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Bunching instability of rotating relativistic electron layers and coherent synchrotron radiation
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We study the stability of a collisionless, relativistic, finite-strength, cylindrical layer of charged particles in
free space by solving the linearized Vlasov-Maxwell equations and compute the power of the emitted electro-
magnetic waves. The layer is rotating in an external magnetic field parallel to the layer. This system is of
interest to understanding the high brightness temperature of pulsars which cannot be explained by an incoher-
ent radiation mechanism. Coherent synchrotron radiation has also been observed recently in bunch compres-
sors used in particle accelerators. We consider equilibrium layers with a “thermal” energy spread and therefore
a nonzero radial thickness. The particles interact with their retarded electromagnetic self-fields. The effect of
the betatron oscillations is retained. A short azimuthal wavelength instability is found which causes a modu-
lation of the charge and current densities. The growth rate is found to be an increasing function of the
azimuthal wave number, a decreasing function of the Lorentz factor, and proportional to the square root of the
total number of electrons. We argue that the growth of the unstable perturbation saturates when the trapping
frequency of electrons in the wave becomes comparable to the growth rate. Owing to this saturation we can
predict the radiation spectrum for a given set of parameters. Our predicted brightness temperatures are pro-
portional to the square of the number of particles and scale by the inverse five-third power of the azimuthal
wave number which is in rough accord with the observed spectra of radio pulsars.
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[. INTRODUCTION They find a resistive wall instability and a negative mass
instability. Furthermore, they find an instability which can

E]erturb the surface of the beam. Heif¢i8] analyzed the

) : o stability of a ring of relativistic electrons in free space in-

nism [1-5] and some part of the radio emission of extraga-¢),ding a small energy spread which gives a range of radii

lactic jets may be coheref6]. Recently, coherent synchro- g, that particles on the inner orbits can pass particles on

tron radiation (CSR has been observed in bunch g e orhits. Sannibalet al. [10] have developed a similar
compressorg7—9] which are a crucial part of future particle el which includes the effects of the conducting beam
accelerators. When a relativistic beam of electrons |nteract5ipe_ Numerical simulations bjL5] show the burstlike na-

with its own synchrotron radiation the beam may become,, e of the coherent synchrotron radiation.
modulated. If the wavelength of the modulation is less than  1pe present work analyzes the linear stability of a cylin-

the wavelength of the emitted radiation, a linear instabilityyicq) collisionless, relativistic electrdor positron layer or

may occur which leads to exponential growth of the modu |aver[16]. Particle densities in pulsar magnetospheres are

lation amplitude. The coherent synchrotron instability Ofvery low, of order of the Goldreich-Julian charge density
relativistic electron rings and beams has been investigateﬁlGJ:Q_BlzwceN 10 cmr¥(B/102 G)(R/T)3[P/1s] ™t  at

theoretically by[3,10-13. Goldreich and Keeley analyzed radiusr >R, whereR is the stellar radiusB=1028,, G is

thﬁ. Sr:ab'“ty of a ring dOft monoenergetic .rellatw:(s?.c edleCtrdanthe surface field strength, aftis the rotational period; thus,
which were assumed to move on a Circie of TiXed radiuSy, o magnetospheric plasma is collisionless to an excellent

Electrons of the ring gain or lose energy owing to the tan- o oyimation[17]. The particles in the layer have a finite

gential electromagnetic force and at the same time generat mperature” and thus a range of radii so that the limitation

thg electromagr}et.ic field. Uh".ﬂt al. [14] analyzed the St f the Goldreich-Keeley model is overcome. Although we
bility of a relativistic electron ring enclosed by a conducting allow a spread in energies, we assume that it is small, so the

l:_)eam PIpe in an external bgtatron magnetic field. A dIS‘t”bu'charge layer is also thin; efficient radiation losses are prob-
tion function with a spread in the canonical momentum wa

X . U Sably sufficient to maintain rather low-energy spreads in a
chosen for their analysis. For simplicity the effect of the 5o r magnetosphere, although the precise size of the spread
betatron oscillations was not included in their treatmentic il not entirely certain. Viewed from a moving frame the

E layer is a rotating beam. The system is sufficiently simple
that it is relevant to electron flows in pulsar magnetospheres

The high brightness temperature of the radio emission o
pulsars(Tg> 102 K) implies a coherent emission mecha-

*Electronic address: bss28@cornell.edu (cf. [18]). The analysis involves solving the relativistic Vla-
"Electronic address: rvil@cornell.edu sov equation using the full set of Maxwell’s equations and
*Electronic address: ira@astro.cornell.edu computing the saturation amplitude due to trapping. The lat-
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(a) A to be an arbitrary non-negative function of the constants of
\ B motion, the Hamiltonian
; 11 2., 2.2 212 s
L = H = (mZ+ p? + pf + )2 - ed¥(r), (1)
—
M y / and the canonical angular momentum
A*
(b) Py=1rp,—erAyr), (2)
£l
H . 3 5 whereA,=A3+Aj is the total(external plus selfvector po-
L L L B z tential, ®® is the self-electrostatic potentia is the electron
v y rest mass, e is its charge, and the units are such tbatl.

Here, the external magnetic field is assumed to be uniform,
FIG. 1. Geometry of relativisti€ layer in (a) for the case of a B®=BgZ, with A}=rB7/2 and B;>0. Thus we havef®
uniform external axial magnetic field and iib) for an external =f°(H,P,). We consider the distribution function

toroidal magnetic field with an external radial electric field. 0

ter allows us to calculate the energy loss due to coherenthereK, P,, and T are constantgsee, for example19]).

radiation. The temperaturdl in energy units is assumed sufficiently
In Sec. Il we describe the considered Vlasov equilibria.small that the fractional radial thickness of the layer is small

The first type of equilibrium(a) is formed by electrongor ~ compared with unity. Note that a Lorentz transformation in

positrong moving perpendicular to a uniform magnetic field the z direction gives a rotating electron beam.

in the z direction so as to form a thin cylindrical layer re- The equations for the self-fields are

ferred to as art layer. The second type of equilibriuth) is

formed by electrons moving almost parallel to an external 1d( do®\ 3 <0

toroidal magnetic field and also forming a cylindrical layer. FE(r dr ) —477ef d*p F(H.Py), “@
Section lll describes the method of solving the linearized

Vlasov equation which involves integrating the perturbation d (1d(rAS)

force along the unperturbed orbits of the equilibrium. In Sec. —(——"’—) = 47Tef d3pvd, fo(H,P¢), (5)
IV, we derive the dispersion relation for linear perturbations drir dr

for the case _of a _radia!y thik Ia_lyer and zero wave number wherev = (P/r +eAy)/H.
in the axial d|rect|anz—(_)._ We find that there is in general a Owing to the small radial thickness of the layer, we can
short-wavelength instability. In Sec. V we analyze the non- .

