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The problem of detecting specific features of microscopic dynamics in the macroscopic behavior of a
many-degrees-of-freedom system is investigated by analyzing the position and momentum time series of a
heavy impurity embedded in a chain of nearest-neighbor anharmonic Fermi-Pasta-Ulam oscillators. Results
obtained in a previous workfM. Romero-Bastida, Phys. Rev. E69, 056204s2004dg suggest that the impurity
does not contribute significantly to the dynamics of the chain and can be considered as a probe for the
dynamics of the system to which the impurity is coupled. Thesr ,td entropy, which measures the amount of
information generated by unit time at different scalest of time and r of the observable, is numerically
computed by methods of nonlinear time-series analysis using the position and momentum signals of the heavy
impurity for various values of the energy densitye senergy per degree of freedomd of the system and some
values of the impurity massM. Results obtained from these two time series are compared and discussed.
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I. INTRODUCTION

The physically relevant question of how the underlying
microscopic dynamics of many-particle systems is related to
the observed macroscopic behavior is still not satisfactorily
answered. Since the main features of the latter are accounted
for by the microscopic dynamics, which is chaotic for most
systems of interest, it is natural to assume that some charac-
teristics of the chaotic microscopic dynamics should be de-
tected, in principle, at the macroscopic level of description.
Only then would it be possible to assess the relevance of the
microscopic dynamics on macroscopic behavior.

Empirical evidence suggesting the existence of micro-
scopic chaos on a molecular scale has been presented in an
experiment on the position of a Brownian particlesBPd in a
fluid f1g. The measurements were made at regular time inter-
vals and the experimental time series data were then inter-
preted using standard techniques of time-series analysis, sug-
gesting a positive lower bound on the Kolmogorov-Sinai
entropy per unit time,hKS—hence, microscopic chaos. How-
ever, a similar bound has been obtained with computer ex-
periments on the nonchaotic Eherenfest wind-tree model
where a single particle diffuses in a plane due to collisions
with randomly placed, fixed, oriented square scatterersf2g.
Later on it was found that the chaotic Lorentz model, which
has circular scatterers, has a diffusive behavior that is indis-
tinguishable from the one exhibited by the Eherenfest model
f3g. Furthermore, a class of one-dimensional maps has also
been reported which present normal diffusivelike behavior in
the absence of chaos, just as in the Eherenfest modelf4g.
These results have rendered doubts about the conclusion that
microscopic chaos has been experimentally detected. The
positive bound onhKS of Ref. f1g has been attributed to the
finiteness in both spatial and temporal resolution and the
limited amount of data pointsf2,5g.

The results in all previous works have been obtained with
only one of the BP dynamical variables—namely, its posi-
tion. However, there is a time scale in Brownian motion, not
mentioned in the previous works, that is characterized by the
relaxation time of the momentum autocorrelation function
sMACFd of the BP. This function can be computed from the
BP momentum time series. Significant variations in the BP
momentum occur in this time scale, which is much smaller
than the corresponding position time scale. Thus the BP mo-
mentum could, in principle, be used to probe the microscopic
dynamics of the system. But the type of models used in Refs.
f2–5g precludes a study in momentum space from the very
beginning, and therefore a different system is needed to ad-
dress the problem at hand.

The Fermi-Pasta-UlamsFPUd model, which is a one-
dimensional chain of nearest-neighbor anharmonic oscilla-
tors, is a system that has been extensively studied over the
past decades to test the way in which microscopic dynamics
determines the macroscopic behavior. Now, if the FPU chain
is coupled to a heavy impurity, the effects of the microscopic
dynamics on the statistical behavior of the latter can be
readily studied for a number of reasons. First, the position
and momentum of all the oscillators and the heavy impurity
are well-defined variables. At variance with the Eherenfest
and Lorentz models of Refs.f2,3g, in which the tracer par-
ticle interacts with the fixed scatterers through a discontinu-
ous repulsive potential, the system composed of the FPU
chain coupled to the heavy impurity is defined in terms of a
more realistic continuous attractive potential. Furthermore,
this is a many-particle system in which the statistical behav-
ior of the heavy impurity is produced by the interaction with
the oscillators of the chain, in sharp contrast with the models
of Refs. f4,5g, which are one-dimensional maps with only
one dynamical variable—i.e., the position—defined in the
model f6g.

