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Effects of temporal density variation and spherical convergence on the nonlinear bubble evolution of single-
mode, classical Rayleigh-Taylor instability are studied using an analytical model based on Layzer’s theory
fAstrophys. J.122, 1 s1955dg. When the temporal density variation is included, the bubble amplitude in planar
geometry is shown to asymptote toetULst8drst8ddt8 /rstd, whereUL=Îg/ sCgkd is the Layzer bubble velocity,
r is the fluid density, andCg=3 andCg=1 for the two- and three-dimensional geometries, respectively. The

asymptotic bubble amplitude in a converging spherical shell is predicted to evolve ash, h̄m−uṙ0u/,UL
sp−h̄/r0,

wherer0 is the outer shell radius,h̄std=etUL
spst8drst8dr0

2st8ddt8 /rstdr0
2std, UL

sp=Î−r̈0stdr0std /,, mstd=rstdr0
3std,

and, is the mode number.
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I. INTRODUCTION

The Rayleigh-TaylorsRTd instability develops in a large
variety of physical systems, including an imploding shell in
the inertial confinement fusion experimentsf1g and a super-
novae explosion in astrophysicsf2g. The RT instability oc-
curs at the interface between two fluids subject to an accel-
eration field pointing from the heavier to the lighter fluidf3g.
Analytical modeling of such an instability, as well as many
other physical phenomena, is based mainly on perturbation
methods. In such methods both the equations describing the
physical laws and unknown physical quantities are expanded
in series of a small parameter. This allows obtaining an ap-
proximate solution to otherwise mathematically intractable
problems. When the amplitude of the interface distortionh
between fluids is much smaller than the perturbation wave-
lengthl slinear perturbation analysisd, the small parameter of
the perturbation method iskh, wherek=2p /l is the wave
number. The hydrodynamic equations in this case can be
linearized, yielding an exponential in time perturbation
growth f3g. When the distortions are amplified by the RT
instability to amplitudes comparable to the wavelength, the
perturbation series based onkh expansion becomes divergent
and the expansion breaks down. At such amplitudes a differ-
ent expansion parameter is needed. It was first proposed in
Ref. f4g to use a spatial variable along the fluid interface as a
small parameter. The perturbation series in this case give an
approximate analytic solution to the nonlinear problem. Such
a solution, however, is valid only locally at the tip of the
bubble of the lighter fluid raising into the heavier fluid. Layz-
er’s model, despite its simplicity, has been shown to work
remarkably well to describe the nonlinear bubble evolution
in the classical RT instabilityf5–9g. The model has been
extended recentlyf9g to arbitrary Atwood numbersAT=srh

−rld / srh+rld, whererh and rl are the densities of heavier
and lighter fluids, respectively. The convergence effects have
been included in Ref.f10g for cylindrical geometry and in
Ref. f11g for spherical geometry in the case of self-similar
flow. Besides Layzer’s theory, other models has been suc-

cessfully used to study the nonlinear RT evolutionssee, for
example, Refs.f12,13gd. In this paper we present a general
scaling of the bubble evolution with the flow parameters in
planar and spherical geometries for arbitrary temporal den-
sity variations and shell trajectories.

The paper is organized as follows: The effects of the tem-
poral density variation on the bubble evolution in the planar
geometry are discussed in Sec. II. Section III describes the
model to predict the nonlinear perturbation evolution in the
spherical geometry.

II. PLANAR GEOMETRY: TIME-DEPENDENT DENSITY

We consider a fluid with time-dependent uniform density
rstd supported in a gravitational fieldgstd by a lighter fluid
with density rl !r. The effects of the finite density of the
lighter fluid will be neglected in the analysissAT=1d. The
gravity is pointing in the negativez direction. The heavier
fluid occupies the upper half of the space withz.0. We
choose the unperturbed fluid interface to lie in thesx,yd
plane. The regions of the distorted interface where the lighter
fluid rises into the heavier fluid are referred to as bubbles;
where the heavier fluid protrudes into the lighter fluid are
referred to as spikes. The standard Layzer’s approachf4g
deals with the flow at the tip of the bubbles where the vortex
motion developed at large perturbation amplitudes has a
small effect. Next, introducing a velocity potentialv= =F,
the mass conservation equation is reduced to Poisson’s equa-
tion:

=2F = ]x
2F + ]y

2F + ]z
2F = −

ṙ

r
. s1d

The right-hand side of Eq.s1d, neglected in the original
Layzer’s work f4g, is due to the temporal variation in the
fluid density. Such a term, however, was retained previously
in the analysis of the linear perturbation evolutionf14,15g. In
the unperturbed case Eq.s1d yields the velocity field with the
uniform spatial gradientvz=−zṙ /r. One must keep in mind
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that Layzer’s model deals with the flow in the proximity of
the fluid interface; therefore, the actual flow is not required
to have a uniform velocity gradient throughout the whole
region. When the fluid interface is distorted, the perturba-
tions start to grow due to the RT instability. To find the
perturbation evolution, the fluid equations and hydrodynamic
functions are expanded in powers ofx̄ near the tip of the
bubbleswe assume that the center of the bubble is localized
at x̄=0d. Here, x̄=x in two-dimensional perturbed flow and
x̄=r =Îx2+y2 in three-dimensional flow. The expansion of
the position of the distorted interfacehsx̄,td gives hsx̄,td
=h0std+h2stdx̄ 2+¯, whereh0.0 is the bubble amplitude,
andh2 is related to the bubble curvatureR ash2=−1/s2Rd.
Solution of Eq.s1d expanded up tox̄2 takes the form

