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The problem of random motion of charged particles in an external magnetic field is studied under the
assumption that the Langevin sources produce anisotropic diffusion in velocity space and the friction force is
dependent on the direction of particle motion. It is shown that in the case under consideration, the kinetic
equation describing particle transitions in phase space is reduced to the equation with a Fokker-Planck collision
term in the general forninonisotropic friction coefficient and nonzero off-diagonal elements of the diffusion
tensor in the velocity spageThe solution of such an equation has been obtained and the explicit form of the
transition probability is found. Using the obtained transition probability, the mean-square particle displace-
ments in configuration and velocity space were calculated and compared with the results of numerical simu-
lations, showing good agreement. The obtained results are used to generalize the theory of large-scale fluctua-
tions in plasmas to the case of anisotropic diffusion across an external magnetic field. Such diffusion is
expected to be observed in the case of an anisotiogigectrum of fluctuations generating random particle
motion (for example, in the case of drift-wave turbulence
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[. INTRODUCTION external potential. Different particular limits of these solu-
tions and their generalizations have been widely used in the
Diffusion of particles and energy in plasmas exposed taheory of turbulencéquasilinear theory included7,8]. As
external magnetic field still remains one of the importantregards the transition probability in phase space under the
problems of plasma physics and controlled fusion. To a larg@resence of an external magnetic field, discussion of the
extent, this problem could be considered to be exhausted froblem started only a few years aff-11]. The particular
the probability of the test particle transition in the phasecase of isotropic diffusion across the external magnetic field
space is known. Such a transition probability makes it poswas studied and the application of the Fokker-Planck formal-
sible to calculate the mean and mean-square particle digsm [9,10] and the Langevin approadiil] led to the same
placements and thus to describe the efficiency of particlgesults. These results give answers to a number of questions.
diffusion. Beside that, as is known, the test particle transitionn particular, they explain the transition from the ballistic
probability can be treated as a Green’s function of the linearmotion to the diffusive regime and describe details of classi-
ized equation for large-scale perturbations in plasplagl],  cal diffusion across an external magnetic field. At the same
which gives the possibility to study electromagnetic and ki-time, the above-mentioned results cannot be applied to the
netic processes in the systems under consideration with refescription of turbulent diffusion generated by drift-wave in-
gard to self-consistent electromagnetic interaction betweestabilities, which are characterized by an asymmetric random
particles. One more important point is that the transitionfield spectrun{12,13.
probability in phase space determines the correlation func- The purpose of the present paper is to find an explicit
tion of the Langevin sources for fluctuation fields in plasmasform of the transition probability for a test particle exposed
and thus the theory of large-scale fluctuations can be workeg an external magnetic field and random force field produc-
out[1-4]. ing anisotropic cross-B diffusion. Using the expression for
The transition probability of a test particle under the ac-the transition probability, we can estimate the transport level
tion of some random fields can be calculated on the basis dfy calculating mean-square particle displacements. This is
various approaches. One of the well-known treatments iglone is Sec. Ill. The obtained analytical results have been
based on the use of the Langevin equations for particle masompared with results of numerical simulations.
tion in random fields with known statistical propertiés6]. In the second part of this work, we present the theory of
Another possibility is to solve the appropriate Fokker-PlancKarge-scale fluctuations worked out for the system under con-
equation with the initial distribution described bysafunc-  sideration. Finally, we performed a detailed analysis of elec-
tion. As was shown by Chandrasekhid], the two ap- tron density fluctuation spectra and found simple analytical
proaches are equivalent and lead to the same results. In tl&pressions of it in asymptotic limits.
present paper, we use the formalism of the Fokker-Planck

equation. Il. BASIC EQUATIONS
The first solution for the test particle transition probability ' Q
in phase space was obtained by Chandrasef#afor the We consider a charged test particle exposed to the exter-

system with no external fields and for the case of a parabolioal magnetic fieldB,=(0,0,B,) and random force field
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SF(t). Treating these random forces as Langevin sources, we 1ll. SOLUTION FOR TRANSITION PROBABILITY

can describe the particle dynamics by the Langevin equa- Taking into account the independency of motion along

tions and across the magnetic fiefde assumed,,=D,,=0), the
dr solution of Eq.(6) with the initial condition(7) can be rep-
dt =V, resented in the form
d 1 W(X.’X’,t,t’) :WL(XL,Xl,t,t’)\IVH(XH,X”’,t,t’) (8)
”
d_tl == B+ E(G[V X Boli + 6F), (1) The solution for the transition probability in the parallel di-

rection was found by Chandrasekhar ],
where 3, is the friction coefficient for a particle moving in N
theith dire_ction, ie., we suggest that the frict_ion coeffici_ent WX, X!, 7) = eBZ’_eXp[_ i(ap2+ bP? + 2hpP) |,
could be different for various directions of motion. Statistical 2y 2A
properties of the random fields are assumed to be known, 9)

