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Fluctuational transitions across different kinds of fractal basin boundaries
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We study fluctuational transitions in discrete and continuous dynamical systems that have two coexisting
attractors in phase space, separated by a fractal basin boundary which may be either locally disconnected or
locally connected. Theoretical and numerical evidence is given to show that, in each case, the transition occurs
via a unique accessible point on the boundary, both in discrete systems and in flows. The complicated structure
of the escape paths inside the locally disconnected fractal basin boundary is determined by a hierarchy of
homoclinic points. The interrelation between the mechanism of transitions and the hierarchy is illustrated by
consideration of fluctuational transitions in dynamical systems demonstrating “fractal-fractal” basin boundary
metamorphosis at some value of a control parameter. The most probable escape path from an attractor, which
can be either regular or chaotic, is found for each type of boundary using both statistical analysis of fluctua-
tional trajectories and the Hamiltonian theory of fluctuations.
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I. INTRODUCTION the fractal basin boundary. For one-dimensional maps, the
Examples of fluctuation-induced transitions can be foundProPlem of specifying boundary conditions can sometimes
in many branches of science, from diffusion in solids and®® Sidesteppefil4] by carrying out minimization over all
protein folding, to switching in laserkl] and resonantly possible initial conditions on the chaotic attractor. Clearly,
driven trapped electrori@]. In many situations, it is impor- such an approach cannot be extended to higher-dimensional

tant not only to estimate the escape probability, but also to bfactal structures. .
able to control it, which, in turn, requires additional informa- _ R€cently, however, it was shown that the problem of es-

tion about the structure of the escape paths connecting met§&P€ in chaotic systems with fractal boundaries can be con-
stable states pep g siderably simplified. First, it was demonstrae®—21 and

o ... ._independently confirme@22] that unique boundary condi-
h;sh: SCZT(F;'?njttr#gt?r;ectg{it(;ho?‘cmz It')r:étinsgtosur?é(:r?;nsgsg tions can be identified on a chaotic attractor. Second, our
pt' P t Htractold 6y' itabl ke th | Picent studies have shown that fluctuational transitions
rating coexisting attrac 0'[. — ], inevitably make ne analy- 5cross a locally disconnectétlD) FBB occur via a deter-
sis of fluctuational transitions an extremely difficult and

) e i ministic mechanism. We have also shown that escape occurs
challenging problem. The main difficulty stems from delicateyja 5 unique accessible boundary point on the LD FBB and

questions about the uniqueness of solutions and the boundagiyat the structure of escape paths inside the LD FBB is de-
condition on the chaotic attractor and/or on the fractal basiRermined by a hierarchy of points in a homoclinic tangle
boundary (FBB). A number of interesting analytic results [23]. Moreover, it was inferred that the mechanism in ques-
were obtained for the escape problem in one- and twotion should be common among many chaotic maps and
dimensional linear chaotic mapg-9] using the methods of flows.
transition state theory. However, exact analytic results are In this paper, we describe in more detail the mechanism of
not readily available for the general case of a nonlinear magluctuational transition across both LD and locally connected
Instead, an asymptotic analysis of the escape problem in thgC) FBBs, and we demonstrate that our prediction about the
limit of weak noise developed for continuous systef®se, common nature of the described mechanism is indeed cor-
e.g.,[10]) and extended to mag41,12 can be adopted for rect.
chaotic system§l3-16. It was shown earlier that the presence of the homoclinic
In this approach, an auxiliary Hamiltonian systdfor  tangencies that cause fractalization of the basin boundary
flows), or an auxiliary area-preserving map, is introducedalso leads to a decrease in activation end@y;25. In the
describing the fluctuational motion as a motion along certairpresent paper, we give theoretical and numerical evidence to
deterministic trajectories. The solution of the escape problendemonstrate that the predicted mechanism is valid for sys-
is then given by the solution of the boundary value problentems showing “fractal-fractal” basin boundary metamorpho-
in the extended phase space of the auxiliary system: it is thees. This allows one to study the activation energy and the
solution yielding the trajectory of minimal energy connectingoptimal transition path even when the fractal boundary and
the attractor to the boundary of its basin of attraction. Wethe escape path experience discontinuous changes. We show
emphasise that these deterministic trajectories underlyinthat the noise can effectively move the accessible point in-
fluctuational motion are not mere theoretical abstractionsside the open neighborhood containing an attractor. Finally,
but can be observed experimentdliy7,18|. by studying fluctuational transitions across an LC FBB, we
The main difficulty in application of these results to cha- have been able to find a unique optimal escape path and an
otic systems lies in the fact that the boundary conditions areptimal fluctuational force, even for this qualitatively differ-
in general not known, neither at the chaotic attractor nor orent case.
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We emphasize that, by exploitation of an analogy between
the variational formulation of the control problem, and noise-
induced escape from the domain of attractj@6], we are
enabled to find both the optimal escape path and the corre
sponding optimal force that causes switching of complex
chaotic systems between coexisting stable states. This nor
linear approach to the problem of steered transitions betwee!
coexisting stable states is of broad interdisciplinary interest
and is closely related to problems of control and stability of
complex nonlinear dynamical systef&7,28|.