F =
astd
k
S1 − c̃g

k2x̄2

4
De−ksz−h0d −

ṙ

2r
z2, s2d

wherek is the perturbation wave number andc̃g=2 and c̃g
=1 for two- and three-dimensional geometries, respectively.
Note that the standard Layzer’s model keeps only terms up to
x̄2 in the expansion of hydrodynamic functions. It is suffi-
cient, therefore, to retain only the fundamental harmonic in
solution s2d to satisfy such accuracy. For higher-accuracy
models, the higher harmonics must be included in the veloc-
ity potential f9g. The potentialF is subject to the following
jump conditions at the interfacez=hsx̄,td:

]th + vx̄]x̄h = vz, s3d

]tF +
v2

2
+ gh = fstd. s4d

Equations3d is due to the mass conservation and the incom-
pressibility condition, and Eq.s4d is Bernoulli’s equation.
Here, fstd is an undetermined function of time andv2=vx̄

2

+vz
2 is the total fluid velocity. Substituting Eq.s2d into

boundary conditionss3d and s4d and expanding the latter in
powers ofx̄ yields

d

dt
srh2d = −

d

dt
srh0d

c̃gk

4
Sk + 4

c̃g + 1

c̃g

h2D , s5d

d

dt
F1

r

d

dt
srh0dG +

c̃gk

2r2F d

dt
srh0dG2

+
4

kc̃g

sg + ḧ0dh2 = 0.

s6d

In the limit of small perturbation amplitude whenkh0!1,
the nonlinear terms are negligibleslinear regimed and Eqs.
s5d and s6d reduce to a well-known limitf14,15g h2

lin

=−c̃gk
2h0

lin /4 and

d

dt
F1

r

d

dt
srh0

lindG − g2h0
lin = 0, s7d

where gstd=Îkgstd is the growth rate and the superscript
“lin” denotes perturbed quantities in the linear regime. An
approximate solution of Eq.s7d can be found in the limit
ṙ /r!g using the Wentzel-Kramers-BrillouinsWKBd
method f16g. According to such a method, the solution is

sought in the form h0
lin =eSstd/e, where e

,maxfsgtrd−1,sgtgd−1g!1 is a small parameter andtr

= ur / ṙu andtg= ug / ġu are characteristic time scales of the den-
sity and growth-rate variation. Then, up to the first order ine,
Eq. s7d has the solution

Ṡstd
e

= ± g −
1

2
S ṙ

r
+

ġ

g
D . s8d

Using Eq.s8d, the physical optics approximation ofh0 be-
comes

h0
lin =Îrs0dgs0d

rstdgstd Fc1 expSE
0

t

gst8ddt8D
+ c2 expS−E

0

t

gst8ddt8DG , s9d

where integration constantsc1 and c2 depend on the initial
amplitudeh0s0d and the initial bubble velocityḣ0s0d:

c1 =
h0s0d

2
F1 +

1

2g
S ṙ

r
+

ġ

g
DG

t=0
+

ḣ0s0d
2gs0d

,

c2 =
h0s0d

2
F1 −

1

2g
S ṙ

r
+

ġ

g
DG

t=0
−

ḣ0s0d
2gs0d

.

When the perturbation amplitude becomes large enough,
kh0.1, the bubble growth slows down from the exponential
fEq. s9dg to a power-law dependence. At such amplitudes, the
nonlinear terms cannot be neglectedsnonlinear regimed, and
Eqs. s5d and s6d can be solved in the limituṙu /r!Îkg and
uḣ0/h0u@ṙ /r. The leading-order solution of Eq.s5d becomes
h2

nl=−c̃gk/4s1+c̃gd, where the superscript “nl” denotes the
perturbations in the nonlinear regime. Substitutingh2

nl into
Eq. s6d gives

−
2

c̃g + 1
ȧ + ka2 −

2

c̃gs1 + c̃gd
S ṙ

r
a + gD = −

2rh0

c̃gs1 + c̃gd
d

dt
S ṙ

r2D .

s10d

whereastd=−dtsrh0d /r is the amplitude of the velocity po-
tential defined in Eq.s2d. The perturbation growth in the
nonlinear regime changes from the exponential to a power
law; therefore,ka2@ ȧ and the first term in Eq.s10d can be
neglected. Then, keeping the terms up to ordertr

