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We study the stability of a collisionless, relativistic, finite-strength, cylindrical layer of charged particles in
free space by solving the linearized Vlasov-Maxwell equations and compute the power of the emitted electro-
magnetic waves. The layer is rotating in an external magnetic field parallel to the layer. This system is of
interest to understanding the high brightness temperature of pulsars which cannot be explained by an incoher-
ent radiation mechanism. Coherent synchrotron radiation has also been observed recently in bunch compres-
sors used in particle accelerators. We consider equilibrium layers with a “thermal” energy spread and therefore
a nonzero radial thickness. The particles interact with their retarded electromagnetic self-fields. The effect of
the betatron oscillations is retained. A short azimuthal wavelength instability is found which causes a modu-
lation of the charge and current densities. The growth rate is found to be an increasing function of the
azimuthal wave number, a decreasing function of the Lorentz factor, and proportional to the square root of the
total number of electrons. We argue that the growth of the unstable perturbation saturates when the trapping
frequency of electrons in the wave becomes comparable to the growth rate. Owing to this saturation we can
predict the radiation spectrum for a given set of parameters. Our predicted brightness temperatures are pro-
portional to the square of the number of particles and scale by the inverse five-third power of the azimuthal
wave number which is in rough accord with the observed spectra of radio pulsars.
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I. INTRODUCTION

The high brightness temperature of the radio emission of
pulsarssTB@1012 Kd implies a coherent emission mecha-
nism f1–5g and some part of the radio emission of extraga-
lactic jets may be coherentf6g. Recently, coherent synchro-
tron radiation sCSRd has been observed in bunch
compressorsf7–9g which are a crucial part of future particle
accelerators. When a relativistic beam of electrons interacts
with its own synchrotron radiation the beam may become
modulated. If the wavelength of the modulation is less than
the wavelength of the emitted radiation, a linear instability
may occur which leads to exponential growth of the modu-
lation amplitude. The coherent synchrotron instability of
relativistic electron rings and beams has been investigated
theoretically byf3,10–13g. Goldreich and Keeley analyzed
the stability of a ring of monoenergetic relativistic electrons
which were assumed to move on a circle of fixed radius.
Electrons of the ring gain or lose energy owing to the tan-
gential electromagnetic force and at the same time generate
the electromagnetic field. Uhmet al. f14g analyzed the sta-
bility of a relativistic electron ring enclosed by a conducting
beam pipe in an external betatron magnetic field. A distribu-
tion function with a spread in the canonical momentum was
chosen for their analysis. For simplicity the effect of the
betatron oscillations was not included in their treatment.

They find a resistive wall instability and a negative mass
instability. Furthermore, they find an instability which can
perturb the surface of the beam. Heifetsf13g analyzed the
stability of a ring of relativistic electrons in free space in-
cluding a small energy spread which gives a range of radii
such that particles on the inner orbits can pass particles on
outer orbits. Sannibaleet al. f10g have developed a similar
model which includes the effects of the conducting beam
pipe. Numerical simulations byf15g show the burstlike na-
ture of the coherent synchrotron radiation.

The present work analyzes the linear stability of a cylin-
drical, collisionless, relativistic electronsor positrond layer or
E layer f16g. Particle densities in pulsar magnetospheres are
very low, of order of the Goldreich-Julian charge density
nGJ=V ·B /2pce,1011 cm−3sB/1012 GdsR/ rd3fP/1sg−1 at
radius r .R, whereR is the stellar radius,B=1012B12 G is
the surface field strength, andP is the rotational period; thus,
the magnetospheric plasma is collisionless to an excellent
approximationf17g. The particles in the layer have a finite
“temperature” and thus a range of radii so that the limitation
of the Goldreich-Keeley model is overcome. Although we
allow a spread in energies, we assume that it is small, so the
charge layer is also thin; efficient radiation losses are prob-
ably sufficient to maintain rather low-energy spreads in a
pulsar magnetosphere, although the precise size of the spread
is still not entirely certain. Viewed from a moving frame the
E layer is a rotating beam. The system is sufficiently simple
that it is relevant to electron flows in pulsar magnetospheres
scf. f18gd. The analysis involves solving the relativistic Vla-
sov equation using the full set of Maxwell’s equations and
computing the saturation amplitude due to trapping. The lat-
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ter allows us to calculate the energy loss due to coherent
radiation.

In Sec. II we describe the considered Vlasov equilibria.
The first type of equilibriumsad is formed by electronssor
positronsd moving perpendicular to a uniform magnetic field
in the z direction so as to form a thin cylindrical layer re-
ferred to as anE layer. The second type of equilibriumsbd is
formed by electrons moving almost parallel to an external
toroidal magnetic field and also forming a cylindrical layer.
Section III describes the method of solving the linearized
Vlasov equation which involves integrating the perturbation
force along the unperturbed orbits of the equilibrium. In Sec.
IV, we derive the dispersion relation for linear perturbations
for the case of a radially thinE layer and zero wave number
in the axial direction,kz=0. We find that there is in general a
short-wavelength instability. In Sec. V we analyze the non-
linear saturation of the wave growth due to trapping of the
electrons in the potential wells of the wave. This saturation
allows the calculation of the actual spectrum of coherent syn-
chrotron radiation. In Sec. VI, we derive the dispersion rela-
tion for linear perturbations of a thinE layer including a
finite axial wave number. The linear growth is found to occur
only for small values of the axial wave number. The nonlin-
ear saturation due to trapping is similar to that for the case
wherekz=0. In Sec. VII we consider the effect of the thick-
ness of the layer more thoroughly and include the betatron
oscillations. Section VIII discusses the apparent brightness
temperatures for the saturated coherent synchrotron emis-
sion. Section IX discusses some implications on particle ac-
celerator physics. Section X gives the conclusions of this
work.

II. EQUILIBRIA

A. Configuration (a)

We first discuss the Vlasov equilibrium for an axisymmet-
ric, long, thin cylindrical layer of relativistic electrons where
the electron motion is almost perpendicular to the magnetic
field. This is shown in Fig. 1sad. The case where the electron
motion is almost parallel to the magnetic field is discussed
below. The equilibrium has] /]t=0, ] /]f=0 and] /]z=0.
The configuration is close to the non-neutral AstronE layer
of f16g. The equilibrium distribution functionf0 can be taken

to be an arbitrary non-negative function of the constants of
motion, the Hamiltonian

H ; sme
2 + pr

2 + pf
2 + pz

2d1/2 − eFssrd, s1d

and the canonical angular momentum

Pf ; rpf − erAfsrd, s2d

whereAf=Af
e +Af

s is the totalsexternal plus selfd vector po-
tential,Fs is the self-electrostatic potential,me is the electron
rest mass, −e is its charge, and the units are such thatc=1.
Here, the external magnetic field is assumed to be uniform,
Be=Bz

eẑ, with Af
e =rBz

e/2 and Bz
e.0. Thus we havef0

= f0sH ,Pfd. We consider the distribution function

f0 = KdsPf − P0dexpf− H/Tg, s3d

whereK, P0, and T are constantsssee, for example,f19gd.
The temperatureT in energy units is assumed sufficiently
small that the fractional radial thickness of the layer is small
compared with unity. Note that a Lorentz transformation in
the z direction gives a rotating electron beam.

