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Statistically relaxing to generating partitions for observed time-series data
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We introduce a relaxation algorithm to estimate approximations to generating partitions for observed dy-
namical time series. Generating partitions preserve dynamical information of a deterministic map in the sym-
bolic representation. Our method optimizes an essential property of a generating partition: avoiding topological
degeneracies. We construct an energylike functional and use a nonequilibrium stochastic minimization algo-
rithm to search through configuration space for the best assignment of symbols to observed data. As each
observed point may be assigned a symbol, the partitions are not constrained to an arbitrary parametrization. We
further show how to select particular generating partition solutions which also code low-order unstable periodic
orbits in a given way, hence being able to enumerate through a number of potential generating partition
solutions.
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I. INTRODUCTION Poincaré section. Here we shall also assume ffxatis in-
o ) ) ) vertible; although the methods described here can easily be
When a chaotic signal is measured experimentally it répextended to noninvertible systems. A partition, denote®,as
resents a challenge to the experimenter. Compared to regulggfines a discretization of the observed sequence’s state
systems, chaotic systems are more difficult to model, and, igpace, and hence a projection to a sequence of syntols,
a prior model exists, care must be taken when comparing EP(x;), i=1---N wheres is drawn from an alphabet of size
to the data. We would not expect the output of the model tz, s 0,1---A-1. Each region of the partition carries the
agree exactly with the measured data—as small initial uncercode” for a particular symbol in the alphabet, and defines
tainties in the data will exponentially grow until any two the transformation from points in the state spaebich fall
trajectories are completely dissimilar. Instead of a direciinside only one partition element eadinto symbols. Note
comparison, often we try to reconstruct the dynamics fronthat the partition can have multiple disjoint regions for the
the data and compare this to the model. There are many wagame symbolic code.
to try to reconstruct the dynamics, one important way is to Imagine a bi-infinite orbit of the dynamios, i € Z. Given
look at symbolic dynamics, where the dynamics is describec partition?, we find not onlys,=P(x;), but also the symbols
by transitions between a finite set of symbols. of all the future and past iterates ®f, yielding bi-infinite
The general concept of symbolic dynamics is to partitionsymbol sequenceS centered around time point,
the state space into a finite number of nonoverlapping re§=[---s_,s_;-SS.1S+2 - ]. In the symbolic space, the ana-
gions, with each region colored with a different symbol. Or-log of the dynamical operatdris the shift operatorr, S,
bits in the continuous state space correspond to sequences=H§(S), which moves the pointthe marker for the current
symbols drawn from a finite alphabet. The evolution operatokime) one step to the right. By adding a metric and excluding
of the dynamics becomes merely a “shift operator” in sym-3 set of symbol sequences which are forbidden in the dynam-
bolic space, moving the “point” one step into the futurejcs, the§ live in a shift space the symbolic analog of the
along a countable sequence of symbols. Topological considtynamical state space. We can define a partition-dependent
erations in the continuous space turn into grammatical CONmap ¢p(x) from the originald dimensional state spad¥ to
siderations in the symbolic space, concerning the presence g{e shift spac& which contains thes. 3 is a subset of the
absence of legal transitions and various “words” occurring ingpace of all possible bi-infinite symbol sequences. Fgers
the symbolic sequence. By reducing the dynamics this Wayerating partition ¢, is injective[1] except for a set of mea-
many sorts of anal_y5|s of _the dynamics, both '_[heoret|callysure zero, i.e.pp(X)=pp(x') implies x=x’. As x=x’ im-
and for observed time series, become much simpler, espgjies Bp(X)=bp(x') as the partition is deterministigip(x) is
cially in opening up opportunities from information and homeomorphism.
communication theory. In addition, the theoretical study of ; ; _ N idly v’
symbolic dynamics has been quite active, and there has be We desire that ifl¢x(x) - ("} is small, so igx=x’]|
much work connecting the symbolic dynamics to the un
stable periodic orbits in the attractor.
We assume that the deterministic dynamics are either al
ready a mapping;.1=f(x;), or have been so projected by a

ith finite data, we cannot take limits to zero, but we may
“attempt to minimize close distances. By construction, suffi-
iently near points iR have close symbolic sequences in
their most significant digits, except near partition boundaries.
Additionally, in a good partition nearby points I remain
close when mapped back inkf!. By contrast, bad partitions
induce topological degeneracies where similar symbolic
*Electronic address: mbuhl@clack.ucsd.edu words map back to globally distant regions of state space, the
"Electronic address: mkennel@ucsd.edu problem described in Ref2]. The mapg* is no longer one
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to one. Conceptually, as we add symbols to our symbol sethe usual circumstance that the observed points come from
guence, we ought to localize down to smaller and smallestationary ergodic dynamics, i.e., the natural measure, one
regions of state space—with an improper, nongeneratingzannot make estimates of the partition boundaries outside the
partition, this will fail to happen even with increasingly long attractor from the observed data alone.
amounts of data. In our previous work[11] we showed a concrete algo-
For noninvertible one dimensional maps, the generatingithm and partition representation for estimating generating
partition (GP) can be easily found with known results. A GP partitions with that criterion. Here, we improve upon that
exists with partition boundaries at the critical points of the ,ethod in a number of ways. First, we employ a time-

map. For nonhyperbolic higher-dimensional systems it hagymmetrical symbolic metric which is also one typically

been_ g:onjectureq that t_he partition line is along the ho'used in theoretical symbolic dynamics. Second, we now in-
moclinic tangencies, points where the stable and unstabl

. A . 8ividually assign every observed point to a symbolic code
manifolds are tangent3]. However, this is still not suffi- . g N ’
ciently constraining, f:\[n(} not all such choices yield valid par_megnlng that 'ghere are no _art|f|C|aI.bounda.r|es |mp.osed by a
titions [4]. In addition, the tangencies can be difficult to lo- particular choice .Of emp|r|ca.1I. ba_5|s funct|on§ which were
cate, especially from observed data alone. Locating th .sed to parqmetnzg the partltlon in REEL]. Th'rd’ we de-
homoclinic tangencies requires accurate estimates of the din€ appropriate neighborhood sizes automatically and adap-
rivatives. This can be quite difficult in the situation we ad- tvely with a model weighting inspired by the minimum de-
dress herein, when we only have a time series, and the equg€ription length principle for statistical model selection.
tions of motion are not available. There exist methods of-ourth, we use an optimization metric which is in the form
connecting the tangencies which will create generating par©f @ separable energylike functional, which in turn permits
titions [4]; however, these require the location of tangencied/SINg recently deye[oped optimization algorithms !nsplred by
outside the attractor to be known. These would be particuProblems of statistical mechanics: we stochastically relax
larly hard to find from a time series. from higher energy states and_poor partitions to lower energy

Davidchacket al.[5] and Plumecoq and Lefrari6] pro- states arjd good.partmons. Fmglly, we show how the.user
posed schemes to estimate a generating partition based 8y optionally fix the symbolic coding of lower-period
the unstable periodic orbitdJPOS of the system. Under a UPOs(the easiest to locate numericallyn order to prefer-
generating partition, each point in the attractor defines &ntially select the different generating partitions compatible
unigue bi-infinite symbolic sequence. Thus each UPO shoulith those various codings. As there is no unique generating
have a unique periodic symbolic sequence. An approximat@artition for any system, it may be desirable to impose addi-
generating partition can thus be constructed by successivel{Pnal constraints to choose one of the multiple valid solu-
assigning symbols to regions near UPOs of increasing orddtons. In other words, we can enumerate over a certain num-
so that distinct UPOs give distinct symbolic codes. A generPer of different generating partitions according to the codes
ating partition for the Ikeda attractor, using the equations ofhey assign to low-order UPOs, as long as these UPOs lie
motion, was found in Ref5]. Unfortunately, these methods Close to the observed data.
can present difficulties with realistic experimental data.
While it is possible to find UPOs from a time seriés-10,
it is often difficult to find the UPOs with sufficient accuracy
and quantity to apply the methods in RE$,6]. Most UPO- We first outline the general approach of our algorithm. In
locating methods use the points in the time series to create subsequent subsections we provide additional details regard-
model of the dynamics and then find UPOs from the modeling its specific steps.