The paper is organized as follows. In Secs. Il A and Il B,
we review briefly some of our relevant recent results, de-
scribing in detail the procedures for computation of the acti-
vation energy. In Sec. Il C, a proof based on topological
arguments is given to account for our observation that escap
takes place at an accessible point on the basin boundary, ar
the procedures used for minimization of the activation en-
ergy are presented. Section Ill is devoted to the study of
noise-induced escape from a periodic attractor in the Henor
map. It is known that, for some values of the control param-
eter, this system possesses a so-called “fractal-fractal” basil
boundary crisis, where the FBB drastically change its form,
spreading inside the open neighborhood containing the at
tractor[29]. We analyze the structure of the optimal escape
paths and generalize the notion of a noisy precursor of bifur-
cation to the interesting case of boundary crisis in the pres-
ence of noise. Section IV deals with fluctuation transitions
across a closed nowhere-differentiable LC FBB in a nonana-
lytic quadratic map. Our conclusions are given in Sec. V.

Il. FLUCTUATIONAL TRANSITIONS e
ACROSS THE LD FBB (c)
001+ .
To study fluctuation transitions through an LD FBB, we 8
took as a model the Holmes m&g0] driven by noise, é‘ N
Xn+l = yn- 't_d
§ 2001
N
yn+1:_bxn+dyn_yﬁ+§n! (1) 8—4
whereé, is zero-mean white Gaussian noise of variabce 04
Due to symmetry, the noise-free systéin has pairs of co-

existing attractors fob=0.2 and 2.6=d=2.745, the basins 0035
of which are separated by a boundary that may be eithel

smooth or fractal, depending on the chosen values of param-

eters. We chose for our studiés=0.2 andd=2.7, which ] o o
corresponds to there being two coexisting CA basins sepa- "'C- 1. (@ (Color onling One of the coexisting CAs is indicated
rated by an LD FBB. One of them is shown in Figall The py thg centrally placgd filled curve. Its basin of attra.lctlon is showq
fractal dimension of the boundary, determined numericall))n white, whereas points belonging to the other _basm are shgded in
by using the “uncertainty exponent’ techniqu8l], is gray. The most probable_ escape path connecting th_e CA with the
1.844.72. The chaotic attractof€As) in Egs. (1) appear as period-3 saddle cycl&3 lying on the_ fractal boundary is shown by
the result of a period-doubling cascade and, for the chos the sequentially numbered small circldmundary value problem

| f h of th . f . €ohd stars(Monte Carlo simulations which practically coincide.
values of parameters, each of them consists of two dISCOnl'he remaining unnumbered circles show how the MPEP evolves,

nected parts. It should be noted that the properties of thig oytside the basin of attraction of the initial state) The x
map, including the structures both of its CA and of its locally ¢yordinates of the optimal escape paths showfajinwhich were
disconnected FBB, are generic for a wide class of maps anghtained both from the Monte Carlo simulations wih=10"5
flow systems[4,6]. For instance, a similar map was intro- (dashed linand from the solution of the boundary value problem
duced recently to model the localized breathing oscillationgsolid line). The abscissa of the saddle poBi is shown by the
of Bose-Einstein condensates in periodic tr§p2]. Taken thin-dashed line(c) The optimal fluctuational force moving the
together with the results of our investigations of escape irsystem(1) to the LD FBB. All units are dimensionless.
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other systems, these considerations allow us to conclude thas basin of attraction. According to the Hamiltonian theory
the escape mechanism we describe is indeed a typical oneof fluctuations valid in the limiD — 0 [13—16], the MPEP is