It has been known for some time that, for the FPU chain,
a single parameter—namely, its energy per degree of free-
dome;E/N—controls its phase-space dynamics; that is, the*Electronic address: rbm@xanum.uam.mx
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system is weakly chaotic and thus has a dynamical behavior
that, in the time scales so far studied, is almost identical to
that of a chain of harmonic oscillators for lowe values,
whereas it is strongly chaotic for highe values f7g. This
behavior, for both low and highe values, is unaltered by the
inclusion of a heavy impurityf8g. The transition between
these two dynamical regimes was first detected by means of
a change in the scaling behavior of the largest Lyapunov
exponentsLLEd, which measures the exponential rate of di-
vergence of two originally close trajectories in phase space,
ase is varied from a low to a high value for the FPU model
f7g, and by a change in the scaling of the relaxation time of
the MACF as a function ofe for the FPU chain coupled to a
heavy impurityf8g.

In this work we will concentrate on the macroscopic
manifestation of the transition from one dynamical regime to
another, which can be readily studied in the macroscopic
behavior of the heavy impurity embedded in a FPU chain.
Our starting point comes from the observation that the
Kolmogorov-Sinai entropyhKS, which has been computed
from the complete microscopic dynamics of this system as a
function of e, displays the aforementioned transition in the
scaling behavior ofhKS f9g. Since in the description of the
microscopic dynamics the momentum of all the oscillators of
the system is considered and the dynamics of the chain is not
affected by the presence of the heavy impurity, we can ask
whether some evidence of the above-mentioned transition
between dynamical regimes can be detected by applying the
methods of nonlinear time-series analysis to the momentum
time series of the heavy impurity. The present work is a first
step to answer the above-posed question.

The plan of the paper is as follows. In Sec. II we briefly
review the model and methodology employed to obtain the
position and momentum time series of the BP. In Sec. III we
present the results for the position time series, which are
consistent with those of Refs.f2,5g. In Sec. IV we apply the
same methodology of the previous section to the momentum
time series, with the result that there is a quantitative differ-
ence in the results obtained in the low- and high-e regimes,
and hence evidence of the microscopic dynamics of the os-
cillator chain. In Sec. V we discuss the results so far ob-
tained. Conclusions are given in Sec. VI.

II. MODEL AND ITS NUMERICAL INVESTIGATION

In terms of dimensionless variables, the Hamiltonian of
the model considered in this work is

H = o
i=−N/2

N/2 F pi
2

2mi
+

1

2
sxi+1 − xid2 +

1

4
bsxi+1 − xid4G , s1d

with mi =1 for i Þ0 and m0=M; periodic boundary condi-
tions are assumedsxsN/2d+1=x−N/2d. The model, which will be
named modified FPUsMFPUd model from now on, describes
a system of one-dimensionalN coupled nonlinear oscillators
of unit mass with nearest-neighbor interactions, displace-
mentshxij, momentahpij, and a central oscillatorsimpurityd
of massM with displacementx0;X and momentump0; P.
The valueb=0.1 was used in the computation of all the

numerical results hereafter reported. As initial conditions we
choose the equilibrium value of the oscillators
displacements—i.e.,xis0d=0 for i =−N/2 , . . . ,N/2. The mo-
mentahpis0dj were drawn from a Maxwell-Boltzmann distri-
bution at a temperature consistent with a given value of the
energy densitye, which was chosen in the range 0.01øe
ø100 with M =40, 60, 80, and 100. Then the 2sN+1d equa-
tions of motion were numerically integrated to obtain the
time evolution of the system, whose state is represented by
the variable Gstd=shxistdj ,hpistdjdPR2sN+1d. After thermal
equilibrium between the impurity and FPU chain withN
=300 000 unit mass oscillators is attained, the behavior of
the heavy impurity is almost identical to a Brownian motion
for all e values studiedf10g, as can be inferred from the
values of the diffusion coefficient and the exponential fit to
the MACF f8g. So we can consider the heavy impurity as a
genuine BP. It is in this regime that the positionhXstadj and
momentumhPstadj time series of the heavy impurity, with
ta;at sa=1, . . . ,nd and t=1 being the natural time unit
sdiscretization stepd, were recorded for alle and M values
considered over a time interval ofn=23105 natural time
units.

