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Crack patterns, as they can be observed in the glaze of ceramics or in desiccated mud layers, are formed by
successive fractures and divide the two-dimensional plane into distinct domains. On the basis of experimental
observation, we develop a description of the geometrical structure of these hierarchical networks. In particular,
we show that the essential feature of such a structure can be represented by a genealogical tree of successive
domain divisions. This approach allows for a detailed discussion of the relationship between the formation
process and the geometric result. We show that—with some restraints—it is possible to reconstruct the history
of the system from the geometry of the final pattern.
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I. INTRODUCTION

A large variety of morphologies of crack patterns can be
found in nature. In many cases, the fractures form a closed
network and thus divide a two-dimensional surface into dis-
tinct domains. Some morphologies show an astonishing
similarity to two-dimensional soap foams which have often
been considered to be the model system for space-dividing
patternsf1,2g. For instance, the transverse section of a basalt
formation, supposedly formed by a mechanism called colum-
nar cracking, is composed of polygonal domainsf3–5g and
shows statistical properties similar to foams. The fractures
propagate simultaneously into the volume and interact sym-
metrically; there is no apparent hierarchy in the resulting
structure. Another case of crack patterns similar to foams
was observed in ceramic disks subjected to rapid thermal
shocks. Again, the fractures can be considered as simulta-
neousf6g.

There is, however, a different crack morphology with an
accentuated hierarchy. It is the result of the shrinking of ma-
terial layer frustrated by its deposition on a nonshrinking
substrate. Such patterns are observed in the glaze of ceramics
or in desiccating mud or gel. Studies in coffee groundsf7g
and in desiccating colloidal soilsf8,9g revealed that where
the material layer is not too thin, the fractures are formed
successively and each new fracture joins older fractures at
each extremity. The result is a space-dividing pattern show-
ing a strong hierarchy of fractures of different lengths. These
studies reveal furthermore that the characteristic length scale
of the final patternsdomain sized scales linearly with the
layer thickness. In this paper we investigate this regime,
mainly because it can be considered as a physical model
system for hierarchical space divisions in general. Other ex-
amples of hierarchical space division include the venation
patternf10g in vegetal leaves or the partitioning of a city into
blocks.

In contrast to the regime of very thin layers, where the
nucleation and propagation of the fractures are dominated by
material heterogeneity, and which has been widely studied
numericallyssee for instancef11–16gd, no theoretical frame-
work for the hierarchical regime exists. On the basis of an
experimental example, we will work out an appropriate de-
scription of the hierarchical crack pattern. This description is
directly based on the hierarchy and the space-dividing prop-
erty as the main features of the system. It allows a detailed
analysis of the relation between the geometrical structure and
the history of the system. In particular, we discuss to what
extent the pattern’s history can be reconstructed, knowing
only its final geometry. The accented geometrical hierarchy
emphasizes the importance of history. The concept being in-
troduced defines furthermore the framework that we will use
in paper II f21g for a detailed study of the evolution of the
domain shapes.

II. EXPERIMENT

We modified an experimental system that has already
been used to study the cracks in dropletsf17g or directional
cracking f18g. We fill a shallow, circular container
sdiameter,10 mm, height,0.5 mmd with an aqueous solu-
tion of latex particlessdiameter,0.1 mmd. The bottom of
the container is a clean glass plate; the lateral walls are made
of polyethylene. The contact line of the solution is quenched
at the upper edge of the circular wall and remains there dur-
ing the whole experiment. In this way we obtain a layer of
approximately constant thickness in the center of the con-
tainer, and avoid the anisotropy due to large evaporation at
the borders.

As water evaporates, the concentration of the solution in-
creases. When it exceeds a critical value, the material be-
comes a gel that adheres to the glass platesthe substrated.
Further evaporation induces a shrinkage of the gel layer, but
the adhesion to the solid substrate limits the contraction of
the gel. This frustration causes mechanical tensions that are
relaxed by the formation of fractures. Figures 1sad–1sdd show*Electronic address: bohns@rockefeller.edu
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a selection of photographs of the formation of the crack net-
work. The photos are limited by the camera field; the borders
of the image have no physical meaning.

III. HIERARCHY

The cracks are formed successively and, using the video
sequence, we attribute to them a temporal order: first, sec-
ond, and so on. In the shown experiment we observe 28
successive cracks. We shall call the succession of the cracks
their temporal hierarchy.

