PHYSICAL REVIEW E 71, 046207(2005

Macroscopic evidence of microscopic dynamics in the Fermi-Pasta-Ulam oscillator chain from
nonlinear time-series analysis
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The problem of detecting specific features of microscopic dynamics in the macroscopic behavior of a
many-degrees-of-freedom system is investigated by analyzing the position and momentum time series of a
heavy impurity embedded in a chain of nearest-neighbor anharmonic Fermi-Pasta-Ulam oscillators. Results
obtained in a previous worfM. Romero-Bastida, Phys. Rev. 9, 056204(2004)] suggest that the impurity
does not contribute significantly to the dynamics of the chain and can be considered as a probe for the
dynamics of the system to which the impurity is coupled. The) entropy, which measures the amount of
information generated by unit time at different scatle®f time andr of the observable, is numerically
computed by methods of nonlinear time-series analysis using the position and momentum signals of the heavy
impurity for various values of the energy densiyenergy per degree of freedgraf the system and some
values of the impurity mashl. Results obtained from these two time series are compared and discussed.
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I. INTRODUCTION The results in all previous works have been obtained with

. . . only one of the BP dynamical variables—namely, its posi-
The physically relevant question of how the underlylngtiori/. However, there iga time scale in Brownian r%otion? not

microscopic dynamics of many-particle systems is related Qo ntigned in the previous works, that is characterized by the
the observed macroscopic behavior is still not Sat'SfaCtor'lyrelaxation time of the momentum autocorrelation function

answered. Since the main features of the latter are accountwlACF) of the BP. This function can be computed from the
for by the microscopic dynamics, which is chaotic for MOStBp momentum time series. Significant variations in the BP
systems of interest, it is natural to assume that some Charaﬁiomentum oceur in this time scale. which is much smaller

teristics_ of the _chaotic microscopic dynamics should _be_defhan the corresponding position time scale. Thus the BP mo-
tected, in principle, at the macroscopic level of descnonn.mentum could, in principle, be used to probe the microscopic
8ynamics of the system. But the type of models used in Refs.
[2-5] precludes a study in momentum space from the very
‘beginning, and therefore a different system is needed to ad-
ss the problem at hand.

The Fermi-Pasta-UlanfFPU) model, which is a one-

microscopic dynamics on macroscopic behavior.

Empirical evidence suggesting the existence of micro
scopic chaos on a molecular scale has been presented in
experiment on the position of a Brownian parti¢BP) in a

fluid [1]. The measurements were made at regular time intefgiensional chain of nearest-neighbor anharmonic oscilla-

vals and _the experimental time series data were then_ 'nte[brs, is a system that has been extensively studied over the
pret(_ed using st.a_ndard techniques of time-series anaIyS|s', SUBast decades to test the way in which microscopic dynamics
gesting a positive lower bound on the KOImogorOV's'na'determines the macroscopic behavior. Now, if the FPU chain

entropy per_lunltbtlmeglKhrhgnce, rrt1)|cr_os%op|_chchaos. HOW- 5 coupled to a heavy impurity, the effects of the microscopic
ever, a similar bound has been obtained with COMpUter Xy namics on the statistical behavior of the latter can be

periments on the nonchaotic Eherenfest wind-tree modely, iy studied for a number of reasons. First, the position

Where a single particle _diffuses. in a plane due to COIIiSiOIﬁ's‘amd momentum of all the oscillators and the heavy impurity
with randpmly placed, fixed, orlente;d square scattef2s . . are well-defined variables. At variance with the Eherenfest
Later on it was found that the chaotic Lorentz model, WhIChand Lorentz models of Ref§2,3], in which the tracer par-

has glrr(]:u:;?r ?catteLers, has z;%ﬁugl\ée bhehzé\r/:or thfat IS '”%' icle interacts with the fixed scatterers through a discontinu-
tinguishable from the one exhibited by the Ehereniest modey, repulsive potential, the system composed of the FPU

E’]' Furthermdorek,].ahclass of one-dlrrglr;fsm_nalllinagshha_s a.lsaﬁain coupled to the heavy impurity is defined in terms of a
een reported which present normal diffusivelike behavior i, e reglistic continuous “attractive potential. Furthermore,

