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The problem of random motion of charged particles in an external magnetic field is studied under the
assumption that the Langevin sources produce anisotropic diffusion in velocity space and the friction force is
dependent on the direction of particle motion. It is shown that in the case under consideration, the kinetic
equation describing particle transitions in phase space is reduced to the equation with a Fokker-Planck collision
term in the general formsnonisotropic friction coefficient and nonzero off-diagonal elements of the diffusion
tensor in the velocity spaced. The solution of such an equation has been obtained and the explicit form of the
transition probability is found. Using the obtained transition probability, the mean-square particle displace-
ments in configuration and velocity space were calculated and compared with the results of numerical simu-
lations, showing good agreement. The obtained results are used to generalize the theory of large-scale fluctua-
tions in plasmas to the case of anisotropic diffusion across an external magnetic field. Such diffusion is
expected to be observed in the case of an anisotropick spectrum of fluctuations generating random particle
motion sfor example, in the case of drift-wave turbulenced.
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I. INTRODUCTION

Diffusion of particles and energy in plasmas exposed to
external magnetic field still remains one of the important
problems of plasma physics and controlled fusion. To a large
extent, this problem could be considered to be exhausted if
the probability of the test particle transition in the phase
space is known. Such a transition probability makes it pos-
sible to calculate the mean and mean-square particle dis-
placements and thus to describe the efficiency of particle
diffusion. Beside that, as is known, the test particle transition
probability can be treated as a Green’s function of the linear-
ized equation for large-scale perturbations in plasmasf1–4g,
which gives the possibility to study electromagnetic and ki-
netic processes in the systems under consideration with re-
gard to self-consistent electromagnetic interaction between
particles. One more important point is that the transition
probability in phase space determines the correlation func-
tion of the Langevin sources for fluctuation fields in plasmas,
and thus the theory of large-scale fluctuations can be worked
out f1–4g.

The transition probability of a test particle under the ac-
tion of some random fields can be calculated on the basis of
various approaches. One of the well-known treatments is
based on the use of the Langevin equations for particle mo-
tion in random fields with known statistical propertiesf5,6g.
Another possibility is to solve the appropriate Fokker-Planck
equation with the initial distribution described by ad func-
tion. As was shown by Chandrasekharf5g, the two ap-
proaches are equivalent and lead to the same results. In the
present paper, we use the formalism of the Fokker-Planck
equation.

The first solution for the test particle transition probability
in phase space was obtained by Chandrasekharf5g for the
system with no external fields and for the case of a parabolic

external potential. Different particular limits of these solu-
tions and their generalizations have been widely used in the
theory of turbulencesquasilinear theory includedd f7,8g. As
regards the transition probability in phase space under the
presence of an external magnetic field, discussion of the
problem started only a few years agof9–11g. The particular
case of isotropic diffusion across the external magnetic field
was studied and the application of the Fokker-Planck formal-
ism f9,10g and the Langevin approachf11g led to the same
results. These results give answers to a number of questions.
In particular, they explain the transition from the ballistic
motion to the diffusive regime and describe details of classi-
cal diffusion across an external magnetic field. At the same
time, the above-mentioned results cannot be applied to the
description of turbulent diffusion generated by drift-wave in-
stabilities, which are characterized by an asymmetric random
field spectrumf12,13g.

The purpose of the present paper is to find an explicit
form of the transition probability for a test particle exposed
to an external magnetic field and random force field produc-
ing anisotropic cross-B diffusion. Using the expression for
the transition probability, we can estimate the transport level
by calculating mean-square particle displacements. This is
done is Sec. III. The obtained analytical results have been
compared with results of numerical simulations.

In the second part of this work, we present the theory of
large-scale fluctuations worked out for the system under con-
sideration. Finally, we performed a detailed analysis of elec-
tron density fluctuation spectra and found simple analytical
expressions of it in asymptotic limits.

II. BASIC EQUATIONS

We consider a charged test particle exposed to the exter-
nal magnetic fieldB0=s0,0,B0d and random force field
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dFstd. Treating these random forces as Langevin sources, we
can describe the particle dynamics by the Langevin equa-
tions

dr

dt
= v,

dvi

dt
= − bivi +

1

m
sefv 3 B0gi + dFid, s1d

wherebi is the friction coefficient for a particle moving in
the ith direction, i.e., we suggest that the friction coefficient
could be different for various directions of motion. Statistical
properties of the random fields are assumed to be known,

kdFil = 0,

1

m2kdFistddFjst8dl = 2Dijdst − t8d. s2d

As was shown by Chandrasekhar inf5g, the Langevin
equationss1d generate the generalized Liouville equation. It
is easy to show that in this case the evolution of the one-
particle distribution function can be described by the equa-
tion

L̂0fsX,td = 0, s3d

where

L̂0 ;
]

]t
+ vi

]

]r i
+ fv 3 Vgi

]

]vi
−

]

]vi
Sbivi + Dij

]

]v j
D , s4d

V = s0,0,Vd, V = eB0/m, X ; sr ,vd.