III. POSITION TIME-SERIES ANALYSIS

In Fig. 1 we show a segment of the complete position
time series fore=0.01 and 10 withM =100, which corre-

FIG. 1. sad Position time record fore=0.01. The numerically
computed diffusion coefficient isD<0.0052. The length of the
complete data set is 23105 and the data were sampled witht=1.
sbd Position time record fore=10 with a numerically computed
diffusion constant ofD<33.65. Same total data set length andt
value as insad. In both casesM =100.
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spond to the weakly chaoticsi.e., almost periodicd and one
instance of the strongly chaotic regime, respectively. We can
readily appreciate that both signals are practically indistin-
guishablesexcept for the scale, which is controlled by thee
valued, although they correspond to completely different dy-
namical regimes, as already mentioned. Furthermore, some
quasirecurrences can be appreciated in the complete data se-
ries snot shownd. This fact is a consequence of the finiteN
value. Thus it can be inferred that the position of a BP is
unsuitable as a probe to the microscopic dynamics of the
chain.

From the BP position time series alone the investigation
on the system is performed at a finite resolutionr; moreover,
the dimensionality of the phase space is lost, sinceXstdPR.
To cope with these limitations, the phase space is recon-
structed by a delay embedding techniquef11g in which, from
the scalar time serieshXstadj, a new vector time series is
defined as

X smdstad = hXstad,Xsta + td, . . . ,Xsta + sm− 1dtdj, s2d

being a portion of the discretized trajectory with stept and
defined inRm; m is known as the embedding dimension.
Next, the spaceR is partitioned using cells of lengthr, which
defines a resolution for theX variable. The vectorX smdstd is
coded into a word of lengthm,

X smdstad → Wmsr,tad = sisr,tad, . . . ,i„r,ta + sm− 1dt…d,

s3d

where isr ,ta+ jtd labels the cell inR containingXsta+ jtd.
Under the hypothesis of stationarity the probabilities
P(Wmsrd) of the admissible wordshWmsrdj are obtained from
the time evolution ofX smdstad. Then thesr ,td entropy per
unit timehsmdsr ,td, a generalization ofhKS for variables mea-
sured with finite resolutionf12g, is defined by

hsmdsr,td =
1

t
fHm+1sr,td − Hmsr,tdg, s4d

whereHm is them-block entropy,

Hmsr,td = − o
hWmsrdj

P„Wmsrd…ln P„Wmsrd…, s5d

which was computed by means of the Grassberger-Procaccia
methodf13g. The result for thee values reported in Fig. 1 is
displayed in Fig. 2.

As can be readily seen, the shape ofhsmdsr ,td is very
similar for the weakly chaotic casee=0.01 and the strongly
chaotic casee=10. This result can be readily explained by
the fact that the BP, in both dynamical regimes, performs
Brownian motionf8g. Now, a Brownian signal is a stationary
Gaussian process characterized by a power spectrumSsvd
~v−2, which allows one to obtain an explicit form for the
sr ,td entropy in the limitt→0 ashsmdsr ,td,D / r2, whereD
is the diffusion coefficientf12g. This asymptotic behavior is
also displayed in Fig. 2 for eache value considered using the
numerically computed values of the diffusion coefficient in
each dynamical regimef8g. As in Refs.f1,2,5g we considered
different delay timest to verify that the obtained result is
indeed independent of the specific delay time value em-

