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We introduce a relaxation algorithm to estimate approximations to generating partitions for observed dy-
namical time series. Generating partitions preserve dynamical information of a deterministic map in the sym-
bolic representation. Our method optimizes an essential property of a generating partition: avoiding topological
degeneracies. We construct an energylike functional and use a nonequilibrium stochastic minimization algo-
rithm to search through configuration space for the best assignment of symbols to observed data. As each
observed point may be assigned a symbol, the partitions are not constrained to an arbitrary parametrization. We
further show how to select particular generating partition solutions which also code low-order unstable periodic
orbits in a given way, hence being able to enumerate through a number of potential generating partition
solutions.
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I. INTRODUCTION

When a chaotic signal is measured experimentally it rep-
resents a challenge to the experimenter. Compared to regular
systems, chaotic systems are more difficult to model, and, if
a prior model exists, care must be taken when comparing it
to the data. We would not expect the output of the model to
agree exactly with the measured data—as small initial uncer-
tainties in the data will exponentially grow until any two
trajectories are completely dissimilar. Instead of a direct
comparison, often we try to reconstruct the dynamics from
the data and compare this to the model. There are many ways
to try to reconstruct the dynamics, one important way is to
look at symbolic dynamics, where the dynamics is described
by transitions between a finite set of symbols.

The general concept of symbolic dynamics is to partition
the state space into a finite number of nonoverlapping re-
gions, with each region colored with a different symbol. Or-
bits in the continuous state space correspond to sequences of
symbols drawn from a finite alphabet. The evolution operator
of the dynamics becomes merely a “shift operator” in sym-
bolic space, moving the “point” one step into the future
along a countable sequence of symbols. Topological consid-
erations in the continuous space turn into grammatical con-
siderations in the symbolic space, concerning the presence or
absence of legal transitions and various “words” occurring in
the symbolic sequence. By reducing the dynamics this way,
many sorts of analysis of the dynamics, both theoretically
and for observed time series, become much simpler, espe-
cially in opening up opportunities from information and
communication theory. In addition, the theoretical study of
symbolic dynamics has been quite active, and there has been
much work connecting the symbolic dynamics to the un-
stable periodic orbits in the attractor.

We assume that the deterministic dynamics are either al-
ready a mappingxi+1= fsxid, or have been so projected by a

Poincaré section. Here we shall also assume thatfsxd is in-
vertible; although the methods described here can easily be
extended to noninvertible systems. A partition, denoted asP,
defines a discretization of the observed sequence’s state
space, and hence a projection to a sequence of symbols,si
=Psxid, i =1¯N wheres is drawn from an alphabet of size
A, sP0,1¯A−1. Each region of the partition carries the
“code” for a particular symbol in the alphabet, and defines
the transformation from points in the state spaceswhich fall
inside only one partition element eachd into symbols. Note
that the partition can have multiple disjoint regions for the
same symbolic code.

Imagine a bi-infinite orbit of the dynamicsxi, i PZ. Given
a partitionP, we find not onlysi =Psxid, but also the symbols
of all the future and past iterates ofxi, yielding bi-infinite
symbol sequenceSi centered around time pointi,
Si =f¯si−2si−1·sisi+1si+2¯ g. In the symbolic space, the ana-
log of the dynamical operatorf is the shift operators, Si+1
=ssSid, which moves the pointsthe marker for the current
timed one step to the right. By adding a metric and excluding
a set of symbol sequences which are forbidden in the dynam-
ics, theSi live in a shift space, the symbolic analog of the
dynamical state space. We can define a partition-dependent
mapfPsxd from the originald dimensional state spaceRd to
the shift spaceS which contains theSi. S is a subset of the
space of all possible bi-infinite symbol sequences. For agen-
erating partitionfP is injective f1g except for a set of mea-
sure zero, i.e.,fPsxd=fPsx8d implies x=x8. As x=x8 im-
pliesfPsxd=fPsx8d as the partition is deterministic,fPsxd is
a homeomorphism.

We desire that ififPsxd−fPsx8di is small, so isix−x8i.
With finite data, we cannot take limits to zero, but we may
attempt to minimize close distances. By construction, suffi-
ciently near points inRd have close symbolic sequences in
their most significant digits, except near partition boundaries.
Additionally, in a good partition nearby points inS remain
close when mapped back intoRd. By contrast, bad partitions
induce topological degeneracies where similar symbolic
words map back to globally distant regions of state space, the
problem described in Ref.f2g. The mapfP

−1 is no longer one
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to one. Conceptually, as we add symbols to our symbol se-
quence, we ought to localize down to smaller and smaller
regions of state space—with an improper, nongenerating,
partition, this will fail to happen even with increasingly long
amounts of data.

For noninvertible one dimensional maps, the generating
partition sGPd can be easily found with known results. A GP
exists with partition boundaries at the critical points of the
map. For nonhyperbolic higher-dimensional systems it has
been conjectured that the partition line is along the ho-
moclinic tangencies, points where the stable and unstable
manifolds are tangentf3g. However, this is still not suffi-
ciently constraining, and not all such choices yield valid par-
titions f4g. In addition, the tangencies can be difficult to lo-
cate, especially from observed data alone. Locating the
homoclinic tangencies requires accurate estimates of the de-
rivatives. This can be quite difficult in the situation we ad-
dress herein, when we only have a time series, and the equa-
tions of motion are not available. There exist methods of
connecting the tangencies which will create generating par-
titions f4g; however, these require the location of tangencies
outside the attractor to be known. These would be particu-
larly hard to find from a time series.

Davidchacket al. f5g and Plumecoq and Lefrancf6g pro-
posed schemes to estimate a generating partition based on
the unstable periodic orbitssUPOsd of the system. Under a
generating partition, each point in the attractor defines a
unique bi-infinite symbolic sequence. Thus each UPO should
have a unique periodic symbolic sequence. An approximate
generating partition can thus be constructed by successively
assigning symbols to regions near UPOs of increasing order
so that distinct UPOs give distinct symbolic codes. A gener-
ating partition for the Ikeda attractor, using the equations of
motion, was found in Ref.f5g. Unfortunately, these methods
can present difficulties with realistic experimental data.
While it is possible to find UPOs from a time seriesf7–10g,
it is often difficult to find the UPOs with sufficient accuracy
and quantity to apply the methods in Ref.f5,6g. Most UPO-
locating methods use the points in the time series to create a
model of the dynamics and then find UPOs from the model.
However, an accurate model requires a large amount of
rather noise free data. In particular, with noisy, finite length
time series, it is especially hard to find the high period orbits
which are necessary to localize the partition boundary.
Plumecoq and Lefrancf6g were able to find a partition from
a clean laser time series in this manner, but, in situations
where the amount of data is more limited, we believe alter-
nate methods to directly estimate the partition without going
through the UPOs are needed.

Our approach to find approximate generating partitions is
to search for a candidate partition such that the implied map
from the shift space containing the symbol sequences to the
observed continuous space data is approximately homeomor-
phic. The desired goal, satisfied by a generating partition, is
thatshort sequences of consecutive symbols localize the cor-
responding continuous state space point as well as possible.
Equivalently this says that nearby symbol sequences should
correspond to nearby points in state space. Otherwise, the
partition will map two similar symbol sequences to remote
parts of the attractor, an improper topological degeneracy. In

the usual circumstance that the observed points come from
stationary ergodic dynamics, i.e., the natural measure, one
cannot make estimates of the partition boundaries outside the
attractor from the observed data alone.

