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Tracer flow in stratified porous media is dominated by the interaction between convective transport and
transverse diffusive mixing. By averaging the tracer concentration in the transverse direction, a one-
dimensional non-Fickian dispersion model is derived. The model accounts for the relaxation process that
reduces the convective transport to dispersive mixing. This process issshort-d time correlated and partially
reversible upon reversal of flow direction. For multiscale velocity fields, the relaxation is a multiscale process.
To date only single scale processes have been successfully upscaled. Our procedure extends this to multiscale
processes, using scale separation. The model parameters can be calculateda priori based on the velocity
profile. For periodic flow reversal, the results are essentially the same. Despite the non-Fickian behavior during
a cycle, the net contribution of each cycle to the spreading relaxes to a Fickian process in a similar way as for
unidirectional flow. The cycle time averaged dispersion coefficient is a monotonically increasing function of
the reversal time. It asymptotically converges towards the effective dispersion coefficient in the absence of flow
reversal.

DOI: 10.1103/PhysRevE.71.046308 PACS numberssd: 47.55.Mh, 47.55.Hd, 05.60.2k, 05.70.Ln

I. INTRODUCTION

Considering convective dispersion, there are a number of
situations where the physical mechanisms are not well de-
scribed by the classical convection-dispersion equation
sCCDEd.

sid In natural rocks, often several scales of heterogeneities
se.g., layersd are encountered which exhibit a different dis-
persion behavior from those that can be obtained from the
CCDE f1,2g.

sii d The interaction between convection and molecular dif-
fusion can be significantf3–8g.

siii d When the flow direction is reversed, convective
spreading will also reverse. The CCDE describes the disper-
sion as an irreversible mixing mechanismf9,10g.

Numerous researchers modified the CCDE to fit their
problem. The modifications range from extending the model
for the macroscopic dispersion coefficientf1,11,12g to add-
ing extra terms to the CCDEf2,13,14g. However, none of the
extended models is capable of handling all three situations
outlined above. This paper describes a method for upscaling
of dispersion in arbitrary layered porous media to obtain a
macroscopically averaged model which incorporates the
above-mentioned physical mechanisms. It extends the ap-
proach taken by Camachof15,16g. The emphasis of this pa-
per is on the validity of the upscaled model and the relation
between the parameters of the model and the physics of the
process.

II. PHYSICS—DISPERSION IN A UNIDIRECTIONAL
FLOW FIELD

Consider a macroscopically stationary unidirectional ve-
locity field vsyd, which corresponds to flow through an infi-
nite two-dimensional porous media bounded in the trans-
verse or y direction, see Fig. 1. At t=0, we inject a finite
mass sM0d of ideal f24g tracer snonduniformly distributed
over the heightsyd at longitudinal position x0. In addition to
convective transport, the tracer particles are subject to a mi-
croscale mixing mechanism, which we will limit in this pa-
per to isotropic molecular diffusionf25g. The evolution of
the stracerd concentration can be described, at the macros-
cale, by the two-dimensional unidirectional convection-
diffusion equations2D uCDifEd,

]csx,y,td
]t

+ vsyd
]csx,y,td

]x
= DmolDcsx,y,td. s1d

Our objective is to describe the evolution of the transverse
averaged concentrationc0sx,td=s1/dde0

dcsx,y,tddy.

A. Convective displacement

First consider convective transport only. Each tracer par-
ticle moves with a constant velocity in the x direction along
its initial streamline. Hence, the mean position of all tracer
particles moves linearly in time with a constant averaged
particle velocitysu0d. This velocity may differ from the mean
fluid velocity sv0d if the particles are nonuniformly distrib-
uted in the transverse direction. Similarly, the spreading of
the particles in the longitudinal direction, expressed in terms
of the variance, increases with time squared and is propor-
tional to the variance of the tracer velocity determined by
those streamlines occupied by tracer particles.

*Present address: Department of Earth Sciences, Utrecht Univer-
sity. Electronic address: berentsen@geo.uu.nl

†Present address: Horizon Energy Partners. Electronic address:
marco.verlaan@horizon-ep.com

‡Electronic address: c.p.j.w.vankruijsdijk@citg.tudelft.nl

PHYSICAL REVIEW E 71, 046308s2005d

1539-3755/2005/71s4d/046308s16d/$23.00 ©2005 The American Physical Society046308-1



B. Relaxation from convective towards uncorrelated-Fickian
behavior

In addition to convection, consider mixing by molecular
diffusion. The longitudinal component of diffusion smoothes
the sharp front propagated by convection. More importantly,
in the transverse direction diffusion moves particles away
from their initial streamlines and the particle velocity will
change. Over time, each tracer particle will sample each ver-
tical position equally frequently, and the relation between a
particle and its initial streamline is lost. Consequently, diffu-
sion smoothes concentration differences in the transverse di-
rection, and as a result reduces the longitudinal spreading
caused by the velocity profile. In the long-time limit, a dy-
namic equilibrium between the convective and diffusive
spreading mechanisms is established, which exhibits Fickian
behavior. Figure 2 visualizes this process for the velocity
field shown in Fig. 1. The relaxation timet is the character-
istic time for the transition processf26g also called relax-
ation. This time is a function of the value of the molecular
diffusion coefficient and the correlation of the longitudinal
velocity in the transverse direction.

C. The effect of the initial transverse particle distribution

If the particle distribution is uniform over the height, local
redistribution of the particles by molecular diffusion does not
affect the particle distribution over the streamlines. The mean
particle velocity equals the mean fluid velocity at all times. If
the initial particle distribution is not uniform, transverse dif-
fusion will establish a uniform distribution over the height in
time and the mean particle velocity evolves from its initial
value u0 to the mean fluid velocity v0.

III. SPECTRAL EQUIVALENT

Similar to Camachof16g, the starting point for the deri-
vation of an evolution equation for the height averaged con-
centration fc0sx,tdg is the spectral equivalent of the 2D
uCDifE. We replace the concentration and velocitys1d by
cosine Fourier series, multiply the result by cossnpy/dd, and
integrate it over y. For n=0, we obtain the evolution equation
of c0sx,td,

]c0

]t
+ v0

]c0

]x
− Dmol

]2c0

]x2 = −
]JT

]x
, s2d

where, following Camachof16g, the single valued dispersive
Taylor flux JT is defined as

JTsx,td =
1

2o
n=1

`

vncnsx,td. s3d

It originates from the convective term in Eq.s1d and ac-
counts for the contribution of the higher-order modes to
c0sx,td. The evolution of the higher-order modessn.0d is
given by

]cn

]t
+

cn

tn
+ v0

]cn

]x
+ o

m=1

`
gmn

vn
vm

]cm

]x
− Dmol

]2cn

]x2 = − vn
]c0

]x
,

s4d

where the modal relaxation timetn and modal interaction
coefficientgmn are defined as

FIG. 1. Layered porous media in the domainV=s−` , +`d3 f0,dg in which a longitudinal velocity field vsyd is present. Tracer particles
are initially released in this field at longitudinal positionx0 uniformly or nonuniformly distributed in the transverse direction. Tracer particles
are subject to isotropic molecular diffusion.

