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Upscaling and reversibility of Taylor dispersion in heterogeneous porous media

C. W. J. Berentseh,M. L. Verlaan! and C. P. J. W. van Kruijsdifk
Department of Geotechnology, Delft University of Technology, Mijnbouwstraat 120, Delft, The Netherlands
(Received 9 July 2004; revised manuscript received 17 November 2004; published 29 Apjil 2005

Tracer flow in stratified porous media is dominated by the interaction between convective transport and
transverse diffusive mixing. By averaging the tracer concentration in the transverse direction, a one-
dimensional non-Fickian dispersion model is derived. The model accounts for the relaxation process that
reduces the convective transport to dispersive mixing. This proceshdst) time correlated and partially
reversible upon reversal of flow direction. For multiscale velocity fields, the relaxation is a multiscale process.
To date only single scale processes have been successfully upscaled. Our procedure extends this to multiscale
processes, using scale separation. The model parameters can be caleypsied based on the velocity
profile. For periodic flow reversal, the results are essentially the same. Despite the non-Fickian behavior during
a cycle, the net contribution of each cycle to the spreading relaxes to a Fickian process in a similar way as for
unidirectional flow. The cycle time averaged dispersion coefficient is a monotonically increasing function of
the reversal time. It asymptotically converges towards the effective dispersion coefficient in the absence of flow
reversal.
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I. INTRODUCTION Il. PHYSICS—DISPERSION IN A UNIDIRECTIONAL
FLOW FIELD

Considering convective dispersion, there are a number of
situations where the physical mechanisms are not well dqb

scribed by the classical convection-dispersion  equatiofte "yo-dimensional porous media bounded in the trans-

(CQDE)‘ _. verse or y direction, see Fig. 1. At t=0, we inject a finite
(i) In natural rocks, often sever_al scalgs_of he_terogene_ltle%aSS(Mo) of ideal [24] tracer (nonjuniformly distributed

(e.g., layery are encountered which exhibit a different dis- 5 the heighty) at longitudinal position ¥ In addition to

persion behavior from those that can be obtained from th@gnyective transport, the tracer particles are subject to a mi-

Consider a macroscopically stationary unidirectional ve-
city field v(y), which corresponds to flow through an infi-

CC'_?E[l,ZJ- _ _ _croscale mixing mechanism, which we will limit in this pa-
(i) The interaction between convection and molecular dif-per to isotropic molecular diffusiof25]. The evolution of
fusion can be significarjB—8]. the (trace) concentration can be described, at the macros-

(i) When the flow direction is reversed, convective cale, by the two-dimensional unidirectional convection-
spreading will also reverse. The CCDE describes the dispediffusion equation2D uCDIfE),
sion as an irreversible mixing mechani$é10].
Numerous researchers modified the CCDE to fit their
problem. The modifications range from extending the model +o(y) = Do AC(X, Y, 1) . (1)
for the macroscopic dispersion coefficigdt11,17 to add- ot oX
ing extra terms to the CCDR,13,14. However, none of the

extended models is capable of handling all three situationg) - gpjective is to describe the evolution of the transverse
outlined above. This paper describes a method for upscallngveraged Concentratim@(x,t):(1/d)fgc(x,y,t)dy.

of dispersion in arbitrary layered porous media to obtain a

macroscopically averaged model which incorporates the

above-mentioned physical mechanisms. It extends the ap- A. Convective displacement

proach taken by Camach@5,16. The emphasis of this pa- ) ) )

per is on the validity of the upscaled model and the relation, First consider convective transport only. Each tracer par-

between the parameters of the model and the physics of t éd(.a moves with a constant velocity in the >'<.d|rect|on along
process its initial streamline. Hence, the mean position of all tracer

particles moves linearly in time with a constant averaged
particle velocity(ug). This velocity may differ from the mean
fluid velocity (vp) if the particles are nonuniformly distrib-
*Present address: Department of Earth Sciences, Utrecht Univeuted in the transverse direction. Similarly, the spreading of

sity. Electronic address: berentsen@geo.uu.nl the particles in the longitudinal direction, expressed in terms
TPresent address: Horizon Energy Partners. Electronic addressf the variance, increases with time squared and is propor-

marco.verlaan@horizon-ep.com tional to the variance of the tracer velocity determined by
*Electronic address: c.p.j.w.vankruijsdijk@citg.tudelft.nl those streamlines occupied by tracer particles.
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FIG. 1. Layered porous media in the domé&l (-, +20) X [0,d] in which a longitudinal velocity field §y) is present. Tracer particles
are initially released in this field at longitudinal positigguniformly or nonuniformly distributed in the transverse direction. Tracer particles
are subject to isotropic molecular diffusion.

B. Relaxation from convective towards uncorrelated-Fickian I1l. SPECTRAL EQUIVALENT

behavior o ] ) )
Similar to Camachd16], the starting point for the deri-

_In addition to convection, consider mixing by molecular atin of an evolution equation for the height averaged con-
diffusion. The longitudinal component of diffusion smoothes .antration [co(x,)] is the spectral equivalent of the 2D

the sharp front propagated by convection. More importantlyuCDifE_ We replace the concentration and velodity by

In the transverse direction diffusion moves particles away, ,qjne Fourier series, multiply the result by @usy/d), and
from their initial streamlines and the particle velocity will

. . . integrate it over y. For n=0, we obtain the evolution equation
change. Over time, each tracer particle will sample each Verss o (x,1)
tical position equally frequently, and the relation between a= °"™”
particle and its initial streamline is lost. Consequently, diffu- 5
sion smoothes concentration differences in the transverse di- %o, v o _ TC__dh (2)
rection, and as a result reduces the longitudinal spreading a o Cax M ox? ox’

caused by the velocity profile. In the long-time limit, a dy-

namic equilibrium between the convective and diffusivewhere, following Camachpl6], the single valued dispersive
spreading mechanisms is established, which exhibits FickiamMaylor flux J; is defined as

behavior. Figure 2 visualizes this process for the velocity

field shown in Fig. 1. The relaxation timeis the character- 17

istic time for the transition proced®6] also called relax- Jr(x,) = = v, Ca(X,t). (3)
ation. This time is a function of the value of the molecular 257

diffusion coefficient and the correlation of the longitudinal

velocity in the transverse direction. It originates from the convective term in E(l) and ac-

counts for the contribution of the higher-order modes to
Co(X,t). The evolution of the higher-order modés>0) is
C. The effect of the initial transverse particle distribution given by