In our previous workf11g we showed a concrete algo-
rithm and partition representation for estimating generating
partitions with that criterion. Here, we improve upon that
method in a number of ways. First, we employ a time-
symmetrical symbolic metric which is also one typically
used in theoretical symbolic dynamics. Second, we now in-
dividually assign every observed point to a symbolic code,
meaning that there are no artificial boundaries imposed by a
particular choice of empirical basis functions which were
used to parametrize the partition in Ref.f11g. Third, we de-
fine appropriate neighborhood sizes automatically and adap-
tively with a model weighting inspired by the minimum de-
scription length principle for statistical model selection.
Fourth, we use an optimization metric which is in the form
of a separable energylike functional, which in turn permits
using recently developed optimization algorithms inspired by
problems of statistical mechanics: we stochastically relax
from higher energy states and poor partitions to lower energy
states and good partitions. Finally, we show how the user
may optionally fix the symbolic coding of lower-period
UPOssthe easiest to locate numericallyd, in order to prefer-
entially select the different generating partitions compatible
with those various codings. As there is no unique generating
partition for any system, it may be desirable to impose addi-
tional constraints to choose one of the multiple valid solu-
tions. In other words, we can enumerate over a certain num-
ber of different generating partitions according to the codes
they assign to low-order UPOs, as long as these UPOs lie
close to the observed data.

II. STATISTICAL PARTITION REFINEMENT

We first outline the general approach of our algorithm. In
subsequent subsections we provide additional details regard-
ing its specific steps.

Recall that we have a time series of pointsxi PRd, and we
wish to assign symbolssi to each observed point. We want to
choose a partition where neighbors in the symbolic represen-
tation S are neighbors in continuous state spaceRd. To do
this we need to define what we mean by “neighbors inS,”
and then optimize the partition to best satisfy this criterion.
We view the problem as similar to finding a ground state of
a spin glass in statistical mechanics. Each point is assigned a
configuration-dependent energy: points whose symbolic
neighbors are close physical neighbors are given lower en-
ergy. The optimal partition is defined as the configuration of
si which yields the lowest global energy. It is analogous to a
spin glass because the total energy Hamiltonian is separable,
but there are global configuration interactions. In addition,
naive local minimization of energy need not lead to the glo-
bal minimum.

The notion of distance in the original continuous state
space is usually already obviousswe use Euclidean distances
in this workd, but we must define “close” for symbolic se-
quences. We want neighboring symbol sequences to share a
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large central block: symbolic neighbors should have the
same symbolic future and past for some finite number of
steps. Previouslyf11g we defined a metric between symbol
sequences by embedding the symbol sequences inS into the
pointsy in the unit squaref0,1g3 f0,1g:

yi = So
k=1

kmax

si−sk−1d/A
k, o

k=1

kmax

si+k/A
kD . s1d

Now iyi −yji defines the distance between pointsSi andSj in
the symbol space. This gives a metric onS and a useful
visual representation, but it has undesirable properties. For

example, the sequences 1.000¯ and 0.111̄are close in this
metric even though they have no symbols in common. We
use the notations̄ to mean that the symbols repeats to infin-
ity. We can use a Gray coding to fix some of these problems,
but even with Gray coding some neighbors are still nonopti-

mal. For example, the symbol sequence 1.000¯will be closer

to the sequence 1.100¯ then the sequence 1.110¯ is even
though it differs from both in the second symbol.

A traditional metric used in the theoretical study of sym-
bolic dynamicsf12g is

DsS1,S2d = H2−k if S1 Þ S2

0 if S1 = S2
,J s2d

where k is the largest integer such thatS1skd=S2skd and
S1s−kd=S2s−kd and with the conventionk=−1 if S1s0d
ÞS2s0d. In essence, this measures the number of symbols
that are the same in the central block, with no effect from
symbols after the common central block. We can easily see
that this satisfies all the usual requirements for a metric:
DsS1,S1d=0, DsS1,S2d=DsS2,S1d, and the triangle inequality
DsS1,S2d+DsS2,S3dùDsS1,S3d. Under this new metric, the

sequences 1.110¯ and 1.100̄are now equidistant to the se-

quence 1.000̄. The Gray coding used in the implementation
of f11g becomes unnecessary. Now, by definition, the dis-

tance between the sequences 1.00¯ and 0.11̄is maximal as
they share no symbols. The downside is that the projection of
a symbolic time series into symbolic space cannot be graphi-
cally displayed in an intuitive manner.

After defining what we mean by close neighbors using
Eq. s2d, we can look for a good partition. Previouslyf11g, we
defined a cost function which measured the number of points
which the partition did not localize wellswhere the state
space distance to their symbolic neighbors was larged and
minimized it using differential evolutionf13g, an algorithm
for global multidimensional optimization in continuous
spaces which does not require derivatives. A flaw of that
approach is that the partition was defined by a small set of
radial basis functionssRBFsd. The number of those was an
external arbitrary parameter, and their centers and strengths
the free optimization variables. Unfortunately, the complex-
ity of the representable partition boundaries was limited by
the number of RBFs used. Using too many RBFs made the
optimization problem significantly slower and less likely to
find a near-global minimum, i.e., the estimated partition

could often be worse than using a smaller representation,
even though the larger RBF basis set could be more flexible
in representing partition boundaries.

The alternative we presently employ is to define an energy
functional upon the full configuration space—assigning indi-
vidual symbols to every observed point—which we mini-
mize to find the estimated partition. As in a spin glass or
Ising system, we assign a local energy to each point. Also,
like a spin glass, changing the configuration of any point not
only affects the energy of that point but also the energy of its
interacting points, so that the energy function is global. There
now exist several good stochastic techniques for minimizing
energies of state of spin glasses and similar combinatorial
optimization problems. An optimization method we have
found to be suitable for our problem is calledt-extremal
optimizationst-EOd f14g, applicable to any discrete optimi-
zation problem whose cost functionH is separable, i.e., can
be written as a sum of local energy interactions:

H = o
i=1

N

Hissi,hsjjd, s3d

for spin glasses, e.g.,Hi =sio jJijsj, with si the spin of particle
i and Jij the interaction matrix. Neither of the global error
function statistics we used in Ref.f11g is of this form.

We want our energy statistic to be a measure of thesym-
bolic false nearest neighborssSFNNd: points which are
neighbors in symbol space but not in state space. This is in
the spirit of the false nearest neighborsf15,16g statistic used
to find embedding dimension: both count large-deviation
“mistakes” in a related space which result from topological
misembedding in the tested space. The natural local energy
term is hence a measure of this mismatch. We start from an
initial assignment of symbols to all points. Define

Di,a = ixi − xNasidi. s4d

HereNasid means the index of the nearest symbolic neighbor
of Si, given thatsi =a, and all other symbols in the time
series are unchanged. We shall discuss the case where there
is more than one near neighbor with the closest distancesin
symbol spaced later in the text.Di,a is the mismatch induced
by havingsi set to symbola in the context of a fixed back-
ground. It turns out that defining the local energy as the
difference relative to the existing configuration works better
than the absolute energy measure. The local energy for point
index i is

Hi,a = max
bÞa

sDi,a
2 − Di,b

2 d, s5d

the difference induced by flippingsi from its current assign-
ment si =a to the best of all the alternatives. Asa is the
current symbol of point indexi we can write this as justHi.
The global energy isHSFNN=oiHi. This has the feature that
points which contribute the most to the energy are, by defi-
nition, the points which would reduce the energy the most if
their symbols are changed. Over a binary alphabet the maxi-
mum reduces to simply the difference between the squared
distances using the two symbols insi. This relative energy
breaks the analogy to physical spin glasses somewhat but
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improves the optimization performance. In sum, optimizing
the empirical partition is minimizingHSFNN over the configu-
ration, the assignment of symbols to each observed datum.
By attempting to minimize the corresponding difference in
continuous space when symbolic distances are small, this
drives the partition implied by the current configuration
closer and closer to injectivity.

