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Effects of temporal density variation and convergent geometry on nonlinear bubble evolution
in classical Rayleigh-Taylor instability
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Effects of temporal density variation and spherical convergence on the nonlinear bubble evolution of single-
mode, classical Rayleigh-Taylor instability are studied using an analytical model based on Layzer’s theory
[Astrophys. J.122 1 (1955]. When the temporal density variation is included, the bubble amplitude in planar
geometry is shown to asymptote fiJ, (t')p(t")dt’/ p(t), whereU, =g/ (C4k) is the Layzer bubble velocity,

p is the fluid density, an€,=3 andCgy=1 for the two- and three-dimensional geometries, respectively. The
asymptotic bubble amplitude in a converging spherical shell is predicted to evol z?ﬂn""o‘”“ﬁp‘g”ﬂ,
wherer is the outer shell radiugy(t)= Ut )p(t')r3(t)dt’ / p())ra(t), USP=-o()re(t)/€, m(t)=p®)r3(),
and<{ is the mode number.
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[. INTRODUCTION cessfully used to study the nonlinear RT evolutisee, for
example, Refs[12,13). In this paper we present a general
scaling of the bubble evolution with the flow parameters in
planar and spherical geometries for arbitrary temporal den-
sity variations and shell trajectories.

The paper is organized as follows: The effects of the tem-

L e . _ boral density variation on the bubble evolution in the planar
eration field pointing from the heavier to the lighter fligl. oo, metry are discussed in Sec. II. Section 11l describes the

Analytical modeling of such an instability: as well as many model to predict the nonlinear perturbation evolution in the
other physical phenomena, is based mainly on perturbatlog herical geometry.

methods. In such methods both the equations describing thé)
physical laws and unknown physical quantities are expanded
in series of a small parameter. This allows obtaining an ap-!l. PLANAR GEOMETRY: TIME-DEPENDENT DENSITY

proximate solution to otherwise mathematically intractable We consider a fluid with time-dependent uniform density

roblems. When the amplitude of the interface distortipn : o : . i
Eetween fluids is much s?maller than the perturbation xaveg(t) supported in a gravitational fielg(t) by a lighter fluid

. : . with density p<p. The effects of the finite density of the
the-perurbation method k. whereK2ni fs the wave. 10Nt iid will e neglected in the analysigy=1). The
number. The hydrodynamic equations in this case can b ravity Is pointing in the negative direction. The heavier
linearized, yielding an exponential in time perturbation uid occupies the upper hajf c.’f the space .WK.h’O' Wwe
growth [3]. When the distortions are amplified by the RT choose the ur_lperturbed f!wd mtelrface to lie in “hey?
instability to amplitudes comparable to the wavelength, thé:)la'me.' The.reg|ons of thg dlsto_rted interface where the lighter
perturbation series based kn expansion becomes divergent 11Uid rises into the heavier fluid are referred to as bubbles;
and the expansion breaks down. At such amplitudes a differwhere the heaV|e_r fluid protrudes into the I|9hter fluid are
ent expansion parameter is needed. It was first proposed rﬁferred. to as spikes. Thg standard Layzers apprda¢h
Ref.[4] to use a spatial variable along the fluid interface as éiea!s with the flow at the tip of the bub_bles wher e the vortex
small parameter. The perturbation series in this case give grotion developed at large perturbation amplitudes has a

approximate analytic solution to the nonlinear problem. suctgmall effect. Next, |_ntroducm_g a_veIOC|ty potentM_ﬂtde),
a solution, however, is valid only locally at the tip of the the mass conservation equation is reduced to Poisson’s equa-

bubble of the lighter fluid raising into the heavier fluid. Layz- 4"

er's model, despite its simplicity, has been shown to work -

remarkably well to describe the nonlinear bubble evolution V20 = D + 0 + b =~ P (1)

in the classical RT instabilitf5-9]. The model has been P

extended recently9] to arbitrary Atwood numberéw=(p,  The right-hand side of Eq(1), neglected in the original
-p)/(pn+p), Wherep, and p; are the densities of heavier Layzer’s work[4], is due to the temporal variation in the
and lighter fluids, respectively. The convergence effects havfiuid density. Such a term, however, was retained previously
been included in Ref[10] for cylindrical geometry and in in the analysis of the linear perturbation evolut[d4,15. In

Ref. [11] for spherical geometry in the case of self-similar the unperturbed case E@) yields the velocity field with the
flow. Besides Layzer’s theory, other models has been suainiform spatial gradient,=-zp/p. One must keep in mind