The equations for the self-fields are

1

r

d

dr
Sr

dFs

dr
D = 4peE d3p f0sH,Pfd, s4d

d

dr
S1

r

dsrAf
s d

dr
D = 4peE d3pvf f0sH,Pfd, s5d

wherevf=sPf / r +eAfd /H.
Owing to the small radial thickness of the layer, we can

expand radially nearr0,

FPf

r
+ eAfsrdG2

= FPf

r0
+ eAfsr0dG2

+ drD1 +
1

2
dr2D2,

s6d

whereD1, D2 are the derivatives evaluated atr0 and dr ; r
−r0 with sdr / r0d2!1. We chooser0 so as to eliminate the
term linear indr. Thus,

H = H0 − eFssr0d +
1

2H0
spr

2 + pz
2 + H0

2vbr
2 dr2d, s7d

wherevbr is the radial betatron frequency and

H0 ; meH1 +FPf

r0
+ eAfsr0dG2J1/2

, s8d

g0 ;
H0

me
,

vf0 ;
1

H0
FPf

r0
+ eAfsr0dG .

We assumeg0
2@1 andvf0.0 so thatvf0=1−1/s2g0

2d to a
good approximation. The “median radius”r0 is determined
by the condition

FIG. 1. Geometry of relativisticE layer in sad for the case of a
uniform external axial magnetic field and insbd for an external
toroidal magnetic field with an external radial electric field.
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D1

2H0
− eUdFs

dr
U

r0

= 0

or

1

H0
SPf

r0
+ eAfDUS−

Pf

r0
2 + e

dAf

dr
DU

r0

= eUdFs

dr
U

r0

. s9d

To a good approximation,

r0 =
meg0vf0

s1 − 2zdeBz
e <

meg0

eBz
e s1 + 2zd s10ad

or

r0
2 =

2Pf

eBz
e f1 + 3z + Osz2dg. s10bd

Here,

z ; −
Bz

ssr0d
Bz

e , with z2 ! 1, s11d

is the field-reversal parameter of Christofilos. For a radially
thin E layer of axial lengthL consisting of a total number of
electrons, N, the surface density of electrons iss
=N/ s2pr0Ld and the surface current density is −evfs. Be-
causeBz

ssr0d is one-half the full change of the self-magnetic
field across the layer, we havez=reN/ sgLd, where re

=e2/ smc2d is the classical electron radius. Notice thatN, z,
and gL are invariants under a Lorentz transform in thez
direction.

The radial betatron frequencyvbr is given by

H0
2vbr

2 =
D2

2
−

D1
2

4H0
2 − H0e

d2Fs

dr2 . s12d

Using Eq.s9d gives

vbr
2 =

1 − 4z

1 − 2z

vf0
2

r0
2 +

evf0

g0me
Ud2Af

dr2 U
r0

−
e

g0me
Ud2Fs

dr2 U
r0

<
1 − 2z

r0
2 −

Î2/pz

r0Drg2 . s13d

The term~1/Dr is the sum of the defocusing self-electric
force and the smaller focusing self-magnetic force. For the
layer to be radially confined we need to havez
,Îp /2g2sDr / r0d. For z!g2sDr / r0d and z2!1, we have
vbr =1/r0 to a good approximation.

The number density follows from Eq.s3d,

n < n0 expS−
dr2

2Dr2D whereDr ; S T

H0vbr
2 D1/2

s14ad

or

Dr2

r0
2 .

vth
2

1 − 2z − Î2/pzsr0/Drd/g2
, s14bd

where

vth ; S T

g0me
D1/2

s15d

and

n0 = 2pKH0Tr0
−1 expS−

H0 − eFssr0d
T

D . s16d

As mentioned we assume the layer to be radially thin with
sDr / r0d2!1. Consequently, Eqs.s4d and s5d become

d2Fs

dr2 < 4pen0 expS−
dr2

2Dr2D ,

d2Af
s

dr2 < 4pen0vf0 expS−
dr2

2Dr2D . s17d

Thus we obtain

z =
− Bz

ssr0d
Bz

e =
4pen0vf0DrÎp/2

Bz
e . s18d

The equilibrium is thus seen to be determined by three pa-
rameters

z2, vth
2 , and 1/g0

2, s19d

which are all small compared with unity.

1. Equilibrium orbits

From the Hamiltonian of Eq.s7d we have

d2dr

dt2
= − vbr

2 dr, → drst8d = dr i sinfvbrst8 − td + wg,

s20d

wherer −r0=dr i sinw. For future use we express the orbit so
that r st8= td=r , wheresr ,td is the point of observation. Also,
we have

df

dt
=

Pf + erAfsrd
megr2 = ḟsr0d + Udḟ

dr
U

r0

dr + ¯ , s21d

so that

fst8d = f + st8 − tdḟ0 +
1

vbr
U ]ḟ0

]r
U

r0

h− dr i cosfvbrst8 − td

+ wg + dr i cosswdj, s22d

where u]ḟ /]r ur0
=−ḟ0/ r0. For z!g2sDr / r0d and z2!1, we

have ]ḟ / u]r ur0
/vbr =−1/r0 to a good approximation. Be-

cause theE layer is uniform in thez direction,

zst8d = z+ st8 − tdvz. s23d

The orbits are necessary for the stability analysis.

B. Configuration (b)

Here, we describe a Vlasov equilibrium for an axisym-
metric, long, thin cylindrical layer of relativistic electrons
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where the electron motion is almost parallel to the magnetic
field. The equilibrium distribution functionf0 is again taken
to be given by Eq.s3d in terms of the HamiltonianH and the
canonical angular momentumPf; rpf−erAfsrd, whereAf

=Af
s . We make the same assumptions as above,g2@1,

T/ smegd!1, andDr2/ r0
2!1. In this case there is no external

Bz field. Instead, we include an external toroidal magnetic
field Bf

e with corresponding vector potentialAz
e and an exter-

nal electric fieldEe with potentialFe. The fieldsBe andEe

correspond to the magnetic and electric fields of a distant,
charged, current-carrying flow along the axis. Thus,uEr

eu
, uBf

e u. The considered external field is of course just one of
a variety of fields which give electron motion almost parallel
with the magnetic field. Note also that the distribution func-
tion is restricted in the respect that it does not include a
dependence on the canonical momentum in thez direction,
Pz=megvz−eAz.

The distribution functions3d givesJz=0 so that there is no
toroidal self magnetic field. Thus the self-potentials in this
case are also given by Eqs.s4d ands5d. Equationss6d–s9d are
also applicable with the replacement ofFs by the total po-
tential F. In place of Eq.s10d we find

r0 =
megvf

2

s1 − 2zdeEr
esr0d

<
meg

eEr
esr0d

s1 + 2zd, s24d

wherez;Bz
ssr0d /Er

ssr0d. We again havez=reN/ sgLd, where
re=e2/ smc2d is the classical electron radius andL is the axial
length of the layer. Becaused2Fe/dr2=−s1/rddFe/dr, the
radial betatron frequency is again given by Eq.s13d swith F
now the total potentiald so that the orbits given in Sec. II A 1
also apply in this case. The electron motion is almost parallel
to the magnetic field in thatsBz

s/Bf
ed2=z2sEr

e/Bf
ed2,z2!1.