−1 in Eq. s10d
yields

dsrh0
nld

dt
= −

ṙ

2kCg
+

rgstd
ÎCgk

, s11d

whereCg= c̃gs1+c̃gd /2. Integrating Eq.s11d leads to

h0
nlstd =

1
ÎCgkrstd

E
ts

t

rst8dgst8ddt8 + hS
rs

rstd
+

rs/rstd − 1

2Cgk
,

s12d

wherets is the saturation time,rs=rstsd, andhS=h0stsd is the
bubble amplitude at the saturation timessaturation ampli-
tuded. Following Ref. f4g, the saturation amplitude can be
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estimated by equating the bubble velocitiesḣ0 calculated in
the linear and nonlinear regimes using Eqs.s9d and s11d,
respectively. The result takes the form

hS=
1

ÎCgk
H1 +

1

2g
F ġ

g
−

ṙ

r
S1 +

1
ÎCg

DGJ
t=ts

. s13d

Thus, to the lowest order,hS=1/ÎCgk and Eq.s12d becomes

h0
nlstd = hS

rs

rstdFEts

t rst8d
rs

gst8ddt8 + 1 +
1

2ÎCg

S1 −
rstd
rs

DG
=

1

rstdEts

t

rst8dULst8ddt8

+ hSF rs

rstd
+

1

2ÎCg

S rs

rstd
− 1DG , s14d

where

ULstd =Îgstd
Cgk

s15d

is the Layzer velocity. It is convenient in many applications
to express the nonlinear bubble evolution in terms of the
linear perturbation growthf17g. For the large linear growth
factorsfh0@h0s0dg, Eq. s9d can be rewritten as

h0
linstd . hSÎ rsgstsd

rstdgstd
expSE

ts

t

gst8ddtD . s16d

Taking the logarithm of both sides in the last equation yields

E
ts

t

gst8ddt8 = ln
h0

linstd
hS

+
1

2
ln

rstdgstd
rsgstsd

. s17d

The second term on the right-hand side of Eq.s17d is loga-
rithmically small at large times with respect to the first term
and can be neglected without a significant loss in accuracy.
With the help of Eq.s17d, the nonlinear bubble amplitude
s14d can be rewritten in terms of the linear perturbation
growth:

h0
nl . hSFln

h0
linstd
hS

−E
ts

t

lnSh0
linst8d
hS

D ṙst8d
rstd

dt8 +
rs

rstd

+
1

2ÎCg

S rs

rstd
− 1DG . s18d

The saturation timets is easily obtained using Eq.s9d f7g:

E
0

ts

gst8ddt8 −
1

2
lnS gstsdrs

rs0dgs0dD = lnshS/c1d. s19d

The second term on the left-hand side of Eq.s19d has a weak
logarithmic time dependence and can therefore be neglected.
Substitutingc1.h0s0d /2, Eq. s19d reduces to

E
0

ts

gst8ddt8 . ln
2hS

h0s0d
. s20d

Equations20d defines the saturation timets in terms of the
initial amplitudeh0s0d.

Equations11d shows that the temporal density variation
modifies the asymptotic bubble velocityUb:

Ub ; ḣ0 → UL −
ṙ

r
Sh0 +

1

2Cgk
D . s21d

In the case of the decompression flow when the density de-
creases in timeṙ,0, the bubble grows faster and in the case
of compressionsṙ.0d the bubble grows slower than the
classical Layzer velocityUL=Îg/kCg.

Next, to validate the results of the analysis, we compare
the bubble evolution in three-dimensional geometrysc̃g=1d
calculated using the systems5d and s6d and the results of
asymptotic analysisfEqs. s9d and s14dg. The gravitational
field is assumed in the formg=g0/ f1+st / tgdsgg. The fluid
density changes in time assAd rstd=r0f1+Crst / t0dsrg and
sBd rstd=r0s1+Dr cosVtd, wheresg and sr are the power
indexes for acceleration and fluid density, respectively, and
Cr, Dr, t0, andV are the normalization constants. Figure 1
shows a plot of the bubble amplitude calculated for case A
with g0=10l / t0

2, tg= t0, sg=1, sr=2, Cr=0.25 ssolid lined,
Cr=0 sdashed lined, andCr=−0.15 sdotted lined. The initial
conditions areh0s0d=l /200 and ḣ0s0d=l / s200t0d. Thick
lines represent the exact solutions of Eqs.s5d and s6d and
thin lines show the WKB solution fort, ts and the
asymptotic solutions14d after t= ts. Note the larger amplifi-

FIG. 1. The plot of normalized bubble amplitude calculated us-
ing the exact numerical solution of Eqs.s5d ands6d sthick linesd and
analytical solutionss9d and s14d sthin linesd. The solid lines corre-
spond to the fluid compression withCr=0.25, the dashed lines rep-
resent the constant density casesclassical Layzer’s modelf4gd, and
the dotted lines are obtained for the decompression flow withCr

=−0.15.
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cation factor of the bubble amplitude in the decompression
flow. Figure 2 plots the linearsthin linesd and nonlinear
sthick linesd perturbation growth. Observe that the value of
hS calculated using Eq.s13d represents a good approximation
to the saturation amplitude. The bubble evolution in case B is
plotted in Fig. 3 for Dr=0.3 ssolid lined and Dr=−0.3
sdashed lined. The initial conditions for this case areh0
=l /2310−3, ḣ0=Vl /2310−3, and tg=1/V. A good agree-
ment between the exact solution and the asymptotic formulas
validates accuracy of the performed analysis.