(6Fi)=0, where

1 .
@wﬁ(t)éﬁ-(t’»:2Di,-5(t—t'). 2) p=efru, +uvl, P=z-7 +2 2
Bz
As was shown by Chandrasekhar [ii], the Langevin
equations(1) generate the generalized Liouville equation. It _2D,7 b= D_zz(ezﬁzf_ 1)
Bz ’

is easy to show that in this case the evolution of the one- B
particle distribution function can be described by the equa-
tion 2D
R h=-—e*"-1),
Lof(X,t) =0, 3 z

where
A=ab-h?, r=t-t.

|:o = 9 + Uii +[v X Q]ii - i(ﬁivi + Diji>, (4) Equation(6) for the perpendicular part of the transition
at i d; 4y probability (8) reads
Q:(O!OIQ)Y Q:ea)lm' XE(r’V)' {i+v +[VLXQ:|
1 I
We can see thdD;; =Dj; plays the role of a diffusion coeffi- a I '

The solution of the initial-value probleii8) with the ini-

cient in velocity space. 9 (
tial conditionf (X,t)|.==f(X,t") is given by o

J , ,
Bivi"'Dij&_U W, (X, X ,t,t')=0, (10
J

Li={xyh X, ={r,v,}

Such a Fokker-Planck-type kinetic equation would corre-
whereW(X, X’ ;t,t’) satisfies the equation spond to the following equations of motion for charged par-
ticle in viscous media across the external magnetic field:

f(X,t) :f dX"W(X, X5, 1) F(X',t'), (5)

LoW(X,X';t,t') =0 (6) o
_vx,

with the initial condition
WX, X5t 1) = 8(X = X). @) y=vy,

According to Eqs(6) and(7), the quantityW(X, X’ ;t,t") can

be treated as the transition probability for a particle whose
random motion is generated by the Langevin forces with _
statistical properties described by Hg). vy == Byvy — Quy. (11

We notice that our model can be used to describe th . .
diffusion of test particles due to the influence of electrostatic% here are four integrals of motion for the systét),

Ux == Byt Quy,

turbulence, thus we assume the diffusion and friction coeffi- e (BtBy2]r - ~  B=By . ~
cients to be constant in zero-order approximation. In the gen- ~ px=——=—— vx(Q cos)7+ —ZY SanT)
eral case, however, they should be treated self-consistently Q

and their velocity and time dependence should be taken into ~

account[8]. -0, Sinﬂr} - vy,
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desyl (g 1( 1 \¥
Py:T Uy QCOSQT—X—ZMSIHQT Wl(quPy-qu Py,T):P E
1 4
+0,0) sin ﬁT:| - vy, Xexp -~ 5 > c;l(Dxx | (14
ij=1
Herec;; are the elements of a matr,
IBy(Ux - U>,<) + Q(Uy - U\I/) -
Py=x-x"+ , Ny
i :Bxﬁy"' 0? Cij(T) = Zf aij(T )yd7’,
0
Bx(vy = vy) = Qvy—vy) andc;* are the elements of the inverse mat@x".
Py=y-y +—F—> >, (12) Using the obtained solutiofi4), it is possible to calculate
BBy + €2 the mean-square displacements,
where Q=[0?~ (B~ B,)*/ 4] , , (ARAT), = f dAr f dAVAr AT,
In terms of variablep andP, the equation for the transi- ‘
tion probability transforms into XWI(T + Ar,V + AV, V:7),
4
W (X, 7) W, (X, 7) _
. % 'j(T)—ﬁXiaxj =0, (13) (AviAv)), = f dAr f dAVAD,Av,
XW(r + Ar,v+Av,r,v;7), (15)

— a(By+By)
W, (X,7) = e PXPYW (X, 7), . . .
L067) 067) and their values averaged over velocity distribution,

