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Multimode lasing in a fully chaotic cavity is investigated numerically by using a nonlinear dynamics model.
We report a transition process from single-mode lasing to multimode lasing and reveal interactions among the
lasing modes. In particular, both mode-pulling and mode-pushing interactions are shown to decrease the
number of effective lasing modes. In addition, coexistence of different types of attractors of the final lasing
states is numerically confirmed.
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I. INTRODUCTION

Two-dimensionals2Dd microcavity lasers have attracted
attention not only from the viewpoint of practical use but
also from the perspective of fundamental physics, because
they can exhibit new types of laser action owing to the mor-
phological effects of the cavity shape. For example, micro-
disks can confine light efficiently due to total internal reflec-
tion and they have a high quality factorf1,2g. Lasing in
whispering gallery modes has been realized in microdisk la-
sers. For application to optical systems, microdisk lasers
have two problems: weak output power and no directionality.
To solve the two problems, deformed microdisk cavity lasers
have been proposed and directional emissions have been
achievedf1,3,4g.

Conventional theoretical approaches to 2D microcavity
lasers, such as microdisk lasers, use ray dynamics, and the
lasing modes have been described as linear resonance modes
which correspond to the set of the ray trajectories satisfying
the critical angle condition. In deformed microdisk lasers, it
is also possible to describe the relation between the ray tra-
jectories and linear resonance modes. The emission pattern
of the deformed microdisk lasers can be explained by the
linear resonance modesf4–7g. In fully chaotic cavity lasers,
however, there are no ray trajectories satisfying the critical
angle condition, and the resonance modes in the cavity do
not have a simple description in terms of ray trajectories.

In a theoretical approach for fully chaotic cavity lasers, it
is important to take into account nonlinear interaction be-
tween the light field and an active mediumf8g. A nonlinear
dynamical treatment of 2D microcavity lasers has been car-
ried out with the Schrödinger-Bloch model. This model con-
sists of thesclassicald Maxwell equations and the optical
Bloch equations which describe time-evolution of the active
medium. So far, single-mode lasing and two-mode lasing in
fully chaotic cavities have been studied by using the dynam-
ics model. For example, in Ref.f9g, it is shown that single-
mode lasing can be well explained by one resonance mode.
In Ref. f10g, nonlinear interaction between two modes is
studied, and it is shown that locking between two resonance
modes of different symmetry classes leads to an asymmetric
lasing pattern. However, interaction among more than two
lasing modes has never been studied in detail. Since laser
action in real experiments typically occurs in multimode las-

ing, it is important to study interactions among many modes.
Recently, a semiconductor laser diode with the shape of a

stadium has actually been fabricated, and the lasing in the
cavity has been demonstratedf11g. We note that the ray tra-
jectories show chaos in a stadium cavityf12g. The emissions
in the far-field have been explained by a ray dynamics
model, which gives a distribution of the emission angles of
rays which are confined inside the cavity for a long time and
finally violate the critical angle condition. However, the de-
tailed physics of the lasing are not yet understood.

In this paper, we numerically investigate multimode las-
ing and the dynamics in a stadium-shaped cavity by using
the Schrödinger-Bloch model. Although this model is simpli-
fied compared to a prior theoretical model that describes the
dynamics of quantum operators of the light field and semi-
conductor material in detailf13g, the Schrödinger-Bloch
model can qualitatively reproduce a phenomenon observed
in a real experiment, as shown in Ref.f10g. We obtained the
following results by using this model:sid In the multimode
lasing state, not only mode-pulling interaction but also
mode-pushing interaction occurs. It is shown that the mode-
pushing interaction reduces the number of lasing modes.sii d
There exist multiattractors of the final lasing states for suffi-
ciently high pumping power. That is, the final lasing state
depends on the initial state of the light field.

II. NONLINEAR DYNAMICS MODEL

First let us explain the Schrödinger-Bloch model. The dy-

namics of the slowly varying envelope of the electric fieldẼ,
the polarization fieldr̃, and the population inversion compo-
nentW is described by this model when the 2D microcavity
is confined in a waveguide which is wide in thexy direc-
tions, and the refractive index suddenly changes on the edge
of the cavity

]Ẽ
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2pNk"

e
r̃, s1d

]r̃

]t
= − iD0r̃ − g̃'r̃ + k̃WẼ, s2d
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where space and time are made dimensionless by the scale
transformationsninvsx/c,ninvsy/cd→ sx,yd and tvs→ t, re-
spectively. In the above,vs is the oscillation frequency of a
light field that is slightly different from the transition fre-
quencyv0 of the two-level medium, and the refractive index
n equalsnin inside the cavity andnout outside the cavity, and
aLsx,yd is the linear absorption coefficient, which is the con-
stant aL inside the cavity and zero outside the cavity. The
two sdimensionlessd relaxation parametersg̃' andg̃i, are the
transversal relaxation rate and the longitudinal relaxation
rate, respectively, andW` is the external pumping parameter.
k̃ is the dimensionless coupling strength, andD0=v0/vs−1.
D0 plays the role of the gain center.