: . . expand radially near,

linear saturation of the wave growth due to trapping of the
electrons in the potential wells of the wave. This saturation P, 2 P, 2 1,
allows the calculation of the actual spectrum of coherent syn- . +eAyr) | = . +eAy(rg) | +oD+ EéT Dy,
chrotron radiation. In Sec. VI, we derive the dispersion rela- 0

tion for linear perturbations of a thif layer including a (6)
finite axial wave number. The linear growth is found to occur
only for small values of the axial wave number. The nonlin-
ear saturation due to trapping is similar to that for the cas
wherek,=0. In Sec. VII we consider the effect of the thick-
ness of the layer more thoroughly and include the betatron 1

oscillations. Section VIII discusses the apparent brightness H=Hg—ed(rp) + ﬂ(prz +p; +Hjwg ), (7)
temperatures for the saturated coherent synchrotron emis- 0

sion. Section IX discusses some implications on particle aowhere wy is the radial betatron frequency and
celerator physics. Section X gives the conclusions of this

whereD,, D, are the derivatives evaluated rtand or =r
—ro With (8r/rg)?2<1. We choose, so as to eliminate the
Serm linear inar. Thus,

work. P 2|12
Ho= me{1+[7"~’ +eA¢,(ro)} } , (8)
0
II. EQUILIBRIA
A. Configuration (a) o= Ho
00— 3
We first discuss the Vlasov equilibrium for an axisymmet- Me
ric, long, thin cylindrical layer of relativistic electrons where
the electron motion is almost perpendicular to the magnetic _1|Py
field. This is shown in Fig. (B). The case where the electron Vgo = H_o o +eAy(ro) |-

motion is almost parallel to the magnetic field is discussed

below. The equilibrium has/#t=0, 9/d¢=0 andd/9z=0.  We assumey;>1 andv 4>0 so that 4,=1-1/(29}) to a
The configuration is close to the non-neutral Astibtayer  good approximation. The “median radiug, is determined
of [16]. The equilibrium distribution functiof® can be taken by the condition
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Dy _ 4| o
2H, dr ro_
or
1(P P dA dd®
Aot (5| ] o
o\ o ro dr o dr o
To a good approximation,
Me Yol g0 MsYo
ro= ~ (1+20) (103
T (1-2)eB  eB
or
2P
r5="2[1+3+0()]. (10b)
el
Here,
BS
__$' with 2 <1, (11)

z
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T 1/2
Uth = (_> (15)
YoMe
and
Ho — eds
N = 2mKHoTrgt exp(— %(ro)) . (16)

As mentioned we assume the layer to be radially thin with
(Ar/rg)®<1. Consequently, Eq$4) and(5) become

ZCI)S £< &2 )
~d4mengexp - -3/
dr? e EXP T oA
d?AS o2
?‘é ~ dmeng 4 exp(— Krz) (17)

Thus we obtain

(= - B(rp) _ 41-rerbv¢oArv%
B B

(18

The equilibrium is thus seen to be determined by three pa-

is the field-reversal parameter of Christofilos. For a radiallyrgmeters

thin E layer of axial lengthL consisting of a total number of
the surface density of electrons is
=N/(2mroL) and the surface current density isvgo. Be-
causeB3(ro) is one-half the full change of the self-magnetic
field across the layer, we havé=r,N/(yL), where r,

electrons, N,

=e?/(m?) is the classical electron radius. Notice tiNt¢,

and yL are invariants under a Lorentz transform in the

direction.
The radial betatron frequenayy; is given by
D, D? d?ds
H2wZ, = —2 - —5 — Hee——-. 12
0BT a2 ar? 12
Using Eq.(9) gives
2oL Huhe e PRy e d
- V74 fg YoMe dr? o YoMe dr? o
1-2  \2mg
~—— . (13
2 reAry?

The term=1/Ar is the sum of the defocusing self-electric  4t') = ¢ + (¢’ _t)¢0+i 9o
force and the smaller focusing self-magnetic force. For the
er radially confined we need to have
<\Nml2v(Arlrg). For {<~*(Ar/rg) and <1, we have

layer to be

wg=1/ro to a good approximation.
The number density follows from Eq3),

&-2 T 1/2
n=ng ex;{— m) whereAr = <H 5 ) (149

0Wpr
or
Ar2 Utzh
at , 14D
5 1-20-\2ml(rg/ Ay (140
where

2, vi, and 1A}, (19)

which are all small compared with unity.

1. Equilibrium orbits
From the Hamiltonian of Eq.7) we have

d2or 5

" =Tk = ()= siug(t -0+ ],

(20)

wherer —ry=dr; sin ¢. For future use we express the orbit so
thatr (t'=t)=r, where(r,t) is the point of observation. Also,
we have

d_(b:w:('ﬁ(ro)+ (;_gf

i o o+, (20)

"o

so that

{- ori cod wg (t' —1)

"o
+ @]+ orj codp)}, (22
where a¢/6r|ro:—¢o/ro. For {<y%(Ar/rg) and £2<1, we

have aéﬁ/ ar|r0/w5,=—1/r0 to a good approximation. Be-
cause theE layer is uniform in thez direction,

2(t")y=z+(t' - t,. (23

C!)ﬁr oar

The orbits are necessary for the stability analysis.

B. Configuration (b)

Here, we describe a Vlasov equilibrium for an axisym-
metric, long, thin cylindrical layer of relativistic electrons
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where the electron motion is almost parallel to the magnetic t

field. The equilibrium distribution functiof is again taken of(r,p,t) = ef dt’{SE[r (t"),t'] +v(t')

to be given by Eq(3) in terms of the Hamiltoniai and the —

canonical angular momentum,=rp,—erA,(r), whereA,, . 0

=A3. We make the same assumptions as aboyer 1, X B[r(t'),t']}- e (27

T/ (mgy) <1, andArZ/r§< 1. In this case there is no external

B, field. Instead, we include an external toroidal magneticvhere the integration follows the orbjit (t'),p(t")] which
field BS, with corresponding vector potentiaf and an exter- ~ passes through the phase-space Hoint] at timet. For the
nal electric fieldE® with potential®®. The fieldsB® andE®  considered axisymmetric equilibria,

correspond to the magnetic and electric fields of a distant, g% p off o0
charged, current-carrying flow along the axis. ThiE]] —=— — — (29
<|Bj/. The considered external field is of course just one of dgp H JH Py IPylH