- . . . the path which minimizes the “energy” defined[86]
A. Statistical analysis of escape trajectories

We excited the systertl) with weak noise and collected 1 N .
both the trajectories that provide escape paths from one CA S= 52 &nén. (2)
to the other and the corresponding realizations of noise that n=t
induced them. Averaging a few hundred such escape traje¢4ere the minimization has to be performed over all possible
tories and noise realizations, we obtained the optimal escapgalizations of noisd¢,} that induce a transition of the sys-
path and the corresponding optimal force, which are showrgem(l) from the CA(with the initial condition on thesl) to
in Fig. 1. The results of this statistical analysis allow us t0\,o FBB. The constraint between coordinafes and {¢}

FBB, and to demonstrate the uniqueness of the MPEP. It Ca%efmed by Eq(1) is implemented through introduction of a

be seen in particular that the systé€in leaves the CA falling set of Lagfa.”g.e undetermined muItipIie{ﬂsﬁ} [15].' In this
into a small neighborhood of the saddle point of period 12, the minimization of energf?) over{é} is equivalent to

(S1) located between its two disconnected parts. Its stablghe minimization of

manifold separates the parts of the CA, while the unstable 1N N
one approaches the CA. Furthermore, the system makes a L= EE + D NT[Kouy - F(X) — &1,
few iterations in some small neighborhood&if [small pla- 205" e

teau in Fig. 1b)] and then moves in a few steps to the FBB,

crossing it at the saddle point of period $3). over{&,}, {\n}, and{x,}. Heref(x) is the deterministic part of
Calculations have shown th&8 for the chosen parameter the map. S _
values lies on the FBB. Moreover, its stable manif¢ddlid The result of the minimization is the following area-

black line in Fig. 1 is densg33] in the FBB and detaches preserving map:
the open neighborhood including an attractor from the FBB

itself, thus allowing us to classify it as an accessible bound- X+ 1= Yo

ary point[23,29,34. Indeed, by definition a boundary point 5

P is accessible from a region if there is a curve of finite Y1 =~ 0%, + dyp = Yo+ N,

length connectind® to a point in the interior of the region

such that no point of the curve lies in the boundary except A= (d =32, )NYb = \Y/b,

for P. In the case of the saddi8, the part of the unstable

manifold of S3 approaching the CA and lying inside the open N, =\ (3)

neighborhood plays the role of such a curve. It should be
noted that boundary poii®3 is the only saddle point belong- The evolution of the “energy” along the solution of Eg) is
ing to the homoclinic structure whose stable and unstabl@overned by

manifolds are not tangent to each other. All other homoclinic 1

points are buried in the FBB and inaccessible from the open Sw1=S+=(\)2 (4)
neighborhood including CA because of such tangencies. 2
Moreover, in the absence of noiss is the only saddle point

in the FBB from which the noise-free systdf) can relax to

an attractor in a finite number of iterations. For all other
initial conditions taken in inaccessible saddle points, the In order to describe the process of escape from the vicin-
noise-free systenfl) must stay inside the FBB infinitely ity of the initial structure, a path solution of the extended
long [29]. In other words, the saddle poil®3 is the ho- map is required that minimizes the “energy). We want to
moclinic point closest to the CA whose stable manifold sepadescribe here the boundary conditions on the basin boundary
rates the interior, including the CA, from the FBB. This situ- for such a trajectory and we seek to prove that they have to
ation is similar, in some respects, to the case of fluctuationdbe chosen on an accessible saddle on the boundary. In what
transitions across the smooth basin boundary formed by thi®llow, we refer to the notation in Fig. 221 indicates the
stable manifold of a saddle boundary point. For that case, iaccessible part of the basin of attraction of the stable struc-
is well known that phase trajectories approach a saddle poiritre; d() is the accessible part of the basin boundary, i.e., the
with zero velocity. For this reason, the action calculated instable manifold of the accessible sad8& it separates)1
some small neighborhood of the separatrix takes its minimafrom the remaining part of the coordinate space, here indi-
value at a saddle poif85]. The present case is much more cated asQ2. 2 is the set of all points in the space not
intricate due to the far more complicated structure of theaccessible fronf)1. We start by proving thaf21 is mapped
basin boundary and the large number of saddles embeddediinto a subset of)1. This means that no points €11 are