El'hhe absencle Orf chaos,djustdads inb thebEherﬁnfest r‘rI[dd_eI this is a many-particle system in which the statistical behav-
ese results have rendered doubts about the conclusion g} ¢ the heavy impurity is produced by the interaction with

micrqscopic chaos has been experimentally_ detected. Thtﬁe oscillators of the chain, in sharp contrast with the models
positive bound orhs of Ref.[1] has been attributed to the ¢ pote [4,5], which are one-dimensional maps with only

finiteness in both spatial and temporal resolution and the o dynamical variable—i.e., the position—defined in the
limited amount of data point2,5]. model[6]. U

It has been known for some time that, for the FPU chain,
a single parameter—namely, its energy per degree of free-
*Electronic address: rbom@xanum.uam.mx dom e= E/N—controls its phase-space dynamics; that is, the
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system is weakly chaotic and thus has a dynamical behavior
that, in the time scales so far studied, is almost identical to
that of a chain of harmonic oscillators for low values,
whereas it is strongly chaotic for high values[7]. This
behavior, for both low and higk values, is unaltered by the
inclusion of a heavy impurityf8]. The transition between
these two dynamical regimes was first detected by means of
a change in the scaling behavior of the largest Lyapunov
exponent(LLE), which measures the exponential rate of di-
vergence of two originally close trajectories in phase space,
ase is varied from a low to a high value for the FPU model
[7], and by a change in the scaling of the relaxation time of
the MACF as a function o€ for the FPU chain coupled to a
heavy impurity[8].

In this work we will concentrate on the macroscopic
manifestation of the transition from one dynamical regime to
another, which can be readily studied in the macroscopic
behavior of the heavy impurity embedded in a FPU chain.
Our starting point comes from the observation that the
Kolmogorov-Sinai entropyhgs, which has been computed
from the complete microscopic dynamics of this system as a
function of ¢, displays the aforementioned transition in the
scaling behavior ohgg [9]. Since in the description of the
microscopic dynamics the momentum of all the oscillators of
the system is considered and the dynamics of the chain is not L )
affected by the presence of the heavy impurity, we can ask ' 'C: 1. (@ Position time record foe=0.01. The numerically
whether some evidence of the above-mentioned transitioﬁompmed d'ffus'on_ coefficient i©~0.0052. The length _Of the
between dynamical regimes can be detected by applying thcomplet.e. dat"." set is210° am_j the c_iata were S?mp'ed Witk 1.
methods of nonlinear time-series analysis to the momentu ]Zf Position t'inetregidgfsogs_ 1(8) with tat Tu dmfr'caliyl COThpUteg
time series of the heavy impurity. The present work is a firsli/;hljzzrs] Fn?g)s_ ﬁwnbc?th ;aséM¥1gg.1e ot cata Set fengfh an
step to answer the above-posed question.

The plan of the paper is as follows. In Sec. Il we briefly i L .
review the model and methodology employed to obtain thdumerical results hgrga_fter reported. As initial condlt[ons we
position and momentum time series of the BP. In Sec. |1l wetheose  the equilibrium ~ value ~of the oscillators
present the results for the position time series, which ardiSplacements—i.ex(0)=0 fori=-N/2, ... ,N/2. The mo-
consistent with those of Reff2,5]. In Sec. IV we apply the Mentaip;(0); were drawn from a Maxwell-Boltzmann distri-
same methodology of the previous section to the momenturution at a temperature consistent with a given value of the
time series, with the result that there is a quantitative differ€nergy densitye, which was chosen in the range 00k
ence in the results obtained in the low- and higregimes, = 100 withM=40, 60, 80, and 100. Then th¢Ne+1) equa-
and hence evidence of the microscopic dynamics of the odions of motion were numerically integrated to obtain the
cillator chain. In Sec. V we discuss the results so far obiime evolution of the system, whose state is represented by
tained. Conclusions are given in Sec. VI. the variable I'(t)=({x(t)},{p,(H)}) € R*N*D. After thermal

equilibrium between the impurity and FPU chain with
=300 000 unit mass oscillators is attained, the behavior of