We can see thatDij =Dji plays the role of a diffusion coeffi-
cient in velocity space.

The solution of the initial-value problems3d with the ini-
tial condition f usX,tdut=t8= fsX,t8d is given by

fsX,td =E dX8WsX,X8;t,t8dfsX8,t8d, s5d

whereWsX,X8 ; t ,t8d satisfies the equation

L̂0WsX,X8;t,t8d = 0 s6d

with the initial condition

WsX,X8;t8,t8d = dsX − X8d. s7d

According to Eqs.s6d ands7d, the quantityWsX,X8 ; t ,t8d can
be treated as the transition probability for a particle whose
random motion is generated by the Langevin forces with
statistical properties described by Eq.s2d.

We notice that our model can be used to describe the
diffusion of test particles due to the influence of electrostatic
turbulence, thus we assume the diffusion and friction coeffi-
cients to be constant in zero-order approximation. In the gen-
eral case, however, they should be treated self-consistently
and their velocity and time dependence should be taken into
accountf8g.

III. SOLUTION FOR TRANSITION PROBABILITY

Taking into account the independency of motion along
and across the magnetic fieldswe assumeDxz=Dyz=0d, the
solution of Eq.s6d with the initial conditions7d can be rep-
resented in the form

WsX,X8,t,t8d = W'sX',X'8 ,t,t8dWisXi,Xi8,t,t8d. s8d

The solution for the transition probability in the parallel di-
rection was found by Chandrasekhar inf5g,

WisXi,Xi8,td =
ebzt

2pÎD
expF−

1

2D
sar2 + bP2 + 2hrPdG ,

s9d

where

r = ebztvz + vz8, P = z− z8 +
vz − vz8

bz
,

a =
2Dzzt

bz
2 , b =

Dzz

bz
se2bzt − 1d,

h = −
2Dzz

bz
2 sebzt − 1d,

D = ab− h2, t = t − t8.

Equations6d for the perpendicular part of the transition
probability s8d reads

H ]

]t
+ vi

]

]r i
+ fv' 3 Vgi

]

]vi

−
]

]vi
Sbivi + Dij

]

]v j
DJW'sX',X'8 ,t,t8d = 0, s10d

i, j = hx,yj, X' ; hr ',v'j.

Such a Fokker-Planck-type kinetic equation would corre-
spond to the following equations of motion for charged par-
ticle in viscous media across the external magnetic field:

ẋ = vx,

ẏ = vy,

v̇x = − bxvx + Vvy,

v̇y = − byvy − Vvx. s11d

There are four integrals of motion for the systems11d,

rx =
efsbx+byd/2gt

Ṽ
FvxSṼ cosṼt +

bx − by

2
sin ṼtD

− vyV sin ṼtG − vx8,
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ry =
efsbx+byd/2gt

Ṽ
FvySṼ cosṼt −

bx − by

2
sin ṼtD

+ vxV sin ṼtG − vy8,

Px = x − x8 +
bysvx − vx8d + Vsvy − vy8d

bxby + V2 ,

Py = y − y8 +
bxsvy − vy8d − Vsvx − vx8d

bxby + V2 , s12d

whereṼ;fV2−sbx−byd2/4g1/2.
In terms of variablesr andP, the equation for the transi-

tion probability transforms into

]w'sx,td
]t

− o
i,j=1

4

aijstd
]2w'sx,td

]xi]xj
= 0, s13d

w'sx,td = e−sbx+bydtW'sx,td,

hx1,x2,x3,x4j ; hrx,ry,Px,Pyj.

The explicit form of the coefficientsaijstd is presented in the
Appendix.

The solution of Eq.s13d with the initial condition

w'sx1,x2,x3,x4,0d = dsx1ddsx2ddsx3ddsx4d

has the form of a multidimensional Gaussian distribution

w'srx,ry,Px,Py,td =
1

4p2S 1

detC
D1/2

3expF−
1

2 o
i,j=1

4

cij
−1stdxixjG . s14d

Herecij are the elements of a matrixC,

cijstd = 2E
0

t

aijst8ddt8,

andcij
−1 are the elements of the inverse matrixC−1.