C. Boundary conditions

the boundary. mapped intoQ)2. Composed of accessible poinf3]l is a
o _ connected setmore precisely an arcwise connected)set
B. Variational formulation of the problem while Q1 and Q2 are separated bg). As the continuous

Calculation of the MPEP requires an understanding of thémage of a connected set is a connected set, and at least one
mechanism of escape from the initial state to the boundary gboint of (21 is mapped insid€)1, the wholeQ21 is mapped
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into a subset of itself. In other words, a noise-free trajectory oy*
cannot “jump over” the basin boundary. As a second step, we
give an argument that proves that an “energy”-optimal es-
cape path out of)1 should terminate on the basin boundary.
Let us proceed as follows. The escape is realized when a
point x inside Q1 is mapped into a point” in dQ or in Q2.
From the previous argument, we know tH&x) (the noise-
free image ofx) is still inside Q1. The “energy” cost to be
minimized for the transition i%[y*—f(x)]T[y*—f(x)], on all ox
possibley” € {dQ,Q2}. The “energy” cost is clearly minimal
for a pointy on d() (see Fig. 2 Finally, every point ord(}

dQ (x)
Q1

FIG. 2. Details of the escape processis a point inside the

can be connected via a noise-free path to the saddle embe%f:-ces‘Sible basin of aftractiddl, f(x) is the noise-free image of
andy is the point on the boundaig() that minimizes the “energy

ded in it. This means that among all possible pointsith st;y" is another(nonoptima) point in Q2 (the set of all points in

“ ” C
the saddle has the least energy and that the escape m%ﬁ?e space is inaccessible frafiil). The units are dimensionless.
take place through the accessible sadifie

In order to describe the escape process, therefore, the sys-

”

tem (3) has to be solved with the following boundary condi- <X> _ (eulx eu2x><cul>
tions: y euly eu2y Cu2 ,
im X=0, (Cyd)est, yhes3. (5
e ()\) ) (emx emx> (cu1>
The MPEP is the solution of this boundary-value problem Ay €un, G,/ \Ci2/

that minimizes the cost4). It is known that, in the phase
space, the MPEP is a heteroclinic trajectory connecghg i i N -
andS3 [37-41. In general, the location of this trajectory is a 'ationship betweenx and,

Use of standard linear algebra techniques yields a linear re-

very complicated problem, due to the singular shape of the e, ew e e\l
unstable manifold oSl [40-42 and the presence of mul- M :( P xx)( ulx “2X> _ (8)
tiple local minima of the energ§43]. The key step in per- €, Gu2n,/ \Cuy Cuzy

forming the minimization and solving the boundary-value
problem is the description of the family of solutions of Eq. defined by providing its initial conditions in the coordinate

(3) on the unstable manifold d&81 by the use of an appro- . . .
priate number of parametef44]. In the vicinity of SL, the space and the corresponding momenta can be obtained using
’ tge matrix M. The whole family of trajectories on the un-

unstable manifold is a plane in the phase space. It can b bl ifold be defined b Vi . fini
described by introduction of a linear constraint between the avble manitold can be detined by supplying a region ot ini-
ial conditions in a neighborhood & . A possible choice can

coordinates and “momenta’=Mdx, wheresx represents the e 161 example, the area included between two circles cen-
displacement fron$l. M is a real matrix. In order to calcu- oraq inS1 with radii r, andr, chosen so as to include all

late the coefficients in thél matrix, the system(3) is ex-  osqible trajectories in the pattern. The parameters used to
panded abousl to give describe a single trajectory can be the angular position and
Newy = A+ N, the distance;<r <r, from S;. The evolution of a trajectory
is followed until it exits the boundary and the escape “en-
T ergy” is then recorded. In this way, the “energy” is defined as
Mrr = A N, (6) a real function in the space of parameters. For the sy&i¢gm
whereA is the Jacobian matrix of the original map calculatedthe parameter space is diffeomorf#] to a torusT? i.e., it
in Si. can be mapped into a tord$ using an invertible functiot
The eigenvalues for the mdf) are ay, a, aIl, a;l_ The such thath and_h‘l are C”. The “e_nt—_zrg_y” f_unc_tion can be
stable eigenvectors associated with the contracting eigenvaf€"y Wild and singulaf44] but a minimization is neverthe-
ues are called,, andey, where the index indicates stable. less still possible. The MPEP found by this method is shown