However, an accurate model requires a large amount of Recall that we have a time series of poirts R¢, and we
rather noise free data. In particular, with noisy, finite lengthwish to assign symbols to each observed point. We want to
time series, it is especially hard to find the high period orbitschoose a partition where neighbors in the symbolic represen-
which are necessary to localize the partition boundarytation S are neighbors in continuous state spate To do
Plumecoq and Lefranj@] were able to find a partition from this we need to define what we mean by “neighbor& jh

a clean laser time series in this manner, but, in situationsand then optimize the partition to best satisfy this criterion.
where the amount of data is more limited, we believe alter\We view the problem as similar to finding a ground state of
nate methods to directly estimate the partition without goinga spin glass in statistical mechanics. Each point is assigned a
through the UPQOs are needed. configuration-dependent energy: points whose symbolic

Our approach to find approximate generating partitions isieighbors are close physical neighbors are given lower en-
to search for a candidate partition such that the implied magprgy. The optimal partition is defined as the configuration of
from the shift space containing the symbol sequences to thg which yields the lowest global energy. It is analogous to a
observed continuous space data is approximately homeomaspin glass because the total energy Hamiltonian is separable,
phic. The desired goal, satisfied by a generating partition, ibut there are global configuration interactions. In addition,
thatshort sequences of consecutive symbols localize the conaive local minimization of energy need not lead to the glo-
responding continuous state space point as well as possibléal minimum.

Equivalently this says that nearby symbol sequences should The notion of distance in the original continuous state
correspond to nearby points in state space. Otherwise, thapace is usually already obvio(se use Euclidean distances
partition will map two similar symbol sequences to remotein this work), but we must define “close” for symbolic se-
parts of the attractor, an improper topological degeneracy. liguences. We want neighboring symbol sequences to share a

Il. STATISTICAL PARTITION REFINEMENT
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large central block: symbolic neighbors should have thecould often be worse than using a smaller representation,
same symbolic future and past for some finite number oktven though the larger RBF basis set could be more flexible
steps. Previously11] we defined a metric between symbol in representing partition boundaries.
sequences by embedding the symbol sequencEdrito the The alternative we presently employ is to define an energy
pointsy in the unit squar¢0,1]x[0,1]: functional upon the full configuration space—assigning indi-
vidual symbols to every observed point—which we mini-
Kmax Kmax mize to find the estimated partition. As in a spin glass or
¥i= | 2 sewen/A D sudA . (1) Ising system, we assign a local energy to each point. Also,
k=1 k=1 like a spin glass, changing the configuration of any point not
only affects the energy of that point but also the energy of its
interacting points, so that the energy function is global. There
visual representation, but it has undesirable properties. Fdew gxist several good .stochastic techniqugs for minjmizing
— — ) _ energies of state of spin glasses and similar combinatorial
example, the sequences 1.080d 0.11lare close in this gptimization problems. An optimization method we have
metric even though they have no symbols in common. Weq,nq to be suitable for our problem is callegextremal
use the notatios to mean that the 'symbslrepeats to infin- optimization(~EO) [14], applicable to any discrete optimi-
ity. We can use a Gray coding to fix some of these problems, 5qn hroplem whose cost functioh is separable, i.e., can
but even with Gray coding some neighbors are still nonoptiy,g \yritten as a sum of local energy interactions:
mal. For example, the symbol sequence 1.000be closer

N
to the sequence 1.10then the sequence 1.118 even HZZH-(S (s 3)
| 119 ]
i=1

Now |ly;—y;|| defines the distance between poiftands in
the symbol space. This gives a metric 8nand a useful

though it differs from both in the second symbol.
A traditional metric used in the theoretical study of sym-

bolic dynamicg12] is for spin glasses, e.g?li=s-2jJij.sj, wit_h s the spin of particle
i and J; the interaction matrix. Neither of the global error
2K if S #S function statistics we used in Rdfl1] is of this form.
D(S.,S) = 0 ifS=s,’ (2) We want our energy statistic to be a measure ofsyma-

bolic false nearest neighboréSFNN): points which are

where k is the largest integer such th&(k)=S,(k) and neighbors in symbol space but not in state space. This is in
S(-K)=S,(-K) and with the conventiork=-1 if S,(0) the spirit of the false nearest neighb$t$,16 statistic used

# S,(0). In essence, this measures the number of symbolt,s0 _find embedding dimension: bOth count Iarge-devia_tion

that are the same in the central block, with no effect from mistakes” in a related space which result from topological

symbols after the common central block. We can easily Sem|sembedd|ng in the tested space. The natural local energy

. L ; : ?erm is hence a measure of this mismatch. We start from an
that this satisfies all the usual requirements for a metric;

D(S,,S)=0,D(S,,S) =D(S,,Sy), and the triangle inequality initial assignment of symbols to all points. Define
D(S1,$)+D(S;,S) =D(S;,S3). Under this new metric, the Di o = X = Xu )l (4)
sequences 1.118nd 1.100are now equidistant to the se-

quence 1.000The Gray coding used in the implementation of S, given thats=a, and all other symbols in the time

of [11] becomes unnecessary. Now, by definition, the diSggries are unchanged. We shall discuss the case where there
tance between the sequences 1a0@ 0.11lis maximal as s more than one near neighbor with the closest distgince
they share no symbols. The downside is that the projection ofymbol spacklater in the textD; , is the mismatch induced
a symbolic time series into symbolic space cannot be graphby havings, set to symbokr in the context of a fixed back-
cally displayed in an intuitive manner. ground. It turns out that defining the local energy as the
After defining what we mean by close neighbors usingdifference relative to the existing configuration works better
Eq.(2), we can look for a good partition. Previouglyl], we  than the absolute energy measure. The local energy for point
defined a cost function which measured the number of pointgidexi is
which the partition did not localize wellwhere the state
space distance to their symbolic neighbors was lasgel H;,=maxD?,~ D7y, (5
minimized it using differential evolutiof13], an algorithm pra
for global multidimensional optimization in continuous the difference induced by flipping from its current assign-
spaces which does not require derivatives. A flaw of thaiments=« to the best of all the alternatives. As is the
approach is that the partition was defined by a small set ofurrent symbol of point indek we can write this as justl;.
radial basis function§RBFS. The number of those was an The global energy i$lseyn==;H;. This has the feature that
external arbitrary parameter, and their centers and strengthmints which contribute the most to the energy are, by defi-
the free optimization variables. Unfortunately, the complex-nition, the points which would reduce the energy the most if
ity of the representable partition boundaries was limited bytheir symbols are changed. Over a binary alphabet the maxi-
the number of RBFs used. Using too many RBFs made thenum reduces to simply the difference between the squared
optimization problem significantly slower and less likely to distances using the two symbols $n This relative energy
find a near-global minimum, i.e., the estimated partitionbreaks the analogy to physical spin glasses somewhat but

Here V(i) means the index of the nearest symbolic neighbor
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T T and Ny, the number of symbolic neighbors. The centroid is
0/ \1 then
L1 > .
000 100 001 101 0i0 1i0 o011 111 XC’“(I)_N_N - X[N();]. (7)