The Rayleigh-TayloRT) instability develops in a large
variety of physical systems, including an imploding shell in
the inertial confinement fusion experimefig and a super-
novae explosion in astrophysi¢2]. The RT instability oc-
curs at the interface between two fluids subject to an acce
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that Layzer’'s model deals with the flow in the proximity of sought in  the form zi"=e3V¢  where €
the fluid interface; therefore, the actual flow is not required~ ma{(ytp)‘l,(yty)‘l]<1 is a small parameter and,

to have a uniform velocity gradient throughout the whole=|p/p| andt,=|y/+| are characteristic time scales of the den-
region. When the fluid interface is distorted, the perturbasity and growth-rate variation. Then, up to the first ordeg,in
tions start to grow due to the RT instability. To find the Eq. (7) has the solution

perturbation evolution, the fluid equations and hydrodynamic .

functions are expanded in powers fnear the tip of the St) 1(p ¥
bubble(we assume that the center of the bubble is localized P A ;+;, :
at x=0). Here,x=x in two-dimensional perturbed flow and _ . o
X=r=\x2+y? in three-dimensional flow. The expansion of Using Eq.(8), the physical optics approximation af, be-
the position of the distorted interface(x,t) gives »(x,t) ~ COMes

(8

= o(t) + 7o()X %+ -, where 5,>0 is the bubble amplitude, _ (0)(0) t
and 7, is related to the bubble curvatuReas 7,=-1/(2R). 7= u{cl exp(f y(t’)dt’)
Solution of Eq.(1) expanded up to? takes the form POANY 0
292 . t
@z?(l—%%)e‘m‘%)—zﬂz{ 2) +Cy exp(—f y(t/)dt'ﬂ, (9
1) 0

wherek is the perturbation wave number alig=2 and€, ~ where integration constanty andc, depend on the initial
=1 for two- and three-dimensional geometries, respectivelyamplitude 7,(0) and the initial bubble velocityy,(0):

Note that the standard Layzer’s model keeps only terms up to . :
X2 in the expansion of hydrodynamic functions. It is suffi- c = 770(0){1 +i<£ n Z)} n 770(0),
cient, therefore, to retain only the fundamental harmonic in 2 2y\p v/ ]izo 270
solution (2) to satisfy such accuracy. For higher-accuracy
models, the higher harmonics must be included in the veloc- 70(0) 1(p v 70(0)
ity potential[9]. The potentiakb is subject to the following G = o 1- Z, l_) + ; B m
jump conditions at the interface= 5(X, t): =0
When the perturbation amplitude becomes large enough,
A1+ Uk = U, (3 ksp>1, the bubble growth slows down from the exponential

[Eqg.(9)] to a power-law dependence. At such amplitudes, the
nonlinear terms cannot be neglect@nlinear regimg and
Egs. (5) and (6) can be solved in the limifp|/p< kg and

|70/ m0|> p/ p. The leading-order solution of E¢p) becomes
Equation(3) is due to the mass conservation and the incom-ng =—T4k/4(1+,), where the superscript “nl” denotes the
pressibility condition, and Eq(4) is Bernoulli's equation.  perturbations in the nonlinear regime. Substituti) into
Here, f(t) is an undetermined function of time amﬂzvé Eq. (6) gives

+v? is the total fluid velocity. Substituting Eq2) into

2
v
a0+ +gn=1(). @

boundaryﬁondition:sS) and (4) and expanding the latter in  _ A+ kel — (—a+ g) __ 2pno ﬂ(ﬁ)
powers ofX yields Ty+1 Ty(1+Cy \p Ty(1+Ty dt\ p?/”
d d Tyk Tyt 1l (10
—(pnz)=——(p7/o)—g—(k+ 4—9~—7/z), (5) _ . .
dt dt 4 Cy wherea(t)=-d,(p7y)/p is the amplitude of the velocity po-

tential defined in Eq(2). The perturbation growth in the
df1d Ck| d 2 4 . B nonlinear regime changes from the exponential to a power
dat ;a(l’ﬂo) to2 d_t(lmo) + kT(g+ 70)72= 0. law; therefore ka?>a and the first term in Eq(10) can be

neglected. Then, keeping the terms up to otgb'm Eq. (10

(6) yields
In the limit of small perturbation amplitude wheay,<<1, d(pr) . A1)
the nonlinear terms are negligib(énear regime and Egs. Pl ___P_, p’_ , 11
(5)_and (6) reduce to a well-known limit[14,15 7o dt 2kCy  Cyk
— = 2, lin
=—Cyk9'/4 and whereC,=Ty(1+T,)/2. Integrating Eq(11) leads to
d [1 d, . t
- -—(pn'é”)} -’y =0, @) oy~ L f Nogsvdy 4 o Ps  PdP® —1
t)=——=——— t)ytHdt' + pg——+————,
dt| pdt 70 (t) kol tsp( )At) 75,0 20K

