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Hierarchical crack patterns, such as those formed in the glaze of ceramics or in desiccated layers of mud or
gel, can be understood as a successive division of two-dimensional domains. We present an experimental study
of the division of a single rectangular domain in drying starch and show that the dividing fracture essentially
depends on the domain size, rescaled by the thickness of the cracking layere. Utilizing basic assumptions
regarding the conditions of crack nucleation, we show that the experimental results can be directly inferred
from the equations of linear elasticity. Finally, we discuss the impact of these results on hierarchical crack
patterns, and in particular the existence of a transition from disordered cracks at large scales—the first ones—to
a deterministic behavior at small scales—the last cracks.
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I. INTRODUCTION

Macroscopic patterns often present an intriguing interplay
between a well-defined local organization and a globally dis-
ordered appearance. For instance, the geometry of two-
dimensional soap foamsf1g is perfectly defined locally: the
films are arcs of circles joining at 120° in threefold vertices.
Nevertheless, due to the distribution of bubble sizes and to
their time evolution, the coarsening, the foam presents a dis-
ordered aspect at large scale, which has been intensively
studied in recent decadesf2g. While in this case, the apparent
disorder results from a deterministic evolution, other systems
are strongly influenced by uncontrolled experimental noise.
The liquid flow in the case of viscous fingering is well de-
scribed in the deterministic framework of fluid dynamics, but
the sensitivity of the system close to bifurcation points
makes the concrete evolution unpredictable: two experimen-
tal realizations never give identical results although the pat-
terns are similar from the statistical point of view.

In the present paper, we study the interplay between de-
terministic behavior and the effect of noncharacterized noise
in a particular system: hierarchical crack patterns. This kind
of pattern can be found in the glaze of ceramicssFig. 1d
or—experimentally more accessible—in layers of mud or
gel, deposited on a solid substrate and desiccating. The frac-
tures are formed via mechanical frustration: the shrinking,
induced either by cooling in the case of the glaze or by
evaporation of the solvent in the case of the mud, is re-
stricted by the adhesion to the rigid substrate. If the material
layer is not too thin and sufficiently homogeneous, these
cracks are formed successivelyf3,4g: one fracture has fin-
ished its propagation before the next one nucleates. The
shape of a fracture is entirely determined by its path while it

is propagating. A new fracture has no influence on the shape
of the previous ones. However, these previous fractures hav-
ing modified the mechanical stress field have a direct influ-
ence on the morphology of newer fractures. This asymmetri-
cal interaction becomes manifest at the connection points. A
fracture always propagates to release the main opening stress
sprinciple of local symmetryd. The stress parallel to a given
crack is only weakly affected by its formation, so that, in the
vicinity of an existing crack, the residual stresses are parallel
to it. Therefore, when a new fracture comes near an older
one, it turns to join it at a right angle. As discussed in paper
I f18g, it is possible, using these characteristics, to recon-
struct the order of formation of the cracks of a complex
pattern.

In one-dimensional systems, the correlation between suc-
cessive cracks has been studied experimentally and theoreti-
cally. The study of a spring chain model coupled to a solid
substratef5g has revealed the existence of a characteristic
length scale, which is a function of the spring constants and
lengths. The identification with material properties and ge-
ometry is nevertheless not evident. The spacing between suc-
cessive fractures along a line of desiccating clay with a rect-
angular cross sectionf6g could be interpreted as the
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FIG. 1. The hierarchical crack pattern in the glaze of a ceramic

plate.
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experimental confirmation of this characteristic length. How-
ever, the size of the sample was kept fixed inf6g so that the
physical origin of the length scale was not clear.

We will investigate here, in the two-dimensional case, the
effect of previous fractures on the following ones. The basic
feature on which this investigation relies is that each new
fracture joins existing fractures at both ends, so that at each
step of its formation the pattern divides space. Taking into
account the succession of cracks, we can interpret the pattern
as the result of an iterative process: a fracture divides a
“mother” domain into two “daughter” domainsf7g, which
can be considered—at least in the limit of a perfect rigid
substrate—as mechanically independent. We can therefore
consider each domain separately. From this perspective, the
formation of the crack pattern is conceptually very simple:
we need only to understand howone single domain is di-
vided as a function of its shape and then take into account
the inheritance of the domain shape from the former divi-
sions.