For a good partition, the neighbor§,(i); define a closed
00000 10000 00001 10001 00100 10100 00101 10101 region in state space which contains so the distance be-

FIG. 1. The symbolic tree for a binary alphabet. Shown are thet\’veenxi ar,]d the center of th(’_} region W_i“ be S,ma”' .
labels of each node, where the bold faced symbols are the symbols N Practice we need to define a maximum time difference

that have been added to the node. Contained within each node akd© distinguish points5; if k is sufficiently large then we can
all the points whose symbolic codes match the label. guarantee that with finite data all symbolic points are distin-

guished by looking at blocks-k, k] around the center point.
improves the optimization performance. In sum, optimizingone small technical problem is how to treat the beginning
the empirical partition is minimizinglsgyy over the configu-  and end of the time series. In order to create the tree, all
ration, the assignment of symbols to each observed da“_”Boints must havé future iterates an# past iterates. The first
By attempting to minimize the corresponding difference inyng |astk points cannot simply be ignored, for a correct
continuous space when symbolic distances are small, thk%/mbol must be assigned to them. Our solution is to add
drives the partition implied by the current configuration oot hoints to the beginning and end of the time series. The
closer and closer to injectivity. nearest neighbor to point; is found, and, for purposes of
A. Neighborhoods in symbolic space creating the symbolic tree, it is assumed that the pojritas

Once a metric has been imposedX®wia Eq.(2) we can the same symbolic past as Its nearest s_,patlal qelghb_or. The
use it to find nearest neighbors. As the distance only depend@Me is done for the last point in the time senigs it is
on the number of common symbols in a central block, thed'Ven the. same symbolic futgre as its nearest neighbor. If t.he
structure of metric naturally leads to the construction of aPartition is close to generating, then we expect that a point
symbol tree. This will find symbolic neighbors in order Ing ~ Should have a very similar symbol sequence to its neighbors.
time with construction of the tree takirglog N. Except for ~Adding these ghost points does introduce small errors, but as
the root, every node of the tree hag children, contains long asN> 2k this can safely be neglected. Typically, we
some number of points from the time series, and is given &hoosek so thatA™ is near the computational numerical
symbolic label; the root only has children. In the root node precision.
we place all of the points of time series. Its children are
given labelsoy e 0---A-1 and contain the points such that
s =ay. Their children are given labels_j0q01: 041 €0---A
-1 and contain the point._;SS.1=0-10001. The next layer The optimization procedure that we use can often produce
of children looks at the next symbol on both sides and hagartitions whose boundaries are not smooth. A smooth parti-
labels 00100010, and contains the points such that tion is desirable as it means;'(x) is also well behaved—we
S-25-1551+15+2= 0-20-100010,. This continues for as long expect that the points; and X; have similar symbol se-
as there are points from the time series to populate the chilg;ences fofx;—xi| small enough. We can cause the algo-
nodes. For an example of the tree with a binary alphabet, seg, ., 1, favorl pzirtition boundaries by smoothing the raw

Fig. 1. 2 2 ; ; ; ;
This structure makes it very easy to search for all pointsDiv“ with the Dj , of the paints neighbors in the continuous

which are symbolic neighbors of any given point. All that Space, "?‘”d using .that in the optin_1izatio_n criterion. L&) .
needs to be done is to descend the tree to the node before g the list of spatial—not symbolic—neighbors to the point
terminal node(which would be a solitary node containing ;. The squared distanc&’ are smoothed by a kernk:

only the index point we are searching arounal the other )
points in this node are the symbolic nearest neighbor§ of ~, ENS(i) KXy = XD,
under the metric given by E@2). Unlike the metric used in ia= D _ :
Ref. [11] it is likely there are multiple equidistant nearest NEG) K%y = i)

neighbors. Given two symbol sequencgsand § which We would like a kernel which decreases for larger distances

share a central block, if a third sequen§galso has that L
- and also has finite support, so that we only need to sum over
central block, then all three sequences are equidistant under,. . ;
. : . . a finite number of neighbors. One such frequently used ker-
this metric. One obvious way to account for this phenom-_ . : .
nel is the Epanechinov polynomial kerrj&],

enon is to take all the symbolic nearest neighbors into ac-

B. Spatial smoothing

(8

count. We find their centroid, in the continuous space, and |12?
using that in Eq(6) to define the distance to near symbolic K(2=1 —g- 9
neighbors:

Di = [Xi = Xc.()]. (6) HereR is the size of the kernel, which is a free parameter.

This kernel is often used for density estimation. As they do
We define the listV,(i); to be the indexes of all the symbolic not change during the optimization, the nearest neighbors in
neighbors around poirit and the indexX runs between one state spaceV(i) to each point and the associated kernel
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weights need only be computed once, at the beginning of tht'om nonequilibrium statistical mechanics as opposed to the
minimization. The standardk-dimensional tree algorithm equilibriumlike principles of simulated annealing. In the
[20] can be used to find the spatial neighbors within themost naive version of this algorithfextremal optimizatio)
support of the kernel. the fitnessH; is computed for each point, and the largest
We wantRy to scale with the size of the attractor. We first (least-fi) H; is selected for dorced configurational change
find the cumulative distribution ofandom two-point dis-  (unlike simulated annealingThe H; are recomputed given
tances|x,—xg| for the time series. We then chooBg such  the new symbol configuration, and the algorithm continues
that only a small fractiony of the random two point dis- until it produces a step which increasgs;. The limitation
tances are smaller. Hergis a free parameter that we shall of this deterministic strategy is that it often becomes trapped
discuss in Sec. Ill, typicallyy=0.05, meaning that typically in local minima. To find global minima, we ought to occa-
the local smoothing is over 5% of points. sionally take steps which do not reduEgH; as well as ran-
After the distances are smoothed, we construct the cogstomize the perturbations, which is the point®EO. First,
function by assigning a local energy or fitngds(larger is  let all H; of the current configuration be sorted in decreasing

worse to each point: order. Instead of always choosing the point with the maxi-
- - mum local energy to perturfi.e., H;), we choose th&th
H; =maxD{,~Dfp). (10)  largest suchH;, drawing a random integef < [1,N] from
pra the power law distribution,

This quantifies the appropriateness of the current symbol P(K) o K7 (12)
choice(s;=a) compared to alternatives. For a binary alpha- '

bet, this simply reduces to the difference between the curren/e discuss how to drawk in the Appendix. The symbol
symbol and the flipped symbol. The total cost function iscorresponding to the point with thigth largest energy is

then simply flipped to a new configuration, choosing the new symbol
N which gives the least local energy—excluding the original
H =S H, (11) symbol as a legal choice. After that symbol is flipped, then

SFNNT = T the point’s fitness is recomputed and the list resorted. We use

the heapsort algorithm so resorting the already mostly sorted

With the addition of smoothing, this is the same as &). |ist is fast. For larger, K is nearly always 1, and we have the
and thus appropriate for energy minimization techniques. original EO scheme. For=0, all symbols have equal prob-
ability to be flipped, and the algorithm is equivalent to a
random walk. For ¥ 7<2 the configuration does a biased
random walk towards our desired solution. As we do not