ployed f5g. From the figure it is evident that this power-law
scaling for hsmdsr ,td is approximately obtained already for
t=1, with no noticeable differences ast increases. This re-
sult can be explained by the fact that the natural time unit
t=1, employed as the lowest delay time, is very close to the
value of the fastest period of the harmonic part of the chain,
Tmin=p, which is the characteristic microscopic time scale of
the system; thus the employed sampling time has an ad-
equate resolution to probe the dynamics of the BP position.
From the results displayed in Fig. 2 we can conclude that the
stochastic behavior of the obtained signals is indeed indepen-
dent of the underlying dynamics. In fact, as will be later
explained, the mechanisms that explain the stochasticlike be-
havior for bothe values are well known for both dynamical
regimes. Since our results are consistent with those of Refs.
f2,5g, it is clear that no microscopic information can be ob-
tained from the position time series of the heavy impurity.

IV. MOMENTUM TIME-SERIES ANALYSIS

Now we consider the momentum time series of the heavy
impurity, which is displayed in Fig. 3 fore=0.01 and 10. The
first feature that stands out in comparison with the corre-
sponding position time series is that the time scale in which
significant variations in the signal value occur is much
shorter than the corresponding time scale of the position
variable. The second feature is that no quasirecurrences can

FIG. 2. hsmdsr ,td computed using 73104 data points from the
time series shown in Fig. 1. The reported results are for an embed-
ding dimension ofm=50. sad e=0.01 and sbd e=10. The two
straight lines show the correspondingD / r2 behavior.
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be found by inspecting the complete time seriessnot shownd,
in sharp contrast with what happens with the complete posi-
tion time series. Of course, for a long enough record quasi-
recurrences could be found, sinceN is finite, as already men-
tioned. However, the fact that for the same data length the
position variable shows quasirecurrences and the momentum
time series does not clearly indicates that it may be possible
to extract more dynamical information from this variable for
both e values considered than from the corresponding time
record of the BP position variable.

As in the case of the position, a reconstruction of the
phase space is performed from the BP momentum time se-
ries, which yields

Psmdstad = hPstad,Psta + td, . . . ,P„ta + sm− 1dt…j. s6d

The sr ,td entropy per unit time fore=0.01, obtained from
the vector time seriesPsmdstad, is displayed in Fig. 4 for
various m values. The most striking feature is that the
sr ,td entropy has a well-defined saturation valuehsmdsr ,td
<const, which is reached asymptotically as the embedding
dimensionm increases, for a small resolutionr. Furthermore,
as can be readily seen, there is no need to take large delay
time values in order to obtain the plateau value displayed.
The finite value of thesr ,td entropy is consistent with the
fact that the LLE and, thus, thehKS entropy are well-defined
quantities in the thermodynamic limit, both for the FPU

chain f14g and for the MFPU modelf9g. It is also clear that
there is no way to obtain the aforementioned plateau value
using the position time series alone, as shown in Fig. 2. The
behavior of thesr ,td entropy for lowr values, displayed in
Fig. 4, is a confirmation that the momentum of the BP is a
better probe of the microscopic dynamics of the oscillator
chain than its position. However, the saturation value
hsmdsr ,td<0.086 obtained forr ,1 is higher than the true
microscopic valuehKS<0.12310−4 f9g.

In Fig. 5 we present thesr ,td entropy for different values
of the energy densitye for a single delay timet=1 andm
=60 in all cases, since this is a representative value of the
embedding dimension, as can be seen in Fig. 4. We observe
that the curves are separated into two different and well-
defined regions, depending on thee value. In all cases a
plateau value can be defined wheneø1. On the contrary,
whene.1, it becomes increasingly difficult to find a region
in which a plateau value can be observed. So from this figure
we can establish thateT<1 is a threshold between two dif-
ferent regimes that are well characterized by the behavior of
hsmdsr ,td, as already explained. The observed difference in

FIG. 3. sad BP momentum time record fore=0.01. The length of
the complete data set is 23105 and the data were sampled witht
=1. sbd BP momentum time record fore=10. Same total data set
length andt value as insad. In both casesM =100 and the inset
figures display the BP momentum time record over a larger time
scale.