We conclude this section by commenting on the effects of
temporal density variation on the asymptotic behavior of the
Richtmyer-MeshkovsRMd instability. Such an instability oc-
curs when a shock passes through a corrugated interface be-
tween two fluids. As opposed to the RT instability, the insta-
bility drive in this case has a finite durationsof the order of
the sound wave propagation across the perturbation wave-
lengthd. Thus, the asymptotic evolution of the bubble ampli-
tude can be found using Eq.s10d with g=0. When the fluid
density does not change with timesṙ=0d, the sum of the first
two terms in Eq.s10d must be zero. This yields a decaying in

time velocity f5,7g ḣ0
RM→UL

RM=2/fsc̃g+1dktg and logarith-
mically growing bubble amplitudeh0

RM, ln t. For a finite
density derivative, one can attempt to generalize Eq.s14d to
RM instability by replacingUL with UL

RM,

h0
RM → 2

ksc̃g + 1drstd
Et rst8d

t8
dt8. s22d

Equations22d is the result of balancing of the first two terms
in Eq. s10d and neglecting its right-hand side. It is easy to
show, however, that, opposed to the RT instability, the right-
hand side of Eq.s10d cannot be considered small in the RM
instability at all times, regardless of the value ofṙ /r. Indeed,
substituting the constant-density solution into Eq.s10d shows
that the first two terms decrease in times,1/t2d, while the
right-hand side has a factor lnt. Thus, even a small density
variation can significantly change the asymptotic behavior of
the bubble velocity in the RM instability. Although Eq.s22d
predicts correctly the trend of the effect, the accuracy of such
a scaling is inadequate. To illustrate a strong dependence on
the density variation, we plot in Fig. 4 the bubble velocity
calculated for densitiesr=r0 sdashed lined and r=r0f1
−est / t0d2g ssolid lined, wheree=5310−4. The velocities are
plotted up to the time when the density difference between
two cases is only 10%. The bubble velocity, however, is
twice as large with the time-dependent density. The approxi-
mate solutions22d, shown by the dotted line, gives only half
of the decompression effect. For a more accurate estimate,
the right-hand side of Eq.s10d must be retained. The solution
in this case, however, cannot be written in a closed analytical
form for an arbitrary density variation.

In the next section we study the bubble growth in spheri-
cal geometry.

III. SPHERICAL GEOMETRY

We consider a spherical shell of uniform densityr with an
outer radiusr0 and inner radiusr1. The fluid density outside
the shell is assumed to be much smaller thanr sAT=1d. The

FIG. 2. The plot of normalized bubble amplitude calculated us-
ing the exact numerical solution of Eqs.s5d and s6d with sthick
linesd and withoutsthin linesd nonlinear terms. The solid and dotted
lines correspond toCr=0.25 and −0.15, respectively. The dashed
line shows the saturation amplitude defined in Eq.s44d.

FIG. 3. The plot of normalized bubble amplitude calculated us-
ing the exact numerical solution of Eqs.s5d ands6d sthick linesd and
analytical solutionss9d and s14d sthin linesd. The solid and dashed
lines correspond toDr=0.3 and −0.3, respectively.

FIG. 4. The asymptotic bubble velocity for RM instability. The
dashed line represents the constant-density solutions,1/td, the
solid line is the result of the exact solution of Eqs.s5d ands6d with
time-dependent densityr=r0f1−5310−4st / t0d2g, and the dotted
line shows scaling defined in Eq.s22d.
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shell interfaces are distorted with a single-mode perturbation
of the mode number,. To simplify the analysis we use a
short-wavelength limit when the perturbation wavelength is
much smaller than the shell thickness,sr0−r1d / r0@1 or ,
@1. The perturbations at the inner and outer surfaces in such
an approximation are decoupled and can be treated sepa-
rately. One must keep in mind, however, that even though
just a single interface is considered, the productrr0

3 is not a
constant. If the outer shell boundary is considered, the points
where the shell interface has the maximum radii correspond
to the perturbation spikes and the points of the minimum
radii correspond to the perturbation bubbles. Following
Layzer’s approach we describe only the bubble evolution. In
addition, similar to the analysis in the previous section, the
effects due to the surface tension and thermal conduction are
neglected.