The conceptual simplicity of the hierarchical crack pattern
will allow us to study the interplay between a deterministic
part—the control of fractures by the shape of the considered
domain—and a stochastic part—the impact of uncontrolled
imperfections of the material. For this purpose, we will in-
vestigate the division of a domain whose geometry is con-
trolled. By contrast to the domains in an extended pattern
whose shape is inherited from former divisions, this will al-
low a systematic study under reproducible conditions. We
will successively present the experimental results, their inter-
pretation in the framework of linear elasticity, and their con-
sequences for extended crack patterns.

II. EXPERIMENT

In what follows, we study fractures in a desiccating
starch-water mixture. While drying, the material shrinks, but
due to the adhesion on a polymethylmethacrylatesPMMAd
substrate, the shrinking is partly inhibited. The resulting
stress is then released by the formation of fractures. We con-
trol the initial domain by lateral walls. The lateral dimension
of the domains is fixed and we vary the layer thickness.

A. Set up and protocol

Figure 2sad shows the container used, composed by a
PMMA bottom and removable metallic walls. The inner di-
mensions of the metallic frame are 55377.3 mm2, its aspect
ratio is thusÎ2. Before each experiment, the components are
cleaned separately with a dishwasher solution and then
rinsed carefully. The lateral walls are then coated with a very
thin layer of silicone oil.

We mix maize starch with water in the relation of 1 to
1.15 g. The homogeneous solution is filled into the container.
In order to obtain reproducible drying conditions and to ac-
celerate the drying, the container is placed in a gently venti-
lated oven with a controlled temperature of 40 °C. When the
starch is completely desiccated, a photograph of the crack
pattern is taken.

B. General behavior

In order to observe the temporal evolution of the system,
we conduct some experiments outside the oven, place the
container on a computer-controlled balance, and acquire a
film. Figure 2 shows a sketch of the evolution; Fig. 3 some
photographs of the system. First, the initially homogeneous
solution separates into two phasesfFig. 2sadg. A concentrated
starch phase sediments to the bottom while water segregates
on the top. Approximately half an hour after filling in the
mixture, a thin and clear water layer is found on top of the

FIG. 2. Setup and evolution of the experiment.sad Side view of
the experiment. The starch solution is filled into the rectangular
container with its lateral walls silicone oil coated. A water layer
forms on the layer of wet starch. It evaporates and the starch layer
becomes exposed to the air.sbd Due to the ongoing evaporation, the
starch contracts and loses the contact to the lateral wallssarrowsd.
scd The first kind of fracture, called hierarchical, is formedsarrowd.
sdd The second cracking regime with small scale cracks penetrating
simultaneously from the upper surface into the volume.

FIG. 3. Evolution of the system while drying.sad The formation
of hierarchical cracks.sbd Small, columnar cracking.
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layer of wet starch. The surface of the water layer is curved
at the border, due to the wetting on the oil-coated walls, but
the starch layer remains perfectly planar. Actually, the initial
mixture concentration was chosen to obtain this thin water
layer that allows the bypassing lateral wetting problems.

It takes about eight hours to evaporate the water layer.
The mass of the system decreases linearlysdata not shownd.
Then, the wet starch layer is exposed to air and starts drying.
The mass decrease is still linear in time, but slightly slower.
The water evaporation induces a shrinkage of the material
that is frustrated by the adhesion to the PMMA bottom,
and—at the beginning—on the lateral walls. After another
hour, the resulting mechanical tensions are sufficiently strong
and a first kind of fracture appears: the starch layer gets
separated from the oil-coated lateral wallsfFig. 2sbdg. The
rectangular domain is now laterally delimited by free sur-
faces, just like domains in extended crack patterns. By con-
trast to the latter, the domain geometry is controlled by the
shape of the container.

About one hour later, we observe the fracture of this con-
trolled domainfFig. 2scdg. Figure 3sad shows an example
where two fractures are formed successively, so that the rect-
angular domain is ultimately divided into three subdomains.
In general, these fractures, although successive, are formed
in a relatively short time interval of half an hour. The frac-
tures are nucleated on the upper surface of the starch layer
somewhere close to the center of the domain. Though nucle-
ated at the upper surface they quasi immediately affect the
whole thickness of the layer. In the following hours, only the
crack opening increases slowly and we do not observe any
change in the evaporation rate.