The temporal hierarchy of the cracks is of crucial impor-
tance because the effect of one crack on another is not sym-
metrical. A crack remains unchanged after being formed and
is therefore not affected by cracks formed later. In reverse,
the existing cracks define the boundary conditions for the
mechanical stress field that governs the formation of the fu-
ture cracks. In particular, a crack of higher temporal order
syoungerd joins a crack of lower temporal order at an angle
close to 90°.

From an abstract viewpoint we can consider the final
crack patternfFig. 1sddg as the two-dimensional embedding
of a graph, e.g., as a set of nodes and edgesfFig. 1sedg. This
approach has been found useful in the case of soap foams.
The graph represents the topology of the pattern and can be
detected by traditional image processing tools. In the case of
the crack pattern, however, this representation is somewhat
artificial since the fractures are decomposed into parts of
fractures. In order to reconstruct the continuous fractures we
can take into account the angles at each node: the two edges
that form locally an angle close to 180° belong to the same
fracture. In practice, we used an image processing that has
been developed for a different purposef19g and that detects
the topology automatically and measures the local angles.
Using the 180° criterion, we paste the edges together and
obtain the fractures as continuous linesfFig. 1sfdg. One can
verify that these lines actually correspond to the cracks as
they were observed during the formation process.

Cracks of higher temporal order join cracks of lower tem-
poral order with,90°. We can consider inversely this prop-
erty at the nodes as the indicator of a geometrical hierarchy
between the cracks. They are indicated by the arrowheads in
Fig. 1sfd. Using these local relations, we define global geo-
metrical orders to each fracture by recursion. Cracks of geo-
metrical order one do not connect to any other crack; their
extremities are outside of the observation window. Cracks
which end on first order cracks are called second order. In

general, a crack of ordern ends at least at one of its extremi-
ties at a crack of ordern−1. In this way, we obtain in our
example cracks of four distinct geometrical orders. They are
shown in Fig. 2.

Compared to the 28 temporal orders, the number of de-
tected geometrical orders is lower. Furthermore it may occur
that a crack of higher geometrical order is older than a crack
with a lower temporal order. It is thus not possible to recon-
struct the temporal succession of the cracks by means of the
geometrical criteria used. The origin of this apparently dis-
appointing fact is nevertheless the physics of the system. A
fracture divides the entire layer thickness. Since the substrate
can be considered as infinitely rigid, the layer on one side of
the fracture is then entirely decoupled from the layer on the
other side. Since the fractures formed in different domains
are independent, there exist no geometrical criteria to recon-
struct their successive order. The lower number of temporal
orders of cracks reflects this independence. This observation
is the basis of the following section.

The hierarchical order of the fractures is paired with their
succession, which is particular to this cracking regime. This
is illustrated by the counterexamples shown in Fig. 3 where
the crack orders are undefined. In Fig. 3sad, three cracks
nucleate in a starlike formation with relative angles of 120°.
These nucleations occur mainly at material defects in very
thin layerssseef7,8gd and there is neither a temporal succes-
sion of the cracks nor a local geometrical hierarchy. In Fig.
3sbd, three cracks form a turning loop in the glaze of ceram-
ics. According to our analysis, the fracture L1 should be
younger than the fracture L2, which is younger than L3,
itself younger than L1. We do not understand the origin of
this paradox; the cracks in the glaze of ceramics propagate
very rapidly and their nucleation is very sparse. Possible ex-
planations for this loop may be that the formation of these
three cracks was triggered by an external event, or that for
some reason, the crack propagation has slowed down in such

FIG. 1. sad–sdd Photographs of the formation of a crack pattern.sed The representation of the final patternsdd as an embedded graph. The
disks represent the nodes, the lines the edges.sfd The reconstructed cracks. The arrow heads indicate the geometrical hierarchy relation
between them.

FIG. 2. The geometrical orders of the cracks. From left to right:
First, second, third, and fourth orders. The cracks of lower orders
are drawn in gray.
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a way that the cracks are no longer to be considered as suc-
cessive. However, although we searched for further examples
in all ceramics observed over a period of more than one year,
we found none. The image thus presents a very particular
exemption, at least in the glaze of ceramics. However, the
failure of the concept of geometrical orders is in both cases
due to a different physical regime, where the fractures are
not formed in strict succession.

IV. THE GENEALOGICAL TREE OF DOMAIN DIVISION

A. Construction of the trees

The crack pattern becomes conceptually simpler if we fo-
cus on the domains as the relevant entities rather than the
fractures. Since each crack is connected at its extremities to
other cracks, the resulting pattern is a space dividing struc-
ture. We will call a domain each island that is limited by
cracks. A new crack always divides one domain into two. In
analogy to the biological cell division, we call them, respec-
tively, mother and daughter domains. Since the daughter do-
mains are mechanically separated, cracks formed in different
domains are independent from one another. The way a do-
main is divided depends only on the domain itself and not on
its neighbors.