a variety of fields which give electron motion almost parallel

with the magnetic field. Note also that the distribution func-

tion is restricted in the respect that it does not include

dependence on the canonical momentum inzftrection,

P,=meyv,—eA,. e(
The distribution functior(3) givesJ,=0 so that there is no

toroidal self magnetic field. Thus the self-potentials in this o

case are also given by Edd) and(5). Equationg6)—(9) are + e(— déw + im(éﬁ&[’ - 5D) +imv, - 5A)i (29)

also applicable with the replacement ®f by the total po- dt aP¢’

tential @. In place of Eq.(10) we find

where the partial derivatives are to be evaluated at constant
P4 andH, respectively. Thus, the right-hand side of E2p)
%ecomes

ds® . . : of°
—T+Iw(¢5\l’—5@)+leL-5A>ﬁ

where SE=-V 6P —-dsA/dt and oB=V X 6A, SW=rdA, is
rom T M1 2 Ly We assume the Lorents gauS k- 450/
(L-20eE(r) eE(rg gy gau
where {=B3(ro)/E}(ro). We again have=r,N/(yL), where Evaluating Eq(27) gives
re=€?/(mc) is the classical electron radius ahds the axial P t _
length of the layer. Becaus#*®®/dr’=—(1/r)d®®/dr, the  &f = e—[— 5D + iwf dt'(¢' sV’ - 50’ +V/, - 5A’)}
radial betatron frequency is again given by E) (with & H -
now the total potentidlso that the orbits given in Sec. Il A1 £0 t _
also apply in this case. The electron motion is almost parallel +e—| -6V + imf dt'(¢' sV’ — 8D’ +v' - 5A) |,
to the magnetic field in thatBj/BS)2=(X(ES/BS)? < (2<1. Py oo
Notice that Eq.(24) for rq is formal in the respect thef’ (30

«1/r. Thereforer, is in fact arbitrary in this case. Because N . N .
the wavelengths of the unstable modes are found to be sma}i€re the prime indicates evaluation[at’),t']. The inte-

compared withr,, it may be interpreted as local radius of 9ration is along the unperturbed particle orbit so widfH
curvature of the magnetic field. and&f°/8P¢ are constants and can be taken outside the inte-

grals. Note also thad/dt acting on a function ofr ,t) is the

same aD/Dt.
I1l. LINEAR PERTURBATION
IV. FIRST APPROXIMATION
We now consider a general perturbation of the Vlasov

equation withf(r ,p,t)=fo(r ,p)+f(r ,p,t). To first order in ~_/AS & starting approximatiozn we negle@t the radial os-
the perturbation amplitudéf obeys C|Ila.t|ons in thg orblts[(Ar/rO) <1]",. (i) the self-.fleld cor-
. rections to orzbltszpro(portlonfl tg)(m))the terms insf pro-
dJ Jg dp 9 Dot of portional tov? (vg,=(Ar/rp)*<1), (iv) we takek,=0, and
(E Vet ar %) o = Dt &(SE +v X 5B) - ' (v) we assume the layer is very thin. Owing to approximation
25) (iii), we can neglect the termsv, -SA in Eqg. (30) in the
evaluation ofdp and 6J,. This is because these terms give
where 6E and 5B are the perturbations in the electric and contributions tosf which are odd functions of, andv,.
magnetic fields. All scalar perturbation quantities are considTherefore, their average contribution can be neglected.

ered to have the dependences Evaluation of Eq.(30) gives

F(rexpime +ik,z - iwt), (20 o 0 dlod¥-mod) | wo¥-msb
where the angular frequenay is taken to have at least a H Py w—m¢ 9Py I H w—m¢ '
small positive imaginary part which corresponds to a grow- (32)

ing perturbation. This allows for a correct initial value treat- o
ment of the probleni20]. For a perturbation taken to vanish where¢=¢(r). The approximations lead to a closed system
ast— —oo, with potentials(6®, 5¥) and source$dp, 6J,).
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We have
r 1+A m
1= 2712r0[n0e2\27rAr]ZrmZS 2 Ov‘/’((A )zw) . (37
__ 3nsr— _ S
%= ef d'pot = ro J dpdpdP,f In terms of dimensionless variables this becomes
1 gz(zA” 1) L (39
=T w— 5 L~ o1
¥/ (Aw)?

5J¢:—ef Ppu,,of = —rgfdprdedP¢v¢5f. (32
0 where Z= IJm(me¢)H (mwv¢) H( =JntiYy and the
For the considered distribution function, E¢B), 9f°/oH field-reversal paramet@‘r—47-rerbu¢Ar\ 77/2/B‘°‘ as given by
=—f9/T. The 9f°/ 9P, term in Eq.(31) can be integrated by Eq. (11).
parts. Furthermore, note thatH/oP,=¢ and ag¢/dP, For m>1, Jm(mz’v(/))%(Z/m)llsAi (W) and Yp(maouv,)
=—(¢)2/H, which corresponds to an effective “negative ~—(2/m)¥3Bi(w), where Ai and Bi are the Airy functul)ns
mass” for the particle’s azimuthal motig2-24. From the ~andw=(m/2)¥3(y2-24%) [31]. Thus we haveZ=iJ,H
partial mtegratlon the small term proportional # ,/ P, z(2/m)2/3[A| (W)Bi(w) +iAiZ(w)]. Itis useful to denot as
=v4/(rgH3) is neglected. Also note that is not a constant  Zn(W). For |wf*>1, Ai(w)= (2ym)~'w " exp(-20w*'%/3),
when performing the integration over momenta. EvaluatingBi(w) = (\'m) w4 exp(2w?2/3), and Zy
this term by an integration by parts with a general function= (2/m)?3/(2z|w|/?). B
g(P,) in the integrand gives For |w|?<0.5, Ai(w)=c;—c,w+OW°) and Biw)=3[c,
+c,w+0O(W3)], where ¢;=1/[3%°I'(2/3)]=0.355 and ¢,
f 4P af° =1/[3Y3(1/3)]=~0.259. In this limit we haveZ,(w)
¢ Pyl
fde,&(P(ﬁ Po) [g(P¢)e HIT]

9(Py) ~ (2/m)2\3(c2-cAwd) +i(c,—cw)2].  For |w|2<1, Z,
~(0.347+0.200 /m?3.