Another, additional phenomenon is observed much later.
After another seven hours of drying, a multitude of small and
corrugated cracks appear simultaneously on the air-exposed
surfacefFigs. 2sdd and 3sbdg. The evaporation rate decreases
continuously while these cracks are propagating downward
into the bulk of the starch. As they penetrate, they become
more ordered and show polygonal pattern as they reach the
PMMA bottom. One observes a majority of hexagonal do-
mains. This regime has been recently studied inf8–10g. If
the experiment is performed in a container entirely made of
polytetrafluoroethylenesTeflond to prevent adhesion, no hi-
erarchical cracking is observed but only the columnar crack-
ing. This demonstrates that this latter phenomenon is not
linked to the adhesion on the substrate. Rather we have here
a three-dimensionals3Dd directional fracturing, which fol-
lows a front of drying parallel to the surface and propagating
downwards. The characteristic length scale of this hexagonal
patterns,3 mmd is much smaller than that of hierarchical
fractures and scales probably with the depth over which the
water content varies. They are analogs to the columnar
cracking of basalt whose length scale is of the order of 1
m—the typical depth of the thermal boundary layer. In what
follows, we focus on the first cracking regime, wherein hier-
archical fractures form, due to the adhesion to the PMMA
substrate.

C. Characteristic length scale of the final pattern

Figure 4 shows examples of the obtained hierarchical
crack figures for different layer thicknessese. A first and

obvious observation is that the number of fractures increases
when the layer thickness is decreased. Fore=6.3 mm, there
is only one fracture. In one of the examples shownfpart 1 of
Fig. 4sadg, the fracture does not reach the domain borders.
Note also that, in some realizations at this thickness, no frac-
ture was observed at all. Increasing the layer thickness, the
number of realizations without fracture increases, and ate
=12 mm, we never observed any fracture. We thus estimate
the critical layer thickness for fractures roughly toe
,10 mm.

In f3,4g it has been shown that the characteristic distance
between the fractures scales linearly with the layer thickness.
Although our experiment is not designed for this purpose, we
observe qualitatively a similar behavior. We define the char-
acteristic distance between cracks as

l =ÎA

N
s1d

whereA is the area of the initial rectangular domain andN
the number of domains in the final pattern. The length scale
of the initial rectangle isÎA=65 mm. Figure 5 shows this
length as a function of the layer thicknesse. Despite the
dispersion, essentially due to the discrete—and small—
number of cracks, the measurements suggest a linear rela-
tionship l =ge. The best fit gives a slopeg,5.5, consistent
with the absence of fracture abovee=12 mm.

D. The geometry of the first fracture

We will now concentrate on the first fracture that divides
the rectangular domain into two daughter domains. Figure
4sad shows three examples with a layer thicknesse
=9.1 mm. In all the three cases, the firstsand onlyd fracture

FIG. 4. Examples of crack patterns for different layer thick-
nesses.e= sad 9.1, sbd 6.3, andscd 4.8 mm.
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divides the rectangular domain symmetrically by the longer
sides into two almost identical domains. In that case, the
particular aspect ratioÎ2 of the initial domain is preserved in
the division. We extract the first fracture using an image
processing tool and superimpose all realizations at this layer
thickness in Fig. 6sad. This fracture is perfectly reproducible.
It is entirely determined by the free lateral boundaries. We
observe furthermore that we are close to the limit of crack-
ing: in two of ten realizations no fracture was observed at all.

The three examples in Fig. 4sbd are obtained fore
=6.3 mm. The first fracture is still straight and perpendicular
to the longer side of the rectangle. However, its position is
less controlled, the fracture does not always pass by the cen-
ter. Note also that the position of the first fracture has an
impact on those that follow. The superposition of the first
fracture of all experiments at this layer thickness is shown in
Fig. 6sbd. Only in one case did the fracture turn to join one of
the shorter borders of the sample, probably because of a
defective preparation of the sample. As can be seen in Fig.
6scd, the loss of determinism increases when the layer thick-
ness is decreased. The first fracture is now not only free to
choose its position, but it also starts to bend significantly in
some realizations.