A stadium cavity consists of two half circles of the radius
R=98/Î2 and two flat lines of the length 2R. We set the
refractive index inside and outside the stadium tonin=2 and
nout=1, respectively. The other parameters are given as fol-
lows: g̃i=0.003,g̃'=0.006,e=4.0, aL=0.004,Nk"v0=1.0,
k̃=0.5, andD0=−0.03. In this model, all of the quantities are
made dimensionless. If we were to assume the wavelength of
the lasing mode to be 0.8mm, the flat line of the length of
the stadium would be 2.21mm.

By neglecting the absorption term and the polarization

term and assuming the envelope of electric fieldẼ oscillates

as Ẽ=ce−iDt in the approximated Maxwell equations1d, the
eigenvaluesresonanced D and the wave functionc corre-
sponding to the resonance can be obtained as follows:

F¹xy
2 + S2D +

n2

nin
2 DGc = 0, s4d

where theD is a complex value because the cavity is an open
system. TheD and c can be calculated by the extended
boundary element methodf14g. We show the resonances and
the wave functions of the stadium cavity of theR=98/Î2 in
Fig. 1. The real and imaginary parts of theD represent, re-
spectively, the resonant frequency and decay rate of the reso-
nance mode.

It is important to note that the stadium cavity is symmetric
with respect to thex andy axes. The resonances are divided
into four symmetry classes cabs−x,yd=acabsx,yd
and cabsx,−yd=bcabsx,yd with the paritiesaP h+,−j and
bP h+,−j. In the labels of the resonances shown in Fig. 1,
“e” and “o,” respectively denote the1sevend and 2soddd
parities of the resonance wave functions.

The lasing possibility of a resonance mode can be pre-
dicted by linear analysis of the nonlinear dynamics model
s1d–s3d. In a linear description in which the nonlinear term of
Eqs. s1d–s3d is neglected, one can calculate the lasing gain
which is a Lorentzian function in frequency space and maxi-
mum for a resonant frequency ReD=D0. Whether a mode
can lase depends on total lasing gain. The total lasing gain is
given as the first-order correction of the imaginary part of the
resonance frequency due to the presence of the linear absorp-
tion and the active mediumf9g. When a mode has a positive
total lasing gain, that is, the lasing gain exceeds the total loss

term, the mode has a possibility to lase. However, this de-
scription is correct only when the light intensity is low
enough. Moreover, when many modes have a positive total
lasing gain, the lasing condition based on the linear analysis
is less effective at explaining the lasing states. Therefore, we
carry out numerical simulations on the Schrödinger-Bloch
equations to investigate multimode lasing.

III. RESULTS OF NUMERICAL SIMULATIONS

A. Multimode lasing

Here, we explain a transition process from single-mode
lasing to multimode lasing when the pumping powerW` is
increased. ForW`=0.15310−3, only the modeeo1 shown in
Fig. 1 has a positive total lasing gain, because the frequency
of modeeo1 is close to the gain center, and the decay rate is
small. In this case, even a mode with the smallest decay rate
si.e., modeee1d cannot obtain any lasing gain, because its
frequency is far from the gain centerD0=−0.03. Therefore,
only modeeo1 can lase. This can be confirmed by the optical
spectrum in the stationary regime and the wave function of
the final lasing state, as shown in Fig. 2. The optical spec-
trum has only one peak corresponding to the frequency of
modeeo1. In addition, one can see that the lasing pattern of
the final lasing state shown in Fig. 2 corresponds well to that
of modeeo1 shown in Fig. 1.