Once a metric has been defined on the symbol space, waways flip the symbol which reducétsgyy the most, we do
can define a cost function, the minimum of which is ournot get trapped in local minima as easily. As the distribution
approximate generating partition. However, finding thatis still heavily weighted towards low, we still tend towards
minimum is a difficult computational problem: a naive brute minimizing Hggnn
force approach would tak&N operations. Previously, in Ref. Before we compute the cost functibtygyy, we must first
[11] we made the search for good partitions computationallyfind the distance in state space from each painto its
feasible by defining the partition with respect to ah hoc  symbolic neighbors and compui ,, allowing the point to
parametrization employing a few radial basis functionsbe each of theA possible symbols. However, when
whose centers can move continuously around the attractowe change the symbol of; we have a potentially serious
That parametrization was less flexible than our currenproblem: the symbol tree can no longer be efficiently
method, in that there were only a finite number of centeraused to find nearest symbolic neighbors. We wish to calcu-
which could define the partition boundary to limited accu-late|x;—x. ()| for s=0...A-1, but when the symbol of;
racy. In the present work, we have the freedom to assign anig changed, then the tree that was previously built is no
symbol to every observed point, allowing nearly arbitrarylonger a faithful representation. Recall that when the symbol
partition shapes. Ordinarily that would result in a very diffi- s for x; is changed, the symbolic codes of all the poifts
cult optimization problem. The spatial smoothing we applyalso change. The tree could be recreated after every single
biases towards more continuous partition boundaries, anflip of a symbol; however, that is computationally intensive.
also smoothes the energy landscape. This tends to makes thelf the number of points in the time seri®éis large, in-
optimization problem easier, as there are now fewer locastead of recreating the tree we can take a mean field approxi-
minima in which it can be trapped. mation and use the tree as it was for a number of iterations.

We now wish to assign a symbol to each point in the timeThis is in the spirit of the mean field approach in statistical
series such thatisgyy is minimized. At this stage any global mechanics where, say in a spin glass, we neglect the effect
combinatorial search method may be employed. We describeach individual spin has on the mean field when we compute
herein the one we used which empirically gave successfithe energy of the system. Only the interaction of the spin and
results with computational efficiency, but do not make claimsthe mean field is considered, not how the spin changes the
about its superiority over other methods. We search for thenean field. In our case, we are neglecting the effect the point
best symbol assignment with a stochastic search mé¢thild  x; has on the partition when we calculddg,, for that point.
called ~-EO, or “r-extremal optimization,” based upon ideas This is only looking at the first order change, and ignoring

C. Combinatorial optimization
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2 : ; ; With a noisy time series, there will be a maximum spatial
' : : resolution of actually useful data. This corresponds to a

maximum depth in the symbolic tree beyond which it does
not make sense to go. In fact, it would actually be detrimen-
tal to go deeper as deeper nodes would contain fewer points
and thus unable to estimate as accurately. Also, if the
current partition choice is baavhich it will be at the start of
an optimization, descending deeper into the tree will not
necessarily help localize a point better.

Our point of view is to imagine the tree as defining nested

FIG. 2. An example of the average distance to the nearest synprobabilistic models for describing the density of points in
bolic neighborsHsgyy (dimensionlessas a function of optimiza-  the original state space. At each node we will model the
tion step. We can see that after about step 120, the algorithm ndensity of points as a multidimensional Gaussian; for sim-
longer decreaseldsenn plicity, a product of 1D Gaussians in each coordinate instead
of a model with a true covariance matrix. Then the free pa-
rameters of this model are the center location and variance
for each coordinate. Each node has a corresponding centroid
which we could use in Eq(6). Any symbolic point§

0 50 100 150 200
Optimization Step

how changing the symbol of affects the symbolic codes of
Xi+j and thus how changing the symbol affects the partition

This W'". only have an effect 'b(‘. is a symbolic neighbor of matches a whole branch of possible nodes, corresponding to
Xiy; for |j| <k wherek s the maximum depth of the tree, anq larger and larger central blocks of matching symbols, and
for N>k that should happen infrequently. We attempt to flipte\yer points. Is there an optimaleightingof all those pos-
pointsn times before doing a full global regeneration of the sipje centroids which will automatically have good proper-
symbolic tree, code lengths, and symbolic neighbors.i  ties: properly going down very deep when the localization is
too small, the optimization will go slowly because it is con- good, and otherwise preferring higher nodggith more
stantly recomputing all the symbolic neighbors.nlfis too  points and hence better statisjiaghen the localization is
large, the mean field approximation begins to break down. Irpoor?
practice, at each major step in the optimization, we choose  We view this as a general model selection or model
to be the number of points witH;>0; i.e., the number of weighting problem which can be addressed with Rissanen’s
points which locally might seem to benefit from changing[17] minimum description length theory and Bayesian
their configuration. This automatically adapts the bundling ofweighting. At each node of the tree we estimategtoehas-
the major iteration so that in a poor initial configuration tic complexity(code lengthL of the node. This is a measure
(manyH;>0) many local steps are taken at once, but wherof two things: first, how much information it takes to de-
the configuration is closer to the optimuffew H;>0) the  scribe the data described by that ndide., the location of all
full global effects are recomputed after a small number ofpoints in the continuous spaceelative to the model in the
configuration changes. We further boumtb be in the range node. In addition, it includes the amount of information
N € [Nmin, Nmad, tWO user-set external parameters. Typically specifying the model's parameters itself. In our case, it a
we letn,,=1 andn,,,,=40. measure of how well the node localizes the points in the
Most of the time, we use a very simple starting and stopnode, with smaller code lengths being superior.
ping criterion. To start, we typically choose an initial parti-  Since we will model each coordinate independently the
tion where all symbols are chosen at random. We stop aftdbcal complexities will be additive for each coordinate and
the optimization algorithm was iterated a fixed number ofwe need to consider one-dimensional distributions for the
steps. Typically, as a function of optimization stéfseyy ~ moment. The code length of each node for each coordinate is
descends rapidly, and then remains nearly constant. Duringefined to be
this time,Hgeny typically only decreases slightly, if at all. An
example plot ofHsgyy @s a function of optimization step is  g=—_|n f f(Xp) 71(P|P, D) 7oPalP,A) - - 7 (Pulp, AP,
shown in Fig. 2. The total number of optimization steps is
chosen such that the constant region has been reached, and (13)
the number of steps that have been attempted dihgey ] o )
was last reduced is comparable to the total number of optiwhere f(x|p) is the likelihood ofx given the modelf and

mization steps. parameterp, and;(p;|q) are some prior distributions of the
parameters; given some initial estimate of their valugs
D. Weighting symbolic neighbors over depths As a rough approximation, the distribution of the points in

each symbolic region can be approximated as Gaussian with

One remaining question now is how should we terminatemeanlu and variancer
e 1

the process of finding symbolic neighbors in this tree? Th

obvious choice is to descend the tree as deep as possible; that exd — izn (x - )2
is, to the deepest matching node which still has more than X 27<i=1 XN
one point. This works well for many cases, but we have f(Xu,7) = (2m) 2 : (14)

developed an alternative, more sophisticated procedure. This
extra complexity may be optional for some uses, but it holdsThis is an approximation to the true distribution, but for our
some value in improving results. purposes it will give us good enough code lengths to esti-
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mate reasonable tree weightings. We assume a Gaussian w, = e w/(etw+ ele), (21)
prior on u centered about some valpe
(20~ p)? W =ed(eTw+ e,
77”('“|p' 7= 2mrn (15) and x,,/(child) is the weighted centroid of the child node.