Notice that Eq.s24d for r0 is formal in the respect thatEr
e

~1/r. Therefore,r0 is in fact arbitrary in this case. Because
the wavelengths of the unstable modes are found to be small
compared withr0, it may be interpreted as local radius of
curvature of the magnetic field.

III. LINEAR PERTURBATION

We now consider a general perturbation of the Vlasov
equation withfsr ,p ,td= f0sr ,pd+dfsr ,p ,td. To first order in
the perturbation amplitudedf obeys

S ]

]t
+ v ·

]

]r
+

dp

dt
·

]

]p
Ddf ;

Ddf

Dt
= esdE + v 3 dBd ·

]f0

]p
,

s25d

where dE and dB are the perturbations in the electric and
magnetic fields. All scalar perturbation quantities are consid-
ered to have the dependences

Fsrdexpsimf + ikzz− ivtd, s26d

where the angular frequencyv is taken to have at least a
small positive imaginary part which corresponds to a grow-
ing perturbation. This allows for a correct initial value treat-
ment of the problemf20g. For a perturbation taken to vanish
as t→−`,

dfsr ,p,td = eE
−`

t

dt8hdEfr st8d,t8g + vst8d

3 dBfr st8d,t8gj ·
]f0

]p
, s27d

where the integration follows the orbitfr st8d ,pst8dg which
passes through the phase-space pointfr ,pg at timet. For the
considered axisymmetric equilibria,

]f0

]p
=

p

H
U ]f0

]H
U

Pf

+ rf̂U ]f0

]Pf
U

H
, s28d

where the partial derivatives are to be evaluated at constant
Pf andH, respectively. Thus, the right-hand side of Eq.s25d
becomes

eS−
ddF

dt
+ ivsḟdC − dFd + ivv' · dAD ]f0

]H

+ eS−
ddC

dt
+ imsḟdC − dFd + imv' · dAD ]f0

]Pf

, s29d

wheredE=−=dF−]dA /]t anddB= = 3dA, dC; rdAf is
the perturbation in the flux function,v'=svr ,vzd, and d/dt
=] /]t+v ·=. We assume the Lorentz gauge= ·dA +]dF /]t
=0.

Evaluating Eq.s27d gives

df = e
]f0

]HF− dF + ivE
−`

t

dt8sḟ8dC8 − dF8 + v'8 · dA8dG
+ e

]f0

]Pf
F− dC + imE

−`

t

dt8sḟ8dC8 − dF8 + v'8 · dA8dG ,

s30d

where the prime indicates evaluation atfr st8d ,t8g. The inte-
gration is along the unperturbed particle orbit so that]f0/]H
and]f0/]Pf are constants and can be taken outside the inte-
grals. Note also thatd/dt acting on a function ofsr ,td is the
same asD /Dt.

IV. FIRST APPROXIMATION

As a starting approximation we neglectsid the radial os-
cillations in the orbitsfsDr / r0d2!1g, sii d the self-field cor-
rections to orbits proportional toz, siii d the terms indf pro-
portional tov'

2 svth
2 <sDr / r0d2!1d, sivd we takekz=0, and

svd we assume the layer is very thin. Owing to approximation
siii d, we can neglect the terms~v' ·dA in Eq. s30d in the
evaluation ofdr and dJf. This is because these terms give
contributions todf which are odd functions ofvr and vz.
Therefore, their average contribution can be neglected.

Evaluation of Eq.s30d gives

df = − eU ]f0

]H
U

Pf

ḟsvdC − mdFd

v − mḟ
− eU ]f0

]Pf
U

H

vdC − mdF

v − mḟ
,

s31d

whereḟ=ḟsr0d. The approximations lead to a closed system
with potentialssdF ,dCd and sourcessdr ,dJfd.
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We have

dr = − eE d3pdf = −
e

r0
E dprdpzdPfdf ,

dJf = − eE d3pvfdf = −
e

r0
E dprdpzdPfvfdf . s32d

For the considered distribution function, Eq.s3d, ]f0/]H
=−f0/T. The ]f0/]Pf term in Eq.s31d can be integrated by
parts. Furthermore, note that]H /]Pf=ḟ and ]ḟ /]Pf

=−sḟd2/H, which corresponds to an effective “negative
mass” for the particle’s azimuthal motionf22–24g. From the
partial integration the small term proportional to]vf /]Pf

=vf / sr0H
3d is neglected. Also note thatH is not a constant

when performing the integration over momenta. Evaluating
this term by an integration by parts with a general function
gsPfd in the integrand gives

E dPfU ]f0

]Pf
U

H
gsPfd

= − KE dPfdsPf − P0d
]

]Pf

fgsPfde−H/Tg

= − KE dPfdsPf − P0d
]

]Pf

fgsPfdge−H/T

+
K

T
E dPfdsPf − P0dgsPfde−H/T ]H

]Pf

. s33d

That is, the integration produces an additional term which
cancels the 1/T term. Thus,

E dPfdf = − eE dPf

f0

H

mḟ2svdC − mdFd
sDvd2 , s34d

where Dv;v−mḟ. Integrating over the remaining mo-
menta gives

sdr,dJfd = s1,vfde2nsrd
mḟ2

H

svdC − mdFd
sDvd2 . s35d

For a radially thin E layer we may takensrd=n0

exps−dr2/2Dr2d→n0
Î2pDrdsdrd. We comment on this ap-

proximation below in more detail when, we include the ra-
dial wavenumberkr of the perturbation. Then Eqs.sA4d and
sA5d can be written as

fdFsr0d,dCsr0dg = f1,r0vfs1 + Dṽdg2p2r0ZE drdrsrd,

s36d

where Z; iJmsvr0dHm
s1dsvr0d, ṽ;v / smḟd, and Dṽ

;Dv / smḟd. Integrating Eq.s35d over the radial extent of
the E layer and canceling out the field amplitudes gives the
dispersion relation

1 = 2p2r0fn0e
2Î2pDrgZ

mḟ2

H

vr0vfs1 + Dṽd − m

sDvd2 . s37d

In terms of dimensionless variables this becomes

1 = pzZS2Dṽ −
1

g2D 1

sDṽd2 , s38d

where Z= iJmsmṽvfdHm
s1dsmṽvfd, Hm

s1d=Jm+ iYm, and the
field-reversal parameterz=4pen0vfDrÎp /2 /Bz

e as given by
Eq. s11d.

For m@1, Jmsmṽvfd<s2/md1/3Ai swd and Ymsmṽvfd
<−s2/md1/3Biswd, where Ai and Bi are the Airy functions
and w=sm/2d2/3sg−2−2Dṽd f31g. Thus we haveZ= iJmHm

s1d

<s2/md2/3fAi swdBiswd+ iAi2swdg. It is useful to denoteZ as
Zmswd. For uwu2@1, Aiswd<s2Îpd−1w−1/4 exps−2w3/2/3d,
Biswd<sÎpd−1w−1/4 exps2w3/2/3d, and Zm

<s2/md2/3/ s2puwu1/2d.
For uwu2&0.5, Aiswd=c1−c2w+Osw3d and Biswd=Î3fc1

+c2w+Osw3dg, where c1=1/f32/3Gs2/3dg<0.355 and c2

=1/f31/3Gs1/3dg<0.259. In this limit we haveZmswd
<s2/md2/3fÎ3sc1

2−c2
2w2d+ isc1−c2wd2g. For uwu2!1, Zm

<s0.347+0.200id /m2/3.

