cosU) vy + N(Up-g + Uper) =0, (4b) modes that have the same symmetry as the mode which de-
) taches from the spectrum, experience a pronounced change
and for the free end site [which can also be seen in the behavior of the derivatives,
(02 =\ = cosuQ)uy + Avpq = 0. (4c)  Figs. 1b) and Xc)]. This change becomes less and less

abrupt with the increase of mode number. In addition, as can
For the symmetric mode@,=v-,.1) the first equatiori4a)  be seen in the inset of Fig(d), the dependence of the first
is to be replaced with antisymmetric mode indeed enters the spectrum: it crosses
2_y _ 0 _ the band edge frequency=1 at the pointAy=0.26 (of
(@7~ A = costyvy +Avz =0. (49 course, it crosses only the band threshold but none of the
Then we found numerically the static kink distribution and frequency dependencies=or smaller\ the dependence of
resolved the linear eigenvalue problem given by Egsthe former antisymmetric localized mode belongs to the
(4a—(4d). The spectrum of several lowest modes in the vi-spectrum of usual delocalized waves, tending to coalesce
cinity of the detachment point is shown in Fig. 1. In fact, thewith the dependence of secofeymmetri¢ mode.
plots of the frequency dependencies for smallinvolving We also note another interesting feature of the eigenfre-
the detachment regiomave been already presented in Refs.quency dependencies. Before the detachment of the antisym-
[3,6], where, however, a large scale was used and a big nunmetric mode, fora close to zero the dependencies for odd
ber of dependencies was plotted simultaneously. At the sam@odes tend to coalesce with thosenafhereven modes, i.e.,
time, magnifying the spectrum region close to the detachthe frequencies of modes with numbens+2L come closer
ment point we can see some interesting peculiarities: as thend closer to those for the modes with numbers 2. How-
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ever, after the detachment, for larjethe dependencies for equations, Eq94a and(4c), after some straightforward al-
odd modes with numbersnz 1 tend to coalesce with the gebra we arrive at the relation which defines the allowed
dependencies fdower even modes, i.e., with those having values ofk for antisymmetric modes:

numbers 8. Thus the inflection of the odd modes dependen- . . .

cies and peculiarities of their derivatives in the vicinity\yf (1= 2rN)sint{x(N = )] + 27°A sint{ <N] = sinf{ (L +N)]
is merely a manifestation of this change in the tendency for =0. (5)

coalescence, i.e., of the spectrum renormalization due to t . _ L —_ _
detachment of one mode. hngpandmg this relation in the vicinity 0f=0 (kN<1) up to

., :
It is interesting to note that the features observed can b& We determine the allowed values ofor the frequency of
found in other physical situations: the spectrum of FloquefI'St antisymmetric modey,, and for the next, third mode,

- i SRR S
eigenmodes around a discrete breather in the nonlinedts rom the biquadratic equatiom”+bk“+c=0. The ex-
Klein-Gordon chain may involve the detachments of fre-Pressions for the coefficients are

quency dependencies. The spectrum renormalization de- _(A=Ag+ 5(2N? + N*)(A = Ag) = BA(2N +N)
scribed above can be seen in the magnified region of the 60 ’
spectrum near the detachment point; see Fip) df Ref. b=(X=X\g)/3+N2(\ = \g) = NX,

[11]. c=20\—\y),

It is also worth mentioning that the typical peculiarities of nd the detachment point s,=1/7% The notable fact
the DSGE spectrum persist in the case of small number ‘ﬁ/hich can be extracted from E¢p), is the following: if\ is
coupled DSGEs. We checked the systems of two, four, et ose to zeron<N-L we havex?=-k2~N=2, and for this
coupled DSGEs W'th. the stablle Kink in the middle a”d.fQ.“” alue of coupling parameter one finds the expressions for
that the lowest antisymmetric mode dependence 'n't'a”yfrequency dependencies as

went up but then dropped down in the “gap.” However the

detachment point valuey was changing in these cases wf ~1+2A3- \E)N‘Z, (68
gradually tending to its saturation valug=0.26 with the

increase of the number of sites. The changes of the behavior Wi=1+20(3+ N2, (6b)

of the higher mode dependencies due to the detachment were

less pronounced for a small number of sites. So, initially, for small\, the lowest antisymmetric mode, Eq