FIG. 2. Typical evolution of particle clouds in thesx,yd space when the particles are initially uniformly distributed over the transverse
direction. Clouds at increasing positionsxd represent clouds for increasing time. Timesstd are in days. The molecular diffusion is Dmol

=1.25310−4 m2/d.
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tn =
d2

snpd2Dmol
s5d

and

gmn=5
1

2

vn

vm
fvm+ng, m= n

1

2

vn

vm
fvm+n + vum−nug, mÞ n.6 s6d

IV. MOMENT ANALYSIS FOR UNIDIRECTIONAL
FLOW

The spectral representation also serves as a starting point
for the derivation of the spatial moments belonging to the 2D
uCDifE. As the 2D model is generally too involved to allow
direct analytical solution, moment analysis allows us to
quantify the accuracy of an upscaled model. We briefly dis-
cuss the behavior of the zeroth, first, and second spatial mo-
ments belonging to the 2D uCDifE. For a full analysis, see
f5,17,18g.

A. General definition of the spatial moments

Consider the release of a tracer with finite mass M0 in the
spatial domainxP s−` , +`d. Thekth spatial moment of the
nth concentration mode is defined as

Ecn,x,k =E
−`

+`

xkcnsxddx. s7d

The zeroth moments or “mass” in thenth concentration
mode are denoted byMcn

. Mcn,x,k is the tracer mass normal-
izedkth moment of thenth concentration mode,sEcn,x,k/M0d.
Mcn,x,k

c , for k.1, is the centerd normalizedkth moment
fMcn,sx−Mc,x,1d,kg. For simplicity, the mean particle position
sMc0,x,1d is written asmc,x and the particle variancesMc0,x,2

c d
assc,x

2 .

B. The evolution of the spatial moments of the spectral
equivalent

To obtain the moment equations belonging to the 2D
uCDifE, we multiply Eqs.s2d ands4d of the spectral equiva-
lent with xk and average the result over x. Assuming that
each concentration mode and all its spatial derivatives con-
verge exponentially to zero for x→ ±`, the evolution equa-
tion for thekth normalizedmoment belonging toc0 sx,td can
be written as

]Mc0,x,k

]t
− kv0Mc0,x,k−1 − sk2 − kdDmolMc0,x,k−2

=
k

2o
n=1

`

vn

Ecn,x,k−1

Mc0

. s8d

The evolution of thekth non-normalized moment of a
higher concentration modesn.0d reads

Ftn
−1 +

]

]t
GEcn,x,k = kvnMc0

Mc0,x,k−1 + kf2v0 + v2ngEcn,x,k−1

+ sk2 − kdDmolEcn,x,k−2

+
k

2 o
m=1Þn

`

fvm+n + vum−nugEcn,x,k−1. s9d

C. The transverse particle distribution

If the tracer is initially nonuniformly distributed over the
height, the initial zeroth moments“mass”d of a higher con-
centration modecn sn.0d may be nonzero,

Mcn

init = 2E
−`

+` E
0

d

csx,y,0dcosSnpy

d
Ddydx. s10d

Solving Eq.s9d for k=0 with respect to initial condition
s10d gives the evolution of the zeroth moment of the higher-
order modessn.0d,

Mcn
std = Mcn

inite−t/tn. s11d

Equations11d shows that the zeroth moment ofcn relaxes
to zero at a speed which only depends on its own relaxation
time tn. Its relaxation is not affected by other concentration
modes.

D. The mean particle position and velocity

If the particles are distributed nonuniformly in the trans-
verse direction, the mean particle velocityfustdg shows a
relaxation from the initial mean particle velocityfu0=us0dg,
determined by the initially occupied streamlines, towards the
mean fluid velocitysv0d,

ustd =

E
−`

+` E
0

d

vcdydx

E
−`

+` E
0

d

cdydx

= v0 +
1

2o
n=1

`

vn

Mcn

init

M0
e−t/tn. s12d

Convergence from u0 to v0 is faster for increasing magni-
tude of the molecular diffusion Dmol, as shown in Fig. 3.

The exact mean position of the particles is obtained from
Eq. s8d with k=1 or by integration of the mean particle ve-
locity s12d over time,

mc,x = fx0 + v0tg +
1

2o
n=1

`

tnvn

Mcn

init

M0
f1 − e−t/tng. s13d

In addition to a contribution present for initial uniform
particle distributionssx0+v0td, a relaxation term expresses
the contribution due to the redistribution of the particles over
the streamlines. After relaxation, the mean moves with the
mean fluid velocity as in the uniform case, but shows a de-
viation Dmrelax resulting from the relaxation of the mean par-
ticle velocity,
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mc,x,disp= x0 + v0t + o
n=1

`
tnvn

2

Mcn

init

M0
= x0 + v0t + Dmrelax.

s14d

E. The variance of the averaged concentration

The spatial variance is given bysfor derivation, see Ap-
pendix A 2d

sc,x
2 std = s2Dmoltd + So

n=1

`

vn
2tnst + tnfe−t/tn − 1gdD

− S1

2o
n=1

` Mcn

init

M0
vntnf1 − e−t/tngD2

+ S1

2o
n=1

` Mcn

init

M0
vnv2nstn

2 − ftn
2 + tntge−t/tnd

+
1

2 o
nÞm=1

` Mcm

init

M0
vnfvm+n + vum−nug

tntm

tm − tn

3 stmf1 − e−t/tmg − tnf1 − e−t/tngdD s15d

The variance has four contributions. The first is by the
longitudinal component of diffusion. The second expresses
the interaction of the velocity field and transverse molecular
diffusion. The third and fourth terms correct the second term
when the particle distribution is initially nonuniform. They
describe a contribution of the changing averaged particle ve-
locity resulting from the transverse redistribution. The third
term is a direct result of the relaxation of the meanssecond
term of Eq.s13dd. The fourth term accounts for interactions
of the higher-order modes. The temporal particle velocity
variance is given by

su
2std =

1

M0
E

−`

` E
0

d

fvsyd − ustdg2csx,y,tddydx= sv
2 + Dsu

2std

= o
n=1

`
vn

2

2
+ F− So

n=1

`
vn

2

Mcn

init

M0
e−t/tnD2

+ o
n=1

`
vnv2n

4

Mcn

init

M0
e−t/tn

+ o
mÞn=1

` fvm+n + vum−nugvm

4

Mcn

init

M0
e−t/tnG . s16d

Dsu
2std is the deviation of the particle velocity variance

from the fluid velocity variancessv
2d for transverse nonuni-

form particle distributions. For short timesst!td, the part of
the spreadings15d induced by convection is proportional to
time squared and to the variance of the initial particle veloci-
ties,

sc,x,conv
2 std = 2Dmolt + su

2s0dt2. s17d

For uniform particle distributions, two velocity fields with
the same velocity variance but with different modal compo-
sition produce at early times the same amount of spreading.