A. Range of validity

We are interested in the regime where the wavelength of
the emitted radiation is comparable to the “bunch length”—
i.e.,v<m or equivalentlyDṽ!1. However, Eq.s38d is only
valid if Dṽ!g−2. Since we neglecteddJr anddJz, we obtain
from the continuity equationdJf=svr0/mddr. Due to this
approximation, the factor on the right-hand side can become
bigger than the speed of light ifDṽ.g−2 which leads to
unphysical results. In the latter casedJf=vfdr is a better
approximation. Fortunately,Dṽ!g−2 is the most interesting
case and in the remainder of this paper we will always work
in this limit. Furthermore, for the continuum approximation
to be valid the mean particle distance has to be much smaller
than the wavelength.

B. Growth rates

It will prove useful to define two characteristic values of
m: m1;z3/2g3 andm2=2g3, and thereforem1=z3/2m2/2. We
can obtain approximate solutions to Eq.s38d in two different
cases. There may be solutions with small values ofg2Dṽ, so
that w.sm/m2d2/3. In this case, Eq.s38d becomes a simple
quadratic equation, which can be solved forDṽ. We can
simplify the solution somewhat by changing variables tos
;g2Dṽ in which case Eq.s38d can be written in the form

1 =
pzZmg2

s2 ss − 1d < −
pzZmg2

s2 ,

where we have neglecteds compared to one in the approxi-
mate version of this equation. We find that

s . Î− pzZmg2. s39d

For case I let us assume thatm!m2, in which case Eq.s39d
implies
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s . ± 1.121sm1/md1/3eis7p/12d = 1.121sm1/md1/3s− 0.2588

+ 0.9659id, s40d

so usu!1 for m@m1. The growth rate of the unstable mode
is

vi .
1.083z1/2m2/3ḟ

g
s41d

in this regime. For case II we assume thatm@m2, in which
case Eq.s39d implies

s = ±
iz1/2g3/2

m1/2 = ± iz1/2sm2/2md1/2

vi .
z1/2m1/2ḟ

g1/2 ; s42d

note that the growth rates in cases I and II match almost
exactly atm=m2, whereusu<z1/2.

Note thatm2ḟ is the approximate frequency of the peak of
the single-particle synchrotron radiation spectrum. For more
accurate results we employ a numerical method for solving
Eq. s38d outlined in f34g. This method also allows us to
count the number of roots which are enclosed by a contour.
So far we have no numerical evidence of the existence of
more than one solution with a positive real part. The numeri-
cal results agree very well with our approximations even if
m,m1 and are shown in Fig. 2.

C. Comparison with Goldreich and Keeley

Goldreich and Keeleyf3g find a radiation instability in a
thin ring of relativistic, monoenergetic, zero-temperature
electrons constrained to move in a circle of fixed radius.
Under the condition 1!m1/3!g their growth rate isvi

<1.16ḟm2/3freN/ sg3r0dg1/2 which is close to our growth rate
with L replaced byr0.

V. NONLINEAR SATURATION

Clearly the rapid exponential growth of the linear pertur-
bation can continue only for a finite time. We analyze this by
studying the trapping of electrons in the moving potential
wells of the perturbation. ForsDr / r0d2!1, the electron or-
bits can be treated as circular. The equation of motion is

dPf

dt
= rdFf, dFf = − efdEf + sv 3 dBdfg, s43d

wherePf is the canonical angular momentum, where

dFf = − edEf0 expsvitdcossmf − vrtd, s44d

wheredEf0 is the initial value of the potential,vr ;Resvd,
andvi ; Imsvd.

For a relativistic particle in a circular orbit,

dPf = me*r0
2dḟ, whereme* =

− meg
3

g2 − 1
< − meg, s45d

whereme* is the “effective mass,” which is negative, for the
azimuthal motion of the electronsf22,24g or f23g, p. 68d.
Combining Eqs.s43d and s45d gives

d2w

dt2
= − vT

2stdsinw, s46d

where w;mf−vtt+
3
2p, vT;vT0expsvit /2d, and vT0

;femdEf0/ smegr0dg1/2, where vT is termed the “trapping
frequency.” At the “bottom” of the potential well of the
wave, sinw<w. An electron oscillates about the bottom of
the well with an angular frequency,vT. This is of course a
nonlinear effect of the finite wave amplitude. A WKBJ solu-
tion of Eq. s45d gives

w ~ vT0
−1/2exps− vit/4dsinhs2vT0/vidfexpsvit/2d − 1gj.

s47d

The exponential growth of the linear perturbation will cease
at the time tsat when the particle is turned around in the
potential well. This condition corresponds tovTstsatd<vi.
Thus, the saturation amplitude is

udEsatu2 = S meg

er0m
D2Svismd

ḟ
D4

, s48d

whereudEsatu;udEstsatdu= udE0uexpsvitsatd.

VI. FIRST APPROXIMATION WITH kzÅ0

Here, we considerkzÞ0 but keep the other approxima-
tions. Our ansatz fordf is general enough to handle this case
since it retains the biggest contribution to the Lorentz force
in the z direction which is of the ordervfBr. In place of Eq.
s34d we obtain

E dPfdf = − eE dPf

f0

H

mḟ2svdC − mdFd

sv − mḟ − kzvzd2
, s49d

where we assume without loss of generalitykz.0 and kz
!m/ r0,v. In place of Eq.s38d we find

FIG. 2. The graph shows the frequency dependence of the
growth rate for a sample case whereg=30 andz=0.02 obtained
from our approximations for Eq.s38d. For these parameters,m1

<102 andm2<2.73104.
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«sv,kzd = 1 +kzAsv,kzdE
−`

`

dvz

exps− vz
2/2vth

2 d
Î2pvth

f¯g = 0,

s50d

where

f¯g ; −
mḟ

sv − mḟ − kzvzd2
.

Here,« acts as an effective dielectric constant for theE layer
and

Asv,kzd ; pzZsv,kzdSu −
kf

kzg
2D, u ;

v − mḟ

kz
,

Z ; iJmfr0sv2 − kz
2d1/2gHm

s1dfr0sv2 − kz
2d1/2g, s51d

andkf=m/ r0 is the azimuthal wave number. The expression
for Z is from Sec. IV. An integration by parts gives

«sud = 1 +Asvd E dvz

exps− vz
2/2vth

2 d
Î2pvth

3

mḟvz/kz

vz − u
, s52d

where thekz dependence of« and A is henceforth implicit.
We can also write this equation as

«sud = 1 +BsudF1 +
u

vth
FS u

vth
DG , s53d

where

Bsud ;
p

vth
2 zZ

kf

kz
Su −

kf

kzg
2D s54d

and

Fszd ;
1

Î2p
E

−`

`

dx
exps− x2/2d

x − z
,

for Imszd.0, and

Fszd ;
1

Î2p
E

−`

`

dx
exps− x2/2d

x − z
+ iÎ2p expS−

z2

2
D ,

for Imszd,0. The second expression forFszd is the analytic
continuation of the first expression to Imszd,0 which corre-
sponds to wave dampingssee, e.g.,f25g, chap. 5d. Note that
terms of orderDṽ have been omitted.