Since there is no use in relating cracks in different do-
mains, we should find a representation of the structure that
takes the separation in noninteracting subsystemssdomainsd
into account. Let us therefore introduce a representation that
we will call the genealogical tree of domain division. We will
distinguish between the tree constructed on the basis of the
temporal succession of the cracksftemporal tree, Fig. 4sadg
from the tree constructed on the basis of the geometrical
hierarchyfgeometrical tree, Fig. 4sbdg.

Let us first consider the temporal tree in Fig. 4sad. Initially
there is one, nondivided domain. We attribute the generation
zero to this domain and represent it as a disk at the base of
the genealogical tree. The first crack divides this mother do-
main into two daughter domains. They are of generation one
and found on the next level of the tree. The major advantage
of this approach is that we can now consider the two daugh-
ter domains independently, e.g., we can follow the different
branches of the genealogical tree separately. For instance, the

first generation domain found in boxA is subdivided into
two daughter domains. One of those is not divided any more
and appears as such in the final pattern. It is represented by a
number instead of a disk. The domains of the final pattern are
labeled by numbers to allow the direct comparison with the
geometrical tree.

In the temporal tree, a mother domain has exactly two
daughter domains because the cracks are formed succes-
sively. The temporal tree of our example rises up to genera-
tion ten. The domain of the final pattern with the smallest
generation is of generation two. The differences of the
branch lengths are related to a dispersion of the domain sizes
ssee laterd. We shall emphasize that the intermediate do-
mains, represented by the disks, are physical, meaning that
they existed in a stage of the pattern formation.

The geometrical treefFig. 4sbdg is built up in an analo-
gous way, but is based on the geometrical order of the
cracks. Two first order cracks divide the initial domainsgen-
eration zerod into three daughter domainsssee also Fig. 2d.
By contrast to the temporal tree, a mother domain can have
more than two daughter domains. There are thus three
branches connected to the corresponding representative disk.
The three intermediate domains of geometrical generation
one are subdivided into domains of generation two and so

FIG. 3. Two cases where the introduced description must fail.
sad A triplet of cracks is formed at a defect of the layer.sbd Three
fractures form a loop.

FIG. 4. The genealogical trees of domain division:sad estab-
lished on the basis of the real temporal evolution;sbd established on
the basis of the geometrical hierarchy. The generations of the do-
mains are indicated on the left. The black disks represent interme-
diate domains; the numbers represent the undivided domains as
they appear in the final pattern.
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on. In the example under consideration, there are no domains
with a geometrical generation higher than four. The fact that
the number of geometrical generations is much lower than
the number of temporal generations is mainly due to the fact
that a mother domain often has more than two daughters in
the geometrical tree.

B. Comparison between the temporal and the geometrical
trees

For a more detailed comparison between the temporal and
the geometrical trees, let us consider the branches in the
boxesA, B, andC of Fig. 4 in the two trees. For simplicity,
instead of dealing with the total experimental pattern, we
sketched the corresponding generic configurations in Figs. 5
and 6.

The branches in boxA in Fig. 4 are identical in both trees.
This situation corresponds to Fig. 5sad. The case is different
for the branches inB. They are similar, but we note that two
intermediate domains in the temporal tree have collapsed to
form onefarrow in Fig. 4sadg. Figure 5sbd illustrates the geo-
metrical reason. A domain is successively divided by two
cracks into three domains. Since the second crack does not
meet the first one, there is no geometrical indicator on the
basis of the final pattern, that determines which one was first.
From the geometrical point of view we have to consider the
two cracks as equivalent; the initial domain is divided into
three daughter domains as shown by the geometrical trees at
the bottom of the figures. The two possible formation histo-
ries that lead to the same final configuration have different
temporal trees, and furthermore, they are not physically
equivalent. Since both cracks are formed in the same do-

main, the first one could have had an impact on the second.
Note that the lack of information in the geometrical tree is
due to the collapse of the two intermediate domains by the
shrinking of the dashed segment in the temporal trees. Fur-
thermore, the domains on the basis of the geometrical as well
of the temporal tree correspond to the initial domain that is
physical.