If the particle distribution is uniform over the height, local
redistribution of the particles by molecular diffusion does not ¢, ¢, ac,, i Ymn @ _ g
affect the particle distribution over the streamlines. The mean "5 ™ + vo + —~ Um T Dol PRIV
particle velocity equals the mean fluid velocity at all times. If " meL
the initial particle distribution is not uniform, transverse dif- (4)
fusion will establish a uniform distribution over the height in
time and the mean patrticle velocity evolves from its initial where the modal relaxation time, and modal interaction
value y to the mean fluid velocity y coefficienty,,, are defined as

t=50 t=350 =650

—0.6
E
>0.41

0.21

30 90 x[m] 210 "390
FIG. 2. Typical evolution of particle clouds in thg,y) space when the particles are initially uniformly distributed over the transverse

direction. Clouds at increasing positidr) represent clouds for increasing time. Timgsare in days. The molecular diffusion isjg
=1.25x 107* m?/d.
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d? 0
= WDmol (5 [ 7'nl + E] Ecn,x,k = I(UnMcol\/lco,x,k—l +k[2v0+ UZn]Ecn,x,k—l
and + (k2 - k)DmoIEcn,x,k—Z
lo, _ K <
5_[vm+“]' m=n +3 E [Omen + U\m—n\]Ec Xk=1+ 9
- Um 2m::Lstn "
Ymn= 1 (6)
Un
__[Um+n+v|m—n\]y m# n.
2vn
C. The transverse particle distribution
If the tracer is initially nonuniformly distributed over the
IV. MOMENT ANALYSIS FOR UNIDIRECTIONAL height, the initial zeroth momeritmass’) of a higher con-
FLOW centration mode,, (n>0) may be nonzero,
The spectral representation also serves as a starting point o rd
for the derivation of the spatial moments belonging to the 2D init — f f S<”iy)
UCDIfE. As the 2D model is generally too involved to allow Mc, =2 = Jo cixy,0)co d dydx (10

direct analytical solution, moment analysis allows us to
quantify the accuracy of an upscaled model. We briefly dis- Solving Eq.(9) for k=0 with respect to initial condition
cuss the behavior of the zeroth, first, and second spatial m¢10 gives the evolution of the zeroth moment of the higher-
ments belonging to the 2D uCDIfE. For a full analysis, seeorder modegn>0),
[5,17,18. B

M (t) = M'C“n“e'“fn. (11)

A. General definition of the spatial moments Equation(11) shows that the zeroth moment @f relaxes

Consider the release of a tracer with finite masgivthe 10 zero at a speed which only depends on its own relaxation
spatial domairx e (=o, +). Thekth spatial moment of the time 7. Its relaxation is not affected by other concentration

nth concentration mode is defined as modes.

+0o0
e, xk= f X< (x)dx. (7) D. The mean particle position and velocity

If the particles are distributed nonuniformly in the trans-
The zeroth moments or “mass” in timth concentration verse direction, the mean particle velocfiy(t)] shows a
mode are denoted byl. . M, s the tracer mass normal- relaxation from the initial mean particle velocify,=u(0)],
izedkth moment of thenth concentration modeE. x«/Mo).  determined by the initially occupied streamlines, towards the
Mgnyxyk, for k>1, is the centerd normalizeth moment mean fluid velocity(vy),
[Mcn'(x_Mc,x,l)'k]' For simplicity, the mean particle position

¢ . . . c + rd
(MZ%XYI) is written asu.y and the particle vanancéMCO'xyz) f vedydx ) -
aso’,. - Jo 1 N
o Ut)=— g =vot 52 on g Um (12
n=1 0
B. The evolution of the spatial moments of the spectral J_w fo cdydx

equivalent

Convergence fromgto v, is faster for increasing magni-
ude of the molecular diffusion R, as shown in Fig. 3.

The exact mean position of the particles is obtained from
Eq. (8) with k=1 or by integration of the mean particle ve-
r]ocity (12) over time,

To obtain the moment equations belonging to the 2Dt
uCDIfE, we multiply Eqs(2) and(4) of the spectral equiva-
lent with ¥ and average the result over x. Assuming that
each concentration mode and all its spatial derivatives co
verge exponentially to zero for- £, the evolution equa-

tion for thekth normalizedmoment belonging tg, (x,t) can L init
1 C
be written as Mox = [Xo +vot] + EE TnUnM_n[l —etim], (13
aMco,x,k , n=1 0
_kUOMco,x,k-l_(k _k)DmolMco,x,k-Z In addition to a contribution present for initial uniform
. particle distributions(xg+vgt), a relaxation term expresses
B I_<E e, xk-1 8 the contribution due to the redistribution of the particles over
24 Un Mg (8 the streamlines. After relaxation, the mean moves with the
0 mean fluid velocity as in the uniform case, but shows a de-
The evolution of thekth non-normalized moment of a viation A, resulting from the relaxation of the mean par-
higher concentration mod@>0) reads ticle velocity,
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FIG. 3. Typical example of the relaxation of the mean particle

velocity towards the mean fluid velocity, Yor three values of the
molecular diffusion.

o0 init

TnUn " Cq
Mex,disp= Xo +uot + 2 2
n=1 0

= X0+ vot + Altrelax-

(14)

E. The variance of the averaged concentration

The spatial variance is given Wyor derivation, see Ap-
pendix A 2

ng(t) (2Dmolt (2 v 7'n(t + Tn[e_tlfn - 1]))

n=1

L2 M 2
C
- (— > — "y, rl-€ UT"])

1 3 Mlcnlt
+ —E —nv
<2n:1 IVIO

|n|t

2 2 —
nUZn(Tn - [Tn + nitle t/Tn)

TnTm

s 2 UnlUmin+ v\m—n|]

20 tm1 MO Tm™ Tn

X (Tm[l - e_t/Tm] - 7'n[:l- - e_t/Tn])> (15

The variance has four contributions. The first is by the
longitudinal component of diffusion. The second expresses
the interaction of the velocity field and transverse molecular
diffusion. The third and fourth terms correct the second term
when the particle distribution is initially nonuniform. They
describe a contribution of the changing averaged particle ve-
locity resulting from the transverse redistribution. The third

term is a direct result of the relaxation of the mdaacond

term of Eq.(13)). The fourth term accounts for interactions

PHYSICAL REVIEW H1, 046308(2005

% d
ol = 1 f f [v(y) — u(®)2c(x,y,t)dydx= o? + Ac?(t)
MO -0 J0

£ 2 0 Minit 2
2 _n — E b ie—tlfn
=1 2

n=1 2 Mo
o |n|t
v
+ 2 UnU2n e‘t/Tn
n=1 4 MO

o [vment U\m—nl]vm Micnit :|
+ netim |, (16)
4 Mg

m#n=1

Aoﬁ(t) is the deviation of the particle velocity variance
from the fluid velocity varianceéof) for transverse nonuni-
form particle distributions. For short timés< 7), the part of
the spreadind15) induced by convection is proportional to
time squared and to the variance of the initial particle veloci-
ties,

Utz:,x,corv(t) =2Dmot + Uﬁ(o)tz- a7

For uniform particle distributions, two velocity fields with
the same velocity variance but with different modal compo-
sition produce at early times the same amount of spreading.