For m@1, the factorZ= iJmsJm+ iYmd can be expressed in
terms of Airy functions in a way similar to that done in Sec.
IV. One finds Jmfr0sv2−kz

2d1/2g<s2/md1/3Ai swd, Ymfr0sv2

−kz
2d1/2g<−s2/md1/3Biswd,

Zr < S 2

m
D2/3

Ai swdBiswd, Zi < S 2

m
D2/3

Ai2swd, s55d

where

tanc ;
kz

kf

, w ; Sm

2
D2/3S 1

g2 + tan2 c − 2u tancD .

It is clear that« has in general a rather complicated depen-
dence onu=ur + iui and tanc. Note that the expression forw

goes over to our earlierw for c=0 noting that u tanc
→Dṽ.

A limit where Eq. s53d can be solved analytically is for
uuu2= uDṽu2/ tan2 c@vth

2 —that is, for sufficiently small tanc.
In this limit Eq. s53d can be expanded as an asymptotic series
Fszd=−1/z−1/z3−3/z5−¯. Keeping just the first three
terms of the expansion gives

« = 1 +pzZS1 +
3vth

2 tan2 c

sDṽd2 D g−2

sDṽd2 = 0. s56d

For tanc→0 andDṽ!g−2, this is the same as Eq.s38d as it
should be. In general Eq.s56d will have more than one un-
stable mode. In the remainder of this section we will only
study the largest unstable solution for which we recover the
growth rates found in Sec. IV in the limit tanc→0. Figure 3
shows some sample solutions. For the case shown theu de-
pendence ofZ is negligible.

General solutions of Eq.s53d can be obtained using the
Newton-Raphson methodsf32g, Chap 9d where an initial
guess ofsur ,uid gives ser ,eid. This guess is incremented by
an amount

FIG. 3. The figure shows the growth/damping ratevi and real
part of the frequencyDvr =v−mḟ in units of ḟ as a function of
tanc=kz/kf for m=100 andm=1000 for anE layer with g=30,
z=0.02, andvth=30/g2. In the region of dampingvi ,0, the sec-
ond expression forFszd in Eq. s53d is used.
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Fdur

dui
G = F]er/]ur ]er/]ui

]ei/]ur ]ei/]ui
G−1F− er

− ei
G , s57d

and the process is repeated until«r =0 and«i =0. Fortunately,
the convergence is very rapid and givesu«u,10−10 after a
few iterations.

Figure 3 shows the dependence of the complex wave fre-
quency on the tangent of the propagation angle, tanc
=kz/kf, for a sample cases. The maximum growth rate is for
c=0 or kz=0. With increasingc the growth rate decreases,
and for c larger than a critical angleccr there is damping.
For the damping the second expression forF in Eq. s53d
must be used. Roughly, we find that the critical angle corre-
sponds to having the wave phase velocity in thez direction
of the order of the thermal spread in this direction—that is,
ur =Dvr /kz,vth. This gives

tanccr ,
Îz

vthgm1/3 = S reN

vth
2 g3L

D1/2 1

m1/3 ø
1

g2vth
, s58d

for m1,m,m2. Note that the dimensionless parameter
which determines the cutoff at tanccr is g2vth. Our numerical
calculations ofccr give a slightly faster dependence, tanccr
~1/m0.40, for this range ofm. Figure 4 shows them depen-
dence of the critical angle. It is reasonable to assume that in
a particle accelerator the weak focusing in thez direction sets
a low limit on kz.

A. Nonlinear saturation for kzÅ0

We generalize the results of Sec. V by including the axial
as well as the azimuthal motion of the electrons in the wave.
The axial equation of motion is

meg
d2z

dt2
= − efdEz + sv 3 dBdzg

< − edEz0 expsvitdcossmf + kzz− vtd. s59d

The approximation involves neglecting the force~vrdBf

which is valid for a radially thin layersDr2/ r0
2!1d. Follow-

ing the development of Sec. VI, the azimuthal equation of
motion is

megr0
d2f

dt2
= − edEz0 cossmf + kzz− vtd. s60d

Combining Eqs.s59d and s60d gives

d2w

dt2
= −

emdEf0

megr0
s1 + tan2 cdsinw, s61d

where w;mf+kzz−vt+ 3
2p and tanc=kz/kf. Becausec2

!1 for wave growthfEq. s58dg, the saturation wave ampli-
tudedEsat is again given by Eq.s48d.

VII. THICK LAYERS INCLUDING RADIAL BETATRON
OSCILLATIONS

A. Limit krDrš1

In this section we include the small but finite radial thick-
ness of theE layer. We keep the other approximations men-
tioned at the beginning of Sec. IV. In particular we consider
kz=0. In order to include the layer’s radial thickness, we
consider the wave equations within theE layer,

s¹2 + v2ddF = − 4pdr,

s¹̃2 + v2ddC = − 4prdJf, s62d

where

¹̃2 ;
]2

]r2 −
1

r

]

]r
−

m2

r2 +
]2

]z2 s63d

is the adjoint Laplacian operator.
Within the E layer, we assume that the potentials can be

written in a WKBJ expansion as

sdF,dCd = sKF,KCdexpfimf + ikrsr − r0d − ivtg, s64d

where kr is the radial wave number withskrDrd2@1
sKF ,KCd constants. This is equivalent to assuming that the
charge density is constant betweenr0−Dr and r0+Dr and
zero elsewhere. Evaluation of the time integrals in Eq.s30d
for r =r0 gives

E
−`

t

dt8dF8 = dFsr0,td 3 o
n=−`

`
Jnskdr idin exps− ikfdr i − incd

ismḟ + nvbr − vd
,

s65d

where n is an integer,k;skr
2+kf

2d1/2, with kf=m/ r0, and
tanc;kr /kf. There is an analogous expression for the inte-
gral of dC. We have used Eq.s20d for the radial motion with
w=0, assumingz2!1 andz!g2sDr / r0d so thatvbr =1/r0,

and Eq.s22d for the f motion with u]ḟ0/]r ur0
/vbr =−1/r0.