A. Range of validity

_ We are interested in the regime where the wavelength of
JdP¢5(P¢ PO) [g(P¢)]e " the emitted radiation is comparable to the “bunch length"—
K H i.e., o=mor eqzuivalentIyAZo< 1. However, Eq(38) is only
b _ ~HT o valid if Aw< y7°. Since we neglected], and 5J,, we obtain
" T J dPy3(Py =~ Polg(Py)e Py (33 from the continuity equatior],=(wro/m)dp. Due to this
approximation, the factor on the right-hand side can become
That is, the integration produces an additional term whichpigger than the speed of light &@> 2 which leads to
cancels the IT term. Thus, unphysical results. In the latter casd,=v,dp is a better
approximation. FortunatelWw < y™2 is the most interesting
fdp = _ef dp O me?(ws¥ - mod) (34 case and in the remainder of this paper we will always work
¢ an (Aw)? ' in this limit. Furthermore, for the continuum approximation
to be valid the mean particle distance has to be much smaller

where Aw=w-m¢. Integrating over the remaining mo- than the wavelength.
menta gives

B. Growth rates

m¢>2(w6'\lf méd) It will prove useful to define two characteristic values of
(Aw)? m: m; = %22 andm,=2+73, and thereforen, =%2m,/2. We
) . can obtain approximate solutions to E§8) in two different
For a radially thinE layer we may taken()=no  cases. There may be solutions with small values?dfe, so
exp(=ar</2Ar?) — ngy2mAr§(or). We comment on this ap-  thatw=(m/m,)?3. In this case, Eq(38) becomes a simple
prOX|mat|on below in more detail when, we include the ra-quadranc equa“on which can be solved fv®. We can
dial wavenumbek; of the perturbation. Then EqéAd) and  simplify the solution somewhat by changing variablessto

(8p,83,) = (L )ern(r) (35)

(A5) can be written as = 1A in which case Eq(38) can be written in the form
wZy? T2y
[8D(ro), 8 (ro)]=[1,rov (1 +Aa)]2ﬂ2rozf drép(r), 1= —02” (c-1)=- —0;” ,

(36) where we have neglectedcompared to one in the approxi-

_ mate version of this equation. We find that
where Z= |Jm(wr0)H wry), @D=w/(m$), and AD

EAw/(mc}S). Integrating Eq.(35) over the radial extent of 0 =\=7Z/. (39
the E layer and canceling out the field amplitudes gives theFor case | let us assume thatgm,, in which case Eq(39)
dispersion relation implies
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V. NONLINEAR SATURATION

Clearly the rapid exponential growth of the linear pertur-
bation can continue only for a finite time. We analyze this by
studying the trapping of electrons in the moving potential
wells of the perturbation. FofAr/rg)2<1, the electron or-
bits can be treated as circular. The equation of motion is

dP
E‘é =16F, OF,=—e[dE,+ (VX 3B),l, (49
whereP, is the canonical angular momentum, where
OF 4 = — eJE 40 explwit)cogme — wt), (44)

FIG. 2. The graph shows the frequency dependence of thevhere SE 4, is the initial value of the potentialy, = Re(w),

growth rate for a sample case wheye30 and{=0.02 obtained

from our approximations for Eq(38). For these parametersy,
~10% andm,~2.7x 10%

o= +1.121m,/m)3 7712 = 1 12 m,/m)*3- 0.2588
+0.9659), (40)

and w;=Im(w).
For a relativistic particle in a circular orbit,

8P 4= Mer3dp, wheremy = %3 ~-myy, (45)

wherem,. is the “effective mass,” which is negative, for the
azimuthal motion of the electroff22,24] or [23], p. 68.

so|o| <1 for m>m,. The growth rate of the unstable mode Combining Eqs(43) and (45) gives

IS

N 1.08\?§1/2m2/3(.ﬁ
Y

(41)

Wi

in this regime. For case Il we assume that-m,, in which
case Eq(39) implies

i 1/2,. 312
o= % gmgj = xiMHmy/2m)Y?
§1/2m1/2¢
w; = T; (42)

note that the growth rates in cases | and Il match almo

exactly atm=m,, where|o|~ (2

2

?j—tf = - wi(D)sin g, (46)
where o= m¢—wtt+g77, wt= wreeXPwit/2), and wr
=[emdE 4o/ (Meyro) I*%, where wy is termed the “trapping
frequency.” At the “bottom” of the potential well of the
wave, sing= ¢. An electron oscillates about the bottom of
the well with an angular frequency w. This is of course a
nonlinear effect of the finite wave amplitude. A WKBJ solu-
tion of Eq. (45) gives

@ * wia%exp(— wit/d)sin{ (2wt w)exp(wit/2) — 1]}
(47)

The exponential growth of the linear perturbation will cease
at the timetg, when the particle is turned around in the

SE)otential well. This condition corresponds (tsz) = w;.

Thus, the saturation amplitude is

Note thatm, ¢ is the approximate frequency of the peak of
the single-particle synchrotron radiation spectrum. For more ISEP = (M)Z wi(m) \* 8
accurate results we employ a numerical method for solving sa erym ¢ ’

Eq. (38) outlined in [34]. This method also allows us to

count the number of roots which are enclosed by a contoutvhere|SEq,| =[SE(tsa)|=|SEo|explwitsay.

So far we have no numerical evidence of the existence of
more than one solution with a positive real part. The numeri-
cal results agree very well with our approximations even if
m<m; and are shown in Fig. 2.

VI. FIRST APPROXIMATION WITH  k,#0

Here, we considek,# 0 but keep the other approxima-
tions. Our ansatz fodf is general enough to handle this case
since it retains the biggest contribution to the Lorentz force
in the z direction which is of the ordes 4B,. In place of Eq.
(34) we obtain

C. Comparison with Goldreich and Keeley

Goldreich and Keeley3] find a radiation instability in a
thin ring of relativistic, monoenergetic, zero-temperature O MpA(wSY — mD)
electrons constrained to move in a circle of fixed radius. fdpqsé‘f:—efdpqsﬁ : > (49
Under the condition &m‘3<y their growth rate isw; (0= me=kp,)
~1.166m?™rN/(y3rg)]¥2 which is close to our growth rate  where we assume without loss of generality>0 andk,
with L replaced byry,. <m/ry,w. In place of Eq.(38) we find
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% 2152
ek =1 +kAwk) | o SF L g2
I V274,
(50)
where
[]=- m—d’z
(w—m¢-ku,)

Here,e acts as an effective dielectric constant for Ehkayer
and

®-me
k, '

Alw, k) = W(Z(w,kz)<u - kt—%),

Z=1iJ{ro(0® = KYHY[ro(0? - K)Y?],  (51)

andk,=m/r, is the azimuthal wave number. The expression

for Z is from Sec. IV. An integration by parts gives

2
8(U)‘1+A(w)f exp- Uffvm) mgblizlk' 52
\ mth u

where thek, dependence of and A is henceforth implicit.
We can also write this equation as

s(u)=1+B(u){1+£F(£>], (53
Uth \Uth
where
B(u) = 1§25¢Z<u - —k?"—) (54)
Utzh I(z kz')’2
and
o W2
F(2) = 1_ dxexp( x12) ’
V2t X—-Z

for Im(z) >0, and

*exp-x2/2)
dx

F(2 ==
X—Z

N2

+|\'2 ex ,
2

for Im(z) <0. The second expression fB(z) is the analytic
continuation of the first expression to (E< 0 which corre-
sponds to wave dampingee, e.g.[25], chap. 5. Note that
terms of orderAw have been omitted.