Using the obtained solutions14d, it is possible to calculate
the mean-square displacements,

kDr iDr jlv,t =E dDr E dDvDr iDr j

3Wsr + Dr ,v + Dv,r ,v;td,

kDviDv jlv,t =E dDr E dDvDviDv j

3Wsr + Dr ,v + Dv,r ,v;td, s15d

and their values averaged over velocity distribution,

kDr iDr jlt =E kDr iDr jlv,tfsvddv,

kDviDv jlt =E kDviDv jlv,tfsvddv. s16d

In the particular case of a Maxwellian velocity distribution
andbx=by=b, the mean-square displacement in thex direc-
tion has the form

kDx2lt = 2
b2Dxx + 2bVDxy + V2Dyy

sb2 + V2d2 t +
1 − e−2bt

sb2 + V2db
Dxx + Dyy

2
+

1

sb2 + V2d3Hfb − e−2btsb cos 2Vt − V sin 2Vtdg

3Ssb2 − V2d
Dxx − Dyy

2
+ 2bVDxyD + fV − e−2btsV cos 2Vt + b sin 2VtdgSsb2 − V2dDxy − 2bV

Dxx − Dyy

2
DJ

− 4
bDxx + VDxy

sb2 + V2d3 hsb2 − V2ds1 − e−bt cosVtd + 2bVe−bt sinVtj

+ 4
bDxy + VDyy

sb2 + V2d3 h− 2bVs1 − e−bt cosVtd + sb2 − V2de−bt sinVtj +
1 + e−2bt − 2e−bt cosVt

b2 + V2 vth
2 , s17d

kDvx
2lt =

1 − e−2bt

b

Dxx + Dyy

2
+ se−2bt + 1 − 2e−bt cosVtdvth

2 +
b

b2 + V2Scos 2Vt +
V

b
sin 2Vt − e−2btDSDxx − Dyy

2
cos 2Vt

+ Dxy sin 2VtD +
V

b2 + V2Scos 2Vt −
b

V
sin 2Vt − e−2btDSDxy cos 2Vt −

Dxx − Dyy

2
sin 2VtD . s18d
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The expressions forkDy2lt and kDvy
2lt can be obtained by

switchingDxx andDyy and setting the opposite sign ofDxy.
In the case of isotropic diffusionsDxx=Dyy=D ,Dxy=0d,

Eqs.s17d and s18d reduce to

kDx2lt =
2D

b2 + V2Ht +
1 − e−2bt

2b
−

2

b2 + V2fb

− e−btsb cosVt − V sinVtdgJ
+

1 + e−2bt − 2e−bt cosVt

b2 + V2 vth
2 , s19d

kDvx
2lt =

1 − e−2bt

b
D + s1 + e−2bt − 2e−bt cosVtdvth

2 ,

s20d

which is in agreement with the results presented inf10,11g.
By putting V=0 in Eq. s19d and looking at the asymptotic
behavior in time, we can easily recognize the Einstein law
for conventional Brownian particle diffusionkDx2lt=2Drt
with the diffusion coefficient in configuration space defined
asDr =D /b2.

For small time Eq.s19d gives

kDx2lt =
2D

3
t3 + vthst2 − bt3d,

which corresponds to the ballistic regime of motion.

IV. NUMERICAL SIMULATIONS

In order to justify our analytical expressions, we per-
formed numerical studies of particle diffusion in an external
constant magnetic field and a prescribed stochastic electric
field which represents a turbulent background. The last one is
taken as a superposition ofN2 modes with random phases.
We have solved the following test particle equations of mo-
tion numerically:

dx

dt
= vx,

dy

dt
= vy,

dvx

dt
=

e

m
fBvy + dExsr ,tdg, s21d

dvy

dt
=

e

m
f− Bvx + dEysr ,tdg,

wheredEsr ,td=−=dFsr ,td and

d Fsr ,td = o
i=1

N

o
j=1

N

d Fi j cossvk i j t − kxix − kyjy + ai + b jd.

In the last expression,ai andb j are random numbers equally
distributed between 0 and 2p; dFi j is the spectrum of a
potential which was chosen to be Gaussian,

dFi j
2 = dF0

2 50

pN2 expF− S kxi

Dk
D2

− S kyi

Dk
D2G ,

kxi = 2.5iDk/N, i = 1, . . . ,N,

kyj = 2.5jDk/N, j = 1, . . . ,N.

We use the dispersion relationvk i j =csk/ s1+k2rs
2d, wherers

is the Larmor radius,rs=cs/V. The fluctuation intensity is
defined by the dimensionless parameters;se/mcs

2ddF0.
Particle trajectories were calculated for different realiza-

tions of random phases and then the mean and mean-square
displacements were found as averages over realizations.