The unstable eigenvectors are denotecsyande,,. A ge- I Fig. 1. It can be seen that the MPEP predicted by the
neric point on the unstable manifold can be written as gHamiltonian theory coincides with that obtained by statistical
combination ofe,, ande,, analysis of the escape trajectories in Monte Carlo simula-

tions. Note that no action is required to bring the system to
X 8,1 8.0 another attractor after it has reached the accessible orbit on
=Cul| . |J*Cp|. |- (7)  the FBB.
ST €uan

Here Uy, » and ey, ,, represent thec and X components of
the eigenvectors,; ,. Writing the vectorsc and\ explicitly,

using their components,y, A, \,, one obtains a set of linear An analysis of the structure of escape paths inside the
equations, FBB has shown that the homoclinic saddle points play a key

Thus a single trajectory in the pattern of solutions can be

-

N

D. Structure of the escape path inside the FBB
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role in its formation. In the systefil), we observe an infinite
sequence of saddle-node bifurcations of period 3, 4, 5, 6,
7,..., at parameter valuey <d,<ds<dg<<ds -+, caused by 3
tangencies of the stable and unstable manifolds of the saddle
point O at the origin. The homoclinic orbits appearing as a

result of these bifurcations were classified earlieoaginal C’D/ o
saddles and it was also shown that their stable and unstable C:
manifolds cross each other in a hierarchical sequgz@k It -

is this deterministic structure of the manifolds of the original ™
saddles that determines the fluctuational escape mechanism —
across the LD FBB. Indeed, to escape from a CA, the system L
must first cross the stable manifold of the accessible orbit, ™

and then the stable manifolds of the other original saddles, in -— 1>
a predetermined hierarchical sequence. Once the system a7
crosses the stable manifold of a saddle orbit, it relaxes noise- CD
free to the corresponding orbit, which it then leaves along its e
unstable manifold. Therefore, the hierarchical interrelation 8
between original saddles involved in the escape has to be
closely linked to eigenvalues of the Jacobian at these saddles
(also known asnultipliers of the periodic orbif46]), char-

acterizing their local stability with respect to motion on the £ 3. |jjustration of the hierarchical heteroclinic intersections

manifolds. _ _ between the stable and unstable manifolds of the original saddles.
To quantify this interrelation, we introduce a parameter The units are dimensionless.

<
<
[ —

[

< 5

_ log pe(x) . "
“= 108 pur)’ (9 saddles of period 3 and 4. Such a situation leads to the so-
um called “fractal-fractal” boundary metamorphosis of the LD
where pg(X;) and p,,(X) are the multipliers of the saddle FBB observed for the first time in the Henon map,
point x; corresponding to the stable and unstable directions,
respectively. This conclusion accords with the fact that the
natural measuregy on a two-dimensional chaotic nonattract-
ing set is concentrated along its unstable manifold and can be Y1 =X%p t fﬁ,
represented via unstable eigenvalues of unstable orbit

Xn+1:A_X§_Jyn+§ﬁ: (10)

; ; Which we treated as a model excited by two statistically in-
7(C)=21/l0g pur(x), whereC is the region of phase space dependent Gaussian noise sources whose correlation func-

containing the chaotic saddlg,,(x;) is the multiplier corre- tions are(ff]l’z)énf’z)FZDénm. It is well known that the noise-

sponding to the unstable manifold, and the summation I?ree system(10) is of a generic character, and that it can

over all the unstable orbitg in C [47] (cf. [48]). Calcula- d trat ich variety of bif i d basin t P

tions have shown that, for the original saddles of periods 3;;?825 r?ne 6;2?(: I\::”?h}(/-:-O“fra{clgcla;r;)c;glfmba .?]S'QO rigzror-
4,5,6,7,8,.. in Eq.(1), the following hierarchical sequence metlamf).rphogis \I/vﬁich’ manifests it-self as a SLSJ:jden l;umpyof
of index u values occursug=3.339, u,=3.080, u5=2.999, the basin boundary inwards, into the open neighborhood con-