. o Note that we combine centroids from only the single match-
As usual, we take the variance on the distribution of theing child on the branch, but to define the weighting factor we
mean to ber/n; i.e., the variance of the mean isrithe  myst sum all children to gdt.. We can recursively compute
variance of the distribution itself. We can use any prior estiyp;s weighted average over all nodes that contain the pgint

mate for the mean as the valuef If the partition localizesx; well, then the code length of a
After Rissaner{17] we take the prior orr to be node near the leaves of the tree will be small and the largest
3, contribution to the centroid will thus be from that node.
m(rv) = Z—e—(3v/2f>73/2 (16)  However, if the partition is such thag is never localized
a

well, then no node will have a small code length and the
with v as a free parameter. The maximummf 7| ») occurs contribution from nodes close to the root of the tree will be
at v=r, so it is reasonable to taketo be a prior estimate of More influential. In practice, we see that most of the contri-
the variance of the distribution. Plugging the above distribu-Pution to the overall weighted centroid comes from nodes

tions in the definition of the code length, the code length of’€ar the root at the start of the optimization, when it is ini-
each node is given by tialized with a bad partition. As the partition is refined, nodes

deeper and deeper in the tree become important.
S=-1In f f f(x
0 —o0

This can be integrated to give

)T D (rv)dudr. (17
M T) u(/“|p ) (riv)du 17 E. Summary of algorithm

1. Find spatial nearest neighbors and kernel weights for
all points x;. Knowing the spatial nearest neighbors fqr

n+1 n [ and xy find the “ghost points.” Assign initial symbols,

S=—~ |H<E (= PP+ 2 (=X + 61/) 5 |H(E> either at random or input from another algorithm.

2. Create the symbol tree from the current symbol con-
1 T n+1 figuration, defining thek symbols befores, and thek sym-
+ 2 In 3/ InT A (18) bols afters, to be identical to the corresponding symbols of
their ghosts.

wherep and v are the sample arithmetic mean and variance 3. For every node in the tree, compute the code length
of points in the parent node, amds the arithmetic mean of summed over all coordinates.
points in the current node, all for the current coordinate. The 4. For each point, temporarily se to a and findD; ,,
root node has no parent, so we take its code length to beither using the centroid of the deepest matching node or the
infinite. This code length is only for a one dimensional weighted version thereof.
Gaussian. For higher dimensional distributions, we approxi- 5. SmoothD; , over continuous-space neighbors using a
mate the distribution as the product of Gaussians in eacﬁpanechinov kérnel to produfaq o
dimension; the total code length is hence just the sum of the ’
code lengths in each dimensian=x4S,(d).

Given a code length for each node, we can use an anal
gous procedure to the symbolic time series modeling in Ref.
[18], called therecontext tree weightingo give a good pre-
dictor. At each node, define the weighted code length:

6. Find the fitness of each poilt;=max; ,(D?,~D7,)
8\_/heres:a.

7. Sort the fitnesses in descending order.

8. Set the number of symbols to change,to be the
number of symbols wittH; >0. Subsequently bound be-
tween som@,,, and Ny

eln+egtle (8) Choose an integek randomly from a power law
L= |H<T> , (19 distribution P(K) oc K77,

(b) Choose theKth point from the sorted list and

where herd. is the sum of the weighted code lengths of all change its symbol frona to 8 whereD; s=min,.,D

i i,y

nodes of the tree, we skf,=L.. We can then use these code fijg|q.
lengths to estimate any quantity we wish from the data. In (d) Resort the list of fitnesses.

Ref. [18] they estimated the entropy rates, here we wish to (e) If fewer thann symbols have been changed, then
estimate the position of the centroid. For each node in theeturn to(a).

matching branch we can estimate the centroid of the node, 9. Return to step 2.
Xn, the arithmetic mean of the the points in the node. Then,

for each node, theveightedcentroidx,, is
Il. RESULTS

= + hild 20 . .
X = WnXn + WeX/(ChlC) (20 As the first test of this method we look at the Ikeda map,

with weights defined by
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1 1 : of symbols. Near the beginning of the optimization the par-
tition is still mostly random, but it rapidly converges on a
boundary.

To quantitatively test the accuracy of the partition, we

Of =4 ; : of - look at the symbolic degeneracy of the unstable periodic

i orbits (UPOS9. In a generating partition, each distinct UPO
= _ !‘\ has a unique symbolic code; this is the basis for the partition
£ i ‘\\‘5 finding scheme proposed by Davidchaekal. [5]. As the

1 *\\;& %‘%\% § periodp approaches infinity, the number of periodic points of
E\ \ér,a’ each period should scale like
N, Ny €7 =
ot '9';#,_; . whereh+ is the topological entropy.
As a measure of the accuracy of a partition, we can look
: 1 . 5 : > at the mismatch between the topological entropy that we find

Re and the true topological entropy. All UPOs up to a given
(z) Re(z) . .
period are calculated from the equations of the map. The
FIG. 3. (Color onling Left: partition estimated by optimizing POINts in the UPOs are assigned the same symbol of the
Hsean ON 3000 data points from the Ikeda map. Right: partition Closest point in the time series. Thus each of the UPOs is
calculated from the UPOs, numerically extracted from the equatiogiven a symbolic code and the number of unique symbolic

of motion. The partition we estimate from observed data alone isodes is counted. If we sé}% distinct symbolic codes given

quite close to a presumably correct one, calculated from the methoghe partition, then the estimate of the mismatch of the topo-
of Ref.[5]. The measure on the two figures is not the same: the leflogical entropy is

figure is a sample of the natural measure, whereas the right shows

UPOs up to period 15. They avoid regions of homoclinic tangen- 1 N_E
cies, contributing to the blank spaces. ohy = ,!Im —In N (24
oo b
i whereN, is the actual number of periodic orbits of peripd
Zw1=P+Rz exp<i;<— 1+ |Zn|2) (22 For a generating partition, all UPOs have unique symbolic

codes, sodht=0. For partitions which are not generating,
with the standard parameter valugs1, R=0.9, k=0.4, «  Ohy measures the amount of the attractor which is miscoded,
=6. Taking the real and imaginary parts gives a maftfn ~ and thus we can use it as a way to validate the partition.
The partition that we find is given in Fig. 3 on the left. On Since the equations of motion are used to find the UPOs, we
the right in Fig. 3, we show the partition found using the cannot useshy to validate partitions when only a time series
UPOs by the method of Davidchadk]. To the eye, the is available. In practice we use orbits with periods up to 15
partitions are nearly identical. In Fig. 4 we see intermediatévhen evaluating the limit in Eq24). For the Ikeda map the
steps in the optimization procedure which led to the partitiorfotal topological entropy was estimated as 0.6033, again us-
in Fig. 3. Here, the initial partition was a random distribution ing UPOs of up to period 15. Note that this is different from
themetricentropy. The topological entropy is sensitive to the
number of different allowed words, while the metric entropy
also weights the sequences by their probability, using the
Shannon formula.

We checked the metric entropy rate under different parti-
tions using a recently developed Bayesian entropy rate esti-
mator [21] (based on previous results in R¢i8]) which
shows low bias. We took 5000 points from the lkeda map
and found their symbols relative to partitions estimated using
the UPO-based method of Davidchagkal. [5] (which we
assume is a correct partition up to the resolution of the data
considered, given that the equations of motion were knppwn
and our data-based method operated upon a different sample
of 5000 points. The test time series was symbolized by as-
signing the same symbol as that given to each test point’s
nearest neighbor in the data bagartition generated from

FIG. 4. (Color onlineg An example of the relaxation towards the _U_PQ'COIO”ng algo'rthm or our data-drlvgn algprlﬂnr_‘n
generating partitions. Pan&) shows the initial random partition. Partitioning by homoclinic tangen_cy resulted in an |de_nt|cal
The subsequent panels show the optimization aftébl®0(c), 50 ~ Symbol stream as the UPO-coloring method. We estimated
(d), and 100(e) optimization steps. Panél) shows the final parti- an entropy rate dfi=0.5206(nats/iterationfor symbols rela-
tion after no improvement is detected for many iterations. tive to the UPO-based partition, ahd0.5155 with the par-
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0.01

0.008| - %
0.006
0.004

FIG. 6. Partition accuracy versus optimization parameter for
5000 point data set from lkeda mapaxis: power law parameter
(dimensionless y axis: topological entropy mismatcshy, and the
average distance to the nearest symbolic neighbtysy (both
dimensionless The topological entropy mismatcbhy is plotted
with circles, andHggyy is plotted with squares. For a range of
n similar partitions are seen. Plotted are averages over ensembles of

00 randomly chosen initial symbolic configurations. The data set
emained constant. Similarly to Fig. 5, the location of minima over
free parameter fortuitously coincides foHggyy and the unobserv-
able éhy.