In the long-time limit(t> 7), the variance behaves Fick-
ian and is proportional to t,

Ug,x,disp(t) = 2D-:-:ffoCt + AO'unl + AO-non (18)

As ultimately the particle distribution becomes uniform
over the height, only the first two terms of Ed5) contrib-
ute to the effective asymptotic dispersion coefficiéDs;..),

©

1
Deffee = Dmol * 52 vﬁTn-
n=1

(19

For fields with the same velocity variance, those domi-
nated by lower-order modetv,) show ultimately more
spreading than those dominated by higher-order modes. In
Eq. (18), A2, is the constant contribution to the variance
resulting from the relaxation of the uniform part of the vari-

ance[second term in Eq(15)] defined as

oo

Aoty == 2 vprh.

n=1

(20)

AoZ,, is a constant contribution to the variance that re-
sults from the relaxation of the nonuniform péthird and

fourth terms of Eq(16)] given by

[

init
Mc UnlUmin U\m—n|]7'n7'm

2 _
A‘Tnon_ + E M 2
m#n=1 0
o init 2 £ init
- (2 Mcn Un7n> +E Mcn Unl2nTnT2n
n=1 MO 2 n=1 MO 2

(21)

Figure 4 shows the variance for a uniform initial particle

of the higher-order modes. The temporal particle velocitydistribution. It shows a relaxation from & behavior for

variance is given by

short times towards Fickian behavi¢rt) for long times.
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FIG. 4. Relaxation of the variance from convectifret?) for
short times to Fickian behavidr-t) for large times.

The shift in the variancéAoﬁm, Eq. (20)] resulting from the

relaxation(Fig. 4) is negative as the variance time derivative

PHYSICAL REVIEW E 71, 046308(2005

(24)

Equation(24) only matches the mean of the full model for
single scale problems or for initially uniform distributions.
The convective limit is always correctly described as it fol-
lows from the initial conditions. The constant contribution to
the Fickian limit originating from the relaxation process can
be made to match the exact value by defining the effective
relaxation time as

uah = %o+ vot + Terf( U — vo) (1 = g e,

init init

C ] C
= T En:l T
o= S 0 o 2
= T N VIO
n=1Yn Mo

Note that this approach fails when the initial distribution
is nonuniform and g=vg.

B. Comparison of the variance

(2Dgffec)-

V. EVALUATION OF THE UPSCALED RELAXATION
MODEL BY CAMACHO

The laminar flow problem studied by CamacHd®] ex-

hibits a single dominant Fourier scale. He derived an evolu-

tion equation for the Taylor flux by summing the relaxation
of the modal Taylor fluxe$J,=v,c,/2) [27],

A Pt

- Dmol_

FABEEN
Ny v L
Ix X

at

FAN
— +
% ox

Jc
=-¢>—2. (22
X

Subsequently, he replacetix,t) and 8(x,t) by the con-
stants7.¢s and Be¢s yielding an effective single scale relax-
ation. Combination of Eqg2) and(22) yields a fourth-order
PDE for g(x,1).

+ Teff|:

P
+[(vo+ Betvo ~ 0’5]% +(2vg + Bety)

8¢y
atz

(92C0
mol (9X2

Jc dc
ot X

#c

oXot

o ey o dcy
= Teff 2Dmo|% + (200 + Beff)DmOI% - Dmoly :
(23)

Camachd 16] effectively reduced the general multiscale

problem to a single scale problem. We investigate the devia-
tions from the full problem by comparing the mean and vari-

ance of the approximation with the exact results.

A. Comparison of the mean particle position

again a structure similar to the full expressidéy. (15)] but
restricted to a single scalsee Appendix B 2

ap,2 —

Ocx — 2D ot + Zo'gTeﬁ[Teff(e_t/TEﬁ = 1) +t] + 2754Ber(Ug — vo)

X[ Tegr(€77eft = 1) + te™V7e] = { o (Ug — vo) €77
— 172, (26)

For uniform initial distributions, the third and fourth
terms on the right-hand side disappear. As only a single ef-
fective relaxation process is present in the approximation, it
is only exact for single scale problems. The short-time limit
is again exact. In the long-time limit> 7), the approxima-
tion reduces to

ap,2
Ocxdisp™

2(Dyoi+ T2 et (27

If we set the effective relaxation times;) equal to the
so-called standard relaxation timg, (see Camachfl6]),
2

Enzl UnTn

E::l vh

n
we also match the exact variance in the long-time lifh&).
However, Sec. X will show that this definition does not give
an accurate approximation for intermediate times. For an ini-
tially nonuniform distribution, the situation is more complex.
In the convective limit, the upscaled variance reads

©

1 o0
Teff= Tstd = EE UﬁTn = (28)

vh=1

ap,2

O¢ x,corv = 2I:)molt + 20—1%[2 - Beff(uo - Uo)tz - (UO - UO)ZIZ-

(29)

This expression does not have any information on the
initial particle velocity variance which drives the variance
evolution in the convective limit. However, we can define
parameterB. to introduce this information in such a way

The expression for the mean particle position using thehat the short-time limit is again exact,

upscaled equatioii23) is similar to the full solution[Eqg.
(13)] but restricted to a single relaxation scé&ee Appendix
B 1),

2_
O-U

Oﬁ,init —(Up- Uo)z_

Up— 0o

Bett= (30)

046308-5



BERENTSEN, VERLAAN, AND van KRUIJSDIJK PHYSICAL REVIEW H1, 046308(2005

Note that as observed before in the discussion of the VI. GENERALIZED TELEGRAPH EQUATION
mean, in the caseyav, the approach above fails. The up-
scaled equations simply cannot handle this situation. In the The fourth-order upscaled PDE E@3) covers the whole
long-time limit (t>7), the variance shows the correct Fick- SPectrum from cases wheféongitudina) molecular diffu-

ian behavior, sion QOm.inates the ;pre_ading to cases where the_ transverse
variation in the velocity field dominates the spreading. If the
0 2isp= 2(Dmoi*+ 05 Te)t = [ 20775 + 27t Beri(Uo =~ vo) contribution by longitudinal molecular diffusion to the be-

1o - vo)?] (31) hayior of the fourth-order model can be neglected, the para-
eff 1X0—F07 I bolic fourth-order upscaled equation reduces to a second-
Ultimately, the growth of the variance is independent oforder hyperbolic generalized Telegraph equation,

the initial distribution. The relaxation constant, however, is

different, since the relaxation process has evolved in a dif- Pcy  dc, co e,
ferent way. To match the approximation with the exact vari- Tefl 42 + T + Uo& + Terf(200 + ﬁeff)m
ance in the Fickian limit, the uniform definition for the re-
laxation time can be applied. The constant contribution due #cy
i ~ Tt 0 ~ (Vo + Berdvol—— =0 (32
to the relaxation process, however, cannot be matched. effl%y 07 Peftflol” , .2 '
C. Relaxation time considerations This equation describes the same mean and variance as

the fourth-order model if the contribution of the spreading

For nonuniform initial conditions, the effective relaxation L . L
caused by longitudinal molecular diffusion is ignored.

time has to be tuned to the initial distributid®5) to obtain
a match for the mean for long times. Turning to the effective

dispersion coefficient in the Fickian limit, we can match the A. Concentration profiles
upscaled expression to the exact relationship by an appropri-
ate definition of the effective relaxation tinf@28). However, Unfortunately, the fourth-order upscaled PDE EgZ3)

as may be clear from the physics, this definition is based odoes not have an easily analyzable analytical solution. In
the fluid velocity profile and is unrelated to the initial distri- contrast, for initial conditionsc(x,y,0)=H(x-x;) and
bution. The upscaled model can only match one of the twaiCy(x,0)=0, the solution to the Telegraph model E§2)
conditions. reads forx e (= ,0), see[18],