For m> 1, the factorZz=iJ,(J,+iY,) can be expressed in

—00

terms of Airy functions in a way similar to that done in Sec.

IV. One finds J,[ro(w?—k3)Y?] = (2/m)*Ai (w),
-I0)Y2]~ —(2/m)"Bi(w),

Ym[ro("-’2

2\23 2\2/3
zrz(—> Ai(w)Bi(w), Zi*(—) Ai%(w), (55)
m m

where

by (3713

_k +tar? ¢—2utan¢).
Tk
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FIG. 3. The figure shows the growth/damping rateand real
part of the frequenC)Awr:w—m¢ in units of ¢ as a function of
tany=k,/k, for m=100 andm=1000 for anE layer with y=30,
£=0.02, andv=30/92. In the region of dampingy; <0, the sec-
ond expression foF(z) in Eq. (53) is used.

goes over to our earliew for =0 noting thatutany
— Aw.

A limit where Eq.(53) can be solved analytically is for
u]2=|AD[?/tar? > vi—that is, for sufficiently small ta.
In this limit Eq. (53) can be expanded as an asymptotic series
F(z2)=-1/z-1/22-3/2%----. Keeping just the first three
terms of the expansion gives

2
(o =0. (56

)(AZZ))Z -

s:1+w§z(1+

For tany— 0 andAw< y 72, this is the same as E(B9) as it
should be. In general Eq56) will have more than one un-
stable mode. In the remainder of this section we will only
study the largest unstable solution for which we recover the
growth rates found in Sec. IV in the limit tapp— 0. Figure 3
shows some sample solutions. For the case shown the
pendence o is negligible.

General solutions of Eq53) can be obtained using the
Newton-Raphson metho¢[32], Chap 9 where an initial

It is clear thate has in general a rather complicated depen-guess of(u;,u;) gives (e, ). This guess is incremented by

dence oru=u,+iu; and tany. Note that the expression far

an amount
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10! : : ‘ d?¢
meyroﬁ = —edE,g codme + k,z— wt). (60)

Combining Egs(59) and(60) gives

d2
a2

= meE‘S—O(l +tarf )sin ¢, (62)

where =m¢+kz-wt+37 and tany=k,/k,. Becausey?
<1 for wave growth Eq. (58)], the saturation wave ampli-

10* : : ‘
102 103 104 103 10 tude SEg; is again given by Eq(48).
m
FIG. 4. Critical angle fory=30, {=0.02, andvy,=30/2. VII. THICK LAYERS INCLUDING RADIAL BETATRON
OSCILLATIONS
{&r} _ delou, delou; |7 - € 57) A. Limit kArs1
&Ji &ei/(?ur (9Ei/(7Ui — € '

In this section we include the small but finite radial thick-
ness of thek layer. We keep the other approximations men-
tioned at the beginning of Sec. IV. In particular we consider
k,=0. In order to include the layer’s radial thickness, we

ceonsider the wave equations within teelayer,

and the process is repeated unti:0 ande;=0. Fortunately,
the convergence is very rapid and givies< 10710 after a
few iterations.

Figure 3 shows the dependence of the complex wave fr
quency on the tangent of the propagation angle, Jtan s
=k,/kg, for a sample cases. The maximum growth rate is for (VE+ 098P =~ 4mdp,
=0 or k,=0. With increasingy the growth rate decreases,
and for ¢ larger than a critical anglg,, there is damping. =
For the damping the second expression Foin Eg. (53) (VE+ %)W == 4zt 8, (62)
must be used. Roughly, we find that the critical angle corre-
sponds to having the wave phase velocity in thdirection ~ Where
of the order of the thermal spread in this direction—that is,

U, =Aw,/K,~ vy This gives ”2:i_}ﬁ_m2 ﬁ
ve= P R Ry (63)
Vo (N2
tande ~ veym3 2 PR Yo (58) is the adjoint Laplacian operator
wym vyl m Uth j p p :

Within the E layer, we assume that the potentials can be
for my<m<m,. Note that the dimensionless parameterwritten in a WKBJ expansion as
which determines the cutoff at tag, is y?vy,. Our numerical
calculations ofiy, give a slightly faster dependence, g (6D,8V) = (Kg,Ky)exdime + ik (r —rp) —iwt], (64)
o« 1/m°4% for this range ofm. Figure 4 shows then depen-
dence of the critical angle. It is reasonable to assume that iwhere k. is the radial wave number with(k Ar)?>1
a particle accelerator the weak focusing in #arection sets (Kg,Ky) constants. This is equivalent to assuming that the

a low limit on k. charge density is constant betwegp-Ar and ro+Ar and
zero elsewhere. Evaluation of the time integrals in &%)
A. Nonlinear saturation for k,#0 for r=rq gives

as well as the azimuthal motion of the electrons in the wave.
The axial equation of motion is

We generalize the results of Sec. V by including the axial
n(kary)i" exp(— ik 4or; —in
f dt’' 8B’ = P(ro,t) X Z )T exp= kg w)
- n=—o i(me + Nwg — )

(65
ey 2 = [ E, + (v x 4B,
Y2~ . . .
dt? ‘ where n is an integer,k= (k*+k3)*2, with k,=m/r,, and
~ - eE, explwt)cosme + k,z— wt).  (59) tany=Kk /k4. There is an analogous expression for the inte-
' ‘ gral of 5. We have used Eq20) for the radial motion with
The approximation involves neglecting the foree,oB,  ©=0, assuming®<1 and{<y*(Ar/rg) so thatwg =1/,
which is valid for a radially thin IayefAr2/r0< 1). Follow- and Eq.(22) for the ¢ motion with (7¢o/ar|r0/wﬂr:—1/ro.
ing the development of Sec. VI, the azimuthal equation ofUsing Egs.(30) and (65), the momentum-space integrals
motion is (32 can be done to give
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n=— (M + Nwg — w) ingcing o7
and finally if Aw< y72, Fn= o f dgexd—ing - (x*/2)(ky/k - sin 6)].
5y ngmd?Ke ( P - m1 - (1 -Fo)lv?] (73)
H (w—me)? For x>1,1<(k4/k)?and|n| < Vx, we can approximate sif
m = ) in the exponent by a parabola at its maximum. We obtain
n
) ], (67) iNa—ing
yzn:—oo (mgb + nwﬁr - Q))Z Fn ~ %, (74)
The prime on the sums indicate that tive0 term is omitted. 23’4F(—> Vx
Here, 4
in exp(= iny) [ 2 kg In generalF,/(i"e™"*) decreases ag andn increase. This
F,= ?I dé J,(dexp - = - i—‘f’—>, acts to prevent the unlimited increase of the growth rate as
N2y %0 2x k m— oo, and it ensures that the sums oveconverge. Figure
(68) 5 shows a plot of, obtained by numerical evaluation of Eq.
(73).
with Within the E layer, Eq.(62) gives
x =KAr. (69) 2 m . 4mengme? [ rigw—m(1 - (1 -Fo)lv]
The 1/T terms in Eq.(67) do not cancel exactly. They may ' ra H (w - Mep)?
be neglected if
|A®|? < Fod (70) > —Tn ) (75
@ 0Vth S (m¢ +Nwg — w)?
for then=0 term or if . . . . .
In terms of dimensionless variables this equation becomes
AD||n/m- Aw| < v} 71 = ~
(A{lim-=Ag| <vj () 02 (AT L=y D~ [L+(Fo- DI
for then=#0 terms. v¢vm\"77 (AD)?
For weakE layers we have, foy—0, Fg— 1 andF.q
—0. In this limit we recover the results of Sec. IV. Fgr RN Fn _rr_12 +oMPAD = I
>1 and 1<k;ro<kyro, the Gaussian factor in the integrand Y (u;}n/m— AD)? Y 0=k
of F, can be neglected so that one obtains 76
Fy= it 2 cos(n—Tr) evenn K =Tk, Ky=rok,, k= ke
n \*"ZTX|kr| 5 ) ; wherek, =rgk;, K,=roK4, K=rok, and y=kvy,.