Using Eqs. s30d and s65d, the momentum-space integrals
s32d can be done to give

FIG. 4. Critical angle forg=30, z=0.02, andvth=30/g2.
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seKe−H/Td−1E dPfdf

=
1

T
sKCḟ − KFdHJ0skdr id − 1 + smḟ − vd

3 o
n=−`

`

8
ine−inc−ikfdriJnskdr id

mḟ + nvbr − v
J −

mḟ2

H

vKC − mKF

smḟ − vd2
−

mḟ2

H

3msKCḟ − KFdH J0skdr id − 1

smḟ − vd2

+ o
n=−`

`

8
ine−inc−ikfdriJnskdr id

smḟ + nvbr − vd2 J , s66d

and finally if Dṽ!g−2,

dr <
e2n0mḟ2KF

H
S r0

2ḟv − mf1 − s1 − F0d/g2g

sv − mḟd2

−
m

g2 o
n=−`

`

8
Fn

smḟ + nvbr − vd2
D . s67d

The prime on the sums indicate that then=0 term is omitted.
Here,

Fn ;
in exps− incd

Î2px
E

−`

`

dj JnsjdexpS−
j2

2x2 − i
kfj

k
D ,

s68d

with

x ; kDr . s69d

The 1/T terms in Eq.s67d do not cancel exactly. They may
be neglected if

uDṽu2 ! F0vth
2 s70d

for the n=0 term or if

uDṽuun/m− Dṽu ! vth
2 s71d

for the nÞ0 terms.
For weakE layers we have, forx→0, F0→1 andFnÞ0

→0. In this limit we recover the results of Sec. IV. Forx
@1 and 1!krr0!kfr0, the Gaussian factor in the integrand
of Fn can be neglected so that one obtains

Fn < ine−inc 1
Î2px

2k

ukru
cosSnp

2
D, evenn,

Fn < − ine−inc 1
Î2px

2ik

ukru
sinSnp

2
D, oddn. s72d

An alternative approximation forFn can be obtained by
using the integral representation of the Bessel function. The
remaining integral can then be computed numerically more
easily. In this way we find

Fn =
ine−inc

2p
E

−p

p

du expf− inu − sx2/2dskf/k − sinud2g.

s73d

For x@1,1! skf /krd2andunu,Îx, we can approximate sinu
in the exponent by a parabola at its maximum. We obtain

Fn <
ine−inc

23/4GS3

4
DÎx

; s74d

In generalFn/ sine−incd decreases asx and n increase. This
acts to prevent the unlimited increase of the growth rate as
m→`, and it ensures that the sums overn converge. Figure
5 shows a plot ofF0 obtained by numerical evaluation of Eq.
s73d.

Within the E layer, Eq.s62d gives

kr
2 = v2 −

m2

r0
2 +

4pe2n0mḟ2

H
S r0

2ḟv − mf1 − s1 − F0d/g2g

sv − mḟd2

−
m

g2o
n

8
Fn

smḟ + nvbr − vd2
D . s75d

In terms of dimensionless variables this equation becomes

zÎ2

vfvth
Îp

S s1 + Dṽds1 − g−2d − f1 + sF0 − 1d/g2g
sDṽd2

−
1

g2o
n

8
Fn

svf
−1n/m− Dṽd2D −

m2

g2 + 2m2Dṽ = k̄r
2

s76d

wherek̄r ; r0kr, k̄f; r0kf, k̄; r0k, andx= k̄vth.
Notice that Eq.s64d can also be written as

dF = C2 sinfkrsr − r0dg + C3 cosfkrsr − r0dg, s77d

for r0−Dr ø r ø r0+Dr. For r ø r0−Dr, we have

dF = C1Jmsvrd, s78d

since the potential must be well behaved asr →0.
For r ù r0+Dr, we must have

FIG. 5. F0 for vth=0.01 andkfr0=104.
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dF = C4fJmsvrd + iYmsvrdg. s79d

This combination of Bessel functions givesdFsr →`d→0
for the assumed conditions where Imsvd.0. Note that these
potentials are just the solutions of Eq.s62d in our approxi-
mation fordr. The eigenvalue problem can now be solved by
matching the boundary conditions. However, we have not
solved the full eigenvalue problem. Instead we consider un-
stable solutions with the restriction thatkrDr @1. Under this
condition we can interpret Eq.s76d as a local dispersion re-
lation. Unstable modes found from Eq.s76d will need a
slight correction in order to satisfy the boundary conditions.

We expect that Eq.s76d has solutions near each betatron
resonance atDṽ= ±n/m. This is a familiar concept in the
treatment of resonances in storage ringsscf. f28g or f29gd. We
extract each solution by summing over a single value ofn
and −n only and obtain, from Eq.s76d for the casenÞ0 and
Dṽ!g−2,

J ; −
g2vth

Îpsk̄r
2 + m2g−2d

zÎ2
=

F−n

S n

m
+ DṽD2 +

Fn

S n

m
− DṽD2 .

s80d

Thus,

Dṽ <
F−n − Fn

J
±

n

m
s81d

for sufficiently big J; i.e., we expect the imaginary part of
Dṽ to be negligible for thenÞ0 modes. Despite a lot of
effort we were not able to prove this statement under more
relaxed conditions.

We can easily find an analytic solution of Eq.s76d for the
case where then=0 term is dominant. IfuDṽu!1/g2 and
uDṽu!F0/g2, we obtain

Dṽ = ±
21/4Î− zF0

p1/4Îvthsm2 + g2k̄r
2d

. s82d

The dependence of the growth rate onkr becomes significant

when g2k̄r
2/m2 is comparable to unity. Form,m2,g3, we

see that this happens whenskrDrd2/g4vth
2 ,1, which involves

the combinationg2vth again.
The growth rate of Eq.s82d is proportional toÎz. This

implies from Sec. V that the emitted power scales as the
square of the number of particles in theE layer which cor-
responds to coherent radiation. Sample results are shown in
Fig. 6. We conclude that the main effect of the betatron os-
cillations is an indirect one. The radial motion itself is unim-
portant for the interaction. However, the influence of the ra-
dial motion on the time dependence of the azimuthal anglef
of a particle is important since a shift inf can take the
particle out of coherence with the wave. This effect is ac-
counted for byF0.

B. Qualitative analysis of the effect of the betatron motion

Let us suppose thatvth@1/g2, and thatuDṽu is not nec-
essarily small compared withvth sWe can still assumeuDṽu

!1 without requiring the more restrictive conditiong2uDṽu
!1.d. The key effect of the betatron oscillations is to “wash
out” the phase coherence of the response within the layer; for
a cold layer, all orbiting particles move in “lock step,” which
is particularly favorable for a bunching instability. Let us
suppose thatuDṽu has a real part that is substantially larger
than 1/g2. The response in the layer scales as an Airy func-
tion with argumentws1+jd whereuju,vth. The phase accu-
mulated across the layer thickness,vthr0 is h,mvth

3/2 if
Dṽr !vth and h,mvth

3/2sDṽr /vthd1/2 if Dṽr @vth. Large h
ought to imply substantial decoherence of the response in the
layer. We see that this is likely irrespective of the value of
Dṽr /vth provided thatm@vth

−3/2—i.e., for m/g3@ sg2vthd−3/2.
At large values ofg2vth, phase smearing should suffice to
suppress—if not eliminate—the bunching instability at fre-
quencies near the synchrotron peak. Moreover, ifg2vth
*z−1, the instability should be suppressed over the entire
rangem*z3/2g3 for which we found unstable modes in Sec.
IV. Large Dṽr /vth would merely accentuate the smearing. At
a given value of m, we see thatDṽr * sm2vth

2 d−1—i.e.,
g2Dṽr * sm/g3d−1sg2vthd−2—suffices for large phase deco-
herence in the layer.