I T (X ¢ ~
H(X—F)[De—no{\wx —r2}+%+§fF ﬁh{\/é—rz}dg], X > vt

c(x,t) = - (33

1+H(X‘1—‘)|:De_)(|o{\')(2 |1{V§2_F2}dzj|v X <vgt

_FZ}_E_EJXE—_g
2 2 Fw/éz_rz

\

with show nearly identical concentration profiles during the relax-
ation from convective to Fickian behavifigs. 5, a), and
2y ( L], i) 6(b)], even for relatively large values for the molecular dif-
T e2+ Ay 2 le/, ' fusion [Fig. 6(b)]. For short times, the hyperbolic part
(Teffafco) in the Telegraph model dominates over the para-
bolic part (dcy/dt) and its concentration profile shows two
- X = vo| D= & (34) shocks, typical for a second-order hyperbolic equation. Even
\e"82+4¢,//<p' 2\r’82+4l//(p' though the profiles of the upscaled models seem to give a
poor representation of the exact profilEig. 6(@)], they
and match the exact solution up to the second moment. In the
long-term limit, both upscaled models demonstrate Fickian
©=Totty €= + BoiTer, W= ggTeﬁ, (35) behavior, characterized by the typical S-shaped concentration
profile, and give an excellent match with the exact solution
[Fig. 6(b)]. Note that the propagation speed of the Telegraph
model is constant and finite, contrary to the fourth-order
model and classical convection diffusion equati@s].

X

For the velocity field shown in Fig. 1, we compare the
concentration profiles by the fourth-order modgB), the
Telegraph equatiof32), and the height averaged concentra-
tion profile by the full 2D model1). Both upscaled models
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1 < T T T
— 4" Order
® Telegraph
o 08r o Full2D ]
_:3 FIG. 5. Evolution of the concentration profiles
s 0.6r 1 of Camacho’s fourth-order model and the gener-
E alized Telegraph equation(for D,q=1.25
5 0.41 ] X 104 m?d™Y). For t=500 d, the profile obtained
S from a full 2D random-walk simulation is shown
© 0.2r 1 for comparison.
% 50" 100" 150~ 200 © 250" 300~ 350 400 450 800
distance [m]
VIl. PHYSICS—REVERSED FLOW As a result, initially particles return longitudinally along the

same path as they arrived from. Hence the transport process
demonstrates goartially) reversible behavior. The variance
f the height-averaged particle positions decreases as the par-
cles turn back along their original paths. Due to transverse
diffusion, the velocity of a particle becomes in time less
correlated to the velocity history of its forward movement.
A. Reversal of flow and relaxation As a resu!t, _convective dispersion takes over and th_e \(ariar_lce
] _once again increases monotonously. The process is identical
If we reverse the flow and include molecular diffusion, {5 the original relaxation process. Consequently, the same
the relaxation process starts all over again. However, thgsjaxation time characterizes the interaction process of the
particle distribution at the time of reversal is shaped by thgeyersed velocity field and molecular diffusion to form a dy-
convection dispersion process. As discussed above, each pagmic equilibrium exhibiting a Fickian behavior. Moreover,
ticle velocity in this process is correlated over a short time-this(relaxatior) time is independent of the moment in time at
which we reverse the flow.

Now consider the case where after a time, twé reverse
the flow direction. Assuming convective transport only, the
process is fully reversible and the particles are transportea
back to their original positions, see Figa¥.

1re

§ o o ordor . Consider a ;inglg scale relaxation process with re_Iaxatio_n
S * Telegraph time 7. We distinguish three cases based on the ratio of di-
& O8] cooow o Full2D |l mensionless reversal timgg =t,/ 7. Fort,p <1, the particles
Ey § exhibit a fully correlated behavior similar to pure convection
5 0 R ] [Fig. 7(@]. In contrast, ift,;>1, the transport process is
g 04 s, fully relaxed at the time of flow reversdFig. 7(c)]. For
g~ °§ intermediate times,p, the particles, at the time of flow re-
8 oo 2 versal, will be significantly correlated to their original
' streamlines and each particle velocity, at the time of reversal,
0 will be correlated to the initial particle velocity in time. Con-
0 50 100 150 200 250 300 sequently, the velocity profile may be clearly visible in the
(a) distance [m] . . 2
particle cloud[Fig. 7(b)]. Although the reversibility may be
1 — much more significant and visible for smalh <1, partial
.3 elggrf’:;h reversibility, however small, is observed for all valueg,gf
o 08 o Full2D ] In general, the relaxation process may evolve over multiple
£ scales. At times smaller than the relaxation time of the larg-
< 0.6 est scale, the various modes will generally not be in the same
i state of relaxation.
E 04t
© 02 B. Evolution of the variance
0 If we reverse the flow, two combined processes contribute

0 50 100 150 200 250 300 to the variance. The first process expresses the correlation
(b) distance [m] s .
between forward and reversed velocities of a particle and
FIG. 6. Comparison of the concentration profiles of the full 2D, c@Uses a decrease in the variance. The second is a new re-
Camacho’s fourth-order, and the Telegraph model at time t=25 dlaxation process identical to unidirectional relaxation, but
(a) The concentration profile in the convective limit for,g=2.5  With the particle distribution at reversal as initial distribution.
x 10" m?2d1. (b) The concentration profile in the long-time Fick- Initially, the first process dominates and the reversed velocity
ian limit for D,,,=6.25X 104 m?d L. Note that theGibbg over-  Of a particle is completely correlated to its last forward ve-
shoots in the fourth-order model are caused by the third-order uplocity. Consequently the time derivative of the variance
wind scheme that is used for the spatial discretization. changes sigiiFig. 8b)], which we experience, even in the
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particle cloud at t=t, particle cloud at t=2t

—_

0.8f ‘ |

-200 -100 -200 -100 0 x[m] 200

-200 -100 0 x [m] 200 -200 -100 0 x [m] 200

(c)

o

-200  -100 0 x[m 200 200  -100 0 x [m] 200

FIG. 7. Particle clouds belonging to the five-layer velocity figtdy. 1) at the moment of flow reverséi=t,) and at timgt=2t,) for three
different relaxation regimega) The convective limit(Dyo=0 n? d™1). (b) Intermediate situatiofiD ,=3% 10> m?d™1). (c) The Fickian
limit (Dpo=6.3X 1074 m?d™1).