From our analysis it became evident that the spectrunt6a, goes up being inside the spectrum. The next antisym-
renormalization property and frequency peculiarities, whichmetric mode, Eq(6b), goes up as well. However quite a
occur in the computer studies where finite systems are usedifferent situation occurs if one moves inside the region
are size- and symmetry-dependent. Thus it is interesting/here the inequalityh —X\g|<N"* holds, i.e., in the close
what changes in this typical frequency behavior we shouldicinity of \. In this region one obtaing”~N™ (here the
expect when the system size is varied. In the next sectiofequality k<N<1 is true because of the additional smallness
with the use of the simplified modéan idealized two-site Provided by the factofA—\q]). Then for the frequency de-
kink) we shall examine how these observed spectrum pecueéndencies we have
liarities relate to the size of the system. W=~ 1-20 - AN, (78)

Ill. STUDY OF SPECTRUM WITH THE USE w3=1—4\ - NN+ 6NN, (7b)

OF TWO-IMPURITY MODEL . . .
The second derivative ab; at the pointA =\, involves the

For small\ we can use the approximate expressions foiterm independent oN: dzwlld)\zz—m\al. Therefore we can
uﬂ Eqg. (3), and in the leading approximation substitute in conclude that in the limilN— o the splitting of this depen-
Egs. (4a): cosu‘l)zl—ZTrZ)\z, cosugz 1 for n>1. This dence from the lower boundary of the spectrum must have a
means that we effectively replaced the kink with two isotopicparabolic form. From the expressiof8a), (6b), (78, and
impurities located at sites “1” and “0,” and the “strength” of (7b) it becomes evident what brings about the peculiarity as
these impurities changes asis varied. Evidently, in the N\ approaches\y, i.e., as the first antisymmetric mode de-
limit A — 0 this approach has to give the asymptotically cor-taches from the spectrum. Far close to zero we have
rect results. Of course, the usage of the two-impurity modetlw; 5/d\~N2, whereas in the vicinity ofy the different
is less justified in the vicinity ofy. Therefore this model dependence takes pladdi, s/d\ ~ N1, (Note that the sign
would only do as an example system possessing the speof the first derivative also changgfecause of this the ini-
trum features similar to those of DSGE and having the saméial weak (~N"2) growth for small values ok changes to
spectrum asymptotics in the weak coupling limit. The resultsmore rapid(~N™) decrease in the close vicinity af. The
given by such a simplified approach in the vicinitydfcan  dependencies for the absolute value of first derivatives at
be taken for the qualitative explanations and then have to be\; on the number of sites are shown in Fig. 2. For
compared with the numerical data for the DSGE. =2N=30 they are in a good agreement with analytical re-

Seeking the solution of Eq4) in the form v,=Ae"  sults (78 and (7b). With the increase ofN this agreement
+Be™", with constantA andB, from Eq.(4b) one obtains a becomes better inasmuch as we omitted the higivith re-
spectral dependence fex(x) in the form (2), wherex=ik.  spect toN™1) terms in Eqs.(7a) and (7b). In the region\
Then using the consistency condition for two remaining<<\y4 there must be an extremum poiKfy;, dwi/d)\|)‘ext:0’
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(1 + 27\)sinH k(N = 1)] - 2(1 + 7°\)sinH «N]

do| 0075
0.04} dicoy )
\ d +sinHx(1 +N)]=0. (10)
0.03L s \ 0050l Then we again expand this relation fel < 1 up to the fifth
' 05 power and determing from the biquadratic equatiomix®
+gk?+f=0, where
0.02- 50 100 150 200 250 d- BN(\ + Ng) + TON3(\ + Ag) = AN(BN*+ 10N? + 1)
N - 60 ’
0.01} -~
‘.:.:l:l:l::..“..- f=NA+A\g) - (Nz +1/3)A,
=0=0z0_n_n_g
050 100 150 200 250 g=-2n
N In the region\ <N* one obtains
FIG. 2. (Color onling The dependencies for the absolute values wé ~1- 2)\51)\N‘1 , wg ~1+6\N2 (11

of the derivative at the point=\4 on the number of sites for the

first (antisymmetri¢ mode and for the next, third mode. The digits The dependencies for symmetric modes have neither an in-
correspond to the mode number. Dashed curves for each modtection point nor any peculiarity at=>X\,.