Let us now consider the branchC in Figs. 4sad and 4sbd.
They are different and, in contrast to the previous case, it is
not possible to pass from the temporal tree to the geometrical
tree by collapsing intermediate domains. The origin of the
problem is explained in Fig. 6. As in the case in Fig. 5sbd, the
two cracks that divide the initial domain do not meet and
there is no geometrical indication to distinguish their orders.
In such a tricky casesad, this ambiguity leads to an error in
the reconstruction of the domains. For this possible forma-
tion history, the intermediate domain represented by the open
circle on the bottom of the figure has never existed and is an
artifact of the construction. Nevertheless, we should consider
this case as an exception.

C. Number of neighbors and number of sides

We should also discuss how the topology of the network
evolves during the succession of domain divisions. In the
context of foams, the topology is often represented by the
dual graphsFig. 7d. The vertexes of the dual graph represent
the domains, the edges indicate the first neighborhood. A
crack divides a domain and thus splits the corresponding
vertex in the dual into two. Let us denote byn the number of

FIG. 5. sad The generic case: the temporal and the geometrical
trees are identicalsdrawn on the rightd. sbd Two different succes-
sions with distinct temporal treesson the rightd lead to the same
final pattern and thus to the same geometrical treesat the bottomd.
The geometrical tree can be obtained by fusing the intermediate
domains in the temporal tree.

FIG. 6. Three possible successions leading to the same final
pattern. Its geometrical tree is given at the the bottom, the different
temporal trees on the right. The differences between casessbd and
scd are analogous to the casesbd in Fig. 5; the geometrical tree can
be obtained by collapsing the points. In casesad, the intermediate
domain indicated as an open circle in the geometrical tree is an
artifact of the construction since it has never existed in the
formation.
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neighbors of the mother domain. Two of its neighbors are
neighbors of both daughter domains, while the othern−2
neighbors are distributed among the daughters. Taking into
account that the sisters are neighbors, too, the number of
neighbors of daughterssna,nbd and mother are related by

na + nb = n + 4. s1d

We must not forget that the number of neighbors of the do-
mains that are shared neighbors of the daughter domains also
increases:

ni → ni + 1,

nk → nk + 1. s2d

The topology of the space-dividing pattern is often described
in terms of the topological charges of the domains. The to-
pological charge of a domaini with ni neighbors is defined as

qtopo,i = 6 −ni . s3d

Equationss1d and s2d thus present the conservation of the
total topological charge. The average number of neighbors in
an extended pattern withN domains can be written as

knl =
1

No ni = 6 −
o qtopo,i

N
. s4d

Since the total topological chargeoqtopo,i is conserved during
the domain division, the average number of neighbors must
converge to six by 1/N. This is a particular demonstration of
a very general result. The average number of neighbors in an
extended network, hierarchical or not, must be six. It is a
consequence of Euler’s theorem on topology.

The numbers of neighbors are, however, not a good pa-
rameter to describe the structure of the crack network. We
argued above that the domains after division become physi-
cally independent. The formation of a crack in one domain
does, however, change the number of neighbors of the adja-

cent although independent domains. In the genealogical tree,
these domains are found on different branches, and a mean-
ingful parameter should display a corresponding indepen-
dence.

The dynamics of the crack pattern is not governed by
neighborhood relations, but by the shape of the domains. The
shape of the domain defines the boundary conditions of the
stress field in which the next fracture is nucleated and propa-
gates. A simple parameter to describe the cell shape is its
number of sides. We understand here a side as the part of the
domain contour between two wedge-shaped singularities. A
side can be curved, but its curvature is continuous. In par-
ticular, the 180° angles corresponding to fractures in neigh-
boring domains do not present singularities in the cell shape.
We do not account for them in considering the shape of the
domains. The undivided domain on the left hand side of Fig.
7 is four sided while it has seven neighbors.

The concept of the successive domain division and the
genealogical tree allows a direct understanding of the num-
ber of sides, which has to be four on averagef20g. As shown
in Fig. 8, four-sided domains can be divided either into two
four-sided domains, or into a three- and a five-sided domain.
A triangular domain can be divided only into a quadrangle
and a triangle. The number of sides of the “daughter” do-
mainssa andsb are in general related to the number of sides
of the “mother” domains by

sa + sb = s+ 4. s5d

Introducing by analogy to the topological charge ageometri-
cal chargeby

qgeo= 4 −s, s6d

Eq. s5d presents a conservation law in the genealogical tree:

qgeo,a + qgeo,b = qgeo. s7d

In contrast to the topological charge, the division of a do-
main does not affect the geometrical charges on the other
branches of the genealogical trees. The average number of
sides can be written in terms of the total geometrical charge
Qgeo=oqgeo,i:

FIG. 7. Illustration of how a new fracture affects the topology of
the network.sad The new crack is added. The dashed lines represent
the dual graph.sbd The addition of the new crack in the dual graph.
n is the number of neighbors of the mother domain,na andnb the
number of neighbors of the daughter domains. We must also ac-
count for the change of the number of neighbors of the adjacent
domainsni andnk.