{X1, %2, X3, X4} = {pxs ys Pxs Py} (ArAr)), = f (AR AT, f(V)dv,
The explicit form of the coefficienta;;(7) is presented in the
Appendix.
The solution of Eq(13) with the initial condition (AviAv)), = | (AviAvj)y,f(V)dv. (16)
W | (Xq1,X9,X3,X4,0) = 8(X71) 8(Xo) 8(X3) 5(Xa) In the particular case of a Maxwellian velocity distribution

and B,=p,= B, the mean-square displacement in ¥heirec-
has the form of a multidimensional Gaussian distribution tion has the form

BDyy+ 280D, + QZDny+ 1-e27 Dy +Dyy . 1
(B2 + Q%2 B+02p 2 (B+0Y

(Ax?),=2 {[3 - e287(Bcos Nr— Q) sin 207)]

X <('32 - Qz)@ + ZBQny> +[Q - e?"(Q) cos 227+ B sin 297)]((,82 -Q%D,y - zﬁQ—ﬂDXX; D )}

D,,+ QD
~aF T R - 071~ cos0n) + 2606 sin 2
D, + QD

H e e 2801 -e P cosQ) + (8- 0%)e T sinQr} +

1+e2P7-2eF cosQr ,
B2+ 02 Uth) )

1-e2P" Dy +D
B 2

Q D,,—D
(Avd), = Wi (e27+1- 267 cosQrvd, + (cos A7+ 3 sin 207 — e‘zﬁT) (Xx—zﬂ cos A7

B2+QZ

Dy—D
+Dyysin 2&%) + (cos A7 g sin 207 - e'z‘”)(ny cos 27— XX—ZW sin ZQT). (18)

B2+QZ
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The expressions fofAy?), and <Av§>T can be obtained by 0.5
switching Dy, and D, and setting the opposite sign Df,. 0.4
In the case of isotropic diffusiofD,,=D,,=D,D,,=0), )
Egs.(17) and(18) reduce to r{q\ 0.3
<
() = 2D ! g7 2 [ ~ 0.2
T+ 28 /32+92B 0.1
_5: . 0
- e P(Bcosir- 0 sinQ7)] 10 20 30 40 50
t
1+e2P7-2eF cosQr ,
+ 21 ()2 Uths (19 FIG. 1. Mean-square displacement in configuration space: simu-
P lation results.
o 1-e2h" - _ ) 2 2
(Avd),= ———D+ (1 +e& 27— 26"P" cosQ v, 2 _ o290 K kyi
B o= oo 2 & "\ k) \ak/ |

(20)

which is in agreement with the results presentedlid,11].

By putting Q=0 in Eqg. (19 and looking at the asymptotic
behavior in time, we can easily recognize the Einstein law
for conventional Brownian particle diffusiotAx?),=2D"r

kq=2.5AKN, i=1,...N,

with the diffusion coefficient in configuration space defined kjj=2.94KN, j=1,...N.
asD'=D/p.
For small time Eq(19) gives We use the dispersion relatiany;; =ck/ (1 +k?p2), whereps
2D is the Larmor radiusps=cs/{). The fluctuation intensity is
(AP),. = — P +uy(P - B7), defined by the dimensionless parametes (e/mc) 60y,
3 Particle trajectories were calculated for different realiza-
which corresponds to the ballistic regime of motion. tions of random phases and then the mean and mean-square

displacements were found as averages over realizations.
For both analytical and numerical calculations, we nor-
IV. NUMERICAL SIMULATIONS malize time by 2rQ) and length by zZp.. The diffusion co-

In order to justify our analytical expressions, we per-€fficient in velocity space was normalized byr&Q? and
formed numerical studies of particle diffusion in an externalth€ friction coefficient by). The dimensionless parameters
constant magnetic field and a prescribed stochastic electrfd10Sen for simulations are=1, Akps=0.5. The number of
field which represents a turbulent background. The last one {§10d€s for each direction N=15; the number of realizations
taken as a superposition & modes with random phases. 'S between 2000 and 10 000.