For both analytical and numerical calculations, we nor-
malize time by 2pV and length by 2prs. The diffusion co-
efficient in velocity space was normalized by 2prs

2V3 and
the friction coefficient byV. The dimensionless parameters
chosen for simulations ares=1, Dkrs=0.5. The number of
modes for each direction isN=15; the number of realizations
is between 2000 and 10 000.

The obtained results are shown in Figs. 1–5. The mean-
square displacements in configurationsFig. 1d and velocity
spacesFig. 3d were compared with those calculated using
analytical expressionss17d and s18d sFigs. 2 and 4d. As we
can see, the derived analytical formulas describe the time
behavior of the mean-square displacements in both configu-
ration and velocity space rather well. In particular, they show

FIG. 1. Mean-square displacement in configuration space: simu-
lation results.

FIG. 2. Mean-square displacement in configuration space: ana-
lytical expression withD=0.0038 andb=0.012.
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that the mean-square displacements are accomplished with
oscillations which are damped by a friction. The mean-
square displacement in configuration space has a linear time
asymptoticsFigs. 1, 2, and 5d while the mean-square dis-
placement in velocity space is saturatedsFigs. 3 and 4d.

In order to study the effects of anisotropy, we have mul-
tiplied the intensity of different components of random force
by a factor 2 and compared the obtained mean-square dis-
placementsssee Fig. 5d. As we can see, the increase of the
intensity of random force in they direction, i.e., the increase
of Dyy, leads to an increase of the mean-square displacement
in thex direction, which is in agreement with the asymptotic
expression, following from Eq.s17d,

kDx2lt = 2
b2Dxx + 2bVDxy + V2Dyy

sb2 + V2d2 t. s22d

V. LARGE-SCALE FLUCTUATIONS

In order to describe large-scale fluctuations in plasmas, it
is necessary to take into account particle interactions through
a self-consistent electric field. This means that the right-hand
part of Eq.s1d should be supplemented with the force term
responsible for such interaction. In turn, this force generates
an additional self-consistent term in the kinetic equation for
fsX,td, which transforms to

L̂0fsX,td +
e

m
Esr ,td ·

]fsX,td
]v

= 0, s23d

whereEsr ,td is the self-consistent field.
Assuming then that at the timest.tph swheretph is the

physically infinitesimal time with respect to which the distri-
bution function is introducedd fsX,td andEsr ,td are random
functions and using the representation

fsX,td = f0svd + dfsX,td,

one obtains the following linearized equation for the distri-
bution function fluctuations:

L̂0dfsX,td = −
e

m
d Esr ,td ·

]f0svd
]v

. s24d

The formal solution of this equation given in terms of the
transition probability is

dfsX,td = df s0dsX,td −
e

m
E

−`

t

dt8E dX8WsX,X8;t,t8d

3 dEsr 8,t8d ·
]f0

]v8
. s25d

Here df s0dsX,td is the fluctuation in the appropriate system,
but with no self-consistent interaction through the electric
field. It satisfies the equation

L̂0df s0dsX,td = 0. s26d

dEsr ,td=−=dFsr ,td is the electric field fluctuation satisfy-
ing the Poisson equation

FIG. 3. Mean-square displacement in the velocity space: simu-
lation results.

FIG. 4. Mean-square displacement in the velocity space: ana-
lytical expression withD=0.0038 andb=0.012.

FIG. 5. The results of simulations showing the mean-square
displacements in configuration space in anisotropic case:sad sx=2,
sy=1; sbd sx=1, sy=2.
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DdFsr ,td = − enE dvdfsX,td. s27d

Substituting Eq.s25d into Eq. s27d, we obtain an inhomo-
geneous equation for the fluctuation potential

DdFsr ,td +
e2n

m
E

−`

t

dt8E dvE dX8WsX,X8;t,t8d

3
]dFsr 8,t8d

]r 8
·

]f0

]v8

= − enE dvdf s0dsX,td. s28d

We can see that the quantitydf s0dsX,td plays the role of a
Langevin source for the electric field fluctuation.