A bubble is assumed to be symmetric with respect to the
polar anglef. The axis of symmetry is along thez direction.
Solution of Poisson’s equation

=2F =
1

r2

]

]r
Sr2]F

]r
D +

1

r2 sinu

]

]u
Ssinu

]F

]u
D = −

ṙ

r

s23d

can be written in the form

F =
r0

,
FastdS r

r0
D,

+ bstdS r0

r
D,+1GP,scosud −

cstd
r

−
ṙ

r

r2

6
,

s24d

where P, is the Legendre polynomial,u is the azimuthal
angle,astd andbstd are undetermined functions of time, and
function cstd is defined by the unperturbed flow condition
]rFsr0d= ṙ0,

cstd = r0
2Sṙ0 +

r0

3

ṙ

r
D . s25d

Here,ṙ0 is the velocity of the outer shell boundary. Since the
terms up tou2 are retained in the analysis, only the funda-
mental harmonic is kept in Eq.s24d. In what follows we
consider an imploding shell with the unstable outer interface.
Thus, we must requirebstd=0 to satisfy the boundary condi-
tion at sr / r0d,→0. The case of the expanding shellsa=0d
can be treated in a similar fashion and will not be described
in detail in this paper. Solutions24d must satisfy the bound-
ary condition atr =r0+hst ,ud, whereh is the interface dis-
tortion. The first condition is easily derived from the mass
conservation equation

ḣ +
vu

r0 + h
]uh = vr − ṙ0. s26d

Then, assuming a uniform density inside the shell, the mo-
mentum equation is integrated to yield Bernoulli’s equation

−
p

r
= ]tF +

1

2
v2 − fstd, s27d

wherep is the pressure,v2=vr
2+vu

2 is the total velocity, and
fstd is an undetermined function of time. Pressure must be

continuous across the boundary; therefore Eq.s27d reduces
to

]tF + 1
2v2 = f̃std, s28d

where f̃std= fstd−pastd /r and pastd is the drive pressure. To
find the distortion amplitudeh, the boundary conditionss26d
and s28d and the potentials24d are expanded near the tip of
the bubble in series of azimuthal angleu:

hst,ud = h0 + h2u2 + Osu4d, P,scosud = 1 −
,s, + 1d

4
u2

+ Osu4d. s29d

Note thath0,0 at the bubble. The resulting system of dif-
ferential equations takes the form

3
d

dt
srr0

2h2d −
2h2

r0

dsrr0
3d

dt
F1 −S r0

r0 + h0
D3G

= S r0

r0 + h0
D2 d

dt
rfsr0 + h0d3 − r0

3gF 2,

r0 + h0
h2 −

,s, + 1d
4

G ,

s30d

d

dt
H 1

3rsr0 + h0d
d

dt
rfsr0 + h0d3 − r0

3gJS h2

r0 + h0
−

, + 1

4
D

+
1

3rsr0 + h0d2

d

dt
rfsr0 + h0d3 − r0

3gF 1

3rsr0 + h0d2

d

dt
rfsr0

+ h0d3 − r0
3gS s, + 1d2

8
−

h2

r0 + h0
D −

h2

rsr0 + h0d3

d

dt
srr0

3dG
+

h2

sr0 + h0d2Hr0
2r̈0 + fsr0 + h0d3 − r0

3g

3F 2r0
3

9sr0 + h0d3Sdtrr0
3

rr0
3 D2

+
4

9
S ṙ

r
D2

−
r̈

3r
GJ = 0. s31d

Although the systems30d and s31d can be easily integrated
numerically for a given trajectoryr0std and shell densityrstd,
it is difficult to get a physical insight on the convergence
effects from this rather cumbersome system. To obtain a
scaling of the asymptotic nonlinear bubble amplitude with
the flow parameters, the equations can be significantly sim-
plified by assuming that the bubble amplitude is much
smaller than the shell radiusuh0u! r0 sa combination
,uh0u / r0, however, can be arbitrarily large since,@1d.
Simple calculations reduce Eqs.s30d ands31d in this case to

d

dt
srr0

2h2d = −
,s, + 1d

4

d

dt
srr0

2h0dS1 −
8

, + 1

h2

r0
D , s32d

d

dt
Fdtsrr0

2h0d
rr0

G −
, + 1

2
Fdtsrr0

2h0d
rr0

2 G2

−
4h2

, + 1
sr̈0 + ḧ0d

= − s, + 1d
h0

2

r0
2

dtsrr0
2h0d

rr0

dtsrr0
3d

rr0
3 . s33d

The term on the right-hand side of Eq.s33d is retained for the
high-convergence-ratio implosions.
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When,uh0u / r0!1, the nonlinear terms can be neglected,
leading to h2

lin =−h0
lin,s,+1d /4. Equations33d recovers in

this limit the results of Refs.f15,18,19g,

d

dt
S r0

2j0
lin

m
D + ,

r̈0r0

m
j0

lin = 0, s34d

where j0=rstdr0
2stdh0, mstd=rstdr0

3std, and the dot denotes
the time derivative. The new functionj0 can be related to a
very important parameter characterizing the shell stability. In
comparing performances of different implosions with respect
to the shell breakup, it is not the bubble amplitude itself, but
the ratio of the amplitudeh0 to the in-flight shell thicknessD
that must be considered. The parameterY= uh0u /D is referred
to as an instability factor. Multiplying the denominator and
numerator inY by rr0

2 we obtain Y=4puj0u /Msh, where
Msh=4prr0

2D is the shell mass. Thus, divided by the shell
mass,uj0u shows how close the imploding shell is to breaking
up. If uj0u /Msh.s4pd−1, the shell integrity is compromised
by the instability growth.