In the long-time limitst@td, the variance behaves Fick-
ian and is proportional to t,

sc,x,disp
2 std = 2Deff,`t + Dsuni

2 + Dsnon
2 . s18d

As ultimately the particle distribution becomes uniform
over the height, only the first two terms of Eq.s15d contrib-
ute to the effective asymptotic dispersion coefficientsDeff,`d,

Deff,` = Dmol +
1

2o
n=1

`

vn
2tn. s19d

For fields with the same velocity variance, those domi-
nated by lower-order modessvnd show ultimately more
spreading than those dominated by higher-order modes. In
Eq. s18d, Dsuni

2 is the constant contribution to the variance
resulting from the relaxation of the uniform part of the vari-
ancefsecond term in Eq.s15dg defined as

Dsuni
2 = − o

n=1

`

vn
2tn

2. s20d

Dsnon
2 is a constant contribution to the variance that re-

sults from the relaxation of the nonuniform partfthird and
fourth terms of Eq.s16dg given by

Dsnon
2 = + o

mÞn=1

` Mcm

init

M0

vnfvm+n + vum−nugtntm

2

− So
n=1

` Mcn

init

M0

vntn

2
D2

+ o
n=1

` Mcn

init

M0

vnv2ntnt2n

2
.

s21d

Figure 4 shows the variance for a uniform initial particle
distribution. It shows a relaxation from a t2 behavior for
short times towards Fickian behaviors,td for long times.

FIG. 3. Typical example of the relaxation of the mean particle
velocity towards the mean fluid velocity v0 for three values of the
molecular diffusion.
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The shift in the variancefDsuni
2 , Eq. s20dg resulting from the

relaxationsFig. 4d is negative as the variance time derivative
monotonously increases towards its asymptotic value
s2Deff,`d.

V. EVALUATION OF THE UPSCALED RELAXATION
MODEL BY CAMACHO

The laminar flow problem studied by Camachof16g ex-
hibits a single dominant Fourier scale. He derived an evolu-
tion equation for the Taylor flux by summing the relaxation
of the modal Taylor fluxessJn=vncn/2d f27g,

]JT

]t
+

JT

t
+ v0

]JT

]x
+ b

]JT

]x
− Dmol

]2JT

]x2 = − sv
2]c0

]x
. s22d

Subsequently, he replacedtsx, td and bsx, td by the con-
stantstef f and bef f yielding an effective single scale relax-
ation. Combination of Eqs.s2d ands22d yields a fourth-order
PDE for c0sx, td.

]c0

]t
+ v0

]c0

]x
− Dmol

]2c0

]x2 + tef fF ]2c0

]t2

+ fsv0 + bef fdv0 − sv
2g

]2c0

]x2 + s2v0 + bef fd
]2c0

]x]t
G

= tef fF2Dmol
]3c0

]x2]t
+ s2v0 + bef fdDmol

]3c0

]x3 − Dmol
2 ]4c0

]x4 G .

s23d

Camachof16g effectively reduced the general multiscale
problem to a single scale problem. We investigate the devia-
tions from the full problem by comparing the mean and vari-
ance of the approximation with the exact results.

A. Comparison of the mean particle position

The expression for the mean particle position using the
upscaled equations23d is similar to the full solutionfEq.
s13dg but restricted to a single relaxation scalessee Appendix
B 1d,

mc,x
ap = x0 + v0t + tef fsu0 − v0ds1 − e−t/tef fd. s24d

Equations24d only matches the mean of the full model for
single scale problems or for initially uniform distributions.
The convective limit is always correctly described as it fol-
lows from the initial conditions. The constant contribution to
the Fickian limit originating from the relaxation process can
be made to match the exact value by defining the effective
relaxation time as

tef f = o
n=1

` tnvn

Mcn

init

M0

2su0 − v0d
=

on=1

`
tnvn

Mcn

init

M0

on=1

`
vn

Mcn

init

M0

. s25d

Note that this approach fails when the initial distribution
is nonuniform and u0=v0.

B. Comparison of the variance

The variance calculated from the upscaled equations has
again a structure similar to the full expressionfEq. s15dg but
restricted to a single scalessee Appendix B 2d,

sc,x
ap,2 = 2Dmolt + 2sv

2tefffteffse−t/teff − 1d + tg + 2teffbeffsu0 − v0d

3fteffse−t/teff − 1d + te−t/teffg − hteffsu0 − v0dfe−t/teff

− 1gj2. s26d

For uniform initial distributions, the third and fourth
terms on the right-hand side disappear. As only a single ef-
fective relaxation process is present in the approximation, it
is only exact for single scale problems. The short-time limit
is again exact. In the long-time limitst@td, the approxima-
tion reduces to

sc,x,disp
ap,2 = 2sDmol + sv

2teffdt. s27d

If we set the effective relaxation timestef fd equal to the
so-called standard relaxation timetstd ssee Camachof16gd,

tef f = tstd;
1

2sv
2o

n=1

`

vn
2tn =

on=1

`
vn

2tn

on=1

`
vn

2
, s28d

we also match the exact variance in the long-time limits18d.
However, Sec. X will show that this definition does not give
an accurate approximation for intermediate times. For an ini-
tially nonuniform distribution, the situation is more complex.
In the convective limit, the upscaled variance reads

sc,x,conv
ap,2 = 2Dmolt + 2sv

2t2 − beffsu0 − v0dt2 − su0 − v0d2t2.

s29d

This expression does not have any information on the
initial particle velocity variance which drives the variance
evolution in the convective limit. However, we can define
parameterbeff to introduce this information in such a way
that the short-time limit is again exact,

bef f =
sv

2 − su,init
2 − su0 − v0d2

u0 − v0
. s30d

FIG. 4. Relaxation of the variance from convectives,t2d for
short times to Fickian behaviors,td for large times.
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Note that as observed before in the discussion of the
mean, in the case u0=v0 the approach above fails. The up-
scaled equations simply cannot handle this situation. In the
long-time limit st@td, the variance shows the correct Fick-
ian behavior,

sc,x,disp
ap,2 = 2sDmol + sv

2teffdt − f2sv
2teff

2 + 2teff
2beffsu0 − v0d

+ teff
2su0 − v0d2g. s31d

Ultimately, the growth of the variance is independent of
the initial distribution. The relaxation constant, however, is
different, since the relaxation process has evolved in a dif-
ferent way. To match the approximation with the exact vari-
ance in the Fickian limit, the uniform definition for the re-
laxation time can be applied. The constant contribution due
to the relaxation process, however, cannot be matched.

C. Relaxation time considerations

For nonuniform initial conditions, the effective relaxation
time has to be tuned to the initial distributions25d to obtain
a match for the mean for long times. Turning to the effective
dispersion coefficient in the Fickian limit, we can match the
upscaled expression to the exact relationship by an appropri-
ate definition of the effective relaxation times28d. However,
as may be clear from the physics, this definition is based on
the fluid velocity profile and is unrelated to the initial distri-
bution. The upscaled model can only match one of the two
conditions.

VI. GENERALIZED TELEGRAPH EQUATION

The fourth-order upscaled PDE Eq.s23d covers the whole
spectrum from cases whereslongitudinald molecular diffu-
sion dominates the spreading to cases where the transverse
variation in the velocity field dominates the spreading. If the
contribution by longitudinal molecular diffusion to the be-
havior of the fourth-order model can be neglected, the para-
bolic fourth-order upscaled equation reduces to a second-
order hyperbolic generalized Telegraph equation,

tef f
]2c0

]t2
+

]c0

]t
+ v0

]c0

]x
+ tef fs2v0 + bef fd

]2c0

]x]t

− tef ffsv
2 − sv0 + bef fdv0g

]2c0

]x2 = 0. s32d

This equation describes the same mean and variance as
the fourth-order model if the contribution of the spreading
caused by longitudinal molecular diffusion is ignored.