A. Neighborhoods in symbolic space

Once a metric has been imposed onS via Eq. s2d we can
use it to find nearest neighbors. As the distance only depends
on the number of common symbols in a central block, the
structure of metric naturally leads to the construction of a
symbol tree. This will find symbolic neighbors in order logN
time with construction of the tree takingN log N. Except for
the root, every node of the tree hasA2 children, contains
some number of points from the time series, and is given a
symbolic label; the root only hasA children. In the root node
we place all of the points of time series. Its children are
given labelss0P0¯A−1 and contain the points such that
si =s0. Their children are given labelss−1s0s1:s±1P0¯A
−1 and contain the pointssi−1sisi+1=s−1s0s1. The next layer
of children looks at the next symbol on both sides and has
labels s−2s−1s0s1s2 and contains the points such that
si−2si−1sisi+1si+2=s−2s−1s0s1s2. This continues for as long
as there are points from the time series to populate the child
nodes. For an example of the tree with a binary alphabet, see
Fig. 1.

This structure makes it very easy to search for all points
which are symbolic neighbors of any given point. All that
needs to be done is to descend the tree to the node before the
terminal nodeswhich would be a solitary node containing
only the index point we are searching aroundd. All the other
points in this node are the symbolic nearest neighbors ofSi
under the metric given by Eq.s2d. Unlike the metric used in
Ref. f11g it is likely there are multiple equidistant nearest
neighbors. Given two symbol sequencesSi and Sj which
share a central block, if a third sequenceSk also has that
central block, then all three sequences are equidistant under
this metric. One obvious way to account for this phenom-
enon is to take all the symbolic nearest neighbors into ac-
count. We find their centroidxc in the continuous space, and
using that in Eq.s6d to define the distance to near symbolic
neighbors:

Di,a = ixi − xc,asidi. s6d

We define the listNasid j to be the indexes of all the symbolic
neighbors around pointi, and the indexj runs between one

and NN, the number of symbolic neighbors. The centroid is
then

xc,asid =
1

NN
o

j

xfNasid jg. s7d

For a good partition, the neighborsNasid j define a closed
region in state space which containsxi, so the distance be-
tweenxi and the center of the region will be small.

In practice we need to define a maximum time difference
k to distinguish pointsS; if k is sufficiently large then we can
guarantee that with finite data all symbolic points are distin-
guished by looking at blocksf−k,kg around the center point.
One small technical problem is how to treat the beginning
and end of the time series. In order to create the tree, all
points must havek future iterates andk past iterates. The first
and lastk points cannot simply be ignored, for a correct
symbol must be assigned to them. Our solution is to add
ghost points to the beginning and end of the time series. The
nearest neighbor to pointx1 is found, and, for purposes of
creating the symbolic tree, it is assumed that the pointx1 has
the same symbolic past as its nearest spatial neighbor. The
same is done for the last point in the time seriesxN; it is
given the same symbolic future as its nearest neighbor. If the
partition is close to generating, then we expect that a point
should have a very similar symbol sequence to its neighbors.
Adding these ghost points does introduce small errors, but as
long asN@2k this can safely be neglected. Typically, we
choosek so that A−k is near the computational numerical
precision.

B. Spatial smoothing

The optimization procedure that we use can often produce
partitions whose boundaries are not smooth. A smooth parti-
tion is desirable as it meansfP

−1sxd is also well behaved—we
expect that the pointsxi and x j have similar symbol se-
quences forixi −x ji small enough. We can cause the algo-
rithm to favor partition boundaries by smoothing the raw
Di,a

2 with the Di,a
2 of the points neighbors in the continuous

space, and using that in the optimization criterion. LetNssid
be the list of spatial—not symbolic—neighbors to the point

xi. The squared distancesD̃2 are smoothed by a kernelK:

D̃i,a
2 =

oNssid KsxNssid
− xidDNssid,a

2

oNssid KsxNssid
− xid

. s8d

We would like a kernel which decreases for larger distances
and also has finite support, so that we only need to sum over
a finite number of neighbors. One such frequently used ker-
nel is the Epanechinov polynomial kernelf19g,

Kszd = 1 −
uzu2

RK
2 . s9d

HereRK is the size of the kernel, which is a free parameter.
This kernel is often used for density estimation. As they do
not change during the optimization, the nearest neighbors in
state spaceNssid to each point and the associated kernel

FIG. 1. The symbolic tree for a binary alphabet. Shown are the
labels of each node, where the bold faced symbols are the symbols
that have been added to the node. Contained within each node are
all the points whose symbolic codes match the label.
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weights need only be computed once, at the beginning of the
minimization. The standardk-dimensional tree algorithm
f20g can be used to find the spatial neighbors within the
support of the kernel.

We wantRK to scale with the size of the attractor. We first
find the cumulative distribution ofrandom two-point dis-
tancesixa−xbi for the time series. We then chooseRK such
that only a small fractionh of the random two point dis-
tances are smaller. Hereh is a free parameter that we shall
discuss in Sec. III, typicallyh<0.05, meaning that typically
the local smoothing is over 5% of points.

After the distances are smoothed, we construct the cost
function by assigning a local energy or fitnessHi slarger is
worsed to each point:

Hi = max
bÞa

sD̃i,a
2 − D̃i,b

2 d. s10d

This quantifies the appropriateness of the current symbol
choicessi =ad compared to alternatives. For a binary alpha-
bet, this simply reduces to the difference between the current
symbol and the flipped symbol. The total cost function is
then simply

HSFNN= o
i=1

N

Hi . s11d

With the addition of smoothing, this is the same as Eq.s5d
and thus appropriate for energy minimization techniques.

C. Combinatorial optimization

Once a metric has been defined on the symbol space, we
can define a cost function, the minimum of which is our
approximate generating partition. However, finding that
minimum is a difficult computational problem: a naïve brute
force approach would takeAN operations. Previously, in Ref.
f11g we made the search for good partitions computationally
feasible by defining the partition with respect to anad hoc
parametrization employing a few radial basis functions
whose centers can move continuously around the attractor.
That parametrization was less flexible than our current
method, in that there were only a finite number of centers
which could define the partition boundary to limited accu-
racy. In the present work, we have the freedom to assign any
symbol to every observed point, allowing nearly arbitrary
partition shapes. Ordinarily that would result in a very diffi-
cult optimization problem. The spatial smoothing we apply
biases towards more continuous partition boundaries, and
also smoothes the energy landscape. This tends to makes the
optimization problem easier, as there are now fewer local
minima in which it can be trapped.

We now wish to assign a symbol to each point in the time
series such thatHSFNN is minimized. At this stage any global
combinatorial search method may be employed. We describe
herein the one we used which empirically gave successful
results with computational efficiency, but do not make claims
about its superiority over other methods. We search for the
best symbol assignment with a stochastic search methodf14g
calledt-EO, or “t-extremal optimization,” based upon ideas

from nonequilibrium statistical mechanics as opposed to the
equilibriumlike principles of simulated annealing. In the
most naïve version of this algorithmsextremal optimizationd,
the fitnessHi is computed for each point, and the largest
sleast-fitd Hi is selected for aforced configurational change
sunlike simulated annealingd. The Hi are recomputed given
the new symbol configuration, and the algorithm continues
until it produces a step which increasesoiHi. The limitation
of this deterministic strategy is that it often becomes trapped
in local minima. To find global minima, we ought to occa-
sionally take steps which do not reduceoiHi as well as ran-
domize the perturbations, which is the point oft-EO. First,
let all Hi of the current configuration be sorted in decreasing
order. Instead of always choosing the point with the maxi-
mum local energy to perturbsi.e., H1d, we choose theKth
largest suchHi, drawing a random integerKP f1,Ng from
the power law distribution,

PsKd ~ K−t. s12d

We discuss how to drawK in the Appendix. The symbol
corresponding to the point with theKth largest energy is
flipped to a new configuration, choosing the new symbol
which gives the least local energy—excluding the original
symbol as a legal choice. After that symbol is flipped, then
the point’s fitness is recomputed and the list resorted. We use
the heapsort algorithm so resorting the already mostly sorted
list is fast. For larget, K is nearly always 1, and we have the
original EO scheme. Fort=0, all symbols have equal prob-
ability to be flipped, and the algorithm is equivalent to a
random walk. For 1&t&2 the configuration does a biased
random walk towards our desired solution. As we do not
always flip the symbol which reducesHSFNN the most, we do
not get trapped in local minima as easily. As the distribution
is still heavily weighted towards lowK, we still tend towards
minimizing HSFNN.