Taking into account Eqs.s3d, s5d, and s26d, it is easy to
find the correlation function for these sources,

kdf s0dsX,tddf s0dsX8,t8dl =
1

n
hWsX,X8;t,t8dfsX8,t8dQst − t8d

+ WsX8,X;t8,tdfsX,tdQst8 − tdj,

s29d

whereQstd is the Heaviside function.
Together with Eq.s28d, we have a coupled set of equa-

tions for the description of large-scale fluctuations. In the
potential case, the solution of these equations gives

kdns
2lkv = U1 + os8Þs

xs8sk,vd

«sk,vd
U2

kdns
s0d2lkv

+ Uxssk,vd
«sk,vd

U2

o
s8Þs

kdns8
s0d2lkv. s30d

In this expression,«sk ,vd is the dielectric response function,

«sk,vd = 1 +o
s

xssk,vd, s31d

where the dielectric susceptibility for each species is defined
as

xssk,vd = − i
vps

2

k2 E dvE dv8Wskvsv,v8dk ·
]f0ssv8d

]v8
.

s32d

Herevps is the corresponding plasma frequency andf0ssvd
is the equilibrium distribution function.

The spectral density of the sources is given by

kns
s0d2lkv = nsE dv8E dvWskvsv,v8df0ssv8d + c.c.,

s33d

wherens is the mean density and c.c. means complex con-
jugated.

As we can see, both dielectric susceptibilitys32d and
sources spectral densitys33d are defined by the space-time
Fourier transformed transition probability

Wskvsv,v8d =E
0

`

dteivtE
−`

`

dRe−ik·RWssX,X8;t,t8d,

R = r − r 8; t = t − t8.

It is possible to show that in the case of equilibrium Max-
wellian distributions, Eqs.s32d and s33d reduce to

xssk,vd =
ks

2

k2F1 + ivE
0

`

dteivte−skikj/2dkDriDr jlstG , s34d

kns
s0d2lkv = nsE

0

`

dteivte−skikj/2dkDriDr jlst + c.c. s35d

in agreement with fluctuation-dissipation theorem

kns
s0d2lkv =

Tsk2

2pes
2v

Im xssk,vd. s36d

Here, ks
2 =4pes

2ns /Ts, kDr iDr jlt is the mean value of the
product of particle displacements in different directions,
given by Eqs.s15d and s16d.

Using Eqs.s30d ands36d, one obtains for the equilibrium
fluctuations

kdne
2lkv =

Tk2

2pee
2v

Im
f1 + xisk,vdgxesk,vd

«sk,vd
, s37d

kdni
2lkv =

Tk2

2pei
2v

Im
f1 + xesk,vdgxisk,vd

«sk,vd
, s38d

kdF2lkv =
8pT

v
ImS−

1

k2«sk,vdD . s39d

The static values of these correlation functions are given
by

kdne
2lk = ne

k2 + ki
2

k2 + ki
2 + ke

2 , s40d

kdni
2lk = ni

k2 + ke
2

k2 + ki
2 + ke

2 , s41d

kdF2lk =
4pT

k2

ke
2 + ki

2

k2 + ki
2 + ke

2 . s42d

As is seen, they are independent of kinetic coefficientsD and
b.

If the friction and diffusion in the velocity space can be
neglected,bi =0, Dij =0, the transition probabilitys14d re-
duces to the one describing unperturbed particle motion in
the external magnetic field. Then Eqs.s30d–s39d recover the
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appropriate results of the collisionless theory of electrostatic
fluctuationsssee, for example,f14gd. Such an approximation
is valid atbt!1, kikjDij

st3!1. In the opposite case of low-
frequency fluctuationssbt@1, i.e., v!bd with large-scale
spatial correlationssR@vth/b, i.e.,k!bs /vths, wherevths is
thermal particle velocityd, the above equations are consider-
ably simplified. In particular,

Wskv ;E dvE dv8Wskvsv,v8df0ssv8d =
i

v + kikjDij s
r

s43d

and thus

xssk,vd =
iks

2

k2

kikjDij s
r

v + ikikjDij s
r , s44d

kdns
s0d2lkv =

2nskikjDij s
r

uv + ikikjDij s
r u2

. s45d

HereDij s
r is the diffusion coefficient in real space defined as

follows:

Dij s
r =

1

2
lim

bt@1

kDr iDr jlts

t
. s46d

Using Eq.s17d and the appropriate relations forkDxDylt

and kDy2lt, we obtain

Dxx
r =

b2Dxx + 2bVDxy + V2Dyy

sb2 + V2d2 ,

Dyy
r =

V2Dxx − 2bVDxy + b2Dyy

sb2 + V2d2 , s47d

Dxy
r =

sb2 − V2dDxy − bVsDxx − Dyyd
sb2 + V2d2 .

Here and in what follows, we omit the subscripts in all the
cases when it does not lead to misunderstandings.

As we can see even withDxy=0, anisotropysDxxÞDyyd
generates an off-diagonal term for the diffusion in the con-
figuration space.