A. Concentration profiles

Unfortunately, the fourth-order upscaled PDE Eq.s23d
does not have an easily analyzable analytical solution. In
contrast, for initial conditions csx,y,0d=Hsx−x0d and
]tc0sx,0d=0, the solution to the Telegraph model Eq.s32d
reads forxP s−` ,`d, seef18g,

csx,td =5Hsx − GdFDe−xI0hÎx2 − G2j +
e−G

2
+

G

2
E

G

x e−j̃

Îj̃2 − G2
I1hÎj̃2 − G2jdj̃G , x . v0t

1 + Hsx − GdFDe−xI0hÎx2 − G2j −
e−G

2
−

G

2
E

G

x e−j̃

Îj̃2 − G2
I1hÎj̃2 − G2jdj̃G , x , v0t6 s33d

with

x =
2c

«2 + 4cw
StF1 −

v0«

2c
G + x

«

2c
D ,

G =
ux − v0tu

Î«2 + 4cw
, D =

− «

2Î«2 + 4cw
, s34d

and

w = teff, « = + beffteff, c = sv
2teff. s35d

For the velocity field shown in Fig. 1, we compare the
concentration profiles by the fourth-order models23d, the
Telegraph equations32d, and the height averaged concentra-
tion profile by the full 2D models1d. Both upscaled models

show nearly identical concentration profiles during the relax-
ation from convective to Fickian behaviorfFigs. 5, 6sad, and
6sbdg, even for relatively large values for the molecular dif-
fusion fFig. 6sbdg. For short times, the hyperbolic part
stef f]t

2c0d in the Telegraph model dominates over the para-
bolic part s]c0/]td and its concentration profile shows two
shocks, typical for a second-order hyperbolic equation. Even
though the profiles of the upscaled models seem to give a
poor representation of the exact profilefFig. 6sadg, they
match the exact solution up to the second moment. In the
long-term limit, both upscaled models demonstrate Fickian
behavior, characterized by the typical S-shaped concentration
profile, and give an excellent match with the exact solution
fFig. 6sbdg. Note that the propagation speed of the Telegraph
model is constant and finite, contrary to the fourth-order
model and classical convection diffusion equationf28g.
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VII. PHYSICS—REVERSED FLOW

Now consider the case where after a time t=tr we reverse
the flow direction. Assuming convective transport only, the
process is fully reversible and the particles are transported
back to their original positions, see Fig. 7sad.

A. Reversal of flow and relaxation

If we reverse the flow and include molecular diffusion,
the relaxation process starts all over again. However, the
particle distribution at the time of reversal is shaped by the
convection dispersion process. As discussed above, each par-
ticle velocity in this process is correlated over a short time.

As a result, initially particles return longitudinally along the
same path as they arrived from. Hence the transport process
demonstrates aspartiallyd reversible behavior. The variance
of the height-averaged particle positions decreases as the par-
ticles turn back along their original paths. Due to transverse
diffusion, the velocity of a particle becomes in time less
correlated to the velocity history of its forward movement.
As a result, convective dispersion takes over and the variance
once again increases monotonously. The process is identical
to the original relaxation process. Consequently, the same
relaxation time characterizes the interaction process of the
reversed velocity field and molecular diffusion to form a dy-
namic equilibrium exhibiting a Fickian behavior. Moreover,
this srelaxationd time is independent of the moment in time at
which we reverse the flow.

Consider a single scale relaxation process with relaxation
time t. We distinguish three cases based on the ratio of di-
mensionless reversal time,trD = tr /t. For trD !1, the particles
exhibit a fully correlated behavior similar to pure convection
fFig. 7sadg. In contrast, if trD @1, the transport process is
fully relaxed at the time of flow reversalfFig. 7scdg. For
intermediate timestrD, the particles, at the time of flow re-
versal, will be significantly correlated to their original
streamlines and each particle velocity, at the time of reversal,
will be correlated to the initial particle velocity in time. Con-
sequently, the velocity profile may be clearly visible in the
particle cloudfFig. 7sbdg. Although the reversibility may be
much more significant and visible for smalltrD ,1, partial
reversibility, however small, is observed for all values oftrD.
In general, the relaxation process may evolve over multiple
scales. At times smaller than the relaxation time of the larg-
est scale, the various modes will generally not be in the same
state of relaxation.

B. Evolution of the variance

If we reverse the flow, two combined processes contribute
to the variance. The first process expresses the correlation
between forward and reversed velocities of a particle and
causes a decrease in the variance. The second is a new re-
laxation process identical to unidirectional relaxation, but
with the particle distribution at reversal as initial distribution.
Initially, the first process dominates and the reversed velocity
of a particle is completely correlated to its last forward ve-
locity. Consequently the time derivative of the variance
changes signfFig. 8sbdg, which we experience, even in the

FIG. 5. Evolution of the concentration profiles
of Camacho’s fourth-order model and the gener-
alized Telegraph equationsfor Dmol=1.25
310−4 m2 d−1d. For t=500 d, the profile obtained
from a full 2D random-walk simulation is shown
for comparison.

FIG. 6. Comparison of the concentration profiles of the full 2D,
Camacho’s fourth-order, and the Telegraph model at time t=25 d.
sad The concentration profile in the convective limit for Dmol=2.5
310−9 m2 d−1. sbd The concentration profile in the long-time Fick-
ian limit for Dmol=6.25310−4 m2 d−1. Note that thesGibbsd over-
shoots in the fourth-order model are caused by the third-order up-
wind scheme that is used for the spatial discretization.
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Fickian limit, as ”partial” reversibility. With time a particle
velocity loses its correlation with the forward velocities,
starting with the short-time correlationssor small scalesd. At
a certain moment, the two processes counterbalance each
other, marked by the point at which the variance reaches its
minimum fFig. 8sadg and its time derivative passes zerofFig.
8sbdg. From this point on, the second process dominates and
relaxes to the same Fickian behavior as for unidirectional
flow while the first process relaxes to a constant value. In the
convective limit, the velocity of each particle is fully corre-
latedsor constantd in time and the first process dominates up
to the point that the time after reversal equals the reversal
time fFig. 8sad, t=25 000g.

VIII. MOMENT ANALYSIS FOR FLOW INCLUDING
REVERSAL OF DIRECTION

Here we analyze the spatial moments belonging to the 2D
uCDifE for flow including reversal. The evolution expres-
sions for thekth momentsf29g Mc0,x,k

rev std and Ecn,x,k
rev std after

flow reversal are similar to expressionss8d and s9d, respec-
tively, with the signs of the modal velocities changed.

A. Transverse particle distribution and mean particle position

Flow reversal does not affect the way transverse diffusion
redistributes the particles in the vertical direction. Hence,
flow reversal does not affect the zeroth moment of the

higher-order modes and is given by Eq.s11d. The mean par-
ticle velocity is directly related to the transverse distribution
and only changes sign when the flow direction is reversed.
The mean particle position fort. tr reads

mc,x
revstd = x0 + v0s2tr − td +

1

2o
n=1

`

tnvn

Mcn

init

M0

3fe−t/tn − 2e−tr/tn + 1g, t . tr . s36d

In the convective limit, the mean is fully reversible,
mc,x,conv

rev =x0+u0s2tr − td. In the Fickian limitst.td, the verti-
cal particle distribution is degenerated to a uniform distribu-
tion and the mean particle position reads

mc,x,disp
rev std = mc,x,uni

rev std + Dmrelax
rev

= fx0 + v0s2tr − tdg

+ Fo
n=1

`
tnvn

2

Mcn

init

M0
s1 − 2e−tr/tndG . s37d

The deviation of the particle mean from the fluid mean,
expressed by the relaxation constantDmrelax

rev , is a function of
the reversal timetr and converges toDmrelax s14d for tr @t.