X(1)

Il. MODEL AND ITS NUMERICAL INVESTIGATION the heavy impurity is almost identical to a Brownian motion
In terms of dimensionless variables, the Hamiltonian offor all € values studied10], as can be inferred from the
the model considered in this work is values of the diffusion coefficient and the exponential fit to

the MACF[8]. So we can consider the heavy impurity as a
: , 1 . genuine BP. It is in this regime that the positipd(t,)} and
H= > om * E(Xi+1_xi) + ZIB(XHl_Xi) . (D momentum{P(t,)} time series of the heavy impurity, with
i=-n2 L <M t,=ar (a=1,... n) and 7=1 being the natural time unit
with m=1 for i #0 andmy,=M; periodic boundary condi- (discretization stepp were recorded for ale and M values
tions are assume®z+1=X-nj2)- The model, which will be  considered over a time interval of=2x 10° natural time
named modified FPUMFPU) model from now on, describes Units.
a system of one-dimensionill coupled nonlinear oscillators
of unit mass with nearest-neighbor interactions, displace-
ments{x;}, momenta{p;}, and a central oscillataiimpurity)
of massM with displacemenk,= X and momentunpy=P. In Fig. 1 we show a segment of the complete position
The value3=0.1 was used in the computation of all the time series fore=0.01 and 10 withM =100, which corre-

N/2 2

Ill. POSITION TIME-SERIES ANALYSIS
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spond to the weakly chaotig.e., almost periodicand one
instance of the strongly chaotic regime, respectively. We can

[
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readily appreciate that both signals are practically indistin- 10k ]
guishable(except for the scale, which is controlled by the 1 3
valug), although they correspond to completely different dy- o 10.15 3
namical regimes, as already mentioned. Furthermore, some = 10.2? 3
quasirecurrences can be appreciated in the complete data se- s 10.35 3
ries (not shown. This fact is a consequence of the finlte 10_4? 3
value. Thus it can be inferred that the position of a BP is Sk 3
unsuitable as a probe to the microscopic dynamics of the 10_62 3
chain. 10_7§ p

1075 = -1

10 10

From the BP position time series alone the investigation
on the system is performed at a finite resolutipmoreover, r
the dimensionality of the phase space is lost, six@ee R. A
To cope with these limitations, the phase space is recon-
structed by a delay embedding technidi&] in which, from
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the scalar time serie§X(t,)}, a new vector time series is - 10
defined as v 10g
~ 1f
X(m)(ta) = {X(ta)!x(ta + T)! e :X(ta + (m_ 1) T)}v (2) Eﬁ lo.li
2
being a portion of the discretized trajectory with stepnd 18_35
defined inR™; m is known as the embedding dimension. 104?
Next, the spac® is partitioned using cells of length which 10°E
defines a resolution for th¥ variable. The vectoX ™(t) is 10°E> - !
coded into a word of length, 10 10
’
XM(t,) = Wir(r,t,) = (i(r,ty), . it + (M= 1)7),
3) FIG. 2. h™(r, 7) computed using ¥ 10* data points from the

time series shown in Fig. 1. The reported results are for an embed-
wherei(r,t,+j7) labels the cell inR containingX(t,+j7).  ding dimension ofm=50. (8) €=0.01 and(b) e=10. The two
Under the hypothesis of stationarity the probabilitiesstraight lines show the correspondiBgr? behavior.
P(W,(r)) of the admissible word8A\/,(r)} are obtained from
the time evolution ofX™(t,). Then the(r,7) entropy per ployed[5]. From the figure it is evident that this power-law
unit timeh™(r, 7), a generalization dffis for variables mea-  scaling forh™(r, 1) is approximately obtained already for

sured with finite resolutioh12], is defined by =1, with no noticeable differences asincreases. This re-

1 sult can be explained by the fact that the natural time unit

hM™(r,7) = Z[Hppea(r, 7 = Hy(r, D1, (4  7=1, employed as the lowest delay time, is very close to the