Before we compute the cost functionHSFNN, we must first
find the distance in state space from each pointxi to its
symbolic neighbors and computeDi,a, allowing the point to
be each of theA possible symbols. However, when
we change the symbol ofxi we have a potentially serious
problem: the symbol tree can no longer be efficiently
used to find nearest symbolic neighbors. We wish to calcu-
late ixi −xc,asidi for si =0. . .A−1, but when the symbol ofxi

is changed, then the tree that was previously built is no
longer a faithful representation. Recall that when the symbol
si for xi is changed, the symbolic codes of all the pointsSi±k
also change. The tree could be recreated after every single
flip of a symbol; however, that is computationally intensive.

If the number of points in the time seriesN is large, in-
stead of recreating the tree we can take a mean field approxi-
mation and use the tree as it was for a number of iterations.
This is in the spirit of the mean field approach in statistical
mechanics where, say in a spin glass, we neglect the effect
each individual spin has on the mean field when we compute
the energy of the system. Only the interaction of the spin and
the mean field is considered, not how the spin changes the
mean field. In our case, we are neglecting the effect the point
xi has on the partition when we calculateDi,a for that point.
This is only looking at the first order change, and ignoring
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how changing the symbol ofxi affects the symbolic codes of
xi± j and thus how changing the symbol affects the partition.
This will only have an effect ifxi is a symbolic neighbor of
xi+j for u j u,k wherek is the maximum depth of the tree, and
for N@k that should happen infrequently. We attempt to flip
pointsn times before doing a full global regeneration of the
symbolic tree, code lengths, and symbolic neighbors. Ifn is
too small, the optimization will go slowly because it is con-
stantly recomputing all the symbolic neighbors. Ifn is too
large, the mean field approximation begins to break down. In
practice, at each major step in the optimization, we choosen
to be the number of points withHi .0; i.e., the number of
points which locally might seem to benefit from changing
their configuration. This automatically adapts the bundling of
the major iteration so that in a poor initial configuration
smanyHi .0d many local steps are taken at once, but when
the configuration is closer to the optimumsfew Hi .0d the
full global effects are recomputed after a small number of
configuration changes. We further boundn to be in the range
nP fnmin,nmaxg, two user-set external parameters. Typically
we let nmin=1 andnmax=40.

Most of the time, we use a very simple starting and stop-
ping criterion. To start, we typically choose an initial parti-
tion where all symbols are chosen at random. We stop after
the optimization algorithm was iterated a fixed number of
steps. Typically, as a function of optimization step,HSFNN
descends rapidly, and then remains nearly constant. During
this time,HSFNN typically only decreases slightly, if at all. An
example plot ofHSFNN as a function of optimization step is
shown in Fig. 2. The total number of optimization steps is
chosen such that the constant region has been reached, and
the number of steps that have been attempted sinceHSFNN
was last reduced is comparable to the total number of opti-
mization steps.

D. Weighting symbolic neighbors over depths

One remaining question now is how should we terminate
the process of finding symbolic neighbors in this tree? The
obvious choice is to descend the tree as deep as possible; that
is, to the deepest matching node which still has more than
one point. This works well for many cases, but we have
developed an alternative, more sophisticated procedure. This
extra complexity may be optional for some uses, but it holds
some value in improving results.

With a noisy time series, there will be a maximum spatial
resolution of actually useful data. This corresponds to a
maximum depth in the symbolic tree beyond which it does
not make sense to go. In fact, it would actually be detrimen-
tal to go deeper as deeper nodes would contain fewer points
and thus unable to estimatexc as accurately. Also, if the
current partition choice is badswhich it will be at the start of
an optimizationd, descending deeper into the tree will not
necessarily help localize a point better.

Our point of view is to imagine the tree as defining nested
probabilistic models for describing the density of points in
the original state space. At each node we will model the
density of points as a multidimensional Gaussian; for sim-
plicity, a product of 1D Gaussians in each coordinate instead
of a model with a true covariance matrix. Then the free pa-
rameters of this model are the center location and variance
for each coordinate. Each node has a corresponding centroid
which we could use in Eq.s6d. Any symbolic point Si
matches a whole branch of possible nodes, corresponding to
larger and larger central blocks of matching symbols, and
fewer points. Is there an optimalweightingof all those pos-
sible centroids which will automatically have good proper-
ties: properly going down very deep when the localization is
good, and otherwise preferring higher nodesswith more
points and hence better statisticsd when the localization is
poor?

We view this as a general model selection or model
weighting problem which can be addressed with Rissanen’s
f17g minimum description length theory and Bayesian
weighting. At each node of the tree we estimate thestochas-
tic complexityscode lengthd L of the node. This is a measure
of two things: first, how much information it takes to de-
scribe the data described by that nodesi.e., the location of all
points in the continuous spaced relative to the model in the
node. In addition, it includes the amount of information
specifying the model’s parameters itself. In our case, it a
measure of how well the node localizes the points in the
node, with smaller code lengths being superior.

Since we will model each coordinate independently the
local complexities will be additive for each coordinate and
we need to consider one-dimensional distributions for the
moment. The code length of each node for each coordinate is
defined to be

S= − ln E fsxupdp1sp1up,qdp2sp2up,qd ¯ pnspnup,qddp,

s13d

where fsxupd is the likelihood ofx given the modelf and
parametersp, andpispi uqd are some prior distributions of the
parameterspi given some initial estimate of their valuesq.
As a rough approximation, the distribution of the points in
each symbolic region can be approximated as Gaussian with
meanm and variancet,

fsxum,td =

expF−
1

2t
oi=1

n
sxi − md2G

s2ptdn/2 . s14d

This is an approximation to the true distribution, but for our
purposes it will give us good enough code lengths to esti-

FIG. 2. An example of the average distance to the nearest sym-
bolic neighborsHSFNN sdimensionlessd as a function of optimiza-
tion step. We can see that after about step 120, the algorithm no
longer decreasesHSFNN.
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mate reasonable tree weightings. We assume a Gaussian
prior on m centered about some valuep,

pmsmup,td =
e−sn/2tdsm − pd2

2pt/n
. s15d

As usual, we take the variance on the distribution of the
mean to bet /n; i.e., the variance of the mean is 1/n the
variance of the distribution itself. We can use any prior esti-
mate for the mean as the value ofp.