Notice that Eq(64) can also be written as

6b =Gy sinfk (r —ro)] + Czcodk(r=ro)],  (77)

. 1 2k
F,~—i"en¥ 2K n(n—7T> oddn. (72)

— Sl
V2my ki 2 for rg—Ar<sr=ry+Ar. Forr=<ry—Ar, we have

_An alte_rnative approximati(_)n foF, can be obtaine_d by 8 = CyJ(wr), (78)
using the integral representation of the Bessel function. The
remaining integral can then be computed numerically morssince the potential must be well behavedrasO.
easily. In this way we find Forr=ry+Ar, we must have
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5D = Cy[J(@r) +iY (wh)]. (79)

This combination of Bessel functions givé®(r —»)—0
for the assumed conditions where(m > 0. Note that these
potentials are just the solutions of E@2) in our approxi-
mation for 8p. The eigenvalue problem can now be solved by
matching the boundary conditions. However, we have not
solved the full eigenvalue problem. Instead we consider un-
stable solutions with the restriction thigiAr> 1. Under this
condition we can interpret E¢76) as a local dispersion re-
lation. Unstable modes found from E¢r6) will need a 10'3ﬂ2 L v L 0
slight correction in order to satisfy the boundary conditions. 10 10 10 10 10
We expect that Eq(76) has solutions near each betatron m
resonance af\w=zn/m. This is a familiar concept in the
treatment of resonances in storage rifafs[28] or [29]). We
extract each solution by summing over a single value of
and -n only and obtain, from Eq(76) for the casen+# 0 and
An<y?

FIG. 6. Growth rates in the Iimﬁvth>1 for our reference case

=30, £=0.02, andvy,=1/%? and various values ok.. The line
proportional tom 4 is shown for comparison.

<1 without requiring the more restrictive condition|A®|
)/thh\";(?rz +my ) F, = <1.). The key effect of the betatron oscillations is to “wash
- = = >+ > out” the phase coherence of the response within the layer; for
. (ﬂ + AZZ)) (ﬂ - AEB) a cold layer, all orbiting particles move in “lock step,” which
m m is particularly favorable for a bunching instability. Let us
(80) suppose thafAw| has a real part that is substantially larger
than 1/42. The response in the layer scales as an Airy func-
Thus, tion with argumenw(1+¢) where|é <vy,. The phase accu-
. FL-F, n mulated across the layer thicknesyry is n~mu3? if
Ap~—_——1% - (81) A, <vy and p~mudAAD /vy ? if AD,>vy,. Large 7
- ought to imply substantial decoherence of the response in the
for sufficiently big Z; i.e., we expect the imaginary part of layer. We see that this is likely irrespective of the value of
A to be negligible for then#0 modes. Despite a lot of A, /vy, provided thatms vy ¥%—i.e., form/ 13> (yvy) "2
effort we were not able to prove this statement under moré\t large values ofy?vy, phase smearing should suffice to
relaxed conditions. suppress—if not eliminate—the bunching instability at fre-
We can easily find an analytic solution of E@6) for the  quencies near the synchrotron peak. Moreover,aby,
case where th@=0 term is dominant. fA®|<1/y” and =1, the instability should be suppressed over the entire

f—
- =
—_—

|AD|<Fo/ 2, we obtain rangem= %22 for which we found unstable modes in Sec.
— IV. Large Aw, /vy, would merely accentuate the smearing. At
V4 - ¢F : ~ 2\-1_;
AD= + 0 _ (82) & given value ofm, we see thatAm,=(mvi) '—i.e.,
771/4\/Uth(mz + YK2) Y Aw, = (m/ ®)X(y?vy,) ">—suffices for large phase deco-

herence in the layer.

The dependence of the growth rateleribecomes significant
when y?k/n? is comparable to unity. Fom~m,~ 7%, we o
see that this happens whégAr)?/ y*vZ ~ 1, which involves C. Limit kiAr<1
the combinatiom?vy, again. _ In order to determine the lowest allowed value kpand

The growth rate of Eq(82) is proportional toy¢. This  the highest possible growth rate the full eigenvalue problem
implies from Sec. V that the emitted power scales as thdas to be solved. We estimate the result by evaluating Eq.
square of the number of particles in tRelayer which cor-  (A4) in the thin approximation again. Looking at EGA\4)
responds to coherent radiation. Sample results are shown and replacing the Bessel functions by their Airy function
Fig. 6. We conclude that the main effect of the betatron osapproximations for the case>m,; and m<m, we see that
cillations is an |_nd|rect one. The radial mqnon itself is unim- the thin approximation is justified ikvg,<1 and m?3,,
portant for the interaction. However, the influence of the ra-<1 |t starts to fail completely ifr?3,,= 1—i.e., once we

dial motion on the time dependence of the azimuthal atigle giart integrating over the oscillating and/or the exponentially
of a particle is important since a shift ih can take the gamped and increasing parts of the Airy function, which im-
particle out of coherence with the wave. This effect is aCplies we would like to havemz’slAZ)K\f'F—o with |AD[2
counted for by, <Fqv}, from the previous paragraph. However, for real val-
ues ofk, we expect that the thin approximation will still give
us an upper bound of the growth rate because it is easier to
Let us suppose thaty,> 1/, and that|/A®| is not nec- maintain coherence if all the radiation is emitted from the
essarily small compared withy, (We can still assuméA@|  same orbit. With Eq(67) we obtain, in the limitAm < y 2.