FIG. 5. The average final energy and mismatch of topologica
entropy as the state space smoothing varied.x axis: smoothing
parametery (dimensionless y axis: mismatch in topological en-
tropy shy (circles, dimensionlegsand the average distance to the
nearest symbolic neighbotdseyy (squares, dimensionlgssThe  when the UPOs needed to compute: are not known, par-
top graph is from partitions found from the lkeda attractor and thetitions can be found from a range of, and the partition
bottom is from the Henon attractor, both using 5000 points andyhich yields the lowest value dfigeyy is generally the best
averaged over 100 starting partitions. The error bars show the staghoice. As the initial partition used can affect the final parti-
dard deviation of the ensemble. It is entirely a numerical coinci-tion found, here we averaged over an ensemble of 100 ran-
dence that the energy adtiy may be plotted on the same scale for dom initial partitions. The curves are not smooth because
these two cases. What is important, however, is thatsthehich  although we averaged over 100 initial partitions, in all cases
yields the minimuméhy, which is unknown to the data analyst as we used the same time series. We could also average over an
the true partition is unknown, is close to the location of the mini-ensemble of different time series: however, that is a tech-
mum inHsgny, the empirically computed energy to minimize. This nique generally not available when working with real data.
is evidence that our energy function quantifies generatinglike parti- Another free parameter in the optimization 4s which
tions, and that it can be used for selecting controls the distribution of random variates 7lfs too small,

then the time that the optimization needed to run increases,
tition found from our method. The estimated partition showsbecause the pressure to minimize the energy is too weak. For
only a small discrepancy from the truahich always de- 7 too large, the optimization freezes configurations rapidly
creases entropythough these were within the 90% confi- (as it becomes the greedy search algoritrand can get
dence intervals of each estimate computed using the methodaught in a local minimum. Results from varying are
in Ref.[21]. The metric entropy should be equal to the larg-shown in Fig. 6. In all cases 1000 major optimization steps
est Lyapunov exponent, which is estimated toNge 0.508,  were taken. For large we can see that more steps were
computed from renormalized trajectory divergences, inteneeded, and the high value gy can be taken to mean
grating the equations of motion over a®li@eration ergodic  the optimization had not finished. The graph also shows a
sample. The fact that this Lyapunov exponent is slightly lessise inHggyy for smallerr as the optimization becomes stuck
than the estimated entropies is most likely from estimatiorin local minima. We used=1.5 for the rest of the examples
bias because only 5000 symbols were used—for estimating this paper.
entropy rate there is a positive modeling bias for filNteas In our earlier work11] we found approximate generating
subtle correlations in the conditional probability structurepartitions by positioning a fixed numbers of centers about
(which must lower entropy rateare not discerned suffi- which we defined radial basis functions. A disadvantage that
ciently well. this had was that it limited the resolution of the partition

One important free parameter in the partition refinemenboundary to the number of radial basis functions used, which
process is the amount of smoothing If 7 is too low, then  could not become too large or the optimization procedure
the optimization becomes too difficult; however, whens would fail. In Fig. 7, we compare this method with the
too large, details in the partition boundary are lost. We carmethod described in this paper by computidig; for the
calculateshy of the found partition as a function of, and  partitions found for several values of, the length of the
the results from both the Ikeda and Henon maps are plottetime series. Again, an ensemble of 100 random initial parti-
in Fig. 5. The Henon map is given by tions were used and the meah; is shown. The new parti-
(25) tion refinement method typically finds partitions with about

half the shy as the older scheme.
with A=1.4,b=0.3. We see in both cases that the minimum  Similarly, we can check if the tree weighting of Sec. Il D
in ohy is close to the minimum igeny IN the realistic case  helps find better partitions. In Fig. 8hy is plotted as a

— 2 —
Xne1 = A- Xyt ani Yn+1= Xn
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0 5000 10000
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Im(z)

FIG. 7. Comparison of the mismatch of topological entropy for
the partition refinement method discussed in this paper to the
method previously proposdd1l]. x axis: length of data seétlimen-
sionles$; y axis, logarithm of topological entropy mismat¢ti- =27
mensionless The circles are from the previous method minimizing
Ksenn USIing six centers and a population of 30. The squares are the
method described here using=0.035 andr=1.5. Both cases are
averaged over an ensemble of 100 different initial partitions. For
most of the lengths of time series considered, the present partition g, 9. (Color onling The partition found from 5000 points
refinement technique yields a significantly smali#v than the  from the Ikeda map with Gaussian observational noise with stan-
radial-basis function optimization method. dard deviation 5% the attractor size. Heye 0.035. The partition

found is virtually identical to the partition found from the noise free
function of » when context tree weighting is used, showntime series.
with square points, and when it is not used, shown with . - .
circles. The time series was 5000 points from the lkeda ma| ree parameters, we can find good partitions over a wide

With large smoothing we can see that there is no substantidf"9€ of values. The important parts to the algorithm are that

difference. However  the context weighting improves the re." all cases we are finding partitions which localize short
L ' gntng imp symbol sequences optimally, and we are also enforcing some
sults significantly for the smaller smoothing parameters. Th

d d ¢ th | h | ; esmoothing in state space to ensure continuity when going
ependency of the result on the external paramgtes re- 4 state space to symbol space. In the earlier algorithm in

ducgd. At least for th(_a da_lta sets considered here, the infoRq¢. [11] this smoothing is done implicitly when we choose
mation based tree weighting may be a superfluous compleXagial basis functions; in the method described in this paper
ity, though it may assist with other data sets. the smoothing is done explicitly.

It should be emphasized that although we have shown Noise is often an unavoidable component of a measured
many different variations of the partition finding algorithm, time series. To test the robustness of the algorithm under the
they all find reasonably good partitions. We found that usingpresence of noise, white Gaussian noise with a standard de-
context tree weighting is an improvement; however, goodyiation of 5% the size of the attractor was added to a time
partitions can still be found without it. This algorithm finds series from the Ikeda map. As seen in Fig. 9, a partition can
partitions significantly better than the earlier method given instill be found quite well. Comparing to the partition in Fig. 3,
Ref.[11], but again the older method could still reliably find the partition from the noisy time series is visually indistin-
reasonably good partitions. Although there are a number ofjuishable from the true partition.

Before we try to find a partition, a proper embedding
space for the time series must first be found. If the embed-
ding dimensiord is not chosen correctly, then a correct par-
tition may not be found. Specifically, if thé is chosen too
low, then we will have a large number of false nearest neigh-
bors in the state space. These false neighbors are part of
different regions of the attractor and thus should have com-
i T pletely different symbol sequences. Therefore the @a(x)

0 0.05 0.1 0.15 from RY to the symbol space is no longer a homeomorphism
K and our methods for finding partitions will fail.