where y(t):\/@ is the growth rate and the superscript (12)
“lin” denotes perturbed quantities in the linear regime. An

approximate solution of Eq(7) can be found in the limit wheretg is the saturation timens=p(ts), andns= 7(ts) is the
p/lp<vy using the Wentzel-Kramers-Brillouin(WKB)  bubble amplitude at the saturation tinigaturation ampli-
method[16]. According to such a method, the solution is tude. Following Ref.[4], the saturation amplitude can be
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estimated by equating the bubble velocitigscalculated in 3¢ (@ ' ' e
the linear and nonlinear regimes using E¢®. and (1), &
respectively. The result takes the form &
1 1y 1 2 b &
Ns= = {1+2_l2_g(1+'=)” - 19 < -
\“‘Cgk YLY P \“‘Cg t=t, = ‘,."r PP
— " ——’?
Thus, to the lowest orderns=1/VCgk and Eq.(12) becomes 1F ',:-:'fy/
‘/
t ’ <~
t 1 t
H(0) = nst= J My(t')olt'+1+7(1-&)
PO i, ps 2VCy Ps 0 . | |
1 (t 2 T T T
=— f p(t")UL(t")dt ®)
p(t) tg
1 < //
+ ns{& + ¢<& - 1)} , (14) 2 e
pt)  2VCy\p(t) Z 4L 2t
:o /’;;b""
where S 7
Q 4
[9(t)
U (t) = e 15
L(®) Ck (15
is the Layzer velocity. It is convenient in many applications 00'0 0!5 1{0 115 20
to express the nonlinear bubble evolution in terms of the "
linear perturbation growtfil7]. For the large linear growth TCess3 %

factors[ 775> 75(0)], Eq. (9) can be rewritten as
© ) FIG. 1. The plot of normalized bti;)l;Ie an(wp)li;ude calcglated us-
in ey pPsY! ' ing the exact numerical solution of Ed$) and(6) (thick lineg and
0O =715\ exF’( ft ot )dt>' (16) " analytical solution9) and (14 (thin lines. The solid lines corre-
spond to the fluid compression wi@,=0.25, the dashed lines rep-
Taking the logarithm of both sides in the last equation yieldsesent the constant density cdskassical Layzer's modgH]), and
the dotted lines are obtained for the decompression flow @jth

t lin
t 1 1) y(t
J y(t")dt' =In 770—() +—1In pOA )_ (17) =-0.15.
o s 2 psylty
The second term on the right-hand side of Exj) is loga- Equation(11) shows that the temporal density variation

rithmically small at large times with respect to the first term Modifies the asymptotic bubble velocit:
and can be neglected without a significant loss in accuracy. b 1
With the help of Eq.(17), the nonlinear bubble amplitude Up= 79— UL - ‘(7/0+ ﬂ)
(14) can be rewritten in terms of the linear perturbation p g

growth: In the case of the decompression flow when the density de-
lin t incery\ <o creases in timg <0, the bubble grows faster and in the case
7;3': ns{ln ﬂo_('f)_J I (770 L )>w 1y P of compressio?\(p>0) the bubtﬂe grows slower than the
s ¢ s /PO p(t) classical Layzer velocity); =\g/kC,.
1 Ps Next, to validate the results of the analysis, we compare
> E(E - ) (18) the bubble evolution in three-dimensional geomety=1)
Vg P calculated using the syste(®) and (6) and the results of
The saturation timé is easily obtained using E9) [7]: asymptotic analysi$Egs. (9) and (14)]. The gravitational
& 1 (t field is assumed in the forng=go/[1+(t/ty)%]. The fluid
f Ht)dt - = |n(7_5)’35> =In(ndcy).  (19)  density changes in time a#) p(t)=po[1+C,(t/to)*] and
0 2 \p(0)¢0) (B) p(t)=po(1+D, cosQt), wheres, ands, are the power

The second term on the left-hand side of E®) has a weak indexes for acceleration and fluid density, respectively, and

logarithmic time dependence and can therefore be neglected?”’ Dy, to, and{} are the normalization constants. Figure 1
Substitutingc, = 7(0)/2, Eq. (19) reduces to hows a plot of the bubble amplitude calculated for case A

with go=10N/t§, t,=to, §;=1, s,=2, C,=0.25 (solid line),
ts - 27 C,=0 (dashed ling andC,=-0.15(dotted ling. The initial
f Ht)dt’ =1n 70) (200 conditions are,(0)=\/200 and 7,(0)=\/(200t,). Thick
0 0 lines represent the exact solutions of E¢S. and (6) and
Equation(20) defines the saturation timg in terms of the thin lines show the WKB solution fort<ty and the
initial amplitude 74(0). asymptotic solutior(14) aftert=t;. Note the larger amplifi-