16=2.339, 117=1.958, andug=1.539. Moreover, the values Jaining the attractor, is observed for certain values of control
of u corresponding to the other homoclinic saddle cycles ar Sarameterg29]. In our studies, we fixed parametar0.3

close to zero. Correspondingly, the probability of finding the . -
system in their neighborhood tends to zero. Our studies 0?22 ggr;eeiEaf‘:gmelztfﬂ("gﬂlwetgeasr%ngs 1n.§§rAs$el.§r(z)a?"nASthe
the effect of noise on this deterministic structure proceede 1948, : u y separaling

via analysis of relaxational trajectories inside the LD FBB asin of attraction of the stable orbit from the basin of attrac-
They have shown that homoclinic tangle is robust to noisel®" of infinity IS fractal forA;l.38; its fractal dlmen3|on 1S
.53. There exists an accessible boundary point of period 4

induced perturbations: the addition of noise caused only ). whose stable manifold detaches the open neighborhood
small increase in the probability for the system to escape vi ’ . .
P Y y P rom the LD FBB. The unstable manifold of the accessible

fnagd(ijrigiccigctlrelz ﬁgﬁggjirﬂ?{gﬂéig]eas.ng the time of wande boint 4 has two branches. One of these slices through the

basin boundary at a Cantor set of points, while the other lies
entirely in the open neighborhood and does not touch the
ll. FLUCTUATIONAL TRANSITIONS AND “FRACTAL- stable manifold of the same accessible boundary point until
FRACTAL ” BASIN BOUNDARY CRISIS the crisis. At the valueA=1.396 where it becomes tangent
and then crosses the stable manifold, the saddle [®fint
ceases to be the accessible orbit leading to the crisis of the
To illustrate the above mechanism of transition across théD FBB and causing the observed sudden jump of the
LD FBB, let us consider the situation when the heteroclinicboundary inside the white regigdsee Fig. 4b)]. At the same
chain shown in Fig. 3 is broken, for instance, between thevalue, the unstable manifold of the saddle point of period 3

A. Henon map
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FIG. 4. (Color onling (a) The LD FBB separating the stable point of periodl2beled asC2) from the attractor at infinity, af\
=1.38, before the “fractal-fractal” basin boundary metamorph@sisensionless unitsThe unstable manifold of the saddle point of period
3 (S3) and the stable manifold of the accessible boundary point of peri@) indicated by the solid lines, do not interse(tf) The LD
FBB atA=1.405 after the “fractal-fractal” boundary crisis. The saddle pSihhas become the accessible boundary point,Sdniées inside
the LD FBB which has jumped inside the open neighborhood containing the stableQ2oint

(S3), lying inside the white region, crosses the stable mani- X1 =A— xﬁ - Jy,+ A\,
fold of the saddles4 and joins the homoclinic structure
forming the LD FBB. After the transition, the saddle po83t
becomes an accessible boundary point, whereas the $bint
becomes buried in the basin boundary. The exchange of ac-

Yn+1=Xn + 7%

cessible orbits is the essence of the “fractal-frddialindary el =\
metamorphosi§29].
Now, let us consider noise-induced escape through the LD A== (N + 26\, (12)

FBB in the system(10) for the control parameter valu&
=1.38, preceding the “fractal-fractal” boundary crisis. As weconsidering as boundary conditions the stable pGatand
already mentioned above, the saddle p&tlies inside the the accessible boundary poit. The results of our calcula-
basin of attraction of£2 whose unstable manifold also lies tions are presented in Fig(&. The MPEP starting fronC2
entirely inside that basin. To find the optimal escape path, weeaches, first, the saddle poi&8 and then goes to the LD
used the same technique as before, monitoring the systeRBB, crossing it at the poirs4. Further relaxation does not
(10) all the time during the iteration process and collectingrequire any external force and is governed by the homoclinic
both the escape trajectories and the corresponding realizéangle. Its hierarchical structure is characterized by the fol-
tions of noise inducing the fluctuational transitions fr@®  lowing values of the parameter: ©3=3.5076,u,=2.7699,
to infinity. An analysis of the collected escape trajectoriesus=2.5396, andug=2.3898. It is clearly seen from Fig. 5
shows that escape always occurs via the saddle 88imind  that the MPEP coincides with the optimal escape path com-
the accessible boundary poi®t. Points forming the optimal puted from the Monte Carlo simulations. Thus, there are two
escape path frort2 to the LD FBB are shown in Fig.(8.  heteroclinic trajectories in the phase space of the sy§i@n
To understand why escape trajectories always pass througionnecting pointsC2 and $A4. The first one connects the
S3, which does not belong to the boundary, we calculated itsaddle pointsC2 andS3, while the second one conne&3
stable manifold which, as seen from Figap lies entirely —and $4. Thus it seems that, in the presence of noise, the
inside the basin o€2 and is positioned closer to the attractor saddle poinS3 starts to play the role of an accessible bound-
than the LD FBB. For this reason, the only way for theary point instead oB4.
system(10) to reach LD FBB is to cross, first, the stable  We also calculated the optimal fluctuational force moving
manifold of the saddI&3 and then, second, move to the LD our system to the LD FBB for two different values of the
FBB crossing it at accessible boundary pdit control parameteA corresponding to the states before and
To find the MPEP in the limit oD — 0, we repeated the after the “fractal-fractal” boundary crisis. The results of our
procedure described in Sec. Il for the following enlargedcalculations are presented in Figbh It can be seen that,
system: before the boundary crisis, the systéh®) still needs to be
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Optimal force
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FIG. 5. (@ (Color onlineg The LD FBB of the system(10)
before the boundary crisi&i=1.38. The stable manifold of the
saddle poinS3 (indicated by crosséshown by the solid lines. The
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20.70 ~0.35 0 035 0.70