An approximate solution of Eq.s34d can be found in the
limit ,@1 using the WKB method. Writing the solution as
j0

lin =eS/e se!1 is a small parameterd, Eq. s34d becomes

Ṡ2 + eFS̈+ S2
ṙ0

r0
−

ṁ

m
DṠG + e2,

r̈0

r0
= 0. s35d

To satisfy Eq.s35d we must requiree=1/Î,. Then, expand-
ing S in powers ofe, the solution up to the first order ine
takes the form

S= ±EtÎ−
r̈0st8d
r0st8d

dt8 +
e

2
lnSm

r0
2Î−

r0

r̈0
D . s36d

The WKB solutions36d is valid if the shell accelerationr̈0
does not go to zero during the implosion. With the help of
Eq. s36d, j0

lin becomes

j0
lin =

Îmstdms0d
r0std

ÎGs0d
Gstd FC1 expSE

0

t

Gst8ddt8D
+ C2 expS−E

0

t

Gst8ddt8DG , s37d

where

Gstd =Î− ,
r̈0std
r0std

,

and the integration constantsC1 andC2 depend on the initial
bubble amplitudeh0s0d and bubble velocityḣ0s0d,

C1 =
h0s0d

2
F1 +

1

2Gs0d
S ṁs0d

ms0d
+

Ġs0d
Gs0d

DG +
ḣ0s0d
2Gs0d

,

C2 =
h0s0d

2
F1 −

1

2Gs0d
S ṁs0d

ms0d
+

Ġs0d
Gs0d

DG −
ḣ0s0d
2Gs0d

.

In the limit of ,@1, coefficientsC1 and C2 in the leading
order reduce toC1=C2.h0s0d /2. The perturbations grow
according to Eq.s37d until the nonlinear effects become im-

portant and the bubble growth slows downsnonlinear satu-
rationd. To find the perturbation amplitudehS at which the
transition from linear to the nonlinear growth occurs, we
must first determine the bubble evolution in the nonlinear
regime. Then, equating the linear and nonlinear bubble ve-
locities will define an approximate saturation amplitudef4g.

We begin the nonlinear analysis with Eq.s32d, which can
be rewritten in the limit,@1 as

j̇0S1 − 8e2h2

r0
D = − 4e4 d

dt
srr0

2h2d, s38d

wheree=1/Î,. The left-hand side of Eq.s38d is of the order
of e0j0. The right-hand side is of the order ofe4h2. It can be
shown that to satisfy Eq.s38d we must orderh2

nl / r0,e−2.
Here, the superscript “nl” denotes the functions in the non-
linear regime. To the lowest order ine the latter ordering
gives h2

nl / r0=, /8. Keeping the higher-order terms inh2
nl

yields

h2
nl

r0
=

,

8
+

ṁstd

16j̇0
nl

. s39d

For a decreasingmstd swhich is almost always the case in a
converging shelld, h2 reaches an asymptotic value that is
slightly larger thanr0, /8 skeep in mind that the bubble am-
plitude h0 is negatived. The difference betweenh2/ r0 and
, /8 decays in time in the case of growinguj0u. When the
ratio h0/ r0 cannot be neglected compared to unity, the solu-
tion s39d, according to Eq.s30d, is multiplied by a factor
s1+h0

nl / r0d,

h2
nl

r0
= F,

8
+

ṁstd

16j̇0
nlGS1 −

uh0
nlu

r0
D . s40d

Such a factor further reduces the asymptotic value ofh2
nl at

the large bubble amplitudes. A detailed comparison with the
exact numerical solution of Eqs.s30d and s31d shows, nev-
ertheless, thath2

nl can be replaced byr0, /8 in Eq.s33d with-
out significant loss in accuracy. This yields

,sj̇0
nld2 − j̇0

nlṁF1 + 2,S j0
nl

m
D2G + 2ṁj0

nl ṙ0

r0
+

r̈0

r0
m2

=
m2

r0
2

d

dt

j̇0
nl

rr0
+ j0

nlm
2

r0

d

dt
S ṙ

r2r0
2D . s41d

As in the planar geometry case,ȧstd can be neglected with

respect to,a2std in the nonlinear regime, wherea= j̇0/rr0
2 is

the amplitude in the velocity potential defined in Eq.s24d.
Furthermore, we also drop the second term on the right-hand
side of Eq.s41d. This term is identically zero at a constant
density; ifṁ=0 ssolid sphere implosiond, the term is equal to
−3m2sr̈0/ r0dsh0

nl / r0d, which is smaller by a factorh0
nl / r0

compared to the last term on the left-hand side of Eq.s41d.
Next, solving the second-order algebraic equation forj̇0