(21)

+
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FIG. 2. The plot of normalized bubble amplitude calculated us- _ _ _ o
ing the exact numerical solution of Eq) and (6) with (thick FIG. 4 The asymptotic bubble velocity f_or RM |n_stab|I|ty. The
lines) and without(thin lines nonlinear terms. The solid and dotted dashed line represents the constant-density solutieb/t), the
lines correspond t&€,=0.25 and -0.15, respectively. The dashed ;olld line is the result pf the exact solution of E@S) and(6) with
line shows the saturation amplitude defined in ). time-dependent density=pg[1-5x 107(t/tp)’], and the dotted
line shows scaling defined in E(2).

cation factor of the bubble amplitude in the decompression

flow. Figure 2 plots the lineafthin lines and nonlinear time velocity [5,7] ;7§M_>U[<M:2/[(§ +1)kt] and logarith-
(thick lines perturbation growth. Observe that the value of mically growing bubble amplitudefM~Int. For a finite
ns calculated using Eq13) represents a good approximation density derivative, one can attempt to generalize (E4) to
to the saturation amplitude. The bubble evolution in case B iRM instability by replacingJ, with URM,

plotted in Fig. 3 forD,=0.3 (solid line) and D,=-0.3

(dashed ling The initial conditions for this case are, RM 2 ' p(t')dt, (22)
=\/2X 107, 7=0N/2X 1078, andt,=1/Q. A good agree- o kG +Dp(n)) t

ment between the exact solution and the asymptotic formulas _ ) _ )

validates accuracy of the performed ana|ysis_ Equat|0n(22) is the result of balanCIng of the first two terms

We conclude this section by commenting on the effects of EQ. (10) and neglecting its right-hand side. It is easy to
temporal density variation on the asymptotic behavior of theshow, however, that, opposed to the RT instability, the right-
Richtmyer-Meshko(RM) instability. Such an instability oc- hand side of Eq(10) cannot be considered small in the RM
curs when a shock passes through a corrugated interface b@stability at all times, regardless of the valuepdp. Indeed,
tween two fluids. As opposed to the RT instability, the insta-Substituting the constant-density solution into E) shows
bility drive in this case has a finite duratidof the order of ~ that the first two terms decrease in tirie1/t%), while the
the sound wave propagation across the perturbation wavéight-hand side has a factor inThus, even a small density
length. Thus, the asymptotic evolution of the bubble ampli- variation can significantly change the asymptotic behavior of
tude can be found using E¢LO) with g=0. When the fluid the bubble velocity in the RM instability. Although E(R2)
density does not change with tinge=0), the sum of the first ~predicts correctly the trend of the effect, the accuracy of such
two terms in Eq(10) must be zero. This yields a decaying in & scaling is inadequate. To illustrate a strong dependence on

the density variation, we plot in Fig. 4 the bubble velocity
' ' ' calculated for densitiep=py (dashed ling and p=pg[1
- €(t/tp)?] (solid line), wheree=5x% 10"*. The velocities are
plotted up to the time when the density difference between
two cases is only 10%. The bubble velocity, however, is
twice as large with the time-dependent density. The approxi-
mate solution(22), shown by the dotted line, gives only half
of the decompression effect. For a more accurate estimate,
the right-hand side of Eq10) must be retained. The solution
in this case, however, cannot be written in a closed analytical
form for an arbitrary density variation.

In the next section we study the bubble growth in spheri-
cal geometry.

p(tMy/pOA

TC6885

Ill. SPHERICAL GEOMETRY
FIG. 3. The plot of normalized bubble amplitude calculated us-

ing the exact numerical solution of Ed$) and(6) (thick lines and We consider a spherical shell of uniform dengitwith an
analytical solutiong9) and (14) (thin lines. The solid and dashed outer radiug and inner radius;. The fluid density outside
lines correspond t®,=0.3 and —0.3, respectively. the shell is assumed to be much smaller thai;=1). The
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shell interfaces are distorted with a single-mode perturbatiogontinuous across the boundary; therefore &4) reduces
of the mode numbef. To simplify the analysis we use a to
short-wavelength limit when the perturbation wavelength is 1o~
much smaller than the shell thickneég,—r;)/ro>1 or ¢ G® + 307 =1(1), (28)
> 1. The perturbations at the inner and outer surfaces in such
an approximation are decoupled and can be treated sep
rately. One must keep in mind, however, that even thoug
just a single interface is considered, the prodmrétis not a
constant. If the outer shell boundary is considered, the poin
where the shell interface has the maximum radii correspond €€ +1)
to the perturbation spikes and the points of the minimum 7(t,6) = 70+ 7,6°+ O(¢"), P((coso) = 1‘792
radii correspond to the perturbation bubbles. Following
Layzer's approach we describe only the bubble evolution. In +0(6"). (29
addition, similar to the analysis in the previous section, th
effects due to the surface tension and thermal conduction
neglected.