After Rissanenf17g we take the prior ont to be

ptstund =Î 3n

2p
e−s3n/2tdt3/2 s16d

with n as a free parameter. The maximum ofptst und occurs
at n=t, so it is reasonable to taken to be a prior estimate of
the variance of the distribution. Plugging the above distribu-
tions in the definition of the code length, the code length of
each node is given by

S= − lnE
0

` E
−`

`

fsxum,tdpmsmup,tdptstunddmdt. s17d

This can be integrated to give

S=
n + 1

2
lnso sxi − pd2 + o sxi − x̄d2 + 6nd +

n

2
lnSp

2
D

+
1

2
lnS p

3n
D − ln GSn + 1

2
D , s18d

wherep andn are the sample arithmetic mean and variance
of points in the parent node, andx̄ is the arithmetic mean of
points in the current node, all for the current coordinate. The
root node has no parent, so we take its code length to be
infinite. This code length is only for a one dimensional
Gaussian. For higher dimensional distributions, we approxi-
mate the distribution as the product of Gaussians in each
dimension; the total code length is hence just the sum of the
code lengths in each dimensionLn=odSnsdd.

Given a code length for each node, we can use an analo-
gous procedure to the symbolic time series modeling in Ref.
f18g, called therecontext tree weighting, to give a good pre-
dictor. At each noden, define the weighted code length:

Lw = lnSe−Ln + e−Lc

2
D , s19d

where hereLc is the sum of the weighted code lengths of all
the children nodes ofn, Lc=oLwschildrend. For the terminal
nodes of the tree, we setLw=Lc. We can then use these code
lengths to estimate any quantity we wish from the data. In
Ref. f18g they estimated the entropy rates, here we wish to
estimate the position of the centroid. For each node in the
matching branch we can estimate the centroid of the node,
xn, the arithmetic mean of the the points in the node. Then,
for each node, theweightedcentroidxw is

xw = wnxn + wcxwschildd s20d

with weights

wn = e−Lw/se−Lw + e−Lcd, s21d

wc = e−Lc/se−Lw + e−Lcd,

and xwschildd is the weighted centroid of the child node.
Note that we combine centroids from only the single match-
ing child on the branch, but to define the weighting factor we
must sum all children to getLc. We can recursively compute
this weighted average over all nodes that contain the pointxi.
If the partition localizesxi well, then the code length of a
node near the leaves of the tree will be small and the largest
contribution to the centroid will thus be from that node.
However, if the partition is such thatxi is never localized
well, then no node will have a small code length and the
contribution from nodes close to the root of the tree will be
more influential. In practice, we see that most of the contri-
bution to the overall weighted centroid comes from nodes
near the root at the start of the optimization, when it is ini-
tialized with a bad partition. As the partition is refined, nodes
deeper and deeper in the tree become important.

E. Summary of algorithm
1. Find spatial nearest neighbors and kernel weights for

all points xi. Knowing the spatial nearest neighbors forx1
and xN find the “ghost points.” Assign initial symbolssi,
either at random or input from another algorithm.

2. Create the symbol tree from the current symbol con-
figuration, defining thek symbols befores1 and thek sym-
bols aftersN to be identical to the corresponding symbols of
their ghosts.

3. For every node in the tree, compute the code length
summed over all coordinates.

4. For each pointi, temporarily setsi to a and findDi,a,
either using the centroid of the deepest matching node or the
weighted version thereof.

5. SmoothDi,a over continuous-space neighbors using a

Epanechinov kernel to produceD̃i,a.

6. Find the fitness of each pointHi =maxbÞasD̃i,a
2 −D̃ib

2 d
wheresi =a.

7. Sort the fitnesses in descending order.
8. Set the number of symbols to change,n, to be the

number of symbols withHi .0. Subsequently boundn be-
tween somenmax andnmin.

sad Choose an integerK randomly from a power law
distributionPsKd~K−t.

sbd Choose theKth point from the sorted list and

change its symbol froma to b whereD̃i,b=mingÞaD̃i,g.
scd Find the new fitness for this point in the mean

field.
sdd Resort the list of fitnesses.
sed If fewer thann symbols have been changed, then

return tosad.
9. Return to step 2.

III. RESULTS

As the first test of this method we look at the Ikeda map,
defined by
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zn+1 = p + Rzn expSik −
ia

1 + uznu2D s22d

with the standard parameter valuesp=1, R=0.9, k=0.4, a
=6. Taking the real and imaginary parts gives a map inRd.
The partition that we find is given in Fig. 3 on the left. On
the right in Fig. 3, we show the partition found using the
UPOs by the method of Davidchackf5g. To the eye, the
partitions are nearly identical. In Fig. 4 we see intermediate
steps in the optimization procedure which led to the partition
in Fig. 3. Here, the initial partition was a random distribution

of symbols. Near the beginning of the optimization the par-
tition is still mostly random, but it rapidly converges on a
boundary.

To quantitatively test the accuracy of the partition, we
look at the symbolic degeneracy of the unstable periodic
orbits sUPOsd. In a generating partition, each distinct UPO
has a unique symbolic code; this is the basis for the partition
finding scheme proposed by Davidchacket al. f5g. As the
periodp approaches infinity, the number of periodic points of
each period should scale like

Np ~ ehTp, s23d

wherehT is the topological entropy.
As a measure of the accuracy of a partition, we can look

at the mismatch between the topological entropy that we find
and the true topological entropy. All UPOs up to a given
period are calculated from the equations of the map. The
points in the UPOs are assigned the same symbol of the
closest point in the time series. Thus each of the UPOs is
given a symbolic code and the number of unique symbolic

codes is counted. If we seeÑp distinct symbolic codes given
the partition, then the estimate of the mismatch of the topo-
logical entropy is

dhT = lim
p→`

1

p
lnS Ñp

Np
D , s24d

whereNp is the actual number of periodic orbits of periodp.
For a generating partition, all UPOs have unique symbolic
codes, sodhT=0. For partitions which are not generating,
dhT measures the amount of the attractor which is miscoded,
and thus we can use it as a way to validate the partition.
Since the equations of motion are used to find the UPOs, we
cannot usedhT to validate partitions when only a time series
is available. In practice we use orbits with periods up to 15
when evaluating the limit in Eq.s24d. For the Ikeda map the
total topological entropy was estimated as 0.6033, again us-
ing UPOs of up to period 15. Note that this is different from
themetricentropy. The topological entropy is sensitive to the
number of different allowed words, while the metric entropy
also weights the sequences by their probability, using the
Shannon formula.

We checked the metric entropy rate under different parti-
tions using a recently developed Bayesian entropy rate esti-
mator f21g sbased on previous results in Ref.f18gd which
shows low bias. We took 5000 points from the Ikeda map
and found their symbols relative to partitions estimated using
the UPO-based method of Davidchacket al. f5g swhich we
assume is a correct partition up to the resolution of the data
considered, given that the equations of motion were knownd,
and our data-based method operated upon a different sample
of 5000 points. The test time series was symbolized by as-
signing the same symbol as that given to each test point’s
nearest neighbor in the data basespartition generated from
the UPO-coloring algorithm or our data-driven algorithmd.
Partitioning by homoclinic tangency resulted in an identical
symbol stream as the UPO-coloring method. We estimated

an entropy rate ofĥ=0.5206snats/iterationd for symbols rela-
tive to the UPO-based partition, andh=0.5155 with the par-

FIG. 3. sColor onlined Left: partition estimated by optimizing
HSFNN on 3000 data points from the Ikeda map. Right: partition
calculated from the UPOs, numerically extracted from the equation
of motion. The partition we estimate from observed data alone is
quite close to a presumably correct one, calculated from the method
of Ref. f5g. The measure on the two figures is not the same: the left
figure is a sample of the natural measure, whereas the right shows
UPOs up to period 15. They avoid regions of homoclinic tangen-
cies, contributing to the blank spaces.