We have solved the following test particle equations of mo- 1he obtained results are shown in Figs. 1-5. The mean-
tion numerically: square qllsplacements in conflgu'ratl(ﬁlg. 1) and velocny.
space(Fig. 3) were compared with those calculated using
dx dy analytical expressiongl?7) and (18) (Figs. 2 and 4 As we
a:l’w a:l’y’ can see, the derived analytical formulas describe the time
behavior of the mean-square displacements in both configu-

ration and velocity space rather well. In particular, they show

dv, e
— = —|[Buv, + 6E,(r,1)], 21
at m[ vy + SE(r,1)] (21) o s
dv e 0.4
at - ml Bt B0 g 0.3
<]
where SE(r ,t)=-V 8®(r ,t) and ~ 0.2
N N 0.1
SD(r,t) =2 X 8 Dyj cowyijt — kex —kyy + i + B)).
i=1 j=1 10 20 30 40 50

. t
In the last expressiony; and g; are random numbers equally

distributed between 0 andn2 5®;; is the spectrum of a FIG. 2. Mean-square displacement in configuration space: ana-
potential which was chosen to be Gaussian, lytical expression witfD=0.0038 and3=0.012.
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FIG. 3. Mean-square displacement in the velocity space: simu- FIG. 5. The results of simulations showing the mean-square
lation results. displacements in configuration space in anisotropic c@er,=2,
ay=1; (b) 0,=1, oy=2.

that the mean-square displacements are accomplished with
oscillations which are damped by a friction. The mean-
square displacement in configuration space has a linear time
asymptotic(Figs. 1, 2, and pwhile the mean-square dis-
placement in velocity space is saturat&igs. 3 and 4

In order to study the effects of anisotropy, we have mul-whereE(r ,t) is the self-consistent field.
tiplied the intensity of different components of random force  Assuming then that at the times Ton (Where 7, is the
by a factor 2 and compared the obtained mean-square dighysically infinitesimal time with respect to which the distri-
placementgsee Fig. $. As we can see, the increase of the pution function is introducedf(X,t) andE(r ,t) are random
intensity of random force in thg direction, i.e., the increase functions and using the representation
of D,,, leads to an increase of the mean-square displacement
in the x direction, which is in agreement with the asymptotic

N e af(X,t)
Lof (X,t) + mE(r,t) T 0, (23

expression, following from Eq17), f(OX,t) = fo(v) + SE(X 1),
o _ B?Dyy + ZBQny+QZDyy one obtains the following linearized equation for the distri-
(AX%),=2 (B2 + 0?72 (22) " pytion function fluctuations:
~ _ e dfo(V)
V. LARGE-SCALE FLUCTUATIONS Lodt(X,t) =~ 55 E(r.y- N (24

In order to describe large-scale fluctuations in plasmas, it
is necessary to take into account particle interactions throughhe formal solution of this equation given in terms of the
a self-consistent electric field. This means that the right-hantransition probability is
part of Eq.(1) should be supplemented with the force term
responsible for such interaction. In turn, this force generates .
an additional self-consistent term in the kinetic equation for e , , L
f(X,t), which transforms to | S (X t) = oV (X,0) - ;"J_x dt f dX"WIX, X" 6E)

of
4 ' 0
X oE(r',t") . —. 25
(r',t') Py (25
3
‘“:>>< 5 Here 5fQ(X,1) is the fluctuation in the appropriate system,
< but with no self-consistent interaction through the electric
1 field. It satisfies the equation
0 )
10 20 30 40 50 Loof™(X,1) =0. (26)
t
FIG. 4. Mean-square displacement in the velocity space: anadE(r ,t)=—V &®(r 1) is the electric field fluctuation satisfy-
Iytical expression wittD=0.0038 and3=0.012. ing the Poisson equation
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As we can see, both dielectric susceptibility2) and
AsD(r,t) = —enJ dvaf(Xp). (27)  sources spectral densit@3) are defined by the space-time
Fourier transformed transition probability
Substituting Eq(25) into Eq.(27), we obtain an inhomo-

geneous equation for the fluctuation potential W(rkw(V,V'):f dTe“‘”f dRe T RW. (X, X" t,t'),
0 —o0

en (!
ASD(r,t)+— | dt’ | dv [ dX'W(X,X";t,t")
mJ R=r-r"; 7=t-t'.

% 950(r",t') ) o It is possible to show that in the case of equilibrium Max-

or’ o' wellian distributions, Eqs(32) and(33) reduce to
- —en | dver9x.p) 28) . P
=-en| dv . Xa(k,w):k—‘z’ 1+|wf drel e kiki2(ArAr),- | - (34)
0

We can see that the quantif®(X,t) plays the role of a
Langevin source for the electric field fluctuation. 02 T ena(kk/2)AT AR

Taking into account Eq¥3), (5), and (26), it is easy to (ng >kw:n,,f dre'7e AR e+ c.c. (35)
find the correlation function for these sources, 0

in agreement with fluctuation-dissipation theorem

(SFOX, ) FOX 1) = WX, X3, 1) (X' 1) Ot~ 1) ,
" (MO = 5 1m ko). (36)
+ WX, Xt )X DO )}, 2mtw

(29 Here, K2=4m€n,/T,, (ArAr), is the mean value of the
product of particle displacements in different directions,
given by Eqgs(15) and(16).