Fickian limit, as "partial” reversibility. With time a particle higher-order modes and is given by Efl1). The mean par-
velocity loses its correlation with the forward velocities, ticle velocity is directly related to the transverse distribution
starting with the short-time correlatiorisr small scales At and only changes sign when the flow direction is reversed.
a certain moment, the two processes counterbalance eadlne mean particle position far>t, reads

other, marked by the point at which the variance reaches its inft

minimum[Fig. 8@)] and its time derivative passes z¢Fig. ren e B 1 - ¢

8(b)]. From this point on, the second process dominates and Hex(t) =Xo+ vo(2t — ) + 2% TnUn Mo

relaxes to the same Fickian behavior as for unidirectional . /

flow while the first process relaxes to a constant value. In the X[em-2e"m+ 1], t>t,. (36)

convective limit, the velocity of each particle is fully corre- | v« vective limit. the mean is fully reversible
lated (or constantin time and the first process dominates up  rey — %o+ Up(2L—1). I th’e Fickian mit(t> 7). the verti- ,
r . ]

. . C,X,corv
:ic;n?&%o'gzasha;?g Otgge after reversal equals the reversa(éLaI particle distribution is degenerated to a uniform distribu-

tion and the mean particle position reads

VIIl. MOMENT ANALYSIS FOR FLOW INCLUDING MedispD) = Mexuni(t) + Aftrelax
REVERSAL OF DIRECTION =[x+ vo(2t; ~ 1]
Here we analyze the spatial moments belonging to the 2D % init
UCDIfE for flow including reversal. The evolution expres- | > D% g _ogtdmy | (37)
sions for thekth moment29] Mc, \(t) and EZ, (1) after nm1 2 Mo

flow reversal are similar to expressio(® and (9), respec-

tively, with the signs of the modal velocities changed. The deviation of the particle mean from the fluid mean,

expressed by the relaxation constante,, . is a function of
the reversal time, and converges ta wqax (14) for t,> 7.
A. Transverse particle distribution and mean particle position

Flow reversal does not affect the way transverse diffusion B. The variance of the averaged concentration

redistributes the particles in the vertical direction. Hence, The exact variance for uniform initial distributions is
flow reversal does not affect the zeroth moment of thegiven by(see appendix AR
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x 10
31T o <=25000 S1
= 250 S
251 , o
» 25

variance [m2]
()}

-

05

v < . - .'.
0 100 200 300 400 500

(a) time [days]
=
(1]
O
[aV]
£
()]
=
T
2
5
o
[0]
£ [ o <=25000
3 1= 250
C
8 e 1= 25
g2 — = 25 P
0 100 200 300 400 500
(b) time [days]

FIG. 8. (a) Typical example of the variance for flow including
reversal of direction at time t=250 days afi] the corresponding
time derivative for four values of the relaxation time
=(2.5,25,250, and 25 00@ays.

[’

Ug,x,rev,uni(t) = 2Dyt + 2 Tnvﬁ X [[tr + 7'n(e_tr/’-n -1)]
n=1

+[(t—t,) + m(e™ W —1)]
+ [7_ ( t/m — ) ~t/, + Tn(e_tr/Tn _ 1)]]
(38

The contribution by the longitudinal component of mo-

PHYSICAL REVIEW E 71, 046308(2005

o init

1 Mep ToT,
3 2 UnlUmen + U|m—n|] >
2 m,n=1(m#n) M 0 Tm™ Tn
X (11 —€Vm] = 7+ 27 [et/ T — g/ m]
+ Tnetqlfn[ze—glfm _ e—trlrn]e—tlfn) (39)

The additional contribution to the variance only depends
on the reversal time if the distribution has not yet relaxed
to a uniform distribution before reversal. Taking the time
derivative of Eq.(39) shows that for any value of, imme-
diately upon flow reversal the dispersive contribution to the
variance is negative,

(70'2
2Dmo| =—lim{ —* 7 - 2Dmo| (40)

2
“m ( (90'(: X,rev
ot t1t,

tit,
In the convective limift,t, < 7), no relaxation takes place
and the variance by the convective-dispersive part displays
fully reversible behavior, reducing to zerotat2t,,

Og,x,rev,com(t) = 0%1(0) (t - Ztr)zv (41)
Whereaﬁ is given by Eq(16). In the Fickian limit(t> 7), the
variance takes the form
0%y rev displD) = et + Acs

C, uni,rev + AO’

nonrev*

(42)

The asymptotic dispersion coefficieBl.. is indepen-
dent of the flow direction and is given by E(l9). The
constant contribution to the variance resulting from the re-
laxation process for initially uniform particle distribution,

Acrum ey Varies with the reversal time,

[

Ac?

uni,rev

2033 - 2674/ ™), (43)
n=1

lts magnitude is bounded betwedw? . (for t,<7) and
3Ad%,; (for t,> 7). The constant contribution to the variance
resulting from the relaxation of a transverse nonuniform to a

transverse uniform particle distributlarnﬁomev reads

lecular diffusion is independent of the flow direction. The
contribution by convection and transverse diffusion has three
subterms. The first expresses the value of the variance at the
time of reversal. The second represents a new relaxation pro-
cess, identical to the initial one. The third term is a "demix-
ing” or reversibility term expressing the effect of flow rever-
sal on the variance induced by the forward convection-
dispersion process. It is increasingly negative tfort, and
asymptotically reaches a constant once correlation with the
flow before reversal is lost. For an arbitrary initial distribu-
tion, the exact variance after flow reversal reéédppendix

A?2)

© |n|t

E Toln [e /7 26t t/

2 —
Uc,x,rev(t) - a%,x,reu,uni(t) - ( M
n 1 0

2 |n|t
+ 1]) E vnU2n(2t, Tn[e U — gt /Tn]
n 1 MO

—treUm+ A1 -e V)
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Adt, Ohonrev _< ETHUH

init 2
Mcn —t/7, )
- r n]
0

UnUonTnl T ~ Ze_trlrntr]

oo |n|t

+E

n=1 Mo
l o] M|n|t
T .

2m;ﬁn 1 MO
e—tr/rn _ e—tr/7m>

Th~ Tm

UnlUmen + Ulm—n\]

X ( TnTm+ 27, (44)

If the transverse particle distribution has relaxed to uni-
formity before flow reversalAo?

equalsAo?,, (21).

nonrev

IX. PERIODIC FLOW REVERSAL

If we keep reversing the flow each time t has increased by
t;, the time derivative of the variance asymptotically turns
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periodic as well[Fig. 9a)]. Ultimately the periodic growth

of the variance becomes linear in time even if the variance
itself does not relax in a period [tFig. Ab)]. Each reversal a
new (but identical relaxation process starts while a second
process expresses the correlations with the previous reversal
cycles. After sufficient time has passed, the velocity of a
particle in thenth reversal cycle is no longer correlated to the
velocity in the first forward period. The time to lose correla-
tion is again related to the relaxation time. After this time has
passed, a particle experiences statistically the same velocity

[mz/day]
[ SR
2 9D

[= =]

|
n
o

|
w
o

variance tirr?e derivative

correlation in each subsequent reversal period. 0 500 1000 2000 2500
(a) time [days]
A. Mathematical derivation
7000
Moment analysis shows that the time derivative of the 6000
variance becomes periodic when the flow is reversed periodi- <5000
cally. Since nonuniform initial distributions relax ultimately 2 4000
to a uniform distribution, we limit the discussion to uniform 3 2000
initial particle distributions{M'cr:]"tO:O). The time derivative of g
the variance in théNg)th reversal cycle read#®\ppendix Q 2000
1000
902 0 ~ % 500 1000 2000 2500
C,X(‘t‘; Nritr) = 2D+ E UﬁTn X | 1+(- 1)Nre_(t+Nrtr)/Tn (b) time [days]
(7t =1
5 " 5 FIG. 9. () Convergence of the time derivative of the variance to
e T/ 4 (= 1)Nrg Nt/ 7 periodic behavior for periodic revers#h) The corresponding evo-
e+ 1 ' (45) lution of the variance.
. _ . - t
where't _|s the t|m_e since the last flow reversal. FQOY, ng(t;Nratr)ZZDmolt"'E Uﬁfzn « (_
— o), this expressiorn45) converges to ' =1 Tn
Nr
(90_2 ’ . (90_2 + 22 /(_ 1)Nr—k(e—(t—ktr)/7'n _ 1)
%&atr) = lImNréw _atC&((f;Nr;tr) k=0
NI’
- -t/ S K Kt/ T,
e -2, (=1D)[4(N, - k) + 2](e tfn—1)>.
_ 2
=Dt nglvn7'n|:l - Zetr/Tn " 1:| . k=1 '

(48)

The sums in Eq(48) increase linearly with the reversal
cycle (“time”) when the time exceeds the relaxation time
[see also Fig. @)]. Figure 11 demonstrates the effect of a
decreasing reversal time on the variance.