FIG. 8. The possible divisions of a triangle, a quadrangle, and a
pentagon. The numbers indicate the geometrical chargesqgeo of the
shapes.
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ksl =
1

No si = 4 −
Qgeo

N
. s8d

In an extended pattern, it converges to four. The typical do-
main shape in the hierarchical crack pattern is therefore the
quadrangle.

The conservation of the geometrical charge is one of pos-
sible conservation laws associated with genealogical trees.
Another, trivial one is the conservation of area: the sum of
the areas of the daughter domains is equal to the area of the
mother domain.

D. Application to an extended crack pattern

We described above an experiment using the drying of a
latex gel because it lent itself to following the formation
process. This experimental setup is, however, limited be-
cause of the camera field. In order to consider a more ex-
tended pattern we analyzed the cracks in the glaze of a
square ceramic plate shown in Fig. 9. Here, the formation of
each crack is accompanied by a “click” sound. The temporal
spacing between is in the order of seconds or minutes and
thus much larger than the duration of the emitted sound. We
could hence suppose that the condition of succession is
clearly fulfilled. Since we are not able to follow the forma-
tion processsmost cracks are formed in the cooling oven and
are only visible later, after being colored with inkd, we base
our analysis on the geometrical tree which we constructed
manually. In contrast to the gel experiment, the initial do-
main is given by the initial sample and not by the camera
field.

The pattern is composed of 1620 undivided domains. Fig-
ure 10 shows the histogram of the domain generations. The
open circles in the figure correspond to the undivided do-
mains such as they appear in the final pattern. The distribu-
tion is quite large and irregular: most domains are of genera-
tions between four and 12. This is remarkable because if
each domain in the formation process is divided into two

approximately equal domains, one would expect that the fi-
nal domains would be all of approximately the same genera-
tion. The reason this is not the case can be understood by
considering for instance the division of the first domain. We
emphasized the fractures which divide it in Fig. 9. Some of
the daughter domainssdomains of generation 1d are very
small and are not much further divided. Let us also briefly
consider all domains of the formation process, divided or not
scontinous line in the figured. In the temporal tree, each
mother domain is divided into two daughter domains. Before
reaching a cutoff due to the characteristic size of the final
domains, one expects that the number of domains will in-
crease like 2g sg is the generationd. However, in the geo-
metrical tree, a mother domain is divided into two or more
daughter domains. Assuming some regularity in the division
process we would expect nevertheless an exponential in-
crease likeag with a*2. Such an exponential behavior is not
observed in the data.

V. CONCLUSION

By contrast to soap foams and similar space-dividing pat-
terns, there exists a crack morphology with an apparent hi-
erarchical structure. We can consider the crack patternsas is
observed in the glaze of ceramicsd as the model system for
hierarchical space divisions. We introduced the concept of
successive domain divisions and its representation by the
genealogical trees as a framework for the comprehension of
these patterns. By comparing the trees constructed on the
basis of the formation processstemporal treed and on the
geometry of the final patternsgeometrical treed, we showed
that sin the discussed limitsd it is possible to reconstruct the
relevant history by considering the finished pattern. This
demonstrates that the formation process has its clear signa-
ture in the final geometry.

FIG. 9. A crack pattern in the glaze of a ceramic plate. The
cracks of first geometrical order are emphasized manually.

FIG. 10. The histograms of the domain generationsin linear and
logarithmic scaled. Open circles: undivided domains. Disks: divided
domains. Line: all domains. The total number of domains is 1620.
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The formation process of the pattern is restrained by con-
servation laws associated with the genealogical tree. The
conservation of the geometrical charge determines the aver-
age number of sides of the domains. It has to be four. This
can be easily verified by counting the number of sides in an
extended pattern. Former studiesf7,8g in similar systems
have shown that the final domains have a well-defined char-
acteristic size. A first analysis based on the proposed frame-
work of an extended pattern in a ceramic plate revealed nev-
ertheless that the generations of these final domains have a
wide and irregular distribution; the genealogical tree has
branches of very different lengths. They are the result of
asymmetric domain divisions where one daughter is much

larger than the other. As we will show in paper II, this asym-
metry is only observed at large scales and vanishes at small
scales. We investigate therein the division of controlled do-
mains. This study is directly based on the concept of succes-
sive domain divisions, which enables us to understand this
complex pattern by studying of the divisions of single
domains.
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