T value of the fastest period of the harmonic part of the chain,

whereH,, is them-block entropy, Tmin=, Which is the characteristic microscopic time scale of
the system; thus the employed sampling time has an ad-

Ho(r D) == 2 P(Wy()In P(Wy(1)), (5 equate resolution to probe the dynamics of the BP position.
WD} From the results displayed in Fig. 2 we can conclude that the

which was Computed by means of the Grassberger-Procacc%OChaStiC behavior of the obtained Signals is indeed indepen-

method[13]. The result for thes values reported in Fig. 1 is dent of the underlying dynamics. In fact, as will be later
displayed in Fig. 2. explained, the mechanisms that explain the stochasticlike be-

As can be readily seen, the shapehdP(r,7) is very  havior for bothe values are well known for both dynamical

similar for the weakly chaotic case=0.01 and the strongly regim_es_. Since our result_s are cor_1$i_stent Wit_h those of Refs.
chaotic cases=10. This result can be readily explained by [2:5], it is clear that no microscopic information can be ob-
the fact that the BP, in both dynamical regimes, performdained from the position time series of the heavy impurity.
Brownian motion 8]. Now, a Brownian signal is a stationary
Gaussian process characterized by a power spec8n

« w2, which allows one to obtain an explicit form for the
(r,7) entropy in the limitr— 0 ash™(r, 7) ~ D/r?, whereD Now we consider the momentum time series of the heavy
is the diffusion coefficienf12]. This asymptotic behavior is impurity, which is displayed in Fig. 3 for=0.01 and 10. The
also displayed in Fig. 2 for eachvalue considered using the first feature that stands out in comparison with the corre-
numerically computed values of the diffusion coefficient in sponding position time series is that the time scale in which
each dynamical regime]. As in Refs[1,2,5 we considered significant variations in the signal value occur is much
different delay timesr to verify that the obtained result is shorter than the corresponding time scale of the position
indeed independent of the specific delay time value emvariable. The second feature is that no quasirecurrences can

IV. MOMENTUM TIME-SERIES ANALYSIS
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FIG. 3. (a) BP momentum time record fa=0.01. The length of
the complete data set ix210° and the data were sampled with
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FIG. 4. h™(r 7 computed using X 10* data points from the
BP momentum time series shown in FigaB The reported results
are for a delay time of=1 and various values of the embedding
dimensionm. The horizontal dashed line is the mean value obtained
from the average of the curves with= 40 forr values in the range
0.19<r=<0.59.

chain[14] and for the MFPU mod€]9]. It is also clear that

there is no way to obtain the aforementioned plateau value
using the position time series alone, as shown in Fig. 2. The
behavior of the(r, 7) entropy for lowr values, displayed in

Fig. 4, is a confirmation that the momentum of the BP is a
better probe of the microscopic dynamics of the oscillator
chain than its position. However, the saturation value

=1. (b) BP momentum time record far=10. Same total data set h(m)(r,q-)zo_()gG obtained for <1 is higher than the true
length andr value as in(a). In both casesVi=100 and the inset microscopic valuds~0.12x 1074 [9].
figures display the BP momentum time record over a larger time |, Fig. 5 we present thé , 7) entropy for different values
scale. of the energy density for a single delay timer=1 andm

=60 in all cases, since this is a representative value of the
be found by inspecting the complete time sefigst shown,  embedding dimension, as can be seen in Fig. 4. We observe
in sharp contrast with what happens with the complete posithat the curves are separated into two different and well-
tion time series. Of course, for a long enough record quasidefined regions, depending on tlevalue. In all cases a
recurrences could be found, sinides finite, as already men- plateau value can be defined wher 1. On the contrary,
tioned. However, the fact that for the same data length thevhene> 1, it becomes increasingly difficult to find a region
position variable shows quasirecurrences and the momentuii which a plateau value can be observed. So from this figure
time series does not clearly indicates that it may be possiblge can establish that~1 is a threshold between two dif-
to extract more dynamical information from this variable for ferent regimes that are well characterized by the behavior of

both € values considered than from the corresponding timen(™(r 7) as already explained. The observed difference in
record of the BP position variable.