This behavior becomes more and more dominant as the
layer thickness is further decreasedfFigs. 6sdd and 6sedg. The
fracture joins a short side of the rectangle at one or even both
ends. It is less and less controlled by the domain shape. Only
when it arrives relatively close to the border does the fracture
turn to join it at right angle. As can be seen in the figures,
even for small layer thicknesses such ase=4.8 or 3.4 mm
fFigs. 6sdd and 6sedg, the first fracture sometimes is the same

as the deterministic “ideal” one, observed for thicker layers
close to the cracking limit.

A simple way to interpret this behavior is as follows: the
“fractures” that define the border of the domain relax the
mechanical stress locally. They have an impact only over a
distance that is proportional to the layer thickness. In the
center of a very large domain of small thickness, their influ-
ence vanishes. By contrast, in a small domain compared to
the layer thickness, they have a direct impact over the whole
domain area. This interpretation leads us to introduce dimen-
sionless quantities.

E. Quantifying

In order to quantify the observed transition from deter-
minism to disorder, we introduce two quantities—two order
parameters—that are consistent with the symmetries of the
geometry. Let us first define the distancesd1 and d2 of the
end of the fracture to the center of the long side of the rect-
angle, measured along the domain perimeterssee geometri-
cal definition in Fig. 7d. It can be positive or negative if the
crack extremity is on the right or left side of the center. We
define the two dimensionless order parameters as

d = ud1 + d2u/ÎA, s2d

D = Îd1
2 + d2

2/ÎA. s3d

Their geometrical meaning is as follows. In the case of the
ideal fracture that passes through the center and divides the
rectangular domain into two symmetric rectangular domains,
bothd andD are equal to zero. If the fracture is still straight
and perpendicular to the longer sides of the rectangle but
does not pass by the center,d=0 but D.0. When the frac-
ture is curved,d becomes larger than zero, too. Figure 8
shows the scatter plot of these quantities as a function of the
dimensionless layer thickness

FIG. 5. The characteristic length scale of the domains in the
final crack patternl =ÎA/N as a function of the layer thicknesse.
The small numberN of domainssindicated on the rightd leads to a
very rough discretization. We indicated the number of realizations
corresponding to a value by the radius of the symbol.

FIG. 6. The superposition of
the first crack in several realiza-
tions. e= sad 9.1, sbd 6.3, scd 5.5,
sdd 4.8, andsed 3.4 mm.

FIG. 7. Definition of the two distancesd1 andd2.
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j = e/ÎA. s4d

The filled symbols correspond to the averaged values and the
error bars to the standard deviation. These two graphs sum-
marize the discussed behavior. The cracking limit corre-
sponds toj,0.18 s11.2 mm for our experimentd so that
there are no data points above this value. Close to this limit,
0.13&j&0.18,d=0 andD=0. The fracture is the ideal, de-
terministic one. Forj&0.13, the fracture becomes statisti-
cally free to move laterallysD.0d, and this freedoom in-
creases with decreasingj. The curvingsdd of the fractures
sets in later, at straight fracturej&0.09 and increases rapidly
for decreasingj.

III. THEORY

Crack nucleation in this experiment can be influenced by
two sources of randomness. First, it may be seen as a ther-
mally activated process whose energy barrier decreases with
the stress and even vanishes at a critical stress. Second, the
stress field is itself affected by the existence of uncontrolled
defects. Alternatively, we can consider the mean stress field
that sets in the material due to the drying process and assume
that the critical stress above which cracks nucleate has some
random spatial noise. For simplicity, we perform an elasto-
static analysis in the framework of two-dimensional linear
elasticity. The configuration of the model problem analyzed
is depicted in Fig. 9. A rectangular body of lengthL and
heighte perfectly adheres to a rigid substrate and sustains a
shrinkage process induced by drying. We choose the height
of the samplee as a unit length and define

j =
2e

L
,

as the relevant control parameter of the problem. We scale
the stress and strain tensor in such a way that under plane
strain conditions, the two-dimensional strain tensore% is re-
lated to the two-dimensional stress tensors% by