FIG. 4. sColor onlined An example of the relaxation towards
generating partitions. Panelsad shows the initial random partition.
The subsequent panels show the optimization after 10sbd, 20 scd, 50
sdd, and 100sed optimization steps. Panelsfd shows the final parti-
tion after no improvement is detected for many iterations.
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tition found from our method. The estimated partition shows
only a small discrepancy from the trueswhich always de-
creases entropyd, though these were within the 90% confi-
dence intervals of each estimate computed using the methods
in Ref. f21g. The metric entropy should be equal to the larg-
est Lyapunov exponent, which is estimated to bel1=0.508,
computed from renormalized trajectory divergences, inte-
grating the equations of motion over a 106 iteration ergodic
sample. The fact that this Lyapunov exponent is slightly less
than the estimated entropies is most likely from estimation
bias because only 5000 symbols were used—for estimating
entropy rate there is a positive modeling bias for finiteN, as
subtle correlations in the conditional probability structure
swhich must lower entropy rated are not discerned suffi-
ciently well.

One important free parameter in the partition refinement
process is the amount of smoothingh. If h is too low, then
the optimization becomes too difficult; however, whenh is
too large, details in the partition boundary are lost. We can
calculatedhT of the found partition as a function ofh, and
the results from both the Ikeda and Henon maps are plotted
in Fig. 5. The Henon map is given by

xn+1 = A − xn
2 + byn, yn+1 = xn s25d

with A=1.4, b=0.3. We see in both cases that the minimum
in dhT is close to the minimum inHSFNN. In the realistic case

when the UPOs needed to computedhT are not known, par-
titions can be found from a range ofh, and the partition
which yields the lowest value ofHSFNN is generally the best
choice. As the initial partition used can affect the final parti-
tion found, here we averaged over an ensemble of 100 ran-
dom initial partitions. The curves are not smooth because
although we averaged over 100 initial partitions, in all cases
we used the same time series. We could also average over an
ensemble of different time series; however, that is a tech-
nique generally not available when working with real data.

Another free parameter in the optimization ist, which
controls the distribution of random variates. Ift is too small,
then the time that the optimization needed to run increases,
because the pressure to minimize the energy is too weak. For
t too large, the optimization freezes configurations rapidly
sas it becomes the greedy search algorithmd and can get
caught in a local minimum. Results from varyingt are
shown in Fig. 6. In all cases 1000 major optimization steps
were taken. For larget we can see that more steps were
needed, and the high value ofHSFNN can be taken to mean
the optimization had not finished. The graph also shows a
rise inHSFNN for smallert as the optimization becomes stuck
in local minima. We usedt=1.5 for the rest of the examples
in this paper.

In our earlier workf11g we found approximate generating
partitions by positioning a fixed numbers of centers about
which we defined radial basis functions. A disadvantage that
this had was that it limited the resolution of the partition
boundary to the number of radial basis functions used, which
could not become too large or the optimization procedure
would fail. In Fig. 7, we compare this method with the
method described in this paper by computingdhT for the
partitions found for several values ofN, the length of the
time series. Again, an ensemble of 100 random initial parti-
tions were used and the meandhT is shown. The new parti-
tion refinement method typically finds partitions with about
half thedhT as the older scheme.

Similarly, we can check if the tree weighting of Sec. II D
helps find better partitions. In Fig. 8,dhT is plotted as a

FIG. 5. The average final energy and mismatch of topological
entropy as the state space smoothingh is varied.x axis: smoothing
parameterh sdimensionlessd; y axis: mismatch in topological en-
tropy dhT scircles, dimensionlessd, and the average distance to the
nearest symbolic neighborsHSFNN ssquares, dimensionlessd. The
top graph is from partitions found from the Ikeda attractor and the
bottom is from the Henon attractor, both using 5000 points and
averaged over 100 starting partitions. The error bars show the stan-
dard deviation of the ensemble. It is entirely a numerical coinci-
dence that the energy anddhT may be plotted on the same scale for
these two cases. What is important, however, is that theh which
yields the minimumdhT, which is unknown to the data analyst as
the true partition is unknown, is close to the location of the mini-
mum inHSFNN, the empirically computed energy to minimize. This
is evidence that our energy function quantifies generatinglike parti-
tions, and that it can be used for selectingh.

FIG. 6. Partition accuracy versus optimization parameter for
5000 point data set from Ikeda map.x axis: power law parametert
sdimensionlessd; y axis: topological entropy mismatchdhT, and the
average distance to the nearest symbolic neighborsHSFNN sboth
dimensionlessd. The topological entropy mismatchdhT is plotted
with circles, andHSFNN is plotted with squares. For a range oft
similar partitions are seen. Plotted are averages over ensembles of
100 randomly chosen initial symbolic configurations. The data set
remained constant. Similarly to Fig. 5, the location of minima over
free parametert fortuitously coincides forHSFNN and the unobserv-
abledhT.
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function of h when context tree weighting is used, shown
with square points, and when it is not used, shown with
circles. The time series was 5000 points from the Ikeda map.
With large smoothing we can see that there is no substantial
difference. However, the context weighting improves the re-
sults significantly for the smaller smoothing parameters. The
dependency of the result on the external parameterh is re-
duced. At least for the data sets considered here, the infor-
mation based tree weighting may be a superfluous complex-
ity, though it may assist with other data sets.

It should be emphasized that although we have shown
many different variations of the partition finding algorithm,
they all find reasonably good partitions. We found that using
context tree weighting is an improvement; however, good
partitions can still be found without it. This algorithm finds
partitions significantly better than the earlier method given in
Ref. f11g, but again the older method could still reliably find
reasonably good partitions. Although there are a number of

free parameters, we can find good partitions over a wide
range of values. The important parts to the algorithm are that
in all cases we are finding partitions which localize short
symbol sequences optimally, and we are also enforcing some
smoothing in state space to ensure continuity when going
from state space to symbol space. In the earlier algorithm in
Ref. f11g this smoothing is done implicitly when we choose
radial basis functions; in the method described in this paper
the smoothing is done explicitly.

Noise is often an unavoidable component of a measured
time series. To test the robustness of the algorithm under the
presence of noise, white Gaussian noise with a standard de-
viation of 5% the size of the attractor was added to a time
series from the Ikeda map. As seen in Fig. 9, a partition can
still be found quite well. Comparing to the partition in Fig. 3,
the partition from the noisy time series is visually indistin-
guishable from the true partition.

Before we try to find a partition, a proper embedding
space for the time series must first be found. If the embed-
ding dimensiond is not chosen correctly, then a correct par-
tition may not be found. Specifically, if thed is chosen too
low, then we will have a large number of false nearest neigh-
bors in the state space. These false neighbors are part of
different regions of the attractor and thus should have com-
pletely different symbol sequences. Therefore the mapfPsxd
from Rd to the symbol space is no longer a homeomorphism
and our methods for finding partitions will fail.

One particular case where a correct embedding dimension
is important is if the dynamics were generated by a one di-
mensionals1Dd map. In that case, there is no stable manifold
to the dynamics, so the past symbols are no longer needed to
localize a point. The location of the generating partition for
1D maps is a solved problem, the partition boundaries are on
the critical points of the map; however, it is still important
that our methods find proper partitions in this case.

If we recognize that the dynamics come from a one di-
mensional system, we can easily modify our methods to only

FIG. 7. Comparison of the mismatch of topological entropy for
the partition refinement method discussed in this paper to the
method previously proposedf11g. x axis: length of data setsdimen-
sionlessd; y axis, logarithm of topological entropy mismatchsdi-
mensionlessd. The circles are from the previous method minimizing
KSFNN using six centers and a population of 30. The squares are the
method described here usingh=0.035 andt=1.5. Both cases are
averaged over an ensemble of 100 different initial partitions. For
most of the lengths of time series considered, the present partition
refinement technique yields a significantly smallerdhT than the
radial-basis function optimization method.