nl

yields
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j̇0
nl = ṁF 1

2,
+ S j0

nl

m
D2G

−Îṁ2F 1

2,
+ S j0

nl

m
D2G2

−
2ṁ

,

ṙ0

r0
j0

nl −
r̈0

r0

m2

,
. s42d

As mentioned earlier, the approximate value of the saturation

amplitudehS can be obtained by equatingj̇0 in the linear and
nonlinear regimes. In the linear case, using the WKB solu-

tion s37d, we write j̇0=Î,Ṡstdj0. This gives

j̇0 = j0FGstd +
1

2
S ṁ

m
− 2

ṙ0

r0
−

Ġ

G
DG . s43d

Substituting Eq.s43d into Eq.s42d and neglecting terms with
j0

2 sthe shell convergence ratio is assumed to be not very
large at the time of the bubble saturation, so the terms with
j0

2 are smalld yields the saturation amplitude

uhSu
r0stsd

=
ujSu
ms

=
1

,
F1 +

1

G
S Ġ

2G
+

ṙ0

r0
−

ṁ

m
DG

t=ts

, s44d

where ts is the saturation time,ms=mstsd, hS=h0stsd, and
jS=j0stsd. SinceG,Î,, the bubble saturation amplitude, to
the lowest order in,−1, is uhSu, r0stsd /,. To find the bubble
evolution after the saturation, we solve Eq.s42d in the limit
of ,@1, expanding the solutionj0

nl=j00+j01+¯, where
j00/j01,Î,@1. Keeping the lowest-order terms in Eq.s42d
gives

j00 = −
1

,
E

ts

t

Gst8dmst8ddt8 + c0, s45d

wherec0 is an integration constant. Substitutingj00 back into
Eq. s42d and retaining the terms of the order 1/, yields j01.
Combiningj00 andj01 and using saturation conditionj0stsd
=−ms/, leads to

j0
nl = − mstdIstd +

mstd − 3ms

2,
+E

ts

t

ṁFIst8d2 − Ist8d
ṙ0

r0G
Gdt8,

s46d

where

Istd =
1

,mstdEts

t

Gst8dmst8ddt8 =
1

mstdEts

t

UL
spst8d

mst8d
r0st8d

dt8,

and

UL
sp=Î−

r̈0stdr0std
,

.

Equations46d can be further simplified by taking the integral
by parts,

E
ts

t

ṁFIst8d2 − Ist8d
ṙ0

r0G
Gdt8

= mstdlnFmstd
ms

GSI2 − I
ṙ0

Gr0
D −E

ts

t

ln
mst8d
ms

d

dt8

3Fmst8dSI2 − I
ṙ0

Gr0
DGdt8, s47d

and neglecting the integral on the right-hand side of Eq.s47d.
This gives a relatively simple scaling with,20% error. Sub-
stituting Eq.s47d into Eq. s46d and replacing

1 +S ṙ0

r0G
− IDln

mstd
ms

. Fmstd
ms

G ṙ0/r0G−I

yields

j0
nl . − mstdIstdFmstd

ms
G ṙ0/sr0Gd−I

+
mstd − 3ms

2,

. jSFSmstd
ms

D ṙ0/sr0Gd−IE
ts

t

Gst8d
mst8d
ms

dt8 +
3 − mstd/ms

2 G
= − Smstd

ms
D ṙ0/sr0Gd−IE

ts

t

UL
spst8drst8dr0

2st8ddt8

+ jS
3 − mstd/ms

2
. s48d

To use Eq.s48d one must specify the saturation timets. The
latter can be easily obtained with the help of Eq.s37d. At the
time of bubble saturation, the following equality must be
satisfied:

ms

,
. uC1u

Îmsms0d
r0stsd

ÎGs0d
Gstsd

expSE
0

ts

Gst8ddt8D , s49d

which leads to

E
0

ts

Gst8ddt8 . lnS r0stsd
,uC1u

Î msGstsd
ms0dGs0d

D . s50d

It is sufficient in many cases to keep only the lowest-order
terms in Eq.s50d. This gives

E
0

ts

Gst8ddt8 . lnS r0s0d
,uC1uD . lnS 2r0s0d

,uh0s0duD . s51d

To obtain a more accurate value ofts one must solve Eq.
s50d.

It is interesting to note that the perturbation growth fac-
tors are smaller in a “compact” shell with larger density than
in a decompressed, lower-density shellsh0,1/Îm before
and h0,m−I−uṙ0u/sGr0d after the saturationd. The shell thick-
nessD, however, is inversely proportional tom; therefore the
ratio Y= uh0u /D is larger in the higher-density shellfY,j0
,Îmstd in the linear regime andY,mstd in the nonlinear
regimeg. Thus, for the two shells with the same trajectory, the
thinner shell is more unstable.