si j = s1 − 2ndei j + nekkdi j + gdi j , s5d

wheren is the Poisson ratio of the sample. The plane stress
in a two-dimensional description is simply obtained by re-
placing in Eq.s5d the Poisson ration by n / s1+nd. The drying
induced shrinkage of the material is taken into account by
the diagonal termgdi j in Eq. s5d. In the case of free bound-
aries, the stress field in the sample would be identically zero
and the strain field is simply given byei j =−gdi j . In the
present description, we are interested in the spatial distribu-
tion of the stress and strain fields and not in their absolute
magnitudes. Therefore, we can rescale stress and strain fields
so thatg=1. The mechanical equilibrium in the material is
given by

s1 − 2ndDuW + ¹W · s¹W ·uWd = 0, s6d

where uW is the displacement field, which is related to the
strain field by

ei j =
1

2
F ]ui

]xj
+

]uj

]xi
G .

The boundary conditions at the lower surfacez=0 are speci-
fied by assuming a perfect adhesion of the sample to the rigid
substrate. The upper and lateral surfacessz=1 andx= ±1/jd
are traction free. The boundary conditions for this problem
are thus given by

uxsx,0d = uzsx,0d = 0, s7d

sxzsx,1d = szzsx,1d = 0, s8d

sxzs±1/j,zd = sxxs±1/j,zd = 0. s9d

At this stage, the problem depends only on the Poisson ratio
n and on the dimensionless parameterj. Experimentally, we
observe that fractures are nucleated on the upper free surface
of the materialsz=1d. Therefore, the quantity of interest in
the present problem issxxsx,1d, the stress distribution there.

FIG. 8. The two order parametersd= ud1+d2u /ÎA and D

=Îd1
2+d2

2/ÎA as functions of the ratio between the layer thickness
and the characteristic domain sizej=e/ÎA.

FIG. 9. The two-dimensional problem: the starch layer on the
solid substrate.sad Side view of the experiment.sbd The geometry
used for the calculations.
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An analytical solution to the present problem with a finite
thickness is unreachable. However, the asymptotic value for
the stress in very thin layers, far from the lateral boundaries,
can be easily computed. In the absence of the lateral bound-
ariessj→0d, the stress and strain fields are uniform through-
out the thickness and the only nonvanishing components are
sxx andezz. Using Eq.s5d, one finds

lim
j→0

sxxsx,1d =
1 − 2n

1 − n
. s10d

For a finite rectangular plate, the numerical resolution of the
problem is straightforward. We use a standard finite element
formulation and solve it for each value of the parametersn
andj.

Figure 10 summarizes the numerical results of this sec-
tion. The stress component on the upper free surface of the
material,sxxsx,1d, is plotted for different values ofj and for
a given Poisson ratiosn=0.25d. It is shown that when the
height of the sample is comparable to its lengthsj of order
unityd, the tensile stress at the center of the sample is com-
pressivessxxs0,1d,0d, which does not allow crack nucle-
ation in that region. Whenj decreases, which corresponds to
a thinner sample, the stress shows a positive maximum at the
centerx=0, which allows us to predict that there will be a
critical valuej for the nucleation of a crack which is local-
ized at the centerx=0. However, when one decreases further
j, the maximum in the medium of the plate becomes less
manifest and tends to the value given by Eq.s10d. In a large
region around the center the variation of the tensile stress
becomes weaker and thus, due to the inherent inhomogene-
ities induced by noise, the nucleation of the fracture will not
be localized atx=0. This simple description of the drying
induced shrinkage shows the importance of the aspect ratio
e/L on the stress distribution in the material and thus ex-
plains the phenomenon observed in experiments.

IV. CONCLUSION

The experimental results presented here, together with the
theoretical considerations, provide a coherent image of the
relative impact of the domain shape on the cracks that divide

it. The domain borders—the older cracks—relax the stress
locally. Their influence is determined by the characteristic
length scale, the layer thicknesse. Far away from the bor-
ders, they do not affect the stress field and thus the crack
formation. The zone of crack nucleationsin a probabilistic
sensed inside a given domain has thus roughly the same
shape as the domain albeit shifted by several thicknessese.