FIG. 4. hsmdsr ,td computed using 73104 data points from the
BP momentum time series shown in Fig. 3sad. The reported results
are for a delay time oft=1 and various values of the embedding
dimensionm. The horizontal dashed line is the mean value obtained
from the average of the curves withmù40 for r values in the range
0.19ø r ø0.59.

FIG. 5. hsmdsr ,td computed using 53104 data points from the
BP momentum time series for different energy density values. The
reported results are for an embedding dimension ofm=60, with
M =100 in all cases.
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the behavior of thesr ,td entropy can be readily interpreted
as a macroscopic manifestation of the structural changes that
the phase space undergoes when going from a low to a high
e value. Further details will be given in the next section.

V. DISCUSSION

Our results shed some new light on the problem of detect-
ing features of the underlying microscopic dynamics by
means of macroscopic measurements. Since we have access
to both the complete microscopic dynamics of the system
and the results of data analysis of the BP position and mo-
mentum times series, we can make comparisons between
“exact” microscopic information and macroscopic “measure-
ments” which are not possible to make if other models are
employed, as already mentioned in the Introduction. For a
deterministic chaotic system one has 0,hKS,` shKS=0 for
regular motiond, whereas for a random processhKS=`. Now,
considering thesr ,td entropy computed from the BP position
time series, there is hardly a way of discerning from Fig. 2
whether the data were originated by an almost periodic or
chaotic system, since the behavior ofhsmdsr ,td is very similar
in both cases. The problem can be traced to the embedding
dimensionm, since its value is well bellow the dimensional-
ity 2sN+1d=600 002 of the underlying dynamical system.
This is an intrinsic limitation of nonlinear time-series meth-
ods which has been previously establishedf2,5g. The afore-
mentioned problem persists, but is less severe, when the BP
momentum time series is employed in the computation of
hsmdsr ,td, since a well-defined plateau value is obtained. This
result can be explained by the fact that the BP momentum
varies on a smaller time scale than the corresponding BP
position time scale, thus allowing a more detailed sampling
of the phase space. The problem becomes the overestimation
of hKS when it is approximated by thesr ,td entropy com-
puted both from the BP position and momentum time series.
The Kolmogorov-Sinai entropy is an upper bound to the
hsmdsr ,td value, and thus the relationhsmdsr ,tdøhKS is not
satisfied, as can be readily seen in Figs. 2 and 4. Since the
length of both the BP position and momentum time series is
the same, we can conjecture that this overestimation is a
consequence of the small value of the embedding dimension
m. Finally, we observe that the rate of decrease in the plateau
value of thesr ,td entropy asm increases becomes too small
to justify any further increment in the embedding dimension,
which is computationally expensive.

From Fig. 5 it is clear that the saturation regime of the
sr ,td entropy becomes increasingly harder to define as thee
value is increased. Therefore two regions can be unambigu-
ously defined by a transition from one type of behavior to
another. From a macroscopic—i.e., statistical—perspective it
is not at all clear what kind of mechanism could be held
responsible of this change in the behavior of thesr ,td en-
tropy ase is increased. Furthermore, this transition sets in at
a very precise threshold valueeT<1, which in Ref.f7g was
called thestrong stochasticity thresholdsSSTd. This thresh-
old indicates a transition between two different regimes in
the microscopic dynamics of the FPU chain: it is strongly
chaotic and phase-space diffusion is fast whene.eT,

whereas it is only weakly chaoticsi.e., almost periodicd and
phase-space diffusion is slowed down whene,eT. Then,
from a microscopic Hamiltonian perspective, the change of
behavior detected by means of thesr ,td entropy can be
straightforwardly interpreted as a macroscopic manifestation
of the aforementioned transition described by the SST. We
can say that the difference in the behavior of thesr ,td en-
tropy for low and highe values means that some distinction
between different dynamical regimes has indeed been ob-
served by nonlinear time-series analysis.