As a next step we express the nonlinear bubble evolution
in terms of the linear perturbation growth. The linear growth
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can be calculated, for example, using the stability postpro-
cessor described in Ref.f15g. When the perturbation ampli-
tude is much larger than the initial amplitudeh0s0d, Eq. s37d
can be rewritten as

h0
lin . hSÎ msGstsd

mstdGstd
eCstd, Cstd =E

ts

t

Gst8ddt8, s52d

wherehS.−r0stsd /, is the saturation amplitude. Then,

Cstd = ln
h0

lin

hS
+

1

2
lnSGstdmstd

Gstsdms
D . s53d

The linear RT growth is exponential; thus, assuming thatGstd
andmstd grow slower thanh0

lin, the second logarithm on the
right-hand side of Eq.s53d can be neglected. FunctionIstd in
Eq. s48d can be rewritten in terms of the functionCstd:

,Istd = Cstd −
1

mstdEts

t

Cst8dṁst8ddt8.

With the help of the latter relation and substituting,
.−r0stsd /hS, Eq. s48d becomes

h0
nlstd = hS

r0std
r0stsd

FSln
h0

linstd
hS

−
1

mstdEts

t

ln
h0

linst8d
hS

ṁst8ddt8D
3S ms

mstd
Damstd

+
3

2

ms

mstd
−

1

2G , s54d

where

amstd = −
ṙ0h0

linstd
r0ḣ0

lin +
uhSu

r0stsd
Sln

h0
linstd
hS

−
1

mstdEts

t

ln
h0

linst8d
hS

ṁst8ddt8D .

Equation s54d is especially simple in the case of a solid-
sphere implosion whenm=rr0

3=const,

uh0
nlstdurr0

3=const= hs
r0std
r0stsd

Sln
h0

linstd
hS

+ 1D . s55d

Except for the factorr0std / r0stsd, Eq. s55d reproduces the
asymptotic formula proposed in Ref.f17g.

To validate the accuracy of the derived results, we com-
pare the bubble evolution calculated using the exact system
fEqs.s30d ands31dg with the analytical scalings37d ands48d.
Figure 5sad plots the bubble amplitude for mode numbers,
=100 and,=200. The outer shell radius changes according
to a power lawr0=R0s1−t / t0d1/3, where 0ø t, t0. The den-
sity is inversely proportional to the trajectory,rstd
=r0fR0/ r0stdg. The initial conditions areh0=−2310−4R0/,
and ḣ0=2310−4R0/,t0. The solid lines represent the exact
solution of Eqs.s30d ands31d, and dashed lines are obtained
using Eq.s37d for t, ts and Eq.s48d for t. ts. The saturation
time ts is defined as the time of intersection of the linear
amplitudefEq. s37dg with the saturation amplitudefEq. s44dg.
Figure 5sbd plots the normalized amplitudes withssolid
curvesd and without sdashed curvesd the nonlinear effects.
Observe that the saturation value defined by Eq.s44d repro-
duces very well the bubble amplitude at which the growth
slows down and becomes nonlinear. Figure 6 plots the
bubble evolution for the shell withr0=R0 cosVt s0øVt

FIG. 5. sad The plot of normalized bubble amplitude calculated
using the exact numerical solution of Eqs.s30d ands31d ssolid linesd
and analytical solutionss37d ands48d sdashed linesd. sbd The plot of
the normalized bubble amplitude withssolid linesd and without
sdashed linesd nonlinear terms.

FIG. 6. The bubble amplitude calculated using the exact numeri-
cal solution of Eqs.s30d and s31d sthick linesd and analytical solu-
tions s37d and s48d sthin linesd for r=constssolid linesd, r,1/r0

sdashed linesd, andr,1/r0
2 sdotted linesd.
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,p /2d and mode number,=200. The initial conditions for
the perturbations are the same as in the previous casesV
=1/t0d. The density is assumed to follow a power law of the
radius, rstd=rs0dfR0/ r0stdgsr. The thick lines represent the
exact numerical solution of Eqs.s30d and s31d and the thin
lines are the results of the asymptotic analysis. The solid,
dashed, and dotted lines in Fig. 6 correspond tosr=0, 1, and
2, respectively. Note that the bubble growth factors decrease
with increasing density. Good agreement between the exact
solution and the analytic scaling confirms accuracy of the
asymptotic analysis.

In summary, Layzer’s model to study the nonlinear bubble
evolution in the classical RT instability has been extended to
include the temporal density variation and spherical conver-
gence effects. The bubble amplitude in planar geometry with
the time-dependent densityrstd was shown to asymptote to
etULst8drst8ddt8 /rstd, whereUL=Îg/Cgk and Cg=3 andCg

=1 for two- and three-dimensional geometries, respectively.
The model applied to the spherical geometry predicted the

nonlinear bubble amplitudeh, h̄stdfmstd /msg−uṙ0u/,UL
sp−h̄/r0,

where r0 is the outer shell radius, h̄std
=etUL

spst8drst8dr0
2st8ddt8 /rstdr0

2std, UL
spstd=Î−r̈0stdr0std /,,

mstd=rstdr0
3std, ms=mstsd, ts is the saturation time, and, is

the mode number.
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