FIG. 8. The mismatch of topological entropy as smoothing in. _One partlc_ulgr case Wher_e a correct embedding dlmenSIQn
state space is varied, comparing nearest-neighbor centroids afd Important is if the dynamics were generated by a one di-
weighted centroidsx axis: smoothing parametey (dimensionless ~ Mensional1D) map. In that case, there is no stable manifold
y axis, topological entropy mismatcbh; (dimensionless In the  to the dynamics, so the past symbols are no longer needed to
circle points, the centroids were found by the mean of the positiondocalize a point. The location of the generating partition for
all the nearest symbolic neighbors of each point. For the squardD maps is a solved problem, the partition boundaries are on
points, the effective centroids were found by context tree weightinghe critical points of the map; however, it is still important
over all the symbolic neighbors, not just the nearest ones. 500that our methods find proper partitions in this case.
points from the Ikeda map were used to find the partition, averaged If we recognize that the dynamics come from a one di-
over an ensemble of 100 random initial symbolic assignments. mensional system, we can easily modify our methods to only

-05 0 05 1 15 2
Re(2)
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look at future symbolic iterates. Specifically, our metric oneffect of the UPOs on the estimated partition is mediated by
the symbol space in E¢2) would change so that the integer the smoothing in the continuous state space, not continuity in
k is chosen such that only(k)=s,(k) is true; we no longer the symbolic space. The UPO points are treated specially.
care if s;(-k)=s,(-k). If we do this we can easily find the They do not enter into the total enerdgyseny, and their
partitions of one dimensional systems. symbols are not ever altered. However, they are assigned a

More of a concern is what happens if we mistakenly treatDﬁ,a distance as described below, and hence by being spatial
a system generated by one dimensional dynamics agdwo neighbors to true data points t~hey influence the partition in
highey dimensional. This could easily happen from a mea-the kernel smoothing fror® to D, the sum in Eq(8) now
sured time series if the time series has some noise in it. Igovering points on the UPO in addition to the actual data
this case we would be using both future and past symboligoints. As there are typically far more points in the time
iterates when only the future is needed. However, even so Weeries than there are fixed UPOs, we must weight the UPO
can still find a good partition; if two symbol sequences arepoints to be worth more than a single datum and this weight-
close using the past iterates, they will also be close if the pashg ought to scale with the number of points. For every point
iterates are excluded. If we include the past, there will bez which is one of the points on the fixed UPOs, assigned
points which are no longer neighbors; however, all pointssymbols,, we defineDy , as
which are neighbors when the past is included will be neigh-
bors even if the past is excluded. 0 - 'sN||zk—x,\wa(k)||2 if a# s 26)

k,a . ’
0 if a=s5
IV. FIXING PERIODIC ORBITS

Generating partitions are not unique: there are several pal!Neré Ua(K) is the symbolic stream for thkth UPO point
tition choices which will yield equivalent descriptions of the With the center symbol replaced by. For instance, a
symbolic dynamics but with different partitions of the sameP€riod-3 point with code 012 corresponds to three points in
state space. The dynamics are different in the sense that t§8ift space, namely(1)=[...012012.012 012 ], and its
specific grammar may differ, yet equivalent in the sense thaVo iterates. ThemJ,(1) is [...012 012412 012..]. X,
the entropy and number of periodic orbits are the same. Themeans the centroitbr context-tree weighted mixture of cen-
structure of equivalences between symbolic dynamics oiroids) of the symbolic neighbors to this point in the shift
shift spaces is a major ongoing research project in theoreticapace, just as usual for symbolic neighbors. Hence we must
symbolic dynamic$12], which we do not attempt to address be able to locate symbolic neighbors of perturbations to the
here. A trivial example of an alternative generating partitiontrue UPQ'’s codes, though the UPO itself need not be observ-
is to take an existing generating partition and iterate it undeable as a neighbor in the symbol space. Note the importance
the map; the iterated partition is also generating. More comélifferences:(i) the distance is amplified by a facteN, (ii)
plicated examples also exist as shown by Ei$2H. when the partition approaches generatisigall correspond-

Experimentally, these alternative partitions may be desiring distanceswhich agrees with the fixed UPO codes, the
able sometimes. The minimization algorithm will typically penalty goes to zero. Otherwise, at the end of the minimiza-
relax to one(or a small number ofparticular estimated gen- tion the error due to the fixed UPOs would have dominated
erating partition, depending the initial conditions and pecu-+the total cost function and a nonoptimal partition will be
liarities of the specific statistic we use. Some partitions maychosen. Nevertheless, a partition is occasionally estimated
localize points better in some regions of state space than ithat does not agree with fixed UPO symbols; e.g., a periodic
other regions, which could be desired in an experiment. Furpoint may be encoded with a “1” but all of its spatial neigh-
thermore, some partitions may induce symbolic dynamic$ors are given the “0” symbol. We can easily test if this has
which are easier to estimate or predietg., Ref[18]). For  happened and only use partitions where the UPOs are cor-
some time series, the method we have described here wilectly encoded.
find several different partitions depending on the initializing For the Henon map, the three lowest period UPOs were
partition (usually randomly chosenit would be useful to fixed with different symbolic codings. Plots of some of the
have a way to constrain which partition will be found. partitions found are shown in Fig. 10, and the symbolic

One way to try to find and choose between these alternacodes of the fixed UPOs are given in Table I. The Henon
tive partitions it to fix, by hand, the symbolic codes of a few map also has a second fixed point which was not included, as
low period UPOs and insist that the estimated partition asi lies outside the attractor for these parameter values. Al-
sign the given codes to them. The low period UPOs are firsthough not shown in the figure, the trivial case of setting the
found from the time series; this can be done by looking forsymbol 0—1 and 1—0 in the fixed UPOs yields the same
close returns or by methods which try to reconstruct the dypartition with the symbols interchanged.
namics [7-10. These UPOs are now assigned symbolic As the partitions are found from a finite amount of data,
codes and inserted into the continuous state space and indieme partitions can be found more easily than other parti-
rectly influence energy functional. However, as the periodidions. More convoluted partitions with more boundaries are
orbits are not actually part of the time series they are treatetchore difficult to find than simpler partitions. Thus if no
slightly from the data points. UPOs are fixed, the algorithm usually will converge to the

We assume that the symbol choice that each of the pointsame partition. The other partitions typically will be more
on the selected UPOs is correct, and given by the user. Theonvoluted and have more points on the boundary than the
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FIG. 11. The mismatch in topological entropy and average final
2 2 2 energy from the Henon map as the number of points in the time
\ Fp series is varied. The lower order UPOs were given fixed symbolic
- codes as in Table (). x axis: length of data s€timensionlesg y
\ \ axis: in circles the topological entropy mismatéifnr and in squares
o} (d) of (e) : of (f) the average distance to the nearest symbolic neightigsgy (both
y f y dimensionless Plotted are averages over ensembles of 100 ran-
* / P o domly chosen initial symbolic configurations using a constant data
set.
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FIG. 10. (Color onling Several different partitions of the Henon one of these two partitions will be found. The partitions in
map found by fixing the symbols of the three lowest period UPOsFigs. 1Qc)-10f) have more topological defects in them, as
which are shown as stars. The symbolic codes for the UPOs areeen by their largeshy; however, they still are minima of
given in Table I, and the values of the cost functidgeyy and  Hg\ and localize symbolic regions well. Figure 12 shows
mismatch in topological entropy for these partitions is given inpow well partition (f) localizes points. Shown in lighter
Table Il. (cyan color onling points are all points which have a given

. . . . mbol uence. We can that even with only four sym-
“canonical” partition. This means that the mean distanc symbol sequence. We can see that eve only tour sy

from the centroid of each symbolic region and the point in%ols, the points are localized to a very small region of state

that region increases for these partitions. Thus these partTc'-pace' As an example from a measured time series, a part-

tions will give a higheHseyy Statistic. Also, as we only have tion from data measured from a bubble experiment was

a finite amount of data. our methods cannot find the noncaf-ound' A constant flow of air was released at the bottom of a

nonical partitions as well, and they will typically show a 1uid tank and the time between bubbles was meas|28{
higher hy. This time series was embedded in two dlmepsmmis',