As in the case of the position, a reconstruction of the
phase space is performed from the BP momentum time se-
ries, which yields

PM(t,) ={P(t,),P(t,+ 7, ... Pt,+ (M=1)D}. (6)

The (r,7) entropy per unit time fore=0.01, obtained from

the vector time serie®™(t,), is displayed in Fig. 4 for
various m values. The most striking feature is that the
(r,7 entropy has a well-defined saturation vaki&(r,7)

=~ const, which is reached asymptotically as the embedding
dimensionm increases, for a small resolutionFurthermore,

as can be readily seen, there is no need to take large delay
time values in order to obtain the plateau value displayed. FiG. 5. h™(r,7) computed using % 10* data points from the
The finite value of ther,7) entropy is consistent with the Bp momentum time series for different energy density values. The
fact that the LLE and, thus, the entropy are well-defined reported results are for an embedding dimensiommef60, with
quantities in the thermodynamic limit, both for the FPU M=100 in all cases.

E ) ) ) .
0.125 0.25 0.5 1 2

r
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the behavior of thdr, 7) entropy can be readily interpreted whereas it is only weakly chaotig.e., almost periodicand
as a macroscopic manifestation of the structural changes thahase-space diffusion is slowed down whe er. Then,
the phase space undergoes when going from a low to a higom a microscopic Hamiltonian perspective, the change of

e value. Further details will be given in the next section. ~behavior detected by means of tite,7) entropy can be
straightforwardly interpreted as a macroscopic manifestation

V. DISCUSSION of the aforementio_ned trans_ition describ_ed by the SST. We
can say that the difference in the behavior of ther) en-

Our results shed some new light on the problem of detecttropy for low and highe values means that some distinction
ing features of the underlying microscopic dynamics bybetween different dynamical regimes has indeed been ob-
means of macroscopic measurements. Since we have acceggved by nonlinear time-series analysis.
to both the complete microscopic dynamics of the system Now, it is important to recall that, in the particular case of
and the results of data analysis of the BP position and moe=0.01, thehxs entropy has a finite, albeit very small, value
mentum times series, we can make comparisons betwegg]. The apparent dynamical randomness—i.e., fifiiter)
“exact” microscopic information and macroscopic “measure-entropy value—of the Eherenfest model has been previously
ments” which are not possible to make if other models arexplained by the structural disorder of the molded], which
employed, as already mentioned in the Introduction. For 3s the static analog of our random initial conditions. Thus it is
deterministic chaotic system one has Bcs< (h¢s=0 for  quite plausible that the finite information amount carried in
regular motiof, whereas for a random procesg=. Now,  them is reflected in the finite , ) entropy value displayed in
considering thér, 7) entropy computed from the BP position Fig. 4, which corresponds to the weakly chaotic regiee
time series, there is hardly a way of discerning from Fig. 2=0.01. The increase in tHe, 7) entropy of the MFPU model
whether the data were originated by an almost periodic ofor high € values displayed in Fig. 5 can be explained by the
chaotic system, since the behaviothP (r, 7) is very similar  fact that it has been known for some time that the dynamics
in both cases. The problem can be traced to the embedding the FPU model, for higle values, mimics a random pro-
dimensionm, since its value is well bellow the dimensional- cess. Thus the LLE scaling exponent, which characterizes its
ity 2(N+1)=600 002 of the underlying dynamical system. powerlike dependence of can be obtained by means of a
This is an intrinsic limitation of nonlinear time-series meth- random matrix approximatiofiz]. This dynamical random-
ods which has been previously establisfizd]. The afore-  ness produces an increase in ther) entropy relative to its
mentioned problem persists, but is less severe, when the B{ﬁateau value foe=0.01. The picture that finally emerges is
momentum time series is employed in the computation othat, due to the small value of the embedding dimensipa
h™(r,7), since a well-defined plateau value is obtained. Thisfinite value of the(r, 7) entropy will most likely be obtained
result can be explained by the fact that the BP momentuniyhen an observable of a high-dimensional system like the
varies on a smaller time scale than the corresponding BRIFPU model is examined with nonlinear time-series analy-
position time scale, thus allowing a more detailed samplingsijs techniques, independently of the precise nature of its mi-
of the phase space. The problem becomes the overestimatigfoscopic dynamics, either regular or chaotic. Nevertheless, a
of hks when it is approximated by th&,7) entropy com-  distinction can be made between those regimes by inspection
puted both from the BP position and momentum time seriesof the low+ behavior of the(r, 7) entropy, which has a well-
The Kolmogorov-Sinai entropy is an upper bound to thedefined plateau value for the weakly chaotic regime and a
h™(r,7) value, and thus the relation™(r,7)<hys is not  monotonically increasing value for the chaotic regime. It will
satisfied, as can be readily seen in Figs. 2 and 4. Since thse a matter of future research to explore if this type of dis-
length of both the BP position and momentum time series iginction can be made in other models.
the same, we can conjecture that this overestimation is a \We would want to end this section with some final re-
consequence of the small value of the embedding dimensiomarks. The central argument of this paper is that the infor-
m. Finally, we observe that the rate of decrease in the plateagation obtained from a given system can be very different
value of the(r, 7) entropy asm increases becomes too small depending on the dynamical variable chosen to be studied by
to justify any further increment in the embedding dimension time-series analysis methods. Thus, we have found evidence
which is computationally expensive. of the microscopic dynamics of the FPU chain by employing