Using Eqs.(30) and(36), one obtains for the equilibrium

where®(t) is the Heaviside function.
Together with Eq.(28), we have a coupled set of equa-
tions for the description of large-scale fluctuations. In thef

potential case, the solution of these equations gives luctuations
Tk [1+xi(k,w)]xe(k,w)
1+2 I ¢ r(k,w) ? <m(2-:*>kw: 2 I £ ) (37)
(éh2> _ o' #Fo T <&‘](0)2> 27Teea) s(k,w)
o/kw s(k,w) o Ko
+ 8(k (,L)) 2 <mg—’ >ka)' (30) < |>k‘” 27Te|2w s(k,w) ' ( )
’ o' #o
In this expressiong(k , w) is the dielectric response function, 8uT 1
P P (8D2)y, = Im(— 2—) (39)
D) kee(k,w)
e(k,w) =1+ x,(k,0), (31)
o The static values of these correlation functions are given
by
where the dielectric susceptibility for each species is defined
as s KHK
r ) (g = nem, (40)
X[,(k,w):—i—k‘;ﬁ dvfdv'W(,kw(v,v’)k '(:;v—"
k2 + K2
(32) =Nz s (42)
1
Here w,, is the corresponding plasma frequency dggv)
is the equilibrium dis@ribution function. o (507, = AT k§+ ki2 2
The spectral density of the sources is given by k=2 12+ ki2+ kg
(n92), =n fdvr f dvW, ., (V,v")foa(V') + C.C., As is seen, they are independent of kinetic coeffici@ntmnd
ag w o OKWw o B.
(33 If the friction and diffusion in the velocity space can be

neglected,3;=0, D;;=0, the transition probability14) re-
wheren, is the mean density and c.c. means complex coneduces to the one describing unperturbed particle motion in
jugated. the external magnetic field. Then E¢80)—(39) recover the
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FIG. 6. Fluctuation spectrgAn), ,/(An3), , of isothermal
plasma for different values af: (1) A=0.1,(2) A=0.3,(3) A=1,
(4) A=3; kik,=0.1, To/T;=1, 6=10°, =45°.
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FIG. 8. Dependence dﬂni)m on diffusion for (1) isothermal,

To/T;=1 and(2) nonisothermall./T;=2 casesk/k.,=0.1; 6=10°;
$=45°.

appropriate results of the collisionless theory of electrostatic

fluctuations(see, for examplg,14]). Such an approximation

is valid atBr<1, kiiji‘J-773< 1. In the opposite case of low-

frequency fluctuationgB7>1, i.e., o< B) with large-scale
spatial correlation$R> v,/ B, i.e., k< B,/ vin, Wherevy,, is

thermal particle velocity the above equations are consider-

ably simplified. In particular,

i
W= | dv | dv'W, , (v,v) (V)= ————
okw f f (rkw( ) 0 ( ) a)+k|k]Dr

ijo
(43)
and thus
ik2  kkD!:
k,w)=—2 he 44
Xo(k, ) 2 w+ikkD, 49
2n, k kD
(0)2 - [oah] ijo
<éhg >km |w+|k,kJDr |2- (45)

ijo

HereDj;,, is the diffusion coefficient in real space defined as

follows:

1 Ar;Ar;
D == lim —J—< ' >T‘T.
2 g1 T

(46)

Using Eq.(17) and the appropriate relations faixAy),
and(Ay?)., we obtain

(Ane? )i/ (Ane? )i

O H N W s

0.005 0.01 0.015

w

FIG. 7. Fluctuation spectréAn2), ,/{An2) o of nonisothermal
plasma for different values af (nonisothermal case(1) A=0.1,
(20 A=0.3, (3) A=1, (4 A=3; kik.,=0.1, T/T;=2, #=10°,
$=45°.

D = B?Dyx+ 280D, + QD
XX (:82 + QZ)Z

¢ _ %Du= 2B0D,y + B°Dy,
vy (,32 + 92)2 !

(47)

(:82 - Qz)ny ~ BQ(DXX - Dyy)
(BZ + QZ)Z '

ro—
Dy =

Here and in what follows, we omit the subscripin all the
cases when it does not lead to misunderstandings.