(46)

Thus even if the variance does not relax in a period t
(t;<7), the growth of the variance relaxes if we keep on
reversing the flow each time t has increased witfThe net
cyclic dispersion coefficient [y, for N, — o follows by in-
tegration of Eq(46) over a cycle(t [0,t,]) and division of

the result by(2t,), X. SEPARATION OF SCALES
A. Multiple scale treatment
t
Devee™ ij' 50§,x,|im&.t ) For multiscale velocity fields, the fourth-order model is
Ve ot )y ot T approximate. To improve its accuracy, there are two ways to

account for the changing interaction of the scales present in
{1_27-n(etr”n— 1)} 47 the full problem over time. We can optimize the effective
t(evm+1) |’ relaxation time or apply scale separation. We discuss their
relative merit as a function of scale distribution and the ob-
Figure 10 shows the normalized modal cyclic dispersiorservation time. To demonstrate this, consider a bimodal ve-
coefficient [term between square brackets in E47)]. It locity field v(y),
increases monotonously from O for the limit ¢f £, to zero
towards_l for the Iimit_ of t/ 7, to infinit_y_. The corresponding u(y) = vy, cos< My) +o, cos( My)_ (49)
expression of the variance for repetitive flow reversal reads 1 d 2 d

1 o0
=Dmo* 52 UﬁTn

n=1
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We define a dimensionless observation time gst/ r, £
. . [}
and the closely related modal observation time of mode n as 2
thons=t/ 7,=n’t/ 7. In this section, we restrict ourselves to g 08¢
uniform initial particle distributions. S
— 0.6.
5
8
B. Effective relaxation time E 0.4"
Let both modes in Eq(49) describe a significant relax- %
. ; e = 02t
ation with respect to the observation time. Take, for example, ‘é’
modes p=1 with 7, =1500 d and p=5 with ~,/7,=25 and E ‘ ‘
t=50. Figure 12 shows that the variance by the fourth-order 107" 10°  tmets 10° 10°
model matches the exact variance, using the relaxation time o
as fit paramete(r;=130. In contrast, the standard defini-  FIG. 10. The normalized modal cyclic dispersion coefficient

tion (28) overestimates the relaxation tinfe;;=780 and [the term between square brackets in E{J)] as a function of the
erroneously predicts the variance. To provide an impraved dimensionless reversal tinig/ ).
priori estimate of the relaxation time, consider the evolution
equation for the approximate varian@5) for uniform con- 1
ditions (Uy=Vo). Replacing the approximate varianee,,,) Diicro= Dmol + EUﬁZTza (53
by the exact variance for unidirectional floﬁnréx) (15) and
rearranging terms gives the evolution of the effective relaxand only describe the relaxation of the larger scale. This
ation as a function of time, reduces the velocity variance to the contribution by the scale
undergoing relaxation,
9050m®) _ ) .
o ~ “Pmol En:lvﬁq-n(l —eUm) > _1,
Terd(t) = = : Ty rel = 5Un, L

Pl (t

27075 - ——220C ) E::lvﬁ(l -et'm)
v

(54)

and changes the variance of the approximate model to
(50) -t/
. . . . . L. ng,x,rel = 2D microt + UﬁlTl(Tl[e tn — 1]+1). (55
This relaxation time matchegq (28) in the Fickian limit . ' _ _ o
and equals the harmonic, modal velocity weighted average of With this scale separation, we obtain an excellent fit with

the modal relaxation times for short times, the exact variancérig. 13.
If we put a scalgsay n in a small-scale dispersion coef-
Em 2 ficient and neglect its relaxation, tielative) error we make
. _ n=1Yn in the contribution of this scale to the exact variaritb) is
||m Teff(t) - . 2 . (51) bounded
t|0 En:lvn/q'n '
2 —t/ 7 _ _.2 22
This explains whyr, (28) overestimates the relaxation Error = vpTa(t + (€7~ 1]) — vyt Unn
time for short times. Let us now defing,q as the average of vﬁrnt vﬁrnt
Tetf(t) over the time domaifityi,, tnad Of interest, , 1
== : (56)
1 tmax t tn,obs
Tavg = J Teff(t)dt. (52)
tmax ™ tmin tmin . .

Using this relaxation timer,,q in the approximate model
yields a very good fit with the exact variance Fig. 12.

C. Separation of scales

Next we study a two-scale probleta.g., n=1, n,=100
and consider observation times in between the two modal
relaxation times. Figure 13 shows that the standard relax-
ation time, EQ.(28), overestimates the variance. Equation
(28) describes an averaged relaxation of both scales, while 0
only the larger scale still undergoes a relaxation for the time
scale considered here. With scale separation, we put the F|G. 11. Effect of the dimensionless reversal tithé ;) on the
small relaxed scalé,) together with the molecular diffusion development of the variandeormalized at the variance for unidi-
in a microscale dispersion coefficief®0], rectional flow.

normalized variance

2 3 . 4
observation time t/T1
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6007

o Exact 1 600f
. T,=130
5001 T,,=780 |] 500/ o Exact
T =127 Ty
4007 4007 —— Scale separation

variance [mz]
w
o
o

n
o
. 2
variance [m°]
w
S
(=]

200}
esan®®
100} ] 100}
0 10 20 30 40 50 TS 20 30 40 50
time [days]

time [days]

FIG. 12. Comparison of the exact variance with the variance by FIG. 13. Comparison of the exact variance with the variance by
the fourth-other upscaled model for a bimodal velocity fied8) our upscaled model for a bimodal velocity figkb), with n;=1 and
with n;=1 and B=5. In the fourth-order model, the relaxation time n,=100. Forrgq (28), the relaxation of both scales is described in
is used as fit parametéry;;) or is defined agyq (28) and 7,4 (52), an averaged sense. Scale separation puts the smallel(isgale a
respectively. microscale dispersion coefficie(&3).