FIG. 1. sColord The resonances and the corresponding wave
functions of a stadium cavity.
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For W`=0.25310−3, mode eo2 can also have positive
total lasing gain and starts to lase. Modeeo2 interacts with
mode eo1, and the optical spectrum has two main peaks
corresponding to the frequencies of the two modeseo1 and
eo2 and the harmonics of the two modes. ForW`=0.3
310−3, the modeoe1 starts to lase. In this lasing state, mode
oe1 interacts with the two modeseo1 andeo2. In Fig. 3, we
show the optical spectrum in this lasing state and the wave
functions of the lasing modes corresponding to the peaks of
the optical spectrum. The wave function of the lasing modes
with the frequencyD is given as follows:

ẼsD,rd = lim
T→`

1

T
E

0

T

Ẽst,rdeiDtdt. s5d

In actual calculations, we setT=104857.6, and the value of
the frequencyD is determined from the peaks of the optical
spectrum. Comparing the lower panel in Fig. 3 with that in
Fig. 1, one can see that the lasing mode for peaksbd corre-
sponds to the resonance modeeo2. On the other hand, the
lasing mode for peaksad is slightly asymmetric with respect
to the x and y axes, and does not correspond to any reso-
nance modes. This asymmetricity can be explained as fol-
lows. Since the difference in the frequencies of the two
modeseo1 andoe1 is small, the frequencies of two modes
eo1 andoe1 are easily locked so that the difference in the
frequencies becomes zero. Superposition of the two different
parity modes with the same frequency yields an asymmetric
patternf10g. Moreover, the locked state of the two modes
eo1 andoe1 interacts with modeeo2. Therefore, the optical

FIG. 4. sColord The optical spectrum when the pumping power
W`=1.6310−3. The wave functions of the lasing modes correspond
to the peakssad–sed. The wave functions of the peakssad sgreen
lined, scd sblue lined, sdd sred lined, andsed spurple lined correspond
to those of resonance modesee1, eo2, oo1, andee2, respectively,
while the wave function ofsbd sgreen lined is the locked state of
modeseo1, oe1, andoo2. The other peaks shown by green line are
the harmonics of modesad and sbd.

FIG. 2. sColord The optical spectrum and the wave function
when the pumping powerW`=0.15310−3.

FIG. 3. sColord The optical spectrum when the pumping power
W`=0.3310−3. The wave functions of the lasing modes correspond
to the peakssad and sbd, respectively.
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spectrum also shows the harmonics of the locked state and
modeeo1.

Figure 4 shows the optical spectrum forW`=1.6310−3

where the peaks correspond to modeeo1, oe1, eo2, ee1, ee2,
oo1, andoo2. In this figure, it is observed that the lasing
modes for the peaks ofsad, scd, sdd, andsed correspond to the
resonance modesee1, eo2, oo1, andee2, respectively. On
the other hand, one can see strong asymmetricity in the las-
ing modesbd. This can be explained by the locking of three
different parity modeseo1, oe1, andoo2, because the fre-
quency of modeoo2 is close to that of the locked state of
eo1 andoe1. In this multimode lasing, since a mode interacts
with many modes, many harmonics are observed in the op-
tical spectrum.

For W`.1.6310−3, all resonance modes shown in Fig. 1
can have positive total lasing gain. However, only some
modes can lase. This is caused by mode competition for
obtaining lasing gain. Only a limited number of modes can
contribute to the lasing state even in the case of strong pump-
ing.

In Fig. 5, we show theW` dependence of the position of
the peaks in the optical spectrum. The frequency shifts in
Fig. 5 are caused by two types of mode interaction: mode
pulling and pushing. The labelssad–sfd in Fig. 5 correspond
to the lasing modes shown in Fig. 4. In Fig. 5, modessad and
sbd pull each other, and the harmonics are also shifted ac-
cording to mode-pulling interaction between modessad and
sbd, while the shifts of the three peaksscd, sdd, and sed are
caused in the direction that leaves the gain centerD0
=−0.03.

One can see that the peaksed approaches a harmonic of
modessad andsbd and finally at aroundW`=2.25310−3 the
two peaks merge. On the other hand, the peaksscd and sdd
are not locked and are pushed from the gain center. When a
mode is separated from the gain center, it obtains less lasing
gain. As can be seen in Fig. 5, the intensity of the pushed
modes decreases and these modes disappear forW`=8.0
310−3. This result shows that the mode-pushing interactions
have the effect of mode selections.

B. Multiattractors

The final lasing state discussed above mainly consists of
modeseo1, oe1, oo2, ee1, andee2. The three modeseo1,
oe1, andoo2 are locked, and modeee2 is locked with the
harmonic of the locked state and modeee1. Therefore, this
final lasing state is a limit cycle attractor formed by the in-
teraction among the lasing modes, whose time evolution is
shown in Fig. 6sid, and the time-averaged lasing pattern be-
comes asymmetric with respect to thex andy axes due to the
locking of many modes, as shown in Fig. 7sid.