B. Qualitative analysis of the effect of the betatron motion
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FIG. 7. Solutions of the dispersion relation in the presence o

betatron oscillations in the limikovy<<1, y=30, and {=0.02.
Points which do not satisfy the inequalities> 1, m?3p,,< 1, and
|AD?<Fq? are plotted in gray.

Foy?
(Aw)*
The growth rates can be found as before. Form; we
obtain

1=-w{Z

(83)

1.0831/2m2/3(.ﬁ —
~ —VFO

o » (84)
and
Uzlizg,
y1/2 0

for m>m,; i.e., there is an additional factor ofF,. The

PHYSICAL REVIEW E 71, 046502(2005

tain modes; e.g., the negative mass instability cannot be ex-
pected to be present with the fields having been evaluated at
one radius onlycf. [26]).

VIIl. SPECTRUM OF COHERENT RADIATION

Having computed the growth rate and the saturation am-
plitude, the radiated power can now be calculated. Starting
from Eq. (A10) we now have

2

P.,= 7—2TLwrg|5J¢,o|2 . (85

J £de €] (wr of)

whereé=r/rqy and the integration is over the thickness of the

layer. The Bessel function can be expressed approximately in
term of an Airy function as done before. We take the linear
approximation to the Airy function as discussed previously,

and this gives
2\4/3 L4y,
(o) ||
m 1-vth

wherec,~0.259. This is valid for sufficiently big values of
v and lowm. The largest values occur fdgvy, <1, where
this quantity is simply éfh. This is enough motivation for us
to work in this limit. Thus,

2

L
P, = =242 . (86)

ik,
- édee

2

)4/3
m .

P < 27Lwricvd) 5J¢,0|2< (87)

Because we calculated our growth rates in the thin approxi-
mation for k=k, it is consistent to use ¢

:4n2vthv;12r05\]¢o. Furthermore, we set»—»m{j). This is

results for our reference case are plotted in Fig. 7 which wereonsistent even for large growth rates since the exponential

computed numerically. In Fig. 8 the functidfy is plotted

growth has stopped. With our expression for the saturation

which we compare with the squared ratio of our new growthamplitude we obtain

rates to the ones evaluated previously without betatron osci
lations.

We could also study the effect of the nonzero thickness

alone without betatron oscillations settifg=1 andF,.q

|-
- chvzmﬁls
™= 8mre |22

2

4/3

1
=)= (88)
m

m

o

=0 and solving the full eigenvalue problem. Due to the com-Since the number of particleN, is proportional ta’and the

plicated nature of the dispersion relation, we have not don

growth rates are proportional to/ for m>m, the radiated

this yet. Note that the thin approximation will suppress cer-POWer scales liké\?. This suggests that the emitted radiation

E, 10!

102

10* 10°

10°

10
m

FIG. 8. Fq as a function oim for y=30, {=0.02, and variousy,
and the squared ratio of the growth rates from Figs. 2 atdhgh-
triple-dotted line.

is coherent. In Fig. 9 we plotted the radiated power in arbi-
trary units having evaluatell, numerically. For largen the
curve scales asi >3, Analytically we obtain with our second
approximation forF, the scalingm 3(m?/3/mY4)4=m 453,
With |Z|2= 4cf(2/m)*"® we obtain

L
Pn=<3.71x 101476m_3r—
0

4
<ﬁ> (erg/9. (89)
¢

A. Brightness temperatures

We consider the brightness temperaturgg$or conditions
relevant to the radio emissions of pulsars. Using the
Rayleigh-Jeans formuld,=2kgTg(v/c)? for the radiated
power per unit area per sterradian at a frequency

=me¢/ 27 gives
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10°% - ' ' ] of the betatron motion suggests that CSR is suppressed for a
00 T 1 minimum energy spread afy,> 1y ?=12.5y"2
10

10" 3 X. DISCUSSION AND CONCLUSIONS

10 N This work has studied the stability of a collisionless, rela-

10 tivistic, finite-strength, cylindrical electror(or positron

100 [ NN layer by solving the Vlasov-Maxwell equations. This system

o b ‘\1 is of interest to understanding the high-brightness-
temperature coherent synchrotron radio emission of pulsars

10 1(I)2 1(')3 1(')4 1(*)5 and the coherent synchrotron radiation observed in particle

accelerators. The considered equilibrium layers have a finite
“temperature” and therefore a finite radial thickness. The
FIG. 9. Radiated poweim 3(w;/$)*] for y=30 andz=0.02 in electror_ls are considered to move either almost perpendicular
arbitrary units. The straight line is proportional to>3 and is  tO @ uniform external magnetic field or almost parallel to an
shown for comparison. Points which do not satisfy the inequaliie£Xt€rnal toroidal magnetic field. A short-wavelength instabil-
ms 1, M3, <1, and|AB[2<Fq2, are plotted in gray. ity is found which causes an exponential growth an initial
perturbation of the charge and current densities. The period-
. icity of these enhancements can lead to coherent emission of
2kgTg(v/C)?AAQ = 27P/ synchrotron radiation. Neglecting betatron oscillations we
obtain an expression for the growth rate which is similar to
1 6 —af @ \* the one found by Goldreich and Keel§§] if the thermal
Tg = 45X 10% (KIm)Ly*m™{ — |, (90) energy spread is sufficiently small. The growth rate increases
¢ monotonically approximately as'/2, wherem is the azi-
wherekg is Boltzmann’s constant and=27rL is the area muthal mode number which is proportional to the frequency
of the E layer. The solid angle of the source seen by a distanof the radiation. With the radial betatron oscillations in-
observer has been computed in the Appendix and its value iguded, the growth rate varies a8’® over a significant range
AQ=47?r,/(mL). It is assumed that the angular size of thebefore it begins to decrease.
source is small such that that radiation from the top and the We argue that the growth of the unstable perturbation
bottom emitted at an anglé with respect to the normal is Saturates when the trapping frequency of electrons in the
received by the observer at the same position. For the sampfgave becomes comparable to the growth rate. Owing to this
values y=1000, £=0.08, vy, =0.04y"2, L=100 km, andm saturation we can predict the radiation spectrum for a given
=m, our model predicts a maximum brightness temperaturéet of parameters. For the realistic case including radial be-
of Tg=2x 10?°K. According to our results from previous tatron oscillations we find a radiation spectrum proportional
sections there may be degeneracy from modes with nonzete m >, This result is in rough agreement with observations
axial wave numberg,. It is reasonable to assume that this of radio pulsarg4]. The power is also proportional to the
will increase the brightness temperature by a factor on théquare of the number of particles which indicates that the
order ofmtany,,. Beaming along the axis may increase the radiation is coherent. Numerical simulations of electron rings

brightness temperature and the observed frequency even flrased on the fully relativistic, electromagnetic particle-in-
ther. cell codeooric[30] recovers the main scalings found here.