B. The variance of the averaged concentration

The exact variance for uniform initial distributions is
given by ssee appendix A 2d

FIG. 7. Particle clouds belonging to the five-layer velocity fieldsFig. 1d at the moment of flow reversalst= trd and at timest=2trd for three
different relaxation regimes.sad The convective limitsDmol=0 m2 d−1d. sbd Intermediate situationsDmol=3310−5 m2 d−1d. scd The Fickian
limit sDmol=6.3310−4 m2 d−1d.
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sc,x,rev,uni
2 std = 2Dmolt + o

n=1

`

tnvn
2 3 fftr + tnse−tr/tn − 1dg

+ fst − trd + tnse−st−trd/tn − 1dg

+ ftnsetr/tn − 1de−t/tn + tnse−tr/tn − 1dgg .

s38d

The contribution by the longitudinal component of mo-
lecular diffusion is independent of the flow direction. The
contribution by convection and transverse diffusion has three
subterms. The first expresses the value of the variance at the
time of reversal. The second represents a new relaxation pro-
cess, identical to the initial one. The third term is a ”demix-
ing” or reversibility term expressing the effect of flow rever-
sal on the variance induced by the forward convection-
dispersion process. It is increasingly negative fort. tr and
asymptotically reaches a constant once correlation with the
flow before reversal is lost. For an arbitrary initial distribu-
tion, the exact variance after flow reversal readssAppendix
A 2d

sc,x,rev
2 std = sc,x,rev,uni

2 std − S1

2o
n=1

`

tnvn

Mcn

init

M0
fe−t/tn − 2e−tr/tn

+ 1gD2

+
1

2o
n=1

` Mcn

init

M0
vnv2ns2trtnfe−t/tn − e−tr/tng

− ttne
−t/tn + tn

2f1 − e−t/tngd

+
1

2 o
m,n=1smÞnd

` Mcm

init

M0
vnfvm+n + vum−nug

tntm

tm − tn

3 stmf1 − e−t/tmg − tm + 2tnfe−tr/tn − e−tt/tmg

+ tne
tt/tnf2e−tt/tm − e−tr/tnge−t/tnd s39d

The additional contribution to the variance only depends
on the reversal timetr if the distribution has not yet relaxed
to a uniform distribution before reversal. Taking the time
derivative of Eq.s39d shows that for any value oft, imme-
diately upon flow reversal the dispersive contribution to the
variance is negative,

lim
t↓tr

S ]sc,x,rev
2

]t
− 2DmolD = − lim

t↑tr
S ]sc,x

2

]t
− 2DmolD . s40d

In the convective limitst ,tr !td, no relaxation takes place
and the variance by the convective-dispersive part displays
fully reversible behavior, reducing to zero att=2tr,

sc,x,rev,conv
2 std = su

2s0dst − 2trd2, s41d

wheresu
2 is given by Eq.s16d. In the Fickian limitst@td, the

variance takes the form

sc,x,rev,disp
2 std = 2Deff,`t + Dsuni,rev

2 + Dsnon,rev
2 . s42d

The asymptotic dispersion coefficientDeff,` is indepen-
dent of the flow direction and is given by Eq.s19d. The
constant contribution to the variance resulting from the re-
laxation process for initially uniform particle distribution,
Dsuni,rev

2 , varies with the reversal time,

Dsuni,rev
2 = − o

n=1

`

tn
2vn

2s3 − 2e−tr/tnd. s43d

Its magnitude is bounded betweenDsuni
2 sfor tr !td and

3Dsuni
2 sfor tr @td. The constant contribution to the variance

resulting from the relaxation of a transverse nonuniform to a
transverse uniform particle distributionDsnon,rev

2 reads

Dsnon,rev
2 = −S1

2o
n=1

`

tnvn

Mcn

init

M0
f1 − 2e−tr/tngD2

+
1

2o
n=1

` Mcn

init

M0
vnv2ntnftn − 2e−tr/tntrg

+
1

2 o
mÞn=1

` Mcm

init

M0
vnfvm+n + vum−nug

3Stntm + 2tn
e−tr/tn − e−tr/tm

tn − tm
D s44d

If the transverse particle distribution has relaxed to uni-
formity before flow reversal,Dsnon,rev

2 equalsDsnon
2 s21d.

IX. PERIODIC FLOW REVERSAL

If we keep reversing the flow each time t has increased by
tr, the time derivative of the variance asymptotically turns

FIG. 8. sad Typical example of the variance for flow including
reversal of direction at time t=250 days andsbd the corresponding
time derivative for four values of the relaxation timet
=s2.5,25,250, and 25 000d days.
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periodic as wellfFig. 9sadg. Ultimately the periodic growth
of the variance becomes linear in time even if the variance
itself does not relax in a period tr fFig. 9sbdg. Each reversal a
new sbut identicald relaxation process starts while a second
process expresses the correlations with the previous reversal
cycles. After sufficient time has passed, the velocity of a
particle in thenth reversal cycle is no longer correlated to the
velocity in the first forward period. The time to lose correla-
tion is again related to the relaxation time. After this time has
passed, a particle experiences statistically the same velocity
correlation in each subsequent reversal period.

A. Mathematical derivation

Moment analysis shows that the time derivative of the
variance becomes periodic when the flow is reversed periodi-
cally. Since nonuniform initial distributions relax ultimately
to a uniform distribution, we limit the discussion to uniform
initial particle distributionssMcn,0

init =0d. The time derivative of
the variance in thesNRdth reversal cycle readssAppendix Cd

]sc,x
2

]t
st̃;Nr,trd = 2Dmol + o

n=1

`

vn
2tn 3 F1 + s− 1dNre−st̃+Nrtrd/tn

− 2
e−st̃−trd/tn + s− 1dNre−st̃+Nrtrd/tn

etr/tn + 1
G , s45d

where t̃ is the time since the last flow reversal. ForsNr

→`d, this expressions45d converges to

]sc,x,lim
2

]t
st̃;trd = limNr→`

]sc,x
2

]t
st̃;Nr,trd

= 2Dmol + o
n=1

`

vn
2tnF1 − 2

e−st̃−trd/tn

etr/tn + 1
G .

s46d

Thus even if the variance does not relax in a period tr
str ,td, the growth of the variance relaxes if we keep on
reversing the flow each time t has increased with tr. The net
cyclic dispersion coefficient Dcycle for Nr →` follows by in-
tegration of Eq.s46d over a cyclest̃P f0,trgd and division of
the result bys2trd,

Dcycle=
1

2tr
E

0

tr ]sc,x,lim
2

]t
st̃;trddt̃

= Dmol +
1

2o
n=1

`

vn
2tnF1 − 2

tnsetr/tn − 1d
trsetr/tn + 1d G . s47d

Figure 10 shows the normalized modal cyclic dispersion
coefficient fterm between square brackets in Eq.s47dg. It
increases monotonously from 0 for the limit of tr /tn to zero
towards 1 for the limit of tr /tn to infinity. The corresponding
expression of the variance for repetitive flow reversal reads

sc,x
2 st;Nr,trd = 2Dmolt + o

n=1

`

vn
2tn

2 3 S t

tn

+ 2o
k=0

Nr

8s− 1dNr−kse−st−ktrd/tn − 1d

− o
k=1

Nr

s− 1dkf4sNr − kd + 2gse−ktr/tn − 1dD .

s48d

The sums in Eq.s48d increase linearly with the reversal
cycle s“time” d when the time exceeds the relaxation time
fsee also Fig. 9sbdg. Figure 11 demonstrates the effect of a
decreasing reversal time on the variance.