show the analytical prediction obtained by virtue of E¢&) and For the infinite system the relation for is written as
(7b). The inset shows the dependence of deviabigr\, of the  follows:

extremal point from the detachment point as a function of the num-

ber of sitesN’=2N. e+ 272\ - 1 - 4\ sinl? § =0. (12)

for both dependencieso; f(A), at which the monotonic Then we arrive at the dependence for PN mode for weak
growth changes to decreasing. These extremum poigjs, coupling in the form

tend tohg asN gets biggeri\g—\e) ~ N1 The dependen-

cies of the value of differencé\y—\ey), on the number of wi~1- M2\, (13
sites N are pregented |n.the inset pa'nel of Fig. 2. Ror which is in agreement with this dependence given in Refs.
> \q the first antisymmetric mode gets into the spectrum ga| 5,17). The localization distance now k= ~ \"32. Thus
and becomgs an |_nternal m_ode. How_ever_the de_:pendence e can infer that the localization for Plgl mode with the
the next, third antisymmetric mode, in spite of its tendency rowth of coupling value\ develops faster than for the an-
to drop down, cannot cross the dependence of the precedi

: ymmetric internal mode.
secondsymmetri¢ mode and therefore these two dependen- The results for the frequency dependendi@sand (13)

Clelil get clos_e(zjr and qlc;sgtr to ea:ch Og\}er' K th lution i could also be obtained with the use of the Green function
oW consider an nfinite sys_enm. € seex he solution In(Lifshitz) technique for a linear chain with impuritigsee
the form of localized wavey,~ € ", k > 0. Whereupon the

only condition defining the allowed values effor antisym- the monograpli]), which was employed in Ref4,5]

metric modes becomes as follows:
IV. CONCLUSION

e + 22\ -3 -4\ sinf S =0. (8) To sum up, we investigated the features of spectrum and

2 kink internal modes of DSGE. The detachment of the anti-

symmetric internal mode brought about the renormalization

Expanding this relation we arrive at the dependeneg: of the linear spectrum and caused the inflections of the de-
=2)\51()\—)\d), and then one finds the expression for the fre-pendencies of the odd modes in the vicinity\gf The ob-

quency of the antisymmetric localized mode as served effects are size and symmetry dependent. We gave an
analytical explanation of this fact using the two-impurity
2_1 f model(i.e., regarding an idealized two-site kink'he analy-
5 i ) (9) sis within the framework of such a simplified approach is not
wi=1-a\g(N =N forA>Ng, asymptotically correct in the vicinity ofy and can in general

give only qualitative results. However, we found a good
in agreement with this dependence given in R&2] and in  quantitative correspondence of our analysis with the numeri-
consistency with the result for the finite system. The characeal data for largeN. For the infinite system the dependence
teristic spatial scale for the eigenfunction of this internalof first antisymmetric mode detaches smoothiyith zero
mode isll=;<11. Obviously, the smallet,, the better the first derivativg from the band edge, but for the finite system
eigenfunction is localized. We see that at the outset, as this does cross the bandgap threshold. For extremely small val-
mode detache$; ~ (A —\g) % ues of\ the first antisymmetric mode belongs to the spec-
Let us proceed to studying the symmetric modes. Thdrum of delocalized waves. The initial weak growthN=2)
relation which defines the allowed valueskofor those reads  of lowest antisymmetric modes frequencies with the increase
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of the value of coupling then changes to more rapidThe spectrum renormalization due to the detachment of one
(~N™1) decrease in the vicinity of the detachment point. Themode seems to be quite a typical property and can be ob-
extremum points of these lowest odd-modes dependencieserved in other systems as weéitldependently on the bound-
Nexe @pproach the detachment poiptas the number of sites ary conditions.

gets bigger{\g—\ex) ~ N71. At A=)\4 the first antisymmetric

mode drops into the spectrum gap. The higher antisymmetric

modes come closer and closer to the preceding symmetric ACKNOWLEDGMENT
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