m

IX. APPLICATIONS IN ACCELERATOR PHYSICS ACKNOWLEDGMENTS

The next-generation linear collider requires a beam with We thank J.T. Rogers, G.H. Hoffstaetter, and G.S.
very short bunches and low emittance. That is, the bearBisnovatyi-Kogan for valuable discussions. This research
must occupy a very small volume in phase space. The emiwas partially supported by the Stewardship Sciences Aca-
tance of the preaccelerated beam is reduced in a dampirigmic Alliances program of the National Nuclear Security
ring which is operated with longer bunches to avoid certainAdministration under U.S. Department of Energy Coopera-
instabilities. The bunch length has to be decreased in a séive Agreement No. DE-FC03-02NA00057 and by the Na-
called bunch compressor before the beam can be injectdibnal Science Foundation under Contract No. AST-0307273
into the linear collider. A bunch compressor consists of arand IGPP-1222.
accelerating part and an arc section. Since the bunch lengths
of the proposed linear colliders are in the order of the wave-
length of the synchrotron radiation which is being radiated in APPENDIX: GREEN'S FUNCTION
the arc section, instabilities due to coherent synchrotron have
to be taken seriously. For a design energy of 2 GeV and 7
X 10* electrons per 10@m our dimensionless quantities
becomey=4000 and;=0.08[27]. Our qualitative analysis ob(r,t) :Jdt’d?’r’G(r —r't=t")op(r',t'),

The Green'’s function for the potentials gives
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e, , , . (see, e.g., Chap. 9 df21]). The source point is atx’
SA(r,t) = f dt'd’r'G(r —r',t=t)aJ(r",t"),  (ALl) =’ cos¢’,y'=r"sing’,z'). The observation point is taken
to be at(x=0,y=Rsin#,z=Rcosé). ConsequentlyRr’

where =r’sinf#sin¢’'+z' cosh. The phase factor exiwR) does
5 P - A not affect the radiated power and is henceforth dropped.
V- G(r,t) == 4mst)ar), G(K,w)= PERpET For the cases wheJ,; is the dominant component of the

current-density perturbation we have

expik -r —iwt)

[0] [0} _% ’ ! mM—_ oi ! !
G(r’t):(z x dng’ (A2) [6AY, A7] = R fr dr'd¢p’'[-sing’,cos¢’]

~ . . . X 83 4(r")explime’ —iwr’ sinésing’),
where G is the Fourier transform of the Green’s function. ¢( Jexplimg’ =i ¢')

The C on the integral indicates a# integration parallel to (A7)
but above the real axis, @) >0, so as to give the retarded \\here
Green’s function. _

Because of the assumed dependences of (£6), we S0 = Lsﬂ(kz—wcos&)L/Z]

have, for the electric potential, (k,— w cos6)L/2 (A8)
50 . dr d de 5 , is a structure function accounting for the finite.axial length of
ok (1) = . rar I Pamig(r') -] the E layer and the superscript indicatesw=me. Carrying
out the ¢’ integration in Eq(A7) gives
(Kr)Jm(Kr )
=4 ’drf m Pomi (1), 6
i f 2 (2 1Q) Pl ons, w1 = 22 f el (A9)
(A3)
where
where
m .
[‘ . ] _ exp(ima)JO{K[rz + (r1)2 - 2rr! COSCY]:UZ} [ ] = |: wr sin 9) a)I’—SinOJm(wr Sin 9)

Kz—(wz—kg) ’ . L .

and where the prime on the Bessel function indicates its de-
where k’= k)2(+ kﬁ Becauseav has a positive imaginary part, rivative with respect to its argument. The radiated power per
this solution corresponds to the retarded field. Also becausenit solid angle is
Im(w) >0, the k integration can be done by a contour inte- dP, R2

gration as discussed [133] which gives a0 8 —|6Be?= —|k X 6A“?

5q)wm|&(r) = 2772' JO r,dr,‘]m(kr<)H§T::)(kr>) 5pwmkz(r,)’ [0} 2)7 (AlO)

(Ad) .
TN . wherek = wR is the far-field wave vector.

wherek= (w°~k7)*'*, wherer (r-.) is the lessefgreatey of For a radially thinE layer (Ar/ry)?><1, Egs.(A9) and
(r,r’), and Wherd—|§)(x):Jm(x)+iYm(x) is the Hankel func-  (A10) give

tion of the first kind. From the Lorentz gauge condition )

dP, S40) . o _
STemle(r) = réAzme: Fov4(1 +AD)5D(r), (A5) 90 8n r'dr’ 83 4(r") wdp(wrq sin 6)

Egs.(A4) and (A5) are useful in subsequent calculations. (6)
+ f r'dr’ 8 (

2

To determine the total synchrotron radiation from the Jm(wrg sin 6)
layer it is sufficient to calculatéA at a large distance from

the E layer. We assume that tHe layer has a finite axial (A11)
length and exists betweerL/2<z<L/2. Thus we evaluate

SA in a spherical coordinate systeR=(R, 6, ¢) at a dis-

The factor within the curly brackets is the same as that for
the radiation pattern of a single charged partisiee Chap. 9

tanceR> L. The retarded solution is of [21])
1 The factorS?(6) in Eq. (A11) tightly constrains the radia-
5A(R):Efd3r’5J(r’,t—|R—r’|) tion to be in the directiond.=cos(k,/w) if the angular

width of S%(6), the half-power half-width\ 6, ,~ 7/ (wL), is

_expioR) [ o o, small compared with the angular spread of the single-particle
- R f d°r’ 63(r')exelime synchrotron radiation, L/, which is the angular width due to
. the Bessel function terms in E¢A11). This corresponds to
+ik,Z —io(t+R-r'")] (AB) E layers withL> 7yl w=aryy/m. For L~r,, we need
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m> 7y, which is satisfied by the spectra discussed in Sec. One limit of interest of Eq(A12) is that wherek,=0 so
VIII. In this case, Eq(Al1l) can be integrated over the solid that #-==/2 and

angle to give
My L‘ 2
L sin 6« _ 2 P,=—2 fr’dr’&] I (wrg)| , (A13)
o= W—{ ‘ J r'dr’ 83 4(r")wdf(wrqsin ) m 2rg ¢ mo
2w
mcot 6. _ 2
+ fr’dr’ﬁJ¢(r’)—Jm(wro sin 6x) } _
fo where we have sab— me. The total radiated power is

(A12)  P=3,P.
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