As we can see even with, =0, anisotropy(D,,# Dy,)
generates an off-diagonal term for the diffusion in the con-
figuration space.

It is convenient to present the results for anisotropic dif-
fusion in the traditional form. For this purpose, we introduce
the notation

kik
D[=#D{j. (48)
In terms of this notation,
K2 KD
K,w)=i—2—rt— 49
Xo(K, @) € o+ KDL (49)
80
460 1
=
NC?40
d
20
0

0.005 0.01 0.015 0.02

w

FIG. 9. Diffusion influence on the low-frequency fluctuation
spectra fluctuation spectra at large(1) A=0.001,(2) A=1; k/ke
=0.1,T/T;=1, 6=85°, p=45°.
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0.005 0.01
w

0.015 0.02

FIG. 10. Fluctuation spectra in nonisothermal plasma for differ-

ent values ofk/kg: (1) k/ke=0.05, (2) k/k.=0.1, (3) k/k,=0.2; A
=0.3; T/ Ti=2; 6=10°, p=45°.

2"
Zn(rk Lo

— s - 50
|w +ik?D] |2 (50

<&157('))2>kw =

Equations (49) and (50) are of the same form as . ) . .
It is necessary to remember thak®: correlations are exhausted by those associated with the

Langevin sources and collective effects do not contribute to

for the isotropic case.
the quantity D{ is dependent on the direction ok
=(ksin#cos¢;ksindsin¢;k cosh),

L = DL(6,¢) = [D}COS + Dy it
+ (D}, + Dy,)sin ¢ cos¢lsin? 6+ D}, cos’ 6.

(51
Using Eq.(47), it reads
DL(6,¢)
_ | Du(B cosé = Q sin ¢)?+D,,(Q cos¢p + B sin ¢)?
- (,82 + QZ)Z
D, [2B8Q cos 25 + (82— Q?)sin 2¢] | .
+ Dol 07 sin? 0
+ %éz cos 6. (52)

Equations(34), (49), and (50) make it possible to find

simple analytic formulas for correlation functions of particle

PHYSICAL REVIEW E71, 046401(2005

3

0.005 0.01 0.015 0.02

w

FIG. 12. Fluctuation spectra in isothermal plasma for different

values ofk/kg: (1) k/ke=0.05,(2) k/ke=0.1, (3) k/k,=0.2; A=0.3;
TJ/Ti=1; 6=10°, p=45°.

2nk?D]

mZ o= b\n(O)Z LSt
< e>k < e >k |w+ik2Dll’-e|2

(53

the fluctuation spectra.
In the collective regionk<k,, i.e., R>\p, where\p is
the Debye length

k2D, KDY + KeDle
| +ik?D)J* (G + k) (K3D{ o + KDL
(54)

<m§>kw = 2ne

where

D" = w
A kgDrLe-"ki2 rLi
In the equilibrium caséT;=T,), Eq. (54) reduces to

k2D,

s, =oan———2—.
(e ®|w +ik2D}\2

(55

density fluctuations. In the case of individual-particle fluc- Similarly, it is possible to find the ion correlations

tuations(k>k,)
6
1
5
3 4
—~
Yo 3
g
~ 2 2
1 3
0
0.02 0.04 0.06 0.08 0.1
w
FIG. 11.

ent values ofk/ks: (1) k/k.=0.6, (2) k/kes=0.9, (3) kike=1.2; A
:O_3;Te/Ti:2; 0:100’ ¢=450.

0.005 0.01 0.015 0.02

w

FIG. 13. Fluctuation spectra in isothermal plasma for aniso-
Fluctuation spectra in nonisothermal plasma for differ-tropic case and different angles (k/k,=0.09: (1) $#=0°, (2) ¢

=45°, (3) $=90°% A;=0.1; A\y=1.9; A,,=0.1; A,,=0; T/Ti=1;
0=85°.
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FIG. 14. Fluctuation spectra in isothermal plasma for aniso- FIG. 16. Fluctuation spectra in nonisothermal plasma for aniso-
tropic case and different angles (k/ke=0.1: (1) $=0°, (2) ¢ tropic case and different angles (k/ke=0.09: (1) $=0°, (2) ¢
=45°,(3) ¢=90° A,,=0.1;A,,=0; T/Tj=1; 6=85°. 243;-0(3) $=90% A,,=0.1; Ay, =1.9; A;7=0.1; A, =0; Te/Ti=2;