FIG. 8. The mismatch of topological entropy as smoothing in
state space is varied, comparing nearest-neighbor centroids and
weighted centroids.x axis: smoothing parameterh sdimensionlessd;
y axis, topological entropy mismatchdhT sdimensionlessd. In the
circle points, the centroids were found by the mean of the positions
all the nearest symbolic neighbors of each point. For the square
points, the effective centroids were found by context tree weighting
over all the symbolic neighbors, not just the nearest ones. 5000
points from the Ikeda map were used to find the partition, averaged
over an ensemble of 100 random initial symbolic assignments.

FIG. 9. sColor onlined The partition found from 5000 points
from the Ikeda map with Gaussian observational noise with stan-
dard deviation 5% the attractor size. Hereh=0.035. The partition
found is virtually identical to the partition found from the noise free
time series.
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look at future symbolic iterates. Specifically, our metric on
the symbol space in Eq.s2d would change so that the integer
k is chosen such that onlys1skd=s2skd is true; we no longer
care if s1s−kd=s2s−kd. If we do this we can easily find the
partitions of one dimensional systems.

More of a concern is what happens if we mistakenly treat
a system generated by one dimensional dynamics as twosor
higherd dimensional. This could easily happen from a mea-
sured time series if the time series has some noise in it. In
this case we would be using both future and past symbolic
iterates when only the future is needed. However, even so we
can still find a good partition; if two symbol sequences are
close using the past iterates, they will also be close if the past
iterates are excluded. If we include the past, there will be
points which are no longer neighbors; however, all points
which are neighbors when the past is included will be neigh-
bors even if the past is excluded.

IV. FIXING PERIODIC ORBITS

Generating partitions are not unique: there are several par-
tition choices which will yield equivalent descriptions of the
symbolic dynamics but with different partitions of the same
state space. The dynamics are different in the sense that the
specific grammar may differ, yet equivalent in the sense that
the entropy and number of periodic orbits are the same. The
structure of equivalences between symbolic dynamics on
shift spaces is a major ongoing research project in theoretical
symbolic dynamicsf12g, which we do not attempt to address
here. A trivial example of an alternative generating partition
is to take an existing generating partition and iterate it under
the map; the iterated partition is also generating. More com-
plicated examples also exist as shown by Eiselef22g.

Experimentally, these alternative partitions may be desir-
able sometimes. The minimization algorithm will typically
relax to onesor a small number ofd particular estimated gen-
erating partition, depending the initial conditions and pecu-
liarities of the specific statistic we use. Some partitions may
localize points better in some regions of state space than in
other regions, which could be desired in an experiment. Fur-
thermore, some partitions may induce symbolic dynamics
which are easier to estimate or predictse.g., Ref.f18gd. For
some time series, the method we have described here will
find several different partitions depending on the initializing
partition susually randomly chosend; it would be useful to
have a way to constrain which partition will be found.

One way to try to find and choose between these alterna-
tive partitions it to fix, by hand, the symbolic codes of a few
low period UPOs and insist that the estimated partition as-
sign the given codes to them. The low period UPOs are first
found from the time series; this can be done by looking for
close returns or by methods which try to reconstruct the dy-
namics f7–10g. These UPOs are now assigned symbolic
codes and inserted into the continuous state space and indi-
rectly influence energy functional. However, as the periodic
orbits are not actually part of the time series they are treated
slightly from the data points.

We assume that the symbol choice that each of the points
on the selected UPOs is correct, and given by the user. The

effect of the UPOs on the estimated partition is mediated by
the smoothing in the continuous state space, not continuity in
the symbolic space. The UPO points are treated specially.
They do not enter into the total energyHSFNN, and their
symbols are not ever altered. However, they are assigned a
Dk,a

2 distance as described below, and hence by being spatial
neighbors to true data points they influence the partition in

the kernel smoothing fromD to D̃, the sum in Eq.s8d now
covering points on the UPO in addition to the actual data
points. As there are typically far more points in the time
series than there are fixed UPOs, we must weight the UPO
points to be worth more than a single datum and this weight-
ing ought to scale with the number of points. For every point
zk which is one of the points on the fixed UPOs, assigned
symbolsk, we defineDk,a as

Dk,a
2 =HeNizk − xNUaskd

i2
if a Þ sk

0 if a = sk
J , s26d

whereUaskd is the symbolic stream for thekth UPO point
with the center symbol replaced bya. For instance, a
period-3 point with code 012 corresponds to three points in
shift space, namelyUs1d=f. . .012 012.012 012. . .g, and its
two iterates. ThenUas1d is f. . .012 012.a12 012. . .g. xNUa

skd

means the centroidsor context-tree weighted mixture of cen-
troidsd of the symbolic neighbors to this point in the shift
space, just as usual for symbolic neighbors. Hence we must
be able to locate symbolic neighbors of perturbations to the
true UPO’s codes, though the UPO itself need not be observ-
able as a neighbor in the symbol space. Note the importance
differences:sid the distance is amplified by a factoreN, sii d
when the partition approaches generatingssmall correspond-
ing distancesd which agrees with the fixed UPO codes, the
penalty goes to zero. Otherwise, at the end of the minimiza-
tion the error due to the fixed UPOs would have dominated
the total cost function and a nonoptimal partition will be
chosen. Nevertheless, a partition is occasionally estimated
that does not agree with fixed UPO symbols; e.g., a periodic
point may be encoded with a “1” but all of its spatial neigh-
bors are given the “0” symbol. We can easily test if this has
happened and only use partitions where the UPOs are cor-
rectly encoded.

For the Henon map, the three lowest period UPOs were
fixed with different symbolic codings. Plots of some of the
partitions found are shown in Fig. 10, and the symbolic
codes of the fixed UPOs are given in Table I. The Henon
map also has a second fixed point which was not included, as
it lies outside the attractor for these parameter values. Al-
though not shown in the figure, the trivial case of setting the
symbol 0→1 and 1→0 in the fixed UPOs yields the same
partition with the symbols interchanged.

As the partitions are found from a finite amount of data,
some partitions can be found more easily than other parti-
tions. More convoluted partitions with more boundaries are
more difficult to find than simpler partitions. Thus if no
UPOs are fixed, the algorithm usually will converge to the
same partition. The other partitions typically will be more
convoluted and have more points on the boundary than the
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“canonical” partition. This means that the mean distance
from the centroid of each symbolic region and the point in
that region increases for these partitions. Thus these parti-
tions will give a higherHSFNN statistic. Also, as we only have
a finite amount of data, our methods cannot find the nonca-
nonical partitions as well, and they will typically show a
higherdhT.

As we only use a finite amount of data, some partitions
may not be true generating partitions; however, they still
have the property that short symbolic words will localize
points in phase space. As the number of points used in-
creases, the partition can be found better. We fixed the UPOs
in the configuration in Table Isfd and found the partition for
several data sizes. The results are seen in Fig. 11. Table II
showsHSFNN anddhT for the partitions found in Fig. 10. We
can see the partitions in Figs. 10sad and 10sbd are both found
quite well. The partition in Fig. 10sbd is actually a pre-iterate
of the partition in Fig. 10sad, and when no UPOs are fixed,

one of these two partitions will be found. The partitions in
Figs. 10scd–10sfd have more topological defects in them, as
seen by their largerdhT; however, they still are minima of
HSFNN and localize symbolic regions well. Figure 12 shows
how well partition sfd localizes points. Shown in lighter
scyan color onlined points are all points which have a given
symbol sequence. We can see that even with only four sym-
bols, the points are localized to a very small region of state
space. As an example from a measured time series, a parti-
tion from data measured from a bubble experiment was
found. A constant flow of air was released at the bottom of a
fluid tank and the time between bubbles was measuredf23g.
This time series was embedded in two dimensions,xi

=sDti Dti+1d. UPOs were found from the time series using
the method described by Schmelcher and Diakonosf10g. In
that work, a local linear model of the dynamics is estimated,
and then an additional linear transformation is applied which
transforms unstable fixed points to stable ones. Then when
the transformed model is iterated, the state will converge to
the fixed points of compositions of the map, i.e., periodic
orbits. For these data, three unstable periodic orbits were
found. One orbit was of period 1; one was of period 2, and
one was period 4. The symbolic codes of each of these orbits
was fixed, and the resulting partitions are shown in Fig. 13.