It is convenient to present the results for anisotropic dif-
fusion in the traditional form. For this purpose, we introduce
the notation

DL
r =

kikj

k2 Dij
r . s48d

In terms of this notation,

xssk,vd = i
ks

2

k2

k2DLs
r

v + ik2DLs
r , s49d

FIG. 6. Fluctuation spectrakDne
2lk,v / kDne

2lk,0 of isothermal
plasma for different values ofD: s1d D=0.1, s2d D=0.3, s3d D=1,
s4d D=3; k/ke=0.1, Te/Ti =1, u=10°, f=45°.

FIG. 7. Fluctuation spectrakDne
2lk,v / kDne

2lk,0 of nonisothermal
plasma for different values ofD snonisothermal cased: s1d D=0.1,
s2d D=0.3, s3d D=1, s4d D=3; k/ke=0.1, Te/Ti =2, u=10°,
f=45°.

FIG. 8. Dependence ofkDne
2lk,0 on diffusion fors1d isothermal,

Te/Ti =1 ands2d nonisothermalTe/Ti =2 cases;k/ke=0.1; u=10°;
f=45°.

FIG. 9. Diffusion influence on the low-frequency fluctuation
spectra fluctuation spectra at largeu: s1d D=0.001,s2d D=1; k/ke

=0.1, Te/Ti =1, u=85°, f=45°.
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kdns
s0d2lkv =

2nsk2DLs
r

uv + ik2DLs
r u2

. s50d

Equations s49d and s50d are of the same form as
for the isotropic case. It is necessary to remember that
the quantity DL

r is dependent on the direction ofk
=sk sinu cosf ;k sinu sinf ;k cosud,

DL
r ; DL

2su,fd = fDxx
r cos2 f + Dyy

r sin2 f

+ sDxy
r + Dyx

r dsinf cosfgsin2 u + Dzz
r cos2 u.

s51d

Using Eq.s47d, it reads

DL
r su,fd

= FDxxsb cosf − V sinfd2 + DyysV cosf + b sinfd2

sb2 + V2d2

+
Dxyf2bV cos 2f + sb2 − V2dsin 2fg

sb2 + V2d2 Gsin2 u

+
Dzz

b2 cos2 u. s52d

Equationss34d, s49d, and s50d make it possible to find
simple analytic formulas for correlation functions of particle
density fluctuations. In the case of individual-particle fluc-
tuationssk@ksd

kdne
2lkv . kdne

s0d2lkv =
2nek

2DLe
r

uv + ik2DLe
r u2

, s53d

i.e., correlations are exhausted by those associated with the
Langevin sources and collective effects do not contribute to
the fluctuation spectra.

In the collective regionsk!ks, i.e., R@lD, wherelD is
the Debye lengthd,

kdne
2lkv = 2ne

k2DA
r

uv + ik2DA
r u2

ki
4DLi

r + ke
4DLe

r

ske
2 + ki

2dske
2DLe

r + ki
2DLi

r d
,

s54d

where

DA
r =

ske
2 + ki

2dDLe
r DLi

r

ke
2DLe

r + ki
2DLi

r .

In the equilibrium casesTi =Ted, Eq. s54d reduces to

kdne
2lkv = 2ne

k2DA
r

uv + ik2DA
r u2

. s55d

Similarly, it is possible to find the ion correlations

FIG. 10. Fluctuation spectra in nonisothermal plasma for differ-
ent values ofk/ke: s1d k/ke=0.05, s2d k/ke=0.1, s3d k/ke=0.2; D
=0.3; Te/Ti =2; u=10°, f=45°.

FIG. 11. Fluctuation spectra in nonisothermal plasma for differ-
ent values ofk/ke: s1d k/ke=0.6, s2d k/ke=0.9, s3d k/ke=1.2; D
=0.3; Te/Ti =2; u=10°, f=45°.

FIG. 12. Fluctuation spectra in isothermal plasma for different
values ofk/ke: s1d k/ke=0.05,s2d k/ke=0.1, s3d k/ke=0.2; D=0.3;
Te/Ti =1; u=10°, f=45°.

FIG. 13. Fluctuation spectra in isothermal plasma for aniso-
tropic case and different anglesf sk/ke=0.05d: s1d f=0°, s2d f
=45°, s3d f=90°; Dxx=0.1; Dyy=1.9; Dzz=0.1; Dxy=0; Te/Ti =1;
u=85°.
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kdni
2lkv = 2ni

k2DA
r

uv + ik2DA
r u2

ki
4DLi

r + ke
4DLe

r

ske
2 + ki

2dske
2DLe

r + ki
2DLi

r d
.

s56d

Obviously in the case of a strong magnetic fieldsuVsu
@bsd,

DA , 2De
r ! Di

r ,

i.e., collective effects result in considerable reduction of ion
diffusion.