FIG. 6. (Color online (a  Stroboscopic (Qt
=0,27/Q,47/Q,...) section of the system(12) before the
“fractal-fractal” basin boundary crisis dt=1, «=10, =100, Q
=3.76, andA=0.9 (dimensionless unijs Two coexisting stable
points of period 2 are indicated by filled triangles. Their basins of
attraction are colored in white and gray, respectively. The stable
manifolds of the saddle poin§8 and$4 (indicated by filled circles
are shown by the solid thin lines. The optimal escape path obtained
from the Monte Carlo simulations with=3x 107° is shown by the
thick solid line.(b) The same stroboscopic section after the bound-

optimal escape path obtained from the Monte Carlo simulationsary crisis atA=0.915. All other parameters have the same values as

with D=1.3X 1072 is shown by the thick solid line, while points
belonging to the MPEP are shown by open circl&$.The x coor-
dinates of the optimal escape paths beftgelid line) and after
(dashed ling the “fractal-fractal” boundary crisis a=1.405.(c)
The optimal fluctuational forces calculated befdtdack filled
squares and after (open circley the crisis. All units are
dimensionless.

in the previous figure. The optimal escape path obtained from the
simulations withD=2x 107° is shown by the thick solid line.

excited to move from the sadd&3 to the boundary poir4,
whereas after the crisis it does not. Apparently, this fact is
caused by the absence of any deterministic structure able to
sustain the transition before the boundary crisis.
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B. Duffing oscillator L5 ' ' ' ' ‘ T
A similar situation is observed for the periodically driven 1'_ L (a)
Duffing oscillator excited by white Gaussian noise, | J —\'E-\aqM A O
X+T'X—ax+ Bx3=AcosOt + 2D &), (12 051 r,,@/ E 7
wherel is the coefficient of dissipatiory and 8 are param- Y, OF - Oux=” g - i
eters defining the shape of a potentialand () are the am- ol .(E y O
plitude and frequency of external force, abds the intensity 05k (D/ i
of the noise&(t). It is known that for some values of control L £ i
parameters, the noise-free syst€h2) can demonstrate the b ‘hf——f—\\\' _
same type of boundary crisis as the Henon map considerec L E%\w i
above. Using the same technique as before, we calculatedthe 4 |
optimal escape paths for the two different values of the driv- -15 ] 05 0 0.5 1

ing amplitude corresponding to the states before and after the X,
“fractal-fractal” boundary crisis. The results of our calcula-
tions are pictured in Fig. 6. As is clearly seen from this
figure, the systenl2) moves to the FBB via saddle points i
S3 and$4 before the crisis, while after that it jumps via point 015 (b) i
S3 only. The close correspondence between results obtainec
for the two different kinds of systems allows us to conclude
that, under the influence of noise, the saddle p&dtac- L
quires the features of an accessible boundary point. How-— ¢os
ever, this saddle point does not belong to the FBB. This fact‘g
does not allow us to claim that weak noise can induce a g, o
“fractal-fractal” boundary crisis. However, taking into ac-

0.2

3]
s 0.1
st

count the significant influence &3 on the escape process, -0.05F -
we may speak aboutraisy precursopf the crisis on the LD
FBB, which