FIG. 10. sColor onlined Several different partitions of the Henon
map found by fixing the symbols of the three lowest period UPOs,
which are shown as stars. The symbolic codes for the UPOs are
given in Table I, and the values of the cost functionHSFNN and
mismatch in topological entropy for these partitions is given in
Table II.

TABLE I. The symbolic codes of the fixed UPOs in the partitions in Fig. 10.

Periodic point

Partition

sad sbd scd sdd sed sfd

s0.8839, 0.8839d 0 0 1 1 1 0

s−0.6661, 1.3661d 0 1 1 0 1 0

s1.3661, −0.6661d 1 0 0 1 0 1

s−0.9895, 1.5751d 0 1 0 1 0 0

s0.8935, −0.9895d 1 0 0 1 0 0

s0.3049, 0.8935d 0 0 1 1 0 0

s1.5751, 0.3049d 0 0 0 0 1 1

FIG. 11. The mismatch in topological entropy and average final
energy from the Henon map as the number of points in the time
series is varied. The lower order UPOs were given fixed symbolic
codes as in Table Isfd. x axis: length of data setsdimensionlessd; y
axis: in circles the topological entropy mismatchdhT and in squares
the average distance to the nearest symbolic neighborsHSFNN sboth
dimensionlessd. Plotted are averages over ensembles of 100 ran-
domly chosen initial symbolic configurations using a constant data
set.
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V. CONCLUSION

We have described an algorithm to find good partitions for
symbolic dynamics from a measured time series. We find a
partition by requiring that points which have close symbol
sequences should be neighbors in state space. Given this cri-
terion, we define an energy functional in a similar spirit to
spin glass problems and find the ground state of this energy.
The symbol configuration which minimizes this is the esti-
mated partition. Multiple generating partitions exist simulta-
neously for any given dynamical system. We partially re-
solved this degeneracy by including a few low period UPOs
with fixed symbolic codes in the energy functional and relax
to partitions which agree with these externally inserted cod-
ings for the UPOs. Doing this we can find an assortment of
alternative partitions to the unconstrained one, but many of

these partitions have a significantly higherHSFNN statistic.
One reason for this is that as the symbolic regions are now
more disjoint, so we can no longer expect the centroids to be
close to each point anymore, especially for short symbol se-
quences. It may be preferable in cases where the symbolic
regions are so disjoint to choose symbolic neighbors differ-
ently. Perhaps instead of considering the distance to the cen-
troid, the distance to the symbolic neighbor nearest in state
space could be used. Our method is related to a recent ap-
proach developed by Y. Hirata and co-workersf24g. Their
approach uses the centroid locations themselves as the esti-
mated parameters, each with its own symbolic code, and it-
eratively reassigns symbols to the nearest centroid. In that
sense the partition is estimated relative to radial basis cen-
ters, more like Ref.f11g, though the centers do not move.
Centroids are then re-estimated until there is no further
change at that level of refinement. Then, the symbolic words
would be further extendedsi.e., splitting centroidsd and the
procedure repeated until it has continued to a sufficient
depth. Our method, especially with the weighted context tree
which is sensitive to all depths, is similar in concept if not
detail. Differences are that we permit every point’s symbol to
vary independently and have a single function to minimize
for all time, instead of starting anew at successive depths,
and with the tree weighting procedure, a more objective and
flexible way to define neighborhoods than terminating the
tree splitting at a fixed depth.

Software and documentation in Fortran 95 is available on
the on-line EPAPS archive associated with this work, and at
author M.K.’s FTP site, ftp://lyapunov.ucsd.edu/pub/
nonlinear/partitionsssee Ref.f25gd.
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TABLE II. Values of the cost functionHSFNN and mismatch in
topological entropydhT for the partitions of the Henon attractor
shown in Fig. 10. Recall that the particular magnitude ofHSFNN

need have no relation to that ofdhT, and thatHSFNN is not intended
to be an estimator ofdhT. The message here is that trends inHSFNN,
which is observable, tends to match those ofdhT, and so observed
values ofHSFNN can be used to rank the “generatingness” of em-
pirically obtained partitions.

Partition HSFNN dhT

sad 0.0026 0.0041

sbd 0.0025 0.0012

scd 0.0243 0.0134

sdd 0.0255 0.0316

sed 0.0201 0.0344

sfd 0.0141 0.0190

FIG. 12. sColor onlined Successive localization of the Henon
attractor using the partition found in Fig. 10sfd. The lighterscyan
color onlined points are those points in the partition whose central
symbolic code issad 0, sbd 00, scd 000, sdd 0000. We can See that
even with only four symbols the fixed point, whose symbolic code

is 0̄, is well localized.

FIG. 13. sColor onlined Several different partitions found from a
measured time series from a bubble dynamics experiment. The in-
terval between bubble-rise events in a viscous fluid was measured.
All axes are time between bubble events:x axis is Tsid sarbitrary
unitsd andy axis isTsi +1d sarbitrary unitsd. Low order UPOs were
found from the time series and their symbolic codes were fixed,
thus defining different partitions. The UPOs are again shown as
stars.
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APPENDIX: DRAWING RANDOM VARIATES FROM A
POWER-LAW DISTRIBUTION

It is surprisingly nontrivial to directly draw random vari-
ates from a power-law distribution. Central tot-EO optimi-
zation is an integerK which must be chosen such that

PsKd ~ K−t. sA1d

To compute this we need the cumulative distribution

Csld = Ao
K=1

l

K−t, sA2d

whereA is the normalization

A = So
K=1

N

K−tD−1

. sA3d

As we have a finite number of points, the above sum only
goes toN. An exact method is to tabulateCsld for 1ø l øN.
Then when a random integer is needed, a uniform variate
f0, 1d is drawn, andCsld searched to find the closest match.
This is rather slow, and the optimization requires many
power-law distributed numbers.

Instead, we use an analytic approximation toCsld, replac-
ing the above sum with the integral

Csld = AE
d

l+d

K−tdK sA4d

with a similar integral defining the normalization.
This approximation is similar to the midpoint method for

numerical integration. The approximation is best when the
curvature of the function is small—in this case for largel and
smallt. As it is equivalent to the midpoint method,d close to
1/2 is optimal. Empirically we foundd=0.6 to give good
results. Forl =1 and 1,t,2 this approximation is accurate
to a few percent, with the accuracy rapidly improving for
larger l. As an example, forl =1,t=1.5,N=100 the true cu-
mulative probability isCsld<0.4144, while this approxima-
tion givesCsld<0.4201.

With the analytical formula forCsld the random variable
K is found by equating a uniform random variatehP f0,1d
with the value of the cumulative distribution and solving for
l. Using the above approximation,Csld is easily inverted and
gives

l = fsh − 1dd1−t − hsN + dd1−tg1/s1−td − d. sA5d

The desired random integerK is then the smallest integer
such thatK. l.
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