The analytical expressions presented were obtained in the
asymptotic limits. In the general case, however, a detailed
description of fluctuation spectra requires numerical analysis
of Eqs.s30d–s33d.

The results of calculations of electron density fluctuation
spectra are presented in Figs. 6–18. In these figures, fre-
quency is normalized by the electron cyclotron frequency
and the fluctuation spectral intensitykdns

2lkv is normalized
by n/Vce, wheren=ne=ni is the averaged particle density.
The diffusion coefficient is determined through the dimen-
sionless parameterD;Drke

2/vpe with the simplified relation
Dr =Ds /Vcs

2 set to be the same for electrons and ions. For all
calculations, we set the ratiovpe/Vce=1.1 andmi /me=103.
The direction of the vectork with respect to the main axes is
determined by two anglesu and f. The external magnetic
field has only az componentB0=s0,0,B0d.

The range ofD which we use here is chosen to demon-
strate the most pronounced features of spectra. However, it
corresponds to realistic plasma parameterssDr ,1 m2/s for
fusion devices andDr ,100 m2/s for Auroraf15gd.

Calculations show that the details of spectral distributions
in the low-frequency domainsv!vpe,Vced are considerably
dependent on the values ofk and its direction. The influence
of particle friction and diffusion can also be pronounced.

For small values ofu su,30°d, the electron density fluc-
tuation spectra are quite similar to those for plasmas with no
external magnetic fieldsFigs. 6 and 7d. If diffusion is weak
sD&0.1d, the appropriate curves on these figures recover the
dependencies obtained for collisionless plasmasscurves No.
1d. Namely, in the case of isothermal plasma, one observes a
Gaussian profile with deformation near zero frequency.

In nonisothermal plasmas, the resonancelike maximum at
v.kcs cosu fwherecs=sTe/mid1/2 is the ion sound velocityg
is a well-pronounced feature of the spectrum. The increase of
D leads to a transformation of a Gaussian curve into a
Lorentzian-like one. Regarding nonisothermal plasmas, a
broadening of the collective maximum associated with the
fluctuating wave excitation is observed.

At large values ofu, the influence of the external mag-
netic field can be dominant. It resultssfor D&10−3d in a
resonant series atv.NVci generated by excitation of

FIG. 14. Fluctuation spectra in isothermal plasma for aniso-
tropic case and different anglesf sk/ke=0.1d: s1d f=0°, s2d f
=45°, s3d f=90°; Dzz=0.1; Dxy=0; Te/Ti =1; u=85°.

FIG. 15. Fluctuation spectra in isothermal plasma for aniso-
tropic case and different anglesf sk/ke=0.3d: s1d f=0°, s2d f
=45°, s3d f=90°; Dxx=0.1; Dyy=1.9; Dzz=0.1; Dxy=0; Te/Ti =1;
u=85°.

FIG. 16. Fluctuation spectra in nonisothermal plasma for aniso-
tropic case and different anglesf sk/ke=0.05d: s1d f=0°, s2d f
=45°, s3d f=90°; Dxx=0.1; Dyy=1.9; Dzz=0.1; Dxy=0; Te/Ti =2;
u=85°.

FIG. 17. Fluctuation spectra in nonisothermal plasma for aniso-
tropic case and different anglesf sk/ke=0.1d: s1d f=0°, s2d f
=45°, s3d f=90°; Dxx=0.1; Dyy=1.9; Dzz=0.1; Dxy=0; Te/Ti =2;
u=85°.
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Bernstein waves. AtD*0.1, these resonances are strongly
dampedsFig. 9d.

The increase ofk leads to a weakening of collective ef-
fects; spectral density considerably decreasessFigs. 10–12d.

The influence of diffusion anisotropysDxx=0.1, Dyy=1.9,
which corresponds to 95% anisotropy in thex-y planed leads
to the dependence of the spectrum on the anglef sFigs.
13–18d. This dependence is observed in both isothermal
sFigs. 13–15d and nonisothermalsFigs. 16–18d cases. As is
seen, anisotropy of the spectrum for the case under consid-
eration can be explained by a transition from the weakly
collisional sf=0°d to the diffusive regimesf=90°d.