C. Limit krDr™1

In order to determine the lowest allowed value forkr and
the highest possible growth rate the full eigenvalue problem
has to be solved. We estimate the result by evaluating Eq.
sA4d in the thin approximation again. Looking at Eq.sA4d
and replacing the Bessel functions by their Airy function
approximations for the casem@m1 andm!m2 we see that

the thin approximation is justified ifk̄rvth!1 and m2/3vth
!1. It starts to fail completely ifm2/3vth*1—i.e., once we
start integrating over the oscillating and/or the exponentially
damped and increasing parts of the Airy function, which im-
plies we would like to havem2/3uDṽu!ÎF0 with uDṽu2
!F0vth

2 from the previous paragraph. However, for real val-
ues ofkr we expect that the thin approximation will still give
us an upper bound of the growth rate because it is easier to
maintain coherence if all the radiation is emitted from the
same orbit. With Eq.s67d we obtain, in the limitDṽ!g−2.

FIG. 6. Growth rates in the limitk̄rvth@1 for our reference case

g=30, z=0.02, andvth=1/g2 and various values ofk̄r. The line
proportional tom−1/4 is shown for comparison.
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1 = −pzZ
F0g−2

sDṽd2 . s83d

The growth rates can be found as before. Form@m1 we
obtain

vi .
1.083z1/2m2/3ḟ

g
ÎF0 s84d

and

vi .
z1/2m1/2ḟ

g1/2
ÎF0

for m@m2; i.e., there is an additional factor ofÎF0. The
results for our reference case are plotted in Fig. 7 which were
computed numerically. In Fig. 8 the functionF0 is plotted
which we compare with the squared ratio of our new growth
rates to the ones evaluated previously without betatron oscil-
lations.

We could also study the effect of the nonzero thickness
alone without betatron oscillations settingF0=1 and FnÞ0
=0 and solving the full eigenvalue problem. Due to the com-
plicated nature of the dispersion relation, we have not done
this yet. Note that the thin approximation will suppress cer-

tain modes; e.g., the negative mass instability cannot be ex-
pected to be present with the fields having been evaluated at
one radius onlyscf. f26gd.

VIII. SPECTRUM OF COHERENT RADIATION

Having computed the growth rate and the saturation am-
plitude, the radiated power can now be calculated. Starting
from Eq. sA10d we now have

Pm =
p

2
Lvr0

4udJf0u2UE jdjeik̄rjJm8 svr0jdU2

, s85d

wherej; r / r0 and the integration is over the thickness of the
layer. The Bessel function can be expressed approximately in
term of an Airy function as done before. We take the linear
approximation to the Airy function as discussed previously,
and this gives

Pm =
pLv

2
r0

4c2
2S 2

m
D4/3

udJf0u2UE
1−vth

1+vth

jdjeik̄rjU2

, s86d

wherec2<0.259. This is valid for sufficiently big values of

g and low m. The largest values occur fork̄rvth!1, where
this quantity is simply 4vth

2 . This is enough motivation for us
to work in this limit. Thus,

Pm ø 2pLvr0
4c2

2vth
2 udJf0u2S 2

m
D4/3

. s87d

Because we calculated our growth rates in the thin approxi-
mation for k<kf, it is consistent to use df

=4p2vthvf
−1Zr0dJf0. Furthermore, we setv→mḟ. This is

consistent even for large growth rates since the exponential
growth has stopped. With our expression for the saturation
amplitude we obtain

Pm ø
Lc2

2vf
2me

2

8p3r0e
2

g6

uZu2
S 2

m
D4/3 1

m3Svismd

ḟ
D4

. s88d

Since the number of particles,N, is proportional toz and the
growth rates are proportional toÎz for m.m1 the radiated
power scales likeN2. This suggests that the emitted radiation
is coherent. In Fig. 9 we plotted the radiated power in arbi-
trary units having evaluatedF0 numerically. For largem the
curve scales asm−5/3. Analytically we obtain with our second
approximation for F0 the scaling m−3sm2/3/m1/4d4=m−4/3.
With uZu2<4c1

4s2/md4/3 we obtain

Pm & 3.713 1014g6m−3 L

r0
Svi

ḟ
D4

serg/sd. s89d

A. Brightness temperatures

We consider the brightness temperaturesTB for conditions
relevant to the radio emissions of pulsars. Using the
Rayleigh-Jeans formulaBn=2kBTBsn /cd2 for the radiated
power per unit area per sterradian at a frequencyn

=mḟ /2p gives

FIG. 7. Solutions of the dispersion relation in the presence of

betatron oscillations in the limitk̄rvth!1, g=30, and z=0.02.
Points which do not satisfy the inequalitiesm@1, m2/3vth,1, and
uDṽu2,F0vth

2 are plotted in gray.

FIG. 8. F0 as a function ofm for g=30,z=0.02, and variousvth

and the squared ratio of the growth rates from Figs. 2 and 7sdash-
triple-dotted lined.
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2kBTBsn/cd2ADV = 2pPm/ḟ

TB & 4.53 1021 sK/mdLg6m−4Svi

ḟ
D4

, s90d

wherekB is Boltzmann’s constant andA=2pr0L is the area
of theE layer. The solid angle of the source seen by a distant
observer has been computed in the Appendix and its value is
DV=4p2r0/ smLd. It is assumed that the angular size of the
source is small such that that radiation from the top and the
bottom emitted at an angleu with respect to the normal is
received by the observer at the same position. For the sample
values g=1000, z=0.08, vth=0.04g−2, L=100 km, andm
=m1 our model predicts a maximum brightness temperature
of TB<231020 K. According to our results from previous
sections there may be degeneracy from modes with nonzero
axial wave numberskz. It is reasonable to assume that this
will increase the brightness temperature by a factor on the
order ofm tanccr. Beaming along thez axis may increase the
brightness temperature and the observed frequency even fur-
ther.

IX. APPLICATIONS IN ACCELERATOR PHYSICS

The next-generation linear collider requires a beam with
very short bunches and low emittance. That is, the beam
must occupy a very small volume in phase space. The emit-
tance of the preaccelerated beam is reduced in a damping
ring which is operated with longer bunches to avoid certain
instabilities. The bunch length has to be decreased in a so-
called bunch compressor before the beam can be injected
into the linear collider. A bunch compressor consists of an
accelerating part and an arc section. Since the bunch lengths
of the proposed linear colliders are in the order of the wave-
length of the synchrotron radiation which is being radiated in
the arc section, instabilities due to coherent synchrotron have
to be taken seriously. For a design energy of 2 GeV and 7
31011 electrons per 100mm our dimensionless quantities
becomeg=4000 andz=0.08 f27g. Our qualitative analysis

of the betatron motion suggests that CSR is suppressed for a
minimum energy spread ofvth.z−1g−2=12.5g−2.