A bubble is assumed to be symmetric with respect to the_d 2, d(prd) o \°
polar angleg. The axis of symmetry is along thedirection. 35[(”0772) B r_o dt B Fo+ 7
Solution of Poisson’s equation

here f(t) =f(t)—pa(t)/ p and p,(t) is the drive pressure. To
ind the distortion amplitudey, the boundary condition&6)
and(28) and the potentia{24) are expanded near the tip of
tgwe bubble in series of azimuthal angle

Note thatz, <0 at the bubble. The resulting system of dif-
A& rential equations takes the form

2
ro \2d N Y 0 +1)
1d( ,00 1 4 oD : =( >—p[(r+n)—r]{ M- ,
V2®:—2—(r2—>+ > —(sin 0—>:—B ro+ o/ dtt 0 O rgk 4
reor o r<sin a6 a0 p (30)
(23
can be written in the form d ;Ep[(l’o+ 0% -] (L _ ﬂ)
¢ e+1 2 dt{ 3p(ro+ 7o) dt “P\ro+m 4
ro r ro c(t) pr
‘1>=? a| —| +bt)| — Pe(COSH)————E, 1 d _ 1 d
fo r rre +ﬁd—p[(ro+ﬂo) =rol ﬁd—p[(fo
(24) p(ro+ 7o) dt p(ro+ 7o) dt
+ 2
where P, is the Legendre polynomialg is the azimuthal + 770)3—r§]((€ v__m )— 12 3E(pr§)}
angle,a(t) andb(t) are undetermined functions of time, and 8 ro+mo/  plro+ mp)°dt
function c(t) is defined by the unperturbed flow condition M o s 3
3 P(ro)=ro, + (o + 70)2 rofo+[(ro+ 70)° —rol
. o 3 3\2 S\ 2 .
c<t):ré(ro+§°3). (25) X[Lg(dtf’g)) +i‘(2) _ﬂ} 0. (3D
P 9ro+ 70)°\ pry 9\p/ 3p

Here,r, is the velocity of the outer shell boundary. Since the
terms up to#? are retained in the analysis, only the funda-
mental harmonic is kept in Eq24). In what follows we

consider an imploding shell with the unstable outer interface

Thus, we must requirb(t)=0 to satisfy the boundary condi- scaling of the asymptotic nonlinear bubble amplitude with

tion at (r/ro)"—0. The case of the expanding sh&i=0) e fiow parameters, the equations can be significantly sim-
can be treated in a similar fashion and will not be descrlbecb“ﬁed by assuming that the bubble amplitude is much
in detail in this paper. Solutiof24) must satisfy the bound- gmpaller than the shell radiugy,| <r, (a combination

ary condition atr=ry+ %(t, ), where 7 is the interface dis- €|7l/re, however, can be arbitrarily large sinde>1).

tortion. The first condition is easily derived from the masssimple calculations reduce E¢80) and (31) in this case to
conservation equation
(¢+1)d

4 dt

Although the systent30) and (31) can be easily integrated
numerically for a given trajector(t) and shell density(t),

it is difficult to get a physical insight on the convergence
effects from this rather cumbersome system. To obtain a

(préw(l —i@), (32)

Vo C+1rg

lrot+ 7

2 2 2
Then, assuming a uniform density inside the shell, the mo- E{dt(Proﬂo)} A 1{dt(Pfoﬂo)} _ A (Fo+ 30
mentum equation is integrated to yield Bernoulli's equation ~ dt pro 2 pré t+1

d
d—t<prén2) =-

n+ dgn=v; Iy (26)

p

1 5 di(pramo) di(pry
P+ 0?10, 27) = - (¢ + 1 2 APTom) 4T
p

3
o pPro Pro

wherep is the pressurey?=v?+0v? is the total velocity, and The term on the right-hand side of E§3) is retained for the
f(t) is an undetermined function of time. Pressure must bdiigh-convergence-ratio implosions.