This relative error decreases for increasing observation
time. We now postulate a separation criterion based on this - . .
single scale analysis. Scalg) is added to the microscale _In an empirical z_appro_ach, we combme_ the gffgctlve relax-
dispersion coefficient in the approximation and its relaxationat'ohn tlfme f_ormuflatlog with ﬁ cale sebparatlo_n. F'_Ite'(t‘t’gs’ n)
ignored if the relative error boun®6) drops below a certain IS the fraction of mode n that "i‘t 0 servatlon tmags_ put
error values into the relaxation part, ard -’ (tops; N)] is the fraction put
into the microscale dispersion coeffici€ilt o). We define

D. General approach

™ 17 11 — * :
n *2*1 o sSge-enN= VS/tobs- (57) @ (tODS’ n) as
t NPt NPty
+ .
We define the observation time-dependent separation 1, N < N'nseftops )]

scalengeftons €) as the real-valueth) for which the equality @ (topsN) = Nsep= [N"(Nsep = 11, n=N'Tnseftons &)]
in Eq. (57) holds, 0, N> N*[Ngeftops €)]

nse;{tobs; &)= \Egltobs- (59

(58)

0.8 0.8 0.8
- 5-Lay

{©)
10-Lay

—_
[0
~
—
(=)
=

0.6

o
(7]

C1,C10
C1..C10
—— Parabolic

oxeo

0.6

0.6

10 107 e 10 10° 10 les 10 10 10° 't

FIG. 14. ErrorA((66) for the velocity fields of Table | as a function of the observation titagd No scale separation; optimization of
7only. (b,e Scale separation witlie{58) and 7,,464). (c,f) Scale separation withs58) and 7{28). The errors(a,b,9 are for unidirec-

tional flow. The errorgd,e,) for flow including reversal of direction. The and evalues were found by trial and error. The resultgbpand
(c) are obtained foe=6.2 anda=0.5
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Here the observation-time-dependent scale separator In the upscaled approximation including scale separation,
Nsedtons €) is defined according to E¢58) and the function  the microscale dispersion coefficient consists of the molecu-
N* is the first integer larger thangg [N*(x)=min,_n{n lar diffusion and the fractions of the scales that are relaxed,
> x}]. Filter o’ (typs; n) (59) is defined such that the contribu-
tion of each mode to the relaxation part smoothly vanishes in
time, in descending mode order. At a specific point in time, Dimicro= Dol + 24 [1 = 0(tops M 05T (62
only a single scalgmode n=N(ns.y] is partitioned over the n=1
relaxation part and R In the limit of the observation time The relaxation part of the velocity Varian¢62,rel) de-

v

to infinity, the separator scalesdy (58) becomes zero and scribes the fraction of those velocity modes which undergo
according to Eq(59) all scales are described by an effective relaxation,

dispersion coefficient. However, for the accuracy of the ap-

proximation it is always favorable to at least describe the 17

relaxation of a part of the largest scales. We relate this part to 02 101 = = 2, 0(tops MV2. (63)

the (normalized contribution of all modes to the effective ’ 2
dispersion coefficient in the Fickian limit. Let us define
mode n,i(@) as

o

n=1

We compute the relaxation time of this velocity fraction
analogously to Eq(52),

n
— i 2 "
(@) = i) 1| 2 vich = aert= [ (60) L e Dy oltops MoZ7( 1~ 7)
Tavg = s — B dt. (64)
Given a, all modes up to mode ., will be fully de- At 2 olteps M1 —eV™)

scribed by the relaxation part independent of the magnitude o . ] ) ]
of the observation time. With this modification, the fraction  With these definitions, the microscale dispersion coeffi-

of scale nw(ty,s N that is put in the relaxation part finally Cient Dicro (62) replaces the molecular diffusion coefficient
reads Do in Eg. (2). In Eq. (22), the relaxation part of the vari-

anceo*irel (63) is substituted for the total velocity variance
wtyeon) = 1, N< Npyn(@) 61) of and 7,,4 (64) replaces the relaxation time The corre-
obs o (topsN), N> Nin(@) sponding time derivative of the variance reads

2 —t/
Dmicrot O'U,reﬂ'aug(l —e Tag), t=<t,

65
Drnicro* 0% relTag(1 —[26" 709 — 1] V7o), t>1,. €9

&ta'azlp,x,rel(t) =2X {

E. Optimization and evaluation F. Test fields

The upscaled model with scale separation may be inter- We test the upscaled model for a parabolic velocity field,

preted as a function of two independent variables, the sepdW© cosine velocity fields, and two layered velocity fields.
ration scale(N) and the relaxation timé7). We want to The latter two consist of equally sized layers of different
quantify the accuracy of the model with respect to the peVelocities, as shown in Table I. We consider flow with and
havior of the variance in time. The error meastiggNgep 7 without flow reversal. For each field, we vary the observation
. sep . . 3 -
computes the relative error in the time derivative of the vari—tlme lovsin the rangetops < [10°%, 10, For eachds, we com
ance that is made by the approximatig5) on a time do- pute (Nsep, Taug) [EGs.(58) and(64)] and (Nsep, 7sia) [EAS.(58)
main [, tra] @S and(28)]. We evaluate the approximations as functiongf t
i ma by comparing the errofA,) evaluated on the time range
[tmin: tmax] =[0, 2] 71tops

tmax

(6102 (1) = dopx(t;N, 7 2dit

A q(N ) tmin (66) G. Results
IT = - .
s tmax 2 ) Figures 14b) and 14e) show that the scale separatQgn
. [docx(t) = 2D ol dt (58) combined with relaxation timer,,q (64) gives small
min errors. Moreover, the results are almost indistinguishable

from those obtained by independently optimizing n and
Here 9t0‘§p,x is the time derivative of the variance by the with respect toA¢(N, 7). On the contrary, the same scale
approximation65) and&toﬁX the exact variance time deriva- separator combined with the standard relaxation tigg
tive (15). (28) gives errors that are much lardéfigs. 14c) and 14f)].
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TABLE |. Description of the velocity fields (y) under consideratiofd is the height of the field(in 107 m/d).

Parabolic cos 1+cos 10 3 cog1---10 5 layer 10 layer
15[1—(2y/d -1?] codnwy/d) 10 layer velocities layer velocities
+cod 10my/d) = codnr/dy v=[1,3,9,1,§ v=[3,2,12,7,13,1,8,5,4,13
n=1

As mentioned, Eq(28) overestimates the relaxation time by APPENDIX A: EXACT SPATIAL MOMENTS OF THE 2D
overemphasizing the relaxation times of large scales for short CONVECTION DIFFUSION EQUATION

times. In case we do not apply scale separation, the errors are
large [Figs. 14a) and 14d)]. For unidirectional flow, the
relaxation time has a bigger impact than scale separation. For Unidirectional flow

flow including reversal, the largest errors are made if we do The evolution expression of the non-normalized first mo-
not separate scal¢fkig. 14(d)]. ment of mode n, Eq(9), for k=1, reads

1. Mean position of higher concentration modes

[ 1, ‘9}5 L o+ 0y IM
7 — x1= FLeUp T U2 )
XI. DISCUSSION "ooat] Tt 2 e

Hassanizadehl9] and Tompson and GrgR0] each de- 12
rived a macroscopic multidimensional non-Fickian disper- +u, Mg+ = 2 [vm+n+v‘wn‘]|v|c . (A1)
sion model. Hassanizadé¢h9] derived his equation by ex- m=1#n "

ploring the mass and momentum balances for a solute and
solvent at the macroscale. Tompson and Gr2§| applied
the method of volume averaging on the convection diffusio
equation. Although the model of Camachigs. (8) and i
(39)] is derived from upscaling to the megascopic scale to £cn,x,1(t)- one obtains
1D representation, it has the same functional form. The — Minity, ot — ot
equivalence of these models suggests that dispersion at thgcn""l(t) =Me, Xoe "+ oMo7n[1 ~€ 7]
macroscale might be interpreted as multidimensional Taylor
dispersion. In Verlaaf21] and Berentsehl8] it is shown