We argued in the first paper that we can consider an ex-
tended crack pattern as resulting from successive domain di-
visions. The results presented in the present part indicate the
effect the shape of a mother domain has on the fracture that
divides it. Let us consider the pattern in Fig. 11. As we go
down the hierarchy, the length of the cracks and the sizeA of
the domains decrease. As the thickness remains constant, the
dimensionless parameterj=e/ÎA increases during the suc-
cessive divisions. For the first cracks, the domain size is
much larger than the layer thickness, and the cracks are
mostly dominated by the imperfections of the layersglobal
gradients, defectsd. They thus have a disordered appearance.
Moreover, when a crack nucleates on a defect, or simply
passes through it, the latter disappears and has no impact on
the following fractures. The spatial random noise level thus
decreases with the passing of time. As cracks keep dividing
the domains their typical size decreases until it becomes
comparable to the layer thickness. Here, the cracks becomes
deterministic and are entirely controlled by the domain bor-
dersfFig. 11sbdg.

This transition from disorder at large scales to determin-
ism at small scales contrasts with a scaling behavior that is
repeatedly found in numerical and experimental studies of
nonhierarchical crackingf11–15g and also experimentally for
the fracture widths in hierarchical crack patternsf16,17g. The
existence of a characteristic length scale, the layer thickness
e, is the reason why we donot observe self-similar behavior
for the domain shapes and crack-crack interaction. This is
consistent with the fact that there is a well-defined character-
istic domain size in the final pattern, which scales with the
layer thicknessf3,4g. The larger variations of the domain size
in Fig. 11sad are due to a global thickness gradient; the do-
main size distribution is only slightly disperse. The consid-
ered successive domain divisions are therefore an illustrative
example that not everything in nature is fractal.

FIG. 10. Plot ofsxxsx,1d for n=0.25 and for different values of
j. Due to the symmetry with respect tox=0, only the interval 0
,x,j−1 is shown. The values ofj are from left to right such that
j−1=1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

FIG. 11. A crack pattern in the glaze of an ceramic plate.sad The
entire platessize 14.5314.5 cm2d. The first order cracks are em-
phasized manually.sbd The detail of the pattern indicated by the
frame in sad.

BOHN et al. PHYSICAL REVIEW E 71, 046215s2005d

046215-6



f1g D. Weaire and S. Hutzler,The Physics of FoamssClarendon
Press, Oxford/Oxford University Press, New York, 1999d.

f2g J. Stavans, Rep. Prog. Phys.56, 733 s1993d.
f3g A. Groisman and E. Kaplan, Europhys. Lett.25, 415 s1994d.
f4g K. Shorlin, J. de Bruyn, M. Graham, and S. Morris, Phys. Rev.

E 61, 6950s2000d.
f5g O. Morgenstern, I. Sokolov, and A. Blumen, J. Phys. A26,

4521 s1993d.
f6g N. Lecocq and N. Vandewalle, Eur. Phys. J. E8, 445 s2002d.
f7g S. Bohn, S. Douady, and Y. Couder, Phys. Rev. Lett.94,

054503s2005d.
f8g G. Müller, J. Struct. Geol.23, 45 s2001d.
f9g L. Goehring and S. W. Morris, Europhys. Lett.69, 739s2005d.

f10g E. A. Jagla and A. G. Rojo, Phys. Rev. E65, 026203s2002d.

f11g S. Kitsunezaki, Phys. Rev. E60, 6449s1999d.
f12g L. de Arcangelis and H. Herrmann, Phys. Rev. B39, 2678

s1989d.
f13g H. Colina, L. de Arcangelis, and S. Roux, Phys. Rev. B48,

3666 s1993d.
f14g T. Walmann, A. Malthe-Sorenssen, J. Feder, T. Jssang, P.

Meakin, and H. Hardy, Phys. Rev. Lett.77, 5393s1996d.
f15g R. Cafiero, G. Caldarelli, and A. Gabrielli, J. Phys. A33, 8013

s2000d.
f16g D. Mal, S. Sinha, S. Mitra, and S. Tarafdar, Physica A346,

110 s2004d.
f17g N. Lecocq and N. Vandewalle, Physica A321, 431 s2003d.
f18g S. Bohn, L. Pauchard, and Y. Couder, preceding paper, Phys.

Rev. E 71, 046214s2005d.

HIERARCHICAL CRACK PATTERN….II…. PHYSICAL REVIEW E71, 046215s2005d

046215-7