X. SEPARATION OF SCALES

A. Multiple scale treatment

For multiscale velocity fields, the fourth-order model is
approximate. To improve its accuracy, there are two ways to
account for the changing interaction of the scales present in
the full problem over time. We can optimize the effective
relaxation time or apply scale separation. We discuss their
relative merit as a function of scale distribution and the ob-
servation time. To demonstrate this, consider a bimodal ve-
locity field vsyd,

vsyd = vn1
cosSn1p

d
yD + vn2

cosSn2p

d
yD . s49d

FIG. 9. sad Convergence of the time derivative of the variance to
periodic behavior for periodic reversal.sbd The corresponding evo-
lution of the variance.
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We define a dimensionless observation time astobs= t /t1,
and the closely related modal observation time of mode n as
tn,obs= t /tn=n2t /t1. In this section, we restrict ourselves to
uniform initial particle distributions.

B. Effective relaxation time

Let both modes in Eq.s49d describe a significant relax-
ation with respect to the observation time. Take, for example,
modes n1=1 with t1=1500 d and n2=5 with t1/t2=25 and
t=50. Figure 12 shows that the variance by the fourth-order
model matches the exact variance, using the relaxation time
as fit parameterst fit =130d. In contrast, the standard defini-
tion s28d overestimates the relaxation timeststd=780d and
erroneously predicts the variance. To provide an improveda
priori estimate of the relaxation time, consider the evolution
equation for the approximate variancesB5d for uniform con-
ditions su0=v0d. Replacing the approximate variancessapp,x

2 d
by the exact variance for unidirectional flowssc,x

2 d s15d and
rearranging terms gives the evolution of the effective relax-
ation as a function of time,

tef fstd =

]sapp,x
2 std
]t

− 2Dmol

2tsv
2 −

]2sapp,x
2 std
]t2

=
on=1

`
vn

2tns1 − e−t/tnd

on=1

`
vn

2s1 − e−t/tnd
.

s50d

This relaxation time matcheststd s28d in the Fickian limit
and equals the harmonic, modal velocity weighted average of
the modal relaxation times for short times,

lim
t↓0

tef fstd =
on=1

`
vn

2

on=1

`
vn

2/tn

. s51d

This explains whytstd s28d overestimates the relaxation
time for short times. Let us now definetavg as the average of
tef fstd over the time domainftmin, tmaxg of interest,

tavg =
1

tmax− tmin
E

tmin

tmax

tef fstddt. s52d

Using this relaxation timetavg in the approximate model
yields a very good fit with the exact variance Fig. 12.

C. Separation of scales

Next we study a two-scale problemse.g., n1=1, n2=100d
and consider observation times in between the two modal
relaxation times. Figure 13 shows that the standard relax-
ation time, Eq.s28d, overestimates the variance. Equation
s28d describes an averaged relaxation of both scales, while
only the larger scale still undergoes a relaxation for the time
scale considered here. With scale separation, we put the
small relaxed scalesn2d together with the molecular diffusion
in a microscale dispersion coefficientf30g,

Dmicro = Dmol +
1

2
vn2

2 t2, s53d

and only describe the relaxation of the larger scale. This
reduces the velocity variance to the contribution by the scale
undergoing relaxation,

sv,rel
2 =

1

2
vn1

2 t1, s54d

and changes the variance of the approximate model to

sap,x,rel
2 = 2Dmicrot + vn1

2 t1st1fe−t/t1 − 1g + td. s55d

With this scale separation, we obtain an excellent fit with
the exact variancesFig. 13d.

If we put a scalessay nd in a small-scale dispersion coef-
ficient and neglect its relaxation, thesrelatived error we make
in the contribution of this scale to the exact variances15d is
bounded,

Error = Uvn
2tnst + fe−t/tn − 1gd − vn

2tnt

vn
2tnt

U ø U vn
2tn

2

vn
2tnt

U
=

tn

t
=

1

tn,obs
. s56d

FIG. 10. The normalized modal cyclic dispersion coefficient
fthe term between square brackets in Eq.s47dg as a function of the
dimensionless reversal timestr /tnd.

FIG. 11. Effect of the dimensionless reversal timestr /t1d on the
development of the variancesnormalized at the variance for unidi-
rectional flowd.
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This relative error decreases for increasing observation
time. We now postulate a separation criterion based on this
single scale analysis. Scalesnd is added to the microscale
dispersion coefficient in the approximation and its relaxation
ignored if the relative error bounds56d drops below a certain
error value«,

tn

t
=

1

n2

t1

t
=

1

n2

1

tobs
ø « ⇔ n ù Î«/tobs. s57d

We define the observation time-dependent separation
scalensepstobs;«d as the real-valuedsnd for which the equality
in Eq. s57d holds,

nsepstobs;«d = Î«/tobs. s58d

D. General approach

In an empirical approach, we combine the effective relax-
ation time formulation with scale separation. Filterv*stobs;nd
is the fraction of mode n that at observation time tobs is put
into the relaxation part, andf1−v*stobs;ndg is the fraction put
into the microscale dispersion coefficientsDmicrod. We define
v*stobs;nd as

v*stobs,nd = 51, n , N+fnsepstobs;«dg
nsep− fN+snsepd − 1g, n = N+fnsepstobs;«dg
0, n . N+fnsepstobs;«dg

6 .

s59d

FIG. 12. Comparison of the exact variance with the variance by
the fourth-other upscaled model for a bimodal velocity fields49d
with n1=1 and n2=5. In the fourth-order model, the relaxation time
is used as fit parameterst fitd or is defined aststd s28d andtavg s52d,
respectively.

FIG. 13. Comparison of the exact variance with the variance by
our upscaled model for a bimodal velocity fields49d, with n1=1 and
n2=100. Fortstd s28d, the relaxation of both scales is described in
an averaged sense. Scale separation puts the smaller scalesn2d in a
microscale dispersion coefficients53d.