X. DISCUSSION AND CONCLUSIONS

This work has studied the stability of a collisionless, rela-
tivistic, finite-strength, cylindrical electronsor positrond
layer by solving the Vlasov-Maxwell equations. This system
is of interest to understanding the high-brightness-
temperature coherent synchrotron radio emission of pulsars
and the coherent synchrotron radiation observed in particle
accelerators. The considered equilibrium layers have a finite
“temperature” and therefore a finite radial thickness. The
electrons are considered to move either almost perpendicular
to a uniform external magnetic field or almost parallel to an
external toroidal magnetic field. A short-wavelength instabil-
ity is found which causes an exponential growth an initial
perturbation of the charge and current densities. The period-
icity of these enhancements can lead to coherent emission of
synchrotron radiation. Neglecting betatron oscillations we
obtain an expression for the growth rate which is similar to
the one found by Goldreich and Keeleyf3g if the thermal
energy spread is sufficiently small. The growth rate increases
monotonically approximately asm1/2, where m is the azi-
muthal mode number which is proportional to the frequency
of the radiation. With the radial betatron oscillations in-
cluded, the growth rate varies asm1/3 over a significant range
before it begins to decrease.

We argue that the growth of the unstable perturbation
saturates when the trapping frequency of electrons in the
wave becomes comparable to the growth rate. Owing to this
saturation we can predict the radiation spectrum for a given
set of parameters. For the realistic case including radial be-
tatron oscillations we find a radiation spectrum proportional
to m−5/3. This result is in rough agreement with observations
of radio pulsarsf4g. The power is also proportional to the
square of the number of particles which indicates that the
radiation is coherent. Numerical simulations of electron rings
based on the fully relativistic, electromagnetic particle-in-
cell codeOOPIC f30g recovers the main scalings found here.
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APPENDIX: GREEN’S FUNCTION

The Green’s function for the potentials gives

dFsr ,td =E dt8d3r8Gsr − r 8,t − t8ddrsr 8,t8d,

FIG. 9. Radiated powerfm−3svi / ḟd4g for g=30 andz=0.02 in
arbitrary units. The straight line is proportional tom−5/3 and is
shown for comparison. Points which do not satisfy the inequalities
m@1, m2/3vth,1, anduDṽu2,F0vth

2 are plotted in gray.
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dAsr ,td =E dt8d3r8Gsr − r 8,t − t8ddJsr 8,t8d, sA1d

where

S¹2 −
]2

]t2
DGsr ,td = − 4pdstddsr d, G̃sk,vd =

4p

k2 − v2 ,

Gsr ,td =
4p

s2pd4E
C

dvE d3k
expsik · r − ivtd

k2 − v2 , sA2d

where G̃ is the Fourier transform of the Green’s function.
The C on the integral indicates anv integration parallel to
but above the real axis, Imsvd.0, so as to give the retarded
Green’s function.

Because of the assumed dependences of Eq.s26d, we
have, for the electric potential,

dFvmkz
srd = 2E

0

`

r8dr8E
0

`

kdkE
0

2p

dadrvmkz
sr8df¯g

= 4pE
0

`

r8dr8E
0

`

kdk
JmskrdJmskr8d
k2 − sv2 − kz

2d
drvmkz

sr8d,

sA3d

where

f¯g ;
expsimadJ0hkfr2 + sr8d2 − 2rr 8 cosag1/2j

k2 − sv2 − kz
2d

,

wherek2;kx
2+ky

2. Becausev has a positive imaginary part,
this solution corresponds to the retarded field. Also because
Imsvd.0, thek integration can be done by a contour inte-
gration as discussed inf33g which gives

dFvmkz
srd = 2p2iE

0

`

r8dr8Jmskr,dHm
s1dskr.ddrvmkz

sr8d,

sA4d

wherek;sv2−kz
2d1/2, wherer,sr.d is the lessersgreaterd of

sr ,r8d, and whereHm
s1dsxd=Jmsxd+ iYmsxd is the Hankel func-

tion of the first kind. From the Lorentz gauge condition

dCvmkzsrd = rdAf
vmkz = r0vfs1 + DṽddFvmkzsrd, sA5d

Eqs.sA4d and sA5d are useful in subsequent calculations.
To determine the total synchrotron radiation from theE

layer it is sufficient to calculatedA at a large distance from
the E layer. We assume that theE layer has a finite axial
length and exists between −L /2øzøL /2. Thus we evaluate
dA in a spherical coordinate systemR=sR,u ,fd at a dis-
tanceR@L. The retarded solution is

dAsRd =
1

R
E d3r8dJsr 8,t − uR − r 8ud

=
expsivRd

R
E d3r8dJsr8dexpfimf8

+ ikzz8 − ivst + R̂ · r 8dg sA6d

ssee, e.g., Chap. 9 off21gd. The source point is atsx8
=r8 cosf8 ,y8=r8 sinf8 ,z8d. The observation point is taken

to be at sx=0,y=Rsinu ,z=Rcosud. Consequently,R̂ ·r 8
=r8 sinu sinf8+z8 cosu. The phase factor expsivRd does
not affect the radiated power and is henceforth dropped.

For the cases wheredJf is the dominant component of the
current-density perturbation we have

fdAx
v,dAy

vg =
Ssud

R
E r8dr8df8f− sinf8,cosf8g

3 dJfsr8dexpsimf8 − ivr8 sinu sinf8d,

sA7d

where

Ssud ; L
sinfskz − v cosudL/2g

skz − v cosudL/2
sA8d

is a structure function accounting for the finite axial length of
the E layer and the superscriptv indicatesv=mḟ. Carrying
out thef8 integration in Eq.sA7d gives

fdAx
v,dAy

vg =
Ssud

R
E r8dr8dJfsr8df¯g, sA9d

where

f¯g ; FiJm8 svr8 sinud,
m

vr8 sinu
Jmsvr8 sinudG

and where the prime on the Bessel function indicates its de-
rivative with respect to its argument. The radiated power per
unit solid angle is

dPv

dV
=

R2

8p
udBvu2 =

R2

8p
uk 3 dAvu2

=
R2v2

8p
sudAx

vu2 + cos2 uudAy
vu2d, sA10d

wherek ;vR̂ is the far-field wave vector.
For a radially thinE layer sDr / r0d2!1, Eqs. sA9d and

sA10d give

dPv

dV
=

S2sud
8p

UE r8dr8dJfsr8dvJm8 svr0 sinudU2

+
S2sud
8p

UE r8dr8dJfsr8d
mcotu

r0
Jmsvr0 sinudU2

.

sA11d

The factor within the curly brackets is the same as that for
the radiation pattern of a single charged particlessee Chap. 9
of f21gd.

The factorS2sud in Eq. sA11d tightly constrains the radia-
tion to be in the directionu* =cos−1skz/vd if the angular
width of S2sud, the half-power half-widthDu1/2<p / svLd, is
small compared with the angular spread of the single-particle
synchrotron radiation, 1/g, which is the angular width due to
the Bessel function terms in Eq.sA11d. This corresponds to
E layers withL@pg /v=pr0g /m. For L, r0, we need
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m@pg, which is satisfied by the spectra discussed in Sec.
VIII. In this case, Eq.sA11d can be integrated over the solid
angle to give

Pv =
pL sinu*

2v
HUE r8dr8dJfsr8dvJm8 svr0 sinu*dU2

+ UE r8dr8dJfsr8d
mcotu*

r0
Jmsvr0 sinu*dU2J .

sA12d

One limit of interest of Eq.sA12d is that wherekz=0 so
that u* =p /2 and

Pm =
pmvfL

2r0
UE r8dr8dJfsr8dJm8 svr0dU2

, sA13d

where we have setv→mḟ. The total radiated power is
P=omPm.
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