From Fig. 5 it is clear that the saturation regime of thethe BP momentum instead of the position. Now, as pointed
(r,7) entropy becomes increasingly harder to define astthe out in Ref.[8], the transition from an almost periodic to a
value is increased. Therefore two regions can be unambigwhaotic behavior in the FPU chain has been observed in a
ously defined by a transition from one type of behavior tochange in the scaling behavior of the relaxation time of the
another. From a macroscopic—i.e., statistical—perspective MACF of the BP coupled to the oscillator chain. This is a
is not at all clear what kind of mechanism could be heldquantity that can be readily measured in an experimental
responsible of this change in the behavior of ther) en-  setup by means of standard techniques, such as neutron scat-
tropy ase is increased. Furthermore, this transition sets in atering[16]. Thus, it could be possible to explore the micro-
a very precise threshold valug~ 1, which in Ref.[7] was  scopic dynamics of more complicated systems by means of
called thestrong stochasticity threshol(BST). This thresh- this variable, instead of using time-series analysis tech-
old indicates a transition between two different regimes inniques. Within the scope of these latter techniques there re-
the microscopic dynamics of the FPU chain: it is stronglymains the possibility to estimate tlig, 7) entropy by observ-
chaotic and phase-space diffusion is fast wherer, ing faster processes such as Johnson thermal noise in an
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electrical circuit, for example. In this particular case the anasis methods, that certain qualitative information on the mi-
log of the BP velocity would be the electrical current. In croscopic dynamics of a FPU chain can be detected by
Brownian motion the stochastic behavior of the BP velocityanalyzing the momentum time series of a heavy impurity
is produced by the interaction of the BP with the fluid par-coypled to the chain. This detection was made possible by
ticles. In Johnson noise the interaction between the conducfyq fact that the BP momentum varies in a much shorter time
ing electrons and the thermally vibrating atomic lattice of theScale than the BP position. Since the BP momentum obeys a

wire gives rise to a temporally varying electromotive force angevin equation. our results open the possibility that a
that is the analog of the stochastic force that appears in th'e 9 q ’ P P y

Langevin equation of Brownian motion. If a suitable micro- Similar methodology could be applied to other processes if a

scopic model of the random electromotive force could befertain variable that obeys a Langevin-type equation could
developed, a theoretical analysis along the lines of this papde Properly defined and a suitable microscopic dynamical
could be performed, with results readily verifiable experi-model to account for the macroscopic randomness could be
mentally, since the wire current is a directly measurableProvided.
quantity. Of course, any other process defined by a
Langevin-type equation in which a microscopic model of the
corresponding fluctuating force could be provided would be
adequate to explore the microscopic dynamics by means of
macroscopic measurements.
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