FIG. 14. ErrorDsqs66d for the velocity fields of Table I as a function of the observation time.sa,dd No scale separation; optimization of
t only. sb,ed Scale separation withnseps58d andtavgs64d. sc,fd Scale separation withnseps58d andtstds28d. The errorssa,b,cd are for unidirec-
tional flow. The errorssd,e,fd for flow including reversal of direction. Thea andevalues were found by trial and error. The results insbd and
scd are obtained fore=6.2 anda=0.5
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Here the observation-time-dependent scale separator
nsepstobs;«d is defined according to Eq.s58d and the function
N+ is the first integer larger than nsep fN+sxd=minnPNhn
.xjg. Filter v*stobs;nd s59d is defined such that the contribu-
tion of each mode to the relaxation part smoothly vanishes in
time, in descending mode order. At a specific point in time,
only a single scalefmode n=N+snsepdg is partitioned over the
relaxation part and Dmicro. In the limit of the observation time
to infinity, the separator scale nsep s58d becomes zero and
according to Eq.s59d all scales are described by an effective
dispersion coefficient. However, for the accuracy of the ap-
proximation it is always favorable to at least describe the
relaxation of a part of the largest scales. We relate this part to
the snormalizedd contribution of all modes to the effective
dispersion coefficient in the Fickian limit. Let us define
mode nminsad as

nminsad = min
nPN
HnUo

k=1

n

vk
2tk ù aDeff,`J . s60d

Given a, all modes up to mode nmin will be fully de-
scribed by the relaxation part independent of the magnitude
of the observation time. With this modification, the fraction
of scale nfvstobs;ndg that is put in the relaxation part finally
reads

vstobs;nd = H1, n ø nminsad
v*stobs;nd, n . nminsad J . s61d

In the upscaled approximation including scale separation,
the microscale dispersion coefficient consists of the molecu-
lar diffusion and the fractions of the scales that are relaxed,

Dmicro = Dmol + o
n=1

`

f1 − vstobs;ndgvn
2tn. s62d

The relaxation part of the velocity variancessv,rel
2 d de-

scribes the fraction of those velocity modes which undergo
relaxation,

sv,rel
2 =

1

2o
n=1

`

vstobs;ndvn
2. s63d

We compute the relaxation time of this velocity fraction
analogously to Eq.s52d,

tavg =
1

Dt
E

tmin

tmax on=1

`
vstobs;ndvn

2tns1 − e−t/tnd

on=1

`
vstobs;ndvn

2s1 − e−t/tnd
dt. s64d

With these definitions, the microscale dispersion coeffi-
cient Dmicro s62d replaces the molecular diffusion coefficient
Dmol in Eq. s2d. In Eq. s22d, the relaxation part of the vari-
ancesv,rel

2 s63d is substituted for the total velocity variance
sv

2 and tavg s64d replaces the relaxation timet. The corre-
sponding time derivative of the variance reads

]tsap,x,rel
2 std = 2 3 HDmicro + sv,rel

2 tavgs1 − e−t/tavgd, t ø tr

Dmicro + sv,rel
2 tavgs1 − f2e+tr/tavg − 1ge−t/tavgd, t . tr .

J s65d

E. Optimization and evaluation

The upscaled model with scale separation may be inter-
preted as a function of two independent variables, the sepa-
ration scalesNd and the relaxation timestd. We want to
quantify the accuracy of the model with respect to the be-
havior of the variance in time. The error measureDsqsnsep,td
computes the relative error in the time derivative of the vari-
ance that is made by the approximations65d on a time do-
main ftmin, tmaxg as

DsqsN,td =

E
tmin

tmax

f]tsc,x
2 std − ]tsap,x

2 st;N,tdg2dt

E
tmin

tmax

f]tsc,x
2 std − 2Dmolg2dt

. s66d

Here ]tsap,x
2 is the time derivative of the variance by the

approximations65d and]tsc,x
2 the exact variance time deriva-

tive s15d.

F. Test fields

We test the upscaled model for a parabolic velocity field,
two cosine velocity fields, and two layered velocity fields.
The latter two consist of equally sized layers of different
velocities, as shown in Table I. We consider flow with and
without flow reversal. For each field, we vary the observation
time tobs in the rangetobsP f10−3,101g. For each tobs, we com-
putesnsep,tavgd fEqs.s58d ands64dg andsnsep,tstdd fEqs.s58d
ands28dg. We evaluate the approximations as function of tobs
by comparing the errorsDsqd evaluated on the time range
ftmin,tmaxg=f0,2gt1tobs.

G. Results

Figures 14sbd and 14sed show that the scale separator nsep
s58d combined with relaxation timetavg s64d gives small
errors. Moreover, the results are almost indistinguishable
from those obtained by independently optimizing n andt
with respect toDsqsN,td. On the contrary, the same scale
separator combined with the standard relaxation timetstd
s28d gives errors that are much largerfFigs. 14scd and 14sfdg.

UPSCALING AND REVERSIBILITY OF TAYLOR… PHYSICAL REVIEW E 71, 046308s2005d

046308-13



As mentioned, Eq.s28d overestimates the relaxation time by
overemphasizing the relaxation times of large scales for short
times. In case we do not apply scale separation, the errors are
large fFigs. 14sad and 14sddg. For unidirectional flow, the
relaxation time has a bigger impact than scale separation. For
flow including reversal, the largest errors are made if we do
not separate scalesfFig. 14sddg.

XI. DISCUSSION

Hassanizadehf19g and Tompson and Grayf20g each de-
rived a macroscopic multidimensional non-Fickian disper-
sion model. Hassanizadehf19g derived his equation by ex-
ploring the mass and momentum balances for a solute and
solvent at the macroscale. Tompson and Grayf20g applied
the method of volume averaging on the convection diffusion
equation. Although the model of CamachofEqs. s8d and
s39dg is derived from upscaling to the megascopic scale to a
1D representation, it has the same functional form. The
equivalence of these models suggests that dispersion at the
macroscale might be interpreted as multidimensional Taylor
dispersion. In Verlaanf21g and Berentsenf18g it is shown
that the fourth-order model is able to explain the scale de-
pendency of the dispersivity observed in echo experiments
measured by Rigordet al. f10g. Moreover, they showed that
in a qualitative sense the fourth-order model is able to repro-
duce the dependency of the effective dispersion coefficient
on the Péclet numberssee Bearf22gd.

XII. CONCLUSIONS

The fourth-order approximation as proposed by Camacho
provides acceptable results only in the case of single scale
problems and uniform initial conditions. We characterized
the scale interaction by analyzing the moments derived
through spectral analysis. The analysis allowed us to formu-
late an upscaled model with effective parameters that can be
calculateda priori from the velocity distribution. Separation
of scales in combination with a new definition of the effec-
tive relaxation time allowed us to extend the model to obtain
good results also for multiscale problems. In addition, we
studied the effects of periodic flow reversal. Periodic flow
reversal results in relaxation of the moments to periodic be-
havior in the same relaxation time as for the unidirectional
flow, even if the reversal time is smaller than the relaxation
time. The effective dispersion coefficient is a monotonously
increasing function of the dimensionless cycle timestr /td. It
asymptotically converges for increasing tr /t towards the ef-
fective dispersion coefficient in the absence of any flow re-
versal.