We replace Mn(t) and I\/Lm(t) with Eq. (11) on the RHS of
nEd. (Al) and solve the result for the initial condition,
Ecn,x,l(o):XOM":t- since all tracer is released at xgX-or

o0
T Tm Umin T U -
+ 2 nTm Ym+n \m—ﬂ\Mlcnlt[e—t/rm_e—t/Tn]
m

that the fourth-order model is able to explain the scale de- m=1#n Tm ™ Tn 2
pendency of the dispersivity observed in echo experiments v N
measured by Rigordt al.[10]. Moreover, they showed that + [v0+ ﬁ} MIMte U, (A2)
in a qualitative sense the fourth-order model is able to repro- 2 !
duce the dependency of the effective dispersion coefficient Elow reversal
on the Péclet numbesee Beaf22]). The evolution expression &, ,(t) for flow after rever-
sal is equal to Eq.AL) with the signs of the modal velocities
XII. CONCLUSIONS changed,
The fourth-order approximation as proposed by Camacho |:T;l + %} ng]’fx’l =- %[Zvo +v2nMc (D) —v,Mo
provides acceptable results only in the case of single scale
problems and uniform initial conditions. We characterized 17
the scale interaction by analyzing the moments derived -= > [Vmen * Vjmen ]M¢_(D).
through spectral analysis. The analysis allowed us to formu- 2met#n "
late an upscaled model with effective parameters that can be (A3)

calculateda priori from the velocity distribution. Separation ) ) )

of scales in combination with a new definition of the effec-  The solution to Eq(A3) is found by replacing M(t) and

tive relaxation time allowed us to extend the model to obtairM¢, With Eq. (11) and using continuity of E; at the mo-

good results also for multiscale problems. In addition, wement of reversaIE'Ci‘fxvl(tr):Ecn,xyl(tr), and yields

studied the effects of periodic flow reversal. Periodic flow {
Vo

reversal results in relaxation of the moments to periodic be- Er () =- + %} ML”“(t - 2t)etm+ Micnitxoe—t/rn
v n

havior in the same relaxation time as for the unidirectional " 2 n

f!ow, even if the. reve_rsal ti_me is sma_ller t_han the relaxation — v Mor 1 - 267 W/m 4 g U]

time. The effective dispersion coefficient is a monotonously

increasing function of the dimgnsionlgss cycle titge 7). It ~ § ToToy Umint U\”*“\Minit o (e
asymptotically converges for increasing# towards the ef- - 2 Cm (e

fective dispersion coefficient in the absence of any flow re- mElEn fm o

versal. — [2elm= )/ Tmalty — 1]@7Vn) (A4)
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2. Variance of average concentration 1. Mean particle position

Unidirectional flow The evolution expression for the mean position of the
The evolution equation for the second moment belongingverage concentration yields

to cy(x,t) reads[Eq. (8) for k=2]
Puck , ek _

% — " -vp. B2
Meoxe_op 42 S g (A5) a a0 e
= It 2ot x t X1 " . .
ot " S Mg Initially all particles are released ag.Xf the particles are

g, o2 = 2 . _ initially distributed nonuniformly over the height, the initial
Using, o¢,=Mc,x2™ Ko, x the evolution equation for the paricle velocity of the particles is,uwhich may be different

centered seconariance yields from vy,
d0* Ithe,, - Ipre
& = 2D+ {Zvo-Z ]u D+ SR (). 1ex(0) = x0,—(0) = Uo. (B3)
dt o n=1 Mo " 7
(AB) The solution of Eq(B2) subject to result is given by Eq.
(24).

We substitute the known expressions for , (13) and
E., x1 (A2) on the right-hand side and find expressi@f) as

the solution to the initial conditiow?,(0)=0.
Flow reversal The evolution expression for the second normalized mo-

The evolution expression for the variance for flow afterment reads
reversal is equivalent to E¢A6) with the signs of the ve-

2. Spatial variance in the particle distribution

ap ap ap
locity changed, lazMZ,x,Z L Mexo 2(2004_/3)7%(
at at ot
do? It a 2
Toxrev _ 2D+ | - 202 CoX #Eil,)x(t) + 20ouel + 2 Dmoi+ 057 = (v + Blug].
ot ot (B4)
-3 Onpren () (A7) Using 02%?=M2 ,—(u29)? and the expressions fqu2",

G given in Eq.(24), the following evolution equation for the

. . ) _ ~_variance is obtained:
The solution(39) to this ODE is obtained by substituting

n=1 MO

Eq. (36) for u'® and Eq.(A4) for EX%, ; and using the con- Fob?  9oih? ) Ly
L o s T+ —"=2(Dp t+ +27B(Ug—vo)e "
tinuity of the variance at the moment of reversaf, ., (t,) a2 a (Brnoi+ 7,7) + 27(U = vo)

:oﬁyx(tr). For a more detailed derivation, sEgE8]. 27U - vg) 2", (B5)
Initially, the variance is zero while the initial increase of

APPENDIX B: SPATIAL MOMENTS OF THE FOURTH- . ) . .
the variance is by molecular diffusion only,

ORDER UPSCALED EQUATION

ap,2
Multiplication of the fourth-order equatiof®3) with xX, 0?P2(0) =0, ﬂ,x_(o) = 2D, (B6)
integrating the result over the x domain, gives the following ox at °

general evolution equation for tik#h moment of the concen- The solution of Eq(B5) with respect to Eq(B6) is given

tration: by Eq. (26).
PM | M a IMZ
X, XK p cxk-1 2
™ g kvoMck-1+ k(200 + ) a (K APPENDIX C: PERIODIC FLOW REVERSAL
= K)[Dpmor+ 027 (o + BuorIM The Qiﬁerential equatio(in a moving frame of r_eferen¢e _
2P for the first moment of a higher-order concentration mode in
J _
+2(k2 = KDy cx k-2 the (N,)th reversal cycle reads
J 1 N
—+ = |E_xa() = (= DM M. (Cy
A

2
- (H (k- i)) Dol B+ 200) TMES (3
i=0 The first momen(Ecn,X,l) is initially zero and continuous
each time the flow is reversed. Consequently, the solution to

3
- (H (k- i))DfnmrMﬁf)’('k_‘l. (B1)  Eg.(CJ) is given by
i=0

Nr
The moments of the Telegraph equation are obtained by E. i) =- 2M0Un7'n2 (- 1)k(e—(t—ktr)/fn_ 1)_ (C2)
taking D, equal to zero in Eq(B1). m k=0
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The time derivative of the variance is, similar to E45),

directly related to the first moment of the higher-order con-

centration modes and reads

o

E (- 1)ern

n=1

Substituting Eq(C2) into Eq. (C3) yields

E

ao—gx Co X1
ot (t) = 2Dmol - (t) (C3)
0

M

PHYSICAL REVIEW H1, 046308(2005

o N
50_2 r
— TNt = 2Dg = 22 v | 2 (- )N
at n=1 k=0

% [e—[f+(Nr—k)tr]Tn - 1]] . (C4

Evaluation of the sum gives expressi@b) in Sec. IX A.
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