Now, it is important to recall that, in the particular case of
e=0.01, thehKS entropy has a finite, albeit very small, value
f9g. The apparent dynamical randomness—i.e., finitesr ,td
entropy value—of the Eherenfest model has been previously
explained by the structural disorder of the modelf15g, which
is the static analog of our random initial conditions. Thus it is
quite plausible that the finite information amount carried in
them is reflected in the finitesr ,td entropy value displayed in
Fig. 4, which corresponds to the weakly chaotic regimee
=0.01. The increase in thesr ,td entropy of the MFPU model
for high e values displayed in Fig. 5 can be explained by the
fact that it has been known for some time that the dynamics
of the FPU model, for highe values, mimics a random pro-
cess. Thus the LLE scaling exponent, which characterizes its
powerlike dependence one, can be obtained by means of a
random matrix approximationf7g. This dynamical random-
ness produces an increase in thesr ,td entropy relative to its
plateau value fore=0.01. The picture that finally emerges is
that, due to the small value of the embedding dimensionm, a
finite value of thesr ,td entropy will most likely be obtained
when an observable of a high-dimensional system like the
MFPU model is examined with nonlinear time-series analy-
sis techniques, independently of the precise nature of its mi-
croscopic dynamics, either regular or chaotic. Nevertheless, a
distinction can be made between those regimes by inspection
of the low-r behavior of thesr ,td entropy, which has a well-
defined plateau value for the weakly chaotic regime and a
monotonically increasing value for the chaotic regime. It will
be a matter of future research to explore if this type of dis-
tinction can be made in other models.

We would want to end this section with some final re-
marks. The central argument of this paper is that the infor-
mation obtained from a given system can be very different
depending on the dynamical variable chosen to be studied by
time-series analysis methods. Thus, we have found evidence
of the microscopic dynamics of the FPU chain by employing
the BP momentum instead of the position. Now, as pointed
out in Ref. f8g, the transition from an almost periodic to a
chaotic behavior in the FPU chain has been observed in a
change in the scaling behavior of the relaxation time of the
MACF of the BP coupled to the oscillator chain. This is a
quantity that can be readily measured in an experimental
setup by means of standard techniques, such as neutron scat-
tering f16g. Thus, it could be possible to explore the micro-
scopic dynamics of more complicated systems by means of
this variable, instead of using time-series analysis tech-
niques. Within the scope of these latter techniques there re-
mains the possibility to estimate thesr ,td entropy by observ-
ing faster processes such as Johnson thermal noise in an
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electrical circuit, for example. In this particular case the ana-
log of the BP velocity would be the electrical current. In
Brownian motion the stochastic behavior of the BP velocity
is produced by the interaction of the BP with the fluid par-
ticles. In Johnson noise the interaction between the conduct-
ing electrons and the thermally vibrating atomic lattice of the
wire gives rise to a temporally varying electromotive force
that is the analog of the stochastic force that appears in the
Langevin equation of Brownian motion. If a suitable micro-
scopic model of the random electromotive force could be
developed, a theoretical analysis along the lines of this paper
could be performed, with results readily verifiable experi-
mentally, since the wire current is a directly measurable
quantity. Of course, any other process defined by a
Langevin-type equation in which a microscopic model of the
corresponding fluctuating force could be provided would be
adequate to explore the microscopic dynamics by means of
macroscopic measurements.

VI. CONCLUSIONS

In this work we have presented positive evidence, ob-
tained from a systematic study employing time-series analy-

sis methods, that certain qualitative information on the mi-
croscopic dynamics of a FPU chain can be detected by
analyzing the momentum time series of a heavy impurity
coupled to the chain. This detection was made possible by
the fact that the BP momentum varies in a much shorter time
scale than the BP position. Since the BP momentum obeys a
Langevin equation, our results open the possibility that a
similar methodology could be applied to other processes if a
certain variable that obeys a Langevin-type equation could
be properly defined and a suitable microscopic dynamical
model to account for the macroscopic randomness could be
provided.
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