(33
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When€|1;?|/r0<1 the nonlinear terms can be neglected,portant and the bubble growth slows doWronlinear satu-

leading to 73" = "”€(€+1)/4 Equation(33) recovers in
this limit the results of Refd.15,18,19,

d r(z)égn) Folg i
—[ 20| 4 0=
dt( m &

m
where &=p(t)r3(t) 7o, m(t)=p(t)r3(t), and the dot denotes
the time derivative. The new functiafy can be related to a

(34)

very important parameter characterizing the shell stability. In
comparing performances of different implosions with respect
to the shell breakup, it is not the bubble amplitude itself, but

the ratio of the amplitudey, to the in-flight shell thicknesa
that must be considered. The paraméter] 7|/ A is referred

to as an instability factor Multiplying the denominator and

numerator inY by pr3 we obtain Y =4m|&]|/ Mg, where
Mgp=4mprg 2A is the shell mass. Thus, divided by the shel

mass|&;| shows how close the imploding shell is to breaking

up. If |&|/Mgy=(4m)7%, the shell integrity is compromised
by the instability growth.

An approximate solution of Eq34) can be found in the
limit €>1 using the WKB method. Writing the solution as
én=e%¢ (e<1 is a small parametgrEq. (34) becomes

S2+e{é+ (2———) } +62€—-
ro m
To satisfy Eq.(35 we must reqU|res:1/V“€. Then, expand-

ing Sin powers ofe, the solution up to the first order ia
takes the form

R

The WKB solution(36) is valid if the shell acceleratioii,

(35

does not go to zero during the implosion. With the help of

Eq. (36), &" becomes

o \m@m©0) [r(0) C. ox (
T T VI | TP

t
oo ro) |
0

o0
ro(t)

and the integration constary andC, depend on the initial

bubble amplltuder;O(O) and bubble velocityiy(0),

t
f I‘(t’)dt’)
0
(37)

where

I'(t) =

om0, 1 (m<0)+r<o>) o 0

2 2I'00\m(0) I'(0)/ | 2I'(0)
c.mo|, 1 (r‘n<o>+'r(0))_ ~ (0)
27 2 2I'(0)\m(0)  I'(0) 2I'(0)°

In the limit of £€>1, coefficientsC, and C, in the leading
order reduce taC;=C,=7,(0)/2. The perturbations grow
according to Eq(37) until the nonlinear effects become im-

| Here, the superscript “n

ration). To find the perturbation amplitudes at which the
transition from linear to the nonlinear growth occurs, we
must first determine the bubble evolution in the nonlinear
regime. Then, equating the linear and nonlinear bubble ve-
locities will define an approximate saturation amplityidé

We begin the nonlinear analysis with E82), which can
be rewritten in the limitt>1 as

(38)

- d
§o<1 - 83%) == 4e'—(promo),

dt

wheree=1/\¢. The left-hand side of Eq38) is of the order

of €%,. The right-hand side is of the order ef7,. It can be

shown that to satisfy Ec(38) we must orderyh/ro~ €2,

” denotes the functions in the non-

linear regime. To the Iowest order iathe latter orderlng

glves 7;2'/r0 €/8. Keeping the higher-order terms |f72
ields

m(t)

# e

8 16.§Sll

For a decreasingn(t) (which is almost always the case in a
converging shell 7, reaches an asymptotic value that is
slightly larger tharry€/8 (keep in mind that the bubble am-
plitude 7, is negativeé. The difference betweemy,/r, and
¢/8 decays in time in the case of growing,|. When the
ratio 7/ry cannot be neglected compared to unity, the solu-
tion (39), according to Eq(30), is multiplied by a factor

(39
o

(L+701r),
nl -
7 _| £, MO (1 |’7|) (40)
o 8 1658' o

Such a factor further reduces the asymptotic value;gbfat

the large bubble amplitudes. A detailed comparison with the
exact numerical solution of Eq$30) and (31) shows, nev-
ertheless, tha)' can be replaced br¢/8 in Eq.(33) with-

out significant loss in accuracy. This yields

€& - & {1+2€(§m”

- ro 12 dtprg Pro
As in the planar geometry casa(t) can be neglected with

respect tofa¥(t) in the nonlinear regime, whewe= &/ pr3 is

the amplitude in the velocity potential defined in E84).
Furthermore, we also drop the second term on the right-hand
side of Eq.(41). This term is identically zero at a constant
density; ifm=0 (solid sphere implosionthe term is equal to
=3mA(Fo/ro) (7 /1o), which is smaller by a factom/r,
compared to the last term on the left-hand side of @4).