2D, KDy, +KiD[,
|0 +ik?Dj* (kg + k) (KeDLe + KDL The range ofA which we use here is chosen to demon-

(56) strate the most pronounced features of spectra. However, it
corresponds to realistic plasma paramet&'s~1 n?/s for
> 8,) fusion devices an@®" ~ 100 n?/s for Aurora[15]).
o Calculations show that the details of spectral distributions
in the low-frequency domaifw < wpe, (1) are considerably
Da~ 2D < Dy, dependent on the values lofand its direction. The influence
of particle friction and diffusion can also be pronounced.
i.e., collective effects result in considerable reduction of ion  For small values o (§<30°), the electron density fluc-
diffusion. tuation spectra are quite similar to those for plasmas with no

The analytical expressions presented were obtained in thexternal magnetic fieldFigs. 6 and 7. If diffusion is weak
asymptotic limits. In the general case, however, a detailedA <0.1), the appropriate curves on these figures recover the
description of fluctuation spectra requires numerical analysigependencies obtained for collisionless plaskicasves No.
of Egs.(30)—(33). 1). Namely, in the case of isothermal plasma, one observes a

The results of calculations of electron density fluctuationGaussian profile with deformation near zero frequency.
spectra are presented in Figs. 6-18. In these figures, fre- |n nonisothermal plasmas, the resonancelike maximum at
quency is normalized by the electron cyclotron frequencywzkcS cosé [wherec,=(T,/my)? is the ion sound velocitly
and the fluctuation spectral intensi¢yn?),, is normalized s a well-pronounced feature of the spectrum. The increase of
by n/Q. wheren=n.=n; is the averaged particle density. A leads to a transformation of a Gaussian curve into a
The diffusion coefficient is determined through the dimen-Lorentzian-like one. Regarding nonisothermal plasmas, a
sionless parametex =D'k%/ wpe with the simplified relation  broadening of the collective maximum associated with the
D'=D,/QZ, set to be the same for electrons and ions. For alfluctuating wave excitation is observed.
calculations, we set the rati@pe/ Qc.=1.1 andm,/m= 10°. At large values off, the influence of the external mag-
The direction of the vectdk with respect to the main axes is netic field can be dominant. It resultfor A<1079) in a
determined by two angle8 and ¢. The external magnetic resonant series ato=N(),; generated by excitation of
field has only az componenB,=(0,0,By).

(P, =2m;

Obviously in the case of a strong magnetic fig|&,|

10l 1 2 5
200 1
8
P 2150
&6 o
g 2
g, §100
~ ~
2 50
0
0.0l 0.02 0.03 0.04 0.05 0.06 0.005 0.0L 0.015 0.02
[43] W

FIG. 15. Fluctuation spectra in isothermal plasma for aniso- FIG. 17. Fluctuation spectra in nonisothermal plasma for aniso-
tropic case and different angles (k/k.,=0.3: (1) #=0°, (2) ¢ tropic case and different angles (k/k.=0.1: (1) #=0°, (2) ¢
=45°, (3) $=90° A,,=0.1; Ayy=1.9; A,,=0.1; A,y=0; T/Tj=1; =45°, (3) $=90°% A;=0.1; A)y=1.9; A,,=0.1; A,,=0; T/T;=2;
6=85°. 0=85°.
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shown that particle diffusion influences fluctuations consid-
200 2 erably. In particular, it leads to a change of the spectral shape
- and its broadening. Anisotropy of the diffusion coefficients
2150 in velocity space generates an angular dependence of the
N:?’loo A spectrum in the plane perpendicular to the external magnetic
N field. This dependence is particularly important if different
50 regimes of fluctuation propagatiofweakly collisional, or
diffusive) are dominant for different directions.
0 00T 002 0.03 0. 04 Although the obtained results can be treated to some ex-
W tent as qualitative due to assumptions we made, they give a

better understanding of low-frequency plasma turbulence. As
an example of practical importance, we should mention the
application of the theory presented to the collective scatter-
ing diagnostics of fusion and ionospheric plasmHs).

FIG. 18. Fluctuation spectra in nonisothermal plasma for aniso
tropic case and different angles (k/k.=0.3: (1) #=0°, (2) ¢
=45°, (3) $=90° Ax=0.1; Ay, =1.9; A,,=0.1; A, =0; Te/T;=2;
6=85°.

Bernstein waves. A\ =0.1, these resonances are strongly APPENDIX
damped(Fig. 9).