APPENDIX A: EXACT SPATIAL MOMENTS OF THE 2D
CONVECTION DIFFUSION EQUATION

1. Mean position of higher concentration modes

Unidirectional flow
The evolution expression of the non-normalized first mo-

ment of mode n, Eq.s9d, for k=1, reads

Ftn
−1 +

]

]t
GEcn,x,1 =

1

2
f2v0 + v2ngMcn

,

+ vnM0 +
1

2 o
m=1Þn

`

fvm+n + vum−nugMcm
. sA1d

We replace Mcn
std and Mcm

std with Eq. s11d on the RHS of
Eq. sA1d and solve the result for the initial condition,
Ecn,x,1s0d=x0Mcn

init, since all tracer is released at x=x0. For
Ecn,x,1std, one obtains

Ecn,x,1std = Mcn

initx0e
−t/tn + vnM0tnf1 − e−t/tng

+ o
m=1Þn

`
tntm

tm − tn

vm+n + vum−nu

2
Mcm

initfe−t/tm − e−t/tng

+ Fv0 +
v2n

2
GMcn

initte−t/tn. sA2d

Flow reversal
The evolution expression ofEcn,x,1

rev std for flow after rever-
sal is equal to Eq.sA1d with the signs of the modal velocities
changed,

Ftn
−1 +

]

]t
GEcn,x,1

rev = −
1

2
f2v0 + v2ngMcn

std − vnM0

−
1

2 o
m=1Þn

`

fvm+n + vum−nugMcm
std.

sA3d

The solution to Eq.sA3d is found by replacing Mcn
std and

Mcm
with Eq. s11d and using continuity of Ecn,x,1 at the mo-

ment of reversal,Ecn,x,1
rev strd=Ecn,x,1strd, and yields

Ecn,x,1
rev std = − Fv0 +

v2n

2
GMcn

initst − 2trde−t/tn + Mcn

initx0e
−t/tn

− vnM0tnf1 − 2e−st−trd/tn + e−t/tng

− o
m=1Þn

`
tntm

tm − tn

vm+n + vum−nu

2
Mcm

init 3 se−t/tm

− f2efstm−tnd/tmtngtr − 1ge−t/tnd. sA4d

TABLE I. Description of the velocity fields vsyd under considerationsd is the height of the fieldd sin 10−1 m/dd.

Parabolic cos 1+cos 10 S coss1¯10d 5 layer 10 layer

15f1−s2y/d −1d2g cosspy/dd
+coss10py/dd o

n=1

10

cossnp/dyd
layer velocities
v=f1,3,9,1,8g

layer velocities
v=f3,2,12,7,13,1,8,5,4,13g
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2. Variance of average concentration

Unidirectional flow
The evolution equation for the second moment belonging

to c0sx, td readsfEq. s8d for k=2g

]Mc0,x,2

]t
= 2Dmol + 2v0mc0,x + o

n=1

`
vn

M0
Ecn,x,1. sA5d

Using, sc,x
2 =Mc0,x,2−mc0,x

2 , the evolution equation for the
centered secondsvarianced yields

]sc,x
2

]t
= 2Dmol + F2v0 − 2

]mc0,x

]t
Gmc0,xstd + o

n=1

`
vn

M0
Ecn,x,1std.

sA6d

We substitute the known expressions formc0,x s13d and
Ecn,x,1 sA2d on the right-hand side and find expressions15d as
the solution to the initial conditionsc,x

2 s0d=0.
Flow reversal
The evolution expression for the variance for flow after

reversal is equivalent to Eq.sA6d with the signs of the ve-
locity changed,

]sc,x,rev
2

]t
= 2Dmol + F− 2v0 − 2

]mc0,x
rev

]t
Gmc0,x

rev std

− o
n=1

`
vn

M0
Ecn,x,1

rev std. sA7d

The solutions39d to this ODE is obtained by substituting
Eq. s36d for mc,x

rev and Eq.sA4d for Ecn,x,1
rev and using the con-

tinuity of the variance at the moment of reversal,sc,x,rev
2 strd

=sc,x
2 strd. For a more detailed derivation, seef18g.

APPENDIX B: SPATIAL MOMENTS OF THE FOURTH-
ORDER UPSCALED EQUATION

Multiplication of the fourth-order equations23d with xk,
integrating the result over the x domain, gives the following
general evolution equation for thekth moment of the concen-
tration:

t
]2Mc,x,k

ap

]t2
+

]Mc,x,k
ap

]t
= kv0Mc,x,k−1

ap + ks2v0 + bd
]Mc,x,k−1

ap

]t
+ sk2

− kdfDmol + sv
2t − sv0 + bdv0tgMc,x,k−1

ap

+ 2sk2 − kdDmolt
]Mc,x,k−2

ap

]t

− Sp
i=0

2

sk − idDDmolsb + 2v0dtMc,x,k−3
ap

− Sp
i=0

3

sk − idDDmol
2 tMc,x,k−4

ap . sB1d

The moments of the Telegraph equation are obtained by
taking Dmol equal to zero in Eq.sB1d.

1. Mean particle position

The evolution expression for the mean position of the
average concentration yields

t
]2mc,x

ap

]t2
+

]mc,x
ap

]t
= − v0. sB2d

Initially all particles are released at x0. If the particles are
initially distributed nonuniformly over the height, the initial
particle velocity of the particles is u0, which may be different
from v0,

mc,x
aps0d = x0,

]mc,x
ap

]t
s0d = u0. sB3d

The solution of Eq.sB2d subject to result is given by Eq.
s24d.

2. Spatial variance in the particle distribution

The evolution expression for the second normalized mo-
ment reads

t
]2Mc,x,2

ap

]t2
+

]Mc,x,2
ap

]t
= 2s2v0 + bdt

]mc,x
ap

]t

+ 2v0mc,x
ap + 2fDmol + sv

2t − sv0 + bdv0g.

sB4d

Using sc,x
ap,2=Mc,x,2

ap −smc,x
apd2 and the expressions formc,x

ap

given in Eq.s24d, the following evolution equation for the
variance is obtained:

t
]2sc,x

ap,2

]t2
+

]sc,x
ap,2

]t
= 2sDmol + sv

2td + 2tbsu0 − v0de−t/t

− 2tsu0 − v0d2e−2t/t. sB5d

Initially, the variance is zero while the initial increase of
the variance is by molecular diffusion only,

sc,x
ap,2s0d = 0,

]sc,x
ap,2

]t
s0d = 2Dmol. sB6d

The solution of Eq.sB5d with respect to Eq.sB6d is given
by Eq. s26d.

APPENDIX C: PERIODIC FLOW REVERSAL

The differential equationsin a moving frame of referenced
for the first moment of a higher-order concentration mode in
the sNrdth reversal cycle reads

F ]

]t
+

1

tn
GEcn,x,1std = s− 1dNrvnM0. sC1d

The first momentsEcn,x,1d is initially zero and continuous
each time the flow is reversed. Consequently, the solution to
Eq. sC1d is given by

Ecn,x,1std = − 2M0vntno
k=0

Nr

8s− 1dkse−st−ktrd/tn − 1d . sC2d
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The time derivative of the variance is, similar to Eq.sA5d,
directly related to the first moment of the higher-order con-
centration modes and reads

]sc,x
2

]t
std = 2Dmol − o

n=1

`

s− 1dNrvn

Ecn,x,1

M0
std. sC3d

Substituting Eq.sC2d into Eq. sC3d yields

]sc,x
2

]t
st̃;Nr,trd = 2Dmol − 2o

n=1

`

vn
2tnFo

k=0

Nr

8s− 1dNr+k

3fe−ft̃+sNr−kdtrgtn − 1gG . sC4d

Evaluation of the sum gives expressions45d in Sec. IX A.
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