Next, solving the second-order algebraic equation g‘@ir
yields

o T
+2mé 2 + Ony?
r

fo To

(41)
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1\ 2 t
gg':m[§+<%)] ftm{mz €)% }dt’

S

n2[2 2 : t
2mr fom m(t r m(t’) d
\/mﬂ (53) J - O (42) m(oin { ()](ﬂ-l—O)—f in T
2¢ m € lo Mo 4 mg Fro tg mg dt,
As mentioned earlier, the approximate yalue of the saturation « {m(t’)(lz _ I.r—0>]dt’, (47)
amplitudens can be obtained by equatigg in the linear and 0

nonlinear reglmes In the linear case, using the WKB solu 4 neglecting the integral on the right-hand side of &a).

tion (37), we write &,=\¢S(t)£&. This gives This gives a relatively simple scaling with20% error. Sub-
stituting Eq.(47) into Eq. (46) and replacing
: Ifm _rqg T : Po/rol-1
§o:§o{r(t)+—<——2—o——>] (43) 14+ o _ )y, M@ _ | miD) oo
2\m rq T rol m m

Substltutmg Eq(43) into Eq.(42) and neglecting terms with yields

§0 (the shell convergence ratio is assumed to be not very |:m(t)]rol(rol") - m(t) - 3m,
Iarge at the time of the bubble saturation, so the terms with 58 = -m(t)I(t) —_—
§0 are small yields the saturation amplitude 2t
ro/(rgl)-I1 [t ’ _
o . - (m) (o f F(t’)m(t )dt’+3 m(t)/m;
ﬂzﬁzz[“z(gm_mﬂ wn m. S >
oty mg € r\a2r ro, m/ |’ m(t) \ ool [t
:_<_) J Ut ) p(t)rd(t")dt’

where t; is the saturation timems=m(ty), 7s=7,(ty), and Ms tg
£s=&(ty). Sincel’ ~ ¢, the bubble saturation amplitude, to 3 —m(t)/mg
the lowest order irt™%, is | g ~ro(ty /€. To find the bubble + SST (48)

evolution after the saturation, we solve E42) in the limit
of £€>1, expanding the solut|or§n Eoot &1t o, where  To use Eq(48) one must specify the saturation tirhe The
&ool Eo01~ Ves1. Keeping the lowest-order terms in Hg2) latter can be easily obtained with the help of E3j/). At the

gives time of bubble saturation, the following equality must be
satisfied:
1t [y ts
500: - Ef r(t,)m(t,)dt, + Co, (45) ms ~ |C1|Ll’n(0) F(O) exp f r(t/)dtr (49)
ts ¢ rots) I'(ty) 0 '
wherec, is an integration constant. Substitutigg back into  which leads to
Eq. (42) and retaining the terms of the orderflyields &y;. te (t It
Combining &, and &y; and using saturation conditiof(ts) f [(t)dt’ = |n(r0 J N myl'(ty ) (50)
=-m,/{ leads to 0 £|Cy] V m(0)r(0)
m(t) - 3 " It is sufficient in many cases to keep only the lowest-order
= —m)I(t) + Tms _,_f r'n{l(t’)2 It/ ) }dt’ terms in Eq.(50). This gives
t
: ro(o)) ( 2rg(0) )
r)dt = In(— =In| ———|. (51
(49 f fed) =\l
where To obtain a more accurate value ffone must solve Eg.
(50).
_ - m(t’ ) It is interesting to note that the perturbation growth fac-
(1) = ¢ (t)f T(t")m(t’)dt (t)f Ut = ro(t’ ) : tors are smaller in a “compact” shell with larger density than
in a decompressed, lower-density shelh,~ 1/Vm before
and and 7o~ m™olTro after the saturation The shell thick-
nessA, however, is inversely proportional to; therefore the
. ratio Y =||/A is larger in the higher-density shely ~ &,
USP= + /- ro(t)ro(t)_ ~\/m(t) in the linear regime and ~m(t) in the nonlinear
- ¢ regimeg. Thus, for the two shells with the same trajectory, the

thinner shell is more unstable.
Equation(46) can be further simplified by taking the integral ~ As a next step we express the nonlinear bubble evolution
by parts, in terms of the linear perturbation growth. The linear growth
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10! E_ (a)
100
fIng| 10-1 £ny|
T £e 10

TC6888

FIG. 6. The bubble amplitude calculated using the exact numeri-
cal solution of Eqs(30) and(31) (thick lineg and analytical solu-
tions (37) and (48) (thin lines for p=const(solid lineg, p~1/rq
(dashed lines andp~ 1/r3 (dotted lines.

o

o ~ w I|n (t) f
7o) = nsro(ts) { (I 7s M)