The increase ok leads to a weakening of collective ef- Coefficientsa;;(7) are the following:
fects; spectral density considerably decredfégs. 10-12.

The influence of diffusion anisotropy,,=0.1,A,,=1.9,
which corresponds to 95% anisotropy in thg plane leads — (BB = 2B By )
to the dependence of the spectrum on the anrbjléFigs. 3(7) = e Dcoos Qr+ ol 2 Dy~ 1Dy
13-18. This dependence is observed in both isothermal )
(Figs. 13-15 and nonisotherma(lFigs. 16—18 cases. As is =~ .= 1/(B-By
seen, anisotropy of the spectrum for the case under consid- xcosQdrsinfdr+ 02 2 Do
eration can be explained by a transition from the weakly
collisional (¢=0°) to the diffusive regimd$=90°). (B, - By)Qny+QZDyy:| Sir? ()T}’

VI. SUMMARY AND CONCLUSIONS

Using the generalized Liouville equation, we formulated
the kinetic equation for the test particle distribution function ~
in the presence of an external magnetic field and obtained arfoa(7) = A V)T{ Dyy cos Q7+
explicit solution of the initial-value problem for particle tran-
sition probability in the phase space. The Fokker-Planck col- ~ ~ 1 - 2
lision term in the most general forrtanisotropic friction XCOSQTSi”QﬁTZ[(ﬁx—Zﬂy) Dyy
coefficient and the presence of off-diagonal elements of the Q
diffusion coefficient in velocity spagavas used to obtain the ~
solution. — (Bx— By)Dyy + QZDXX:| SinzﬂT} ,
The mean-square displacements in configuration and ve-
locity spaces were calculated. It was shown that in the case
of small friction coefficientqd8/()<1), particle diffusion is

2 —
:(— Px . L Qny)
Q

accompanied by oscillations of mean-square displacements. (r) = Blifo 208 Dy + Qszy
A transition from a cubic time dependence at the initial stage a33(7) = (BBy + 0?)2 ’
to the classical diffusion regimdinear dependengavas ob-
served. The mean-square velocity displacement in such cases
{ir:/z(ia?)llfests a linear time dependence and saturation, respec- o :8>2<Dyy_ ZQ,Bxny+QZDxx
. A7) = N2 )
It was shown that in the case of an anisotropic spectrum (BuBy + Q)

of random forceganisotropic diffusion coefficients with off-
diagonal componenisthe mean-square displacements can
be considerably different from those for the symmetric dif- ~ 1 ~ o~
fusion. y y a(7) = e(ﬁxwy)f{ D,y cos Q7+ E(Dxx_ Dy,)cos)rsinQr

We have formulated general relations for the description
of large-scale fluctuations in the system under consideration. 11 (B By 2 Bx~ ByDxx+ Dy,
Their reduction to the drift-diffusion and collisionless limits - & 2 Dyy = 202 2 2
is done.

We have also presented a detailed analysis of electron ’ L~
density fluctuation spectra for various sets of parameters. Itis +QDyy si Q¢
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e(]-/z)(ﬁx+ﬁy) T ~ e( 1/2) (,Bx+,8y) T ~
ans(n=—"-5 D,,+ QD,,)cosQr an(n)=—-5 D,,+ QD,,)cosQr
13( ) BxBy"'Qz (,By XX xy) 23( ) ﬁxBy"'Qz (IBy Xy yy)
1 - 1 Bx— B
+:|:ﬁy(MDxx_Qny> +r|:—ﬂy( X2 —YDXy—QDXX
Q 2 Q
- = _ol BBy S
+Q<¥DXV—QDW>}stT , Q( 2 Dyy QnyﬂS'nQT '
e L2)(Bytpy)T ~
apy(7) = Bp (BDyy— (Dyy)cosr
1 Bx— B
(112)(Bx+By) T = Px Py
e X" Py ~ + —ﬁ D,,— QD
) =—————— D,,— QD,,)cod)r ~[ x( 2 v Xy)
14( ) ﬁxﬁy"'ﬂz (:Bx Xy xx) (0]
1 Bx— B +Q(—M ny—QDxxﬂsinﬁr ,
+ | Bx —szy_QDyy 2
Q 2
- Bx:Bnyy + Q(IBXDyy - Bnyx ~ Qny)
_ Bx— B _ PR agy(7) = :
Q<—¥2 D,y QDXY)}stT : (BxBy + 0?2
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