VI. SUMMARY AND CONCLUSIONS

Using the generalized Liouville equation, we formulated
the kinetic equation for the test particle distribution function
in the presence of an external magnetic field and obtained an
explicit solution of the initial-value problem for particle tran-
sition probability in the phase space. The Fokker-Planck col-
lision term in the most general formsanisotropic friction
coefficient and the presence of off-diagonal elements of the
diffusion coefficient in velocity spaced was used to obtain the
solution.

The mean-square displacements in configuration and ve-
locity spaces were calculated. It was shown that in the case
of small friction coefficientssb /V!1d, particle diffusion is
accompanied by oscillations of mean-square displacements.
A transition from a cubic time dependence at the initial stage
to the classical diffusion regimeslinear dependenced was ob-
served. The mean-square velocity displacement in such cases
manifests a linear time dependence and saturation, respec-
tively.

It was shown that in the case of an anisotropic spectrum
of random forcessanisotropic diffusion coefficients with off-
diagonal componentsd, the mean-square displacements can
be considerably different from those for the symmetric dif-
fusion.

We have formulated general relations for the description
of large-scale fluctuations in the system under consideration.
Their reduction to the drift-diffusion and collisionless limits
is done.

We have also presented a detailed analysis of electron
density fluctuation spectra for various sets of parameters. It is

shown that particle diffusion influences fluctuations consid-
erably. In particular, it leads to a change of the spectral shape
and its broadening. Anisotropy of the diffusion coefficients
in velocity space generates an angular dependence of the
spectrum in the plane perpendicular to the external magnetic
field. This dependence is particularly important if different
regimes of fluctuation propagationsweakly collisional, or
diffusived are dominant for different directions.

Although the obtained results can be treated to some ex-
tent as qualitative due to assumptions we made, they give a
better understanding of low-frequency plasma turbulence. As
an example of practical importance, we should mention the
application of the theory presented to the collective scatter-
ing diagnostics of fusion and ionospheric plasmasf15g.

APPENDIX

Coefficientsaijstd are the following:

a11std = esbx+bydtHDxx cos2 Ṽt +
2

Ṽ
Sbx − by

2
Dxx − VDxyD

3cosṼt sin Ṽt +
1

Ṽ2
FSbx − by

2
D2

Dxx

− sbx − bydVDxy + V2DyyGsin2 ṼtJ ,

a22std = esbx+bydtHDyy cos2 Ṽt +
2

Ṽ
S−

bx − by

2
Dyy + VDxyD

3cosṼt sin Ṽt +
1

Ṽ2
FSbx − by

2
D2

Dyy

− sbx − bydVDxy + V2DxxGsin2ṼtJ ,

a33std =
by

2Dxx + 2VbyDxy + V2Dyy

sbxby + V2d2 ,

a44std =
bx

2Dyy − 2VbxDxy + V2Dxx

sbxby + V2d2 ,

a12std = esbx+bydtHDxy cos2 Ṽt +
1

Ṽ
sDxx − DyydcosṼt sin Ṽt

−
1

Ṽ2
FSbx − by

2
D2

Dxy − 2V
bx − by

2

Dxx + Dyy

2

+ V2DxyGsin2 ṼtJ ,

FIG. 18. Fluctuation spectra in nonisothermal plasma for aniso-
tropic case and different anglesf sk/ke=0.3d: s1d f=0°, s2d f
=45°, s3d f=90°; Dxx=0.1; Dyy=1.9; Dzz=0.1; Dxy=0; Te/Ti =2;
u=85°.
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a13std =
es1/2dsbx+bydt

bxby + V2 HsbyDxx + VDxydcosṼt

+
1

Ṽ
FbySbx − by

2
Dxx − VDxyD

+ VSbx − by

2
Dxy − VDyyDGsin ṼtJ ,

a14std =
es1/2dsbx+bydt

bxby + V2 HsbxDxy − VDxxdcosṼt

+
1

Ṽ
FbxSbx − by

2
Dxy − VDyyD

− VSbx − by

2
Dxx − VDxyDGsin ṼtJ ,

a23std =
es1/2dsbx+bydt

bxby + V2 HsbyDxy + VDyydcosṼt

+
1

Ṽ
F− bySbx − by

2
Dxy − VDxxD

− VSbx − by

2
Dyy − VDxyDGsin ṼtJ ,

a24std =
es1/2dsbx+bydt

bxby + V2 HsbxDyy − VDxydcosṼt

+
1

Ṽ
F− bxSbx − by

2
Dyy − VDxyD

+ VSbx − by

2
Dxy − VDxxDGsin ṼtJ ,

a34std =
bxbyDxy + VsbxDyy − byDxx − VDxyd

sbxby + V2d2 .
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