- . - . mg ap(t) 3&__
o X(mﬁ) o m 2}’ (54

TC6887

FIG. 5. (@) The plot of normalized bubble amplitude calculated where
using the exact numerical solution of EG30) and(31) (solid lines

l i
and analytical solutioné37) and(48) (dashed lines (b) The plot of ()= ® 7 (7'
the normalized bubble amplitude witfsolid lineg and without m r077|(|)n fo(ts) 7s
(dashed linesnonlinear terms. ||n

| } f % iy )dt')
can be calculated, for example, using the stability postpro- m(t)

cessor described in R€fL5]. When the perturbation ampli- ] ] ) ) ) )
tude is much larger than the initial amplitudg(0), Eq. (37) Equation (54) is especially simple in the case of a solid-

can be rewritten as sphere implosion Whem:prgzconst,
rot) [ 7o'(t)
. md(ty) t (t)|pr =const— s .\ O(ts)(l 7 +1]. (59)
' =75\ e, w(t)= J r)dr, (52 )
m(t)I(t) ts Except for the factomy(t)/rq(ty), Eq. (55 reproduces the

asymptotic formula proposed in R¢f.7].

To validate the accuracy of the derived results, we com-
pare the bubble evolution calculated using the exact system
[Egs.(30) and(31)] with the analytical scaling37) and(48).
fin T(t)m(t) Figure Fa) plots the bubble amplitude for mode numbérs

5 | ( T(tgm ) (53 =100 and¢=200. The outer shell radius changes according
to a power lawry=Ry(1-t/t)*3, where O<t<t,. The den-
sity is inversely proportional to the trajectoryp(t)
The linear RT growth is exponential; thus, assuming THa&t  =py[Ry/ro(t)]. The initial conditions aregy=-2x 107*Ry/¢
andm(t) grow slower thanyl", the second logarithm on the and 7,=2x 107“Ry/¢t,. The solid lines represent the exact
right-hand side of Eq(53) can be neglected. Functid(t) in solution of Eqs(30) and(31), and dashed lines are obtained
Eq. (48) can be rewritten in terms of the functiok(t): using Eq.(37) for t<ts and Eq.(48) for t>t.. The saturation
time ts is defined as the time of intersection of the linear
w amplitude[Eq. (37)] with the saturation amplitudd=q. (44)].
1 N s e Figure 8b) plots the normalized amplitudes wittsolid
1) =¥ (1) - m(t) J, ‘P(t ym(t)dt’. curves and without(dashed curvegsthe nonlinear effects.
Observe that the saturation value defined by @4) repro-
duces very well the bubble amplitude at which the growth
With the help of the latter relation and substitutifg slows down and becomes nonlinear. Figure 6 plots the
=—ro(ts)/ 75, EQ.(48) becomes bubble evolution for the shell withiy=R,cosQt (0<Ot

where ns=-r(ty)/{ is the saturation amplitude. Then,

W(t)=In 2 +
s
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< 7/2) and mode numbef=200. The initial conditions for =1 for two- and three-dimensional geometries, respectively.
the perturbations are the same as in the previous @se The model applied to the spherical geometry predicted the
=1/tp). The density is assumed to follow a power law of the nonlinear bubble ampntud@,N;(t)[m(t)/ms]—\‘ro\/fuﬁp—ﬂro'
radius, p(t)=p(0)[Ry/ro(t)]*. The thick lines represent the where r, is the outer shell radius, 7(t)
exact numerical solution of Eq$30) and (31) and the thin :ftUﬁp(t’)p(t’)rS(t’)dt’/p(t)rg(t), UP(t) = -Fo(t)ro(t)/ €,
lines are the results of the asymptotic analysis. The SO“dm(t):p(t)rg(t), me=m(ty), t. is the saturation time, and is
dashed, and dotted lines in Fig. 6 correspong,to0, 1, and  {ne mode number.
2, respectively. Note that the bubble growth factors decrease
with increasing density. Good agreement between the exact
solution and the analytic scaling confirms accuracy of the
asymptotic analysis. This work was supported by the U.S. Department of En-
In summary, Layzer’s model to study the nonlinear bubbleergy Office(DOE) of Inertial Confinement Fusion under Co-
evolution in the classical RT instability has been extended t@perative Agreement No. DE-FC52-92SF19460, the Univer-
include the temporal density variation and spherical conversity of Rochester, and the New York State Energy Research
gence effects. The bubble amplitude in planar geometry wittand Development Authority. The support of DOE does not
the time-dependent densip(t) was shown to asymptote to constitute an endorsement by DOE of the views expressed in
JULt)p(t)dt /p(t), whereU =\g/Cgk and C4=3 andC, this article.
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