As we only use a finite amount of data, some partitions= (Ati Ati.;). UPOs were found from the time series using
may not be true generating partitions; however, they stilthe method described by Schmelcher and Diakdd6% In
have the property that short symbolic words will localize that work, a local linear model of the dynamics is estimated,
points in phase space. As the number of points used inand then an additional linear transformation is applied which
creases, the partition can be found better. We fixed the UPQsansforms unstable fixed points to stable ones. Then when
in the configuration in Table(f) and found the partition for the transformed model is iterated, the state will converge to
several data sizes. The results are seen in Fig. 11. Table tihe fixed points of compositions of the map, i.e., periodic
showsHgpyn and shy for the partitions found in Fig. 10. We orbits. For these data, three unstable periodic orbits were
can see the partitions in Figs. (@D and 1@b) are both found found. One orbit was of period 1; one was of period 2, and
quite well. The partition in Fig. 1®) is actually a pre-iterate one was period 4. The symbolic codes of each of these orbits
of the partition in Fig. 108), and when no UPOs are fixed, was fixed, and the resulting partitions are shown in Fig. 13.

TABLE |. The symbolic codes of the fixed UPOs in the partitions in Fig. 10.

Partition

Periodic point (@ (b) (© (d) (e (f)

(0.8839, 0.883p
(-0.6661, 1.3661
(1.3661, —0.6661
(-0.9895, 1.5751
(0.8935, —0.9895
(0.3049, 0.893p
(1.5751, 0.3049

OO r OFr OO
O 0O kr ORr o
OFr OO0 O R Rk
O R R R RFP O
OO0 0O R Rk
OO0 O0ORrR OO
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TABLE IlI. Values of the cost functioftdggyy and mismatch in g .
topological entropyshy for the partitions of the Henon attractor S L
shown in Fig. 10. Recall that the particular magnitudeHaf-nn
need have no relation to that éfir, and thatHggyy is not intended g ‘
to be an estimator ofhr. The message here is that trend$igey, 20 E 20 ko
which is observable, tends to match thosesbf, and so observed

e :""

30 30

20 30 40 20 30 40

values ofHggyn Can be used to rank the “generatingness” of em-
pirically obtained partitions. :
40 TRy | 40 Ty
Partition Hsenn ohy 30 ‘%, 30 %};
(@ 0.0026 0.0041 1 ﬁ%
) 0.0025 0.0012 20 20 ;
(© 0.0243 0.0134 20 30 40 20 30 40
@ 0.0255 0.0316 FIG. 13. (Color onling Several different partitions found from a
(e 0.0201 0.0344 measured time series from a bubble dynamics experiment. The in-
() 0.0141 0.0190 terval between bubble-rise events in a viscous fluid was measured.

All axes are time between bubble eventsaxis is T(i) (arbitrary
units) andy axis isT(i+1) (arbitrary unit3. Low order UPOs were

V. CONCLUSION found from the time series and their symbolic codes were fixed,

thus defining different partitions. The UPOs are again shown as
We have described an algorithm to find good partitions forstars.

symbolic dynamics from a measured time series. We find a
partition by requiring that points which have close symbolthese partitions have a significantly higheggy, Statistic.
sequences should be neighbors in state space. Given this c@ne reason for this is that as the symbolic regions are now
terion, we define an energy functional in a similar spirit to more disjoint, so we can no longer expect the centroids to be
spin glass problems and find the ground state of this energglose to each point anymore, especially for short symbol se-
The symbol configuration which minimizes this is the esti-quences. It may be preferable in cases where the symbolic
mated partition. Multiple generating partitions exist simulta-regions are so disjoint to choose symbolic neighbors differ-
neously for any given dynamical system. We partially re-ently. Perhaps instead of considering the distance to the cen-
solved this degeneracy by including a few low period UPOsroid, the distance to the symbolic neighbor nearest in state
with fixed symbolic codes in the energy functional and relaxspace could be used. Our method is related to a recent ap-
to partitions which agree with these externally inserted codproach developed by Y. Hirata and co-worké¢psl]. Their
ings for the UPOs. Doing this we can find an assortment olipproach uses the centroid locations themselves as the esti-
alternative partitions to the unconstrained one, but many ofmated parameters, each with its own symbolic code, and it-
eratively reassigns symbols to the nearest centroid. In that
sense the partition is estimated relative to radial basis cen-

n
n

= ters, more like Ref[11], though the centers do not move.
Centroids are then re-estimated until there is no further
od @ > o () > change at that level of refinement._ Then, the symbolic words
would be further extended.e., splitting centroidsand the
procedure repeated until it has continued to a sufficient
—~ / depth. Our method, especially with the weighted context tree
25 0 2 % 0 2 which is sensitive to all depths, is similar in concept if not
detail. Differences are that we permit every point’s symbol to
2 -~ 2 vary independently and have a single function to minimize
for all time, instead of starting anew at successive depths,
and with the tree weighting procedure, a more objective and
0 (o) 01 (d) flexible way to define neighborhoods than terminating the
tree splitting at a fixed depth.
Software and documentation in Fortran 95 is available on
2 5 , 2 5 ) the on-line EPAPS archive associated with this work, and at

author M.K.'s FTP site, ftp://lyapunov.ucsd.edu/pub/

FIG. 12. (Color online Successive localization of the Henon nonlinear/partitiongsee Ref[25]).

attractor using the partition found in Fig. @0 The lighter(cyan
color onling points are those points in the partition whose central
symbolic code iga) 0, (b) 00, (c) 000, (d) 0000. We can See that
even with only four symbols the fixed point, whose symbolic code \We are indebted to discussions with Y. Hirdténiversity

is 0, is well localized. of Western Australinabout generating partition algorithms
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and symbolic dynamics in general. This material is based
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Instead, we use an analytic approximatiorCid), replac-

upon work supported by the National Science Foundatiofing the above sum with the integral

under Grant No. 0081636.

APPENDIX: DRAWING RANDOM VARIATES FROM A
POWER-LAW DISTRIBUTION

It is surprisingly nontrivial to directly draw random vari-
ates from a power-law distribution. Central +£O optimi-
zation is an integeK which must be chosen such that

P(K) < K™, (A1)

To compute this we need the cumulative distribution

|
ch=AD K7,
K=1

(A2)
whereA is the normalization
N -1
A= (2 K‘T> . (A3)
K=1

K "dK (A4)

1+6
Cc =Af

S

with a similar integral defining the normalization.

This approximation is similar to the midpoint method for
numerical integration. The approximation is best when the
curvature of the function is small—in this case for latgend
small 7. As it is equivalent to the midpoint methoéclose to
1/2 is optimal. Empirically we found=0.6 to give good
results. Foll=1 and 1< 7<2 this approximation is accurate
to a few percent, with the accuracy rapidly improving for
largerl. As an example, for=1,7=1.5N=100 the true cu-
mulative probability isC(l) = 0.4144, while this approxima-
tion givesC(l) =0.4201.

With the analytical formula folC(I) the random variable
K is found by equating a uniform random variape= [0, 1)
with the value of the cumulative distribution and solving for
I. Using the above approximatio@(l) is easily inverted and

As we have a finite number of points, the above sum Onlygives

goes toN. An exact method is to tabulat&(l) for 1<I=<N.

Then when a random integer is needed, a uniform variate

[0, 1) is drawn, andC(l) searched to find the closest match.

I=[(7-1)8""= p(N+ V47 =6, (A5)

This is rather slow, and the optimization requires manyThe desired random integé¢ is then the smallest integer

power-law distributed numbers.

such thatk >1.
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