When the pumping power is weak, all initial states of the
light field converge to the same attractor by the time evolu-
tion. However, we found two attractors in addition to this
attractor in the case of strong pumping power. That is, the
final lasing state depends on the initial state of the light field.
We call the first attractor type I, and the other two attractors
type II and type III.

The type-II attractor is a lasing state which consists
mainly of modesee1, eo1, eo2, oo1, andoo2. The attractor
can be observed forW`.4.22310−3. As the pumping
power increases, the mode-pushing interaction acts on modes
eo2 andoo1. As a result, the intensities of the two modes
decrease, and the two modes finally disappear, because the

FIG. 5. TheW` dependence of the position of the peaks in the
optical spectrum. The peaks labeled by letterssad–sfd correspond to
the lasing modes in Fig. 4. The lasing modes labeled bysad, scd, sdd,
and sed correspond to the resonance modesee1, eo2, oo1, andee2
in Fig. 1, respectively. The mode labeledsbd corresponds to the
locked state of the three resonance modeseo1, oe1, andoo2. In this
figure, since the difference in the frequencies among modeseo1,
oe1, andoo2 is small, one cannot see the locking process of the
three modes. The peakssad andsbd are pulled toward each other as
the pumping power increases. The peaks indicated byscd, sdd, and
sed are shifted and leave the gain center. The peaksed and a har-
monic of modessad andsbd are locked forW`=2.25310−3. On the
other hand, the peaksscd andsdd are not locked with any harmonic.
The intensities of the two lasing modesscd and sdd decrease as the
two modes leave the gain center, and disappear forW`=8.0
310−3.

FIG. 6. The light intensity inside the cavity vs time of type Isid,
type II sii d, and type III siii d, when the pumping powerW`=10
310−3.
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pushed modes are separated from the gain center and lose in
the mode competition. ForW`=10310−3, the attractor be-
comes another limit cycle, as shown in Fig. 6sii d, where the
locking mode ofeo1 andoo2 exists and the locking mode
interacts withee1. The time-averaged lasing pattern becomes
asymmetric with respect to they axis due to the locking of
the two modeseo1 andoo2, as shown in Fig. 7sii d.

The type-III attractor consists mainly of modesee1, eo1
and the locked state ofoo1 andee2. In the optical spectrum
of this lasing state, although many modes are observed com-
pared with the above two attractors, the amplitudes of the
other modes except for modesee1, eo1 and the locked state
are small. The intensity changes in a very intricate way, as
shown in Fig. 6siii d, suggesting that this attractor might be
chaotic. This attractor can be observed forW`.6.0310−3.
The time-averaged lasing pattern becomes asymmetric with

respect to thex and y axes due to the locking of the two
modesee2 andoo1, as shown in Fig. 7siii d.

IV. SUMMARY AND DISCUSSIONS

In this paper, we have investigated multimode lasing in a
stadium-shaped cavity laser by employing the Shrödinger-
Bloch model. Various mode interactions have been observed.
We showed that multimode lasing states do not necessarily
consist of all resonance modes with positive total lasing gain;
some modes winning in the mode competition can lase.
When the pumping power increases and mode couplings be-
come strong, both mode-pulling and mode-pushing interac-
tions occur in the lasing state. The mode-pushing interaction
suppresses some modes by separating the lasing frequencies
from the gain center, while the mode-locking interaction uni-
fies two or three lasing modes to form one locked mode.
Consequently, both interactions work so that the number of
effective lasing modes decreases.

We have carried out similar analysis also for a circular
cavity f15g. For the circular cavity, it has been never ob-
served that the number of lasing modes decreases due to the
effects of the mode selection and the integration of mode
even for high pumping power. We expect that the difference
can be explained by the difference in mode-coupling struc-
ture between nonchaotic cavity lasers and fully chaotic cav-
ity lasers.

We have also shown the existence of multiattractors of the
final lasing states. The number of attractors depends on the
pumping power. We numerically confirmed two attractors for
4.22310−3,W`,6.0310−3 and three attractors for 6.0
310−3,W`. Each attractor consists of different lasing
modes. Thus, the time-averaged lasing patterns of the attrac-
tors are different to each other. The existence of multi-
attractors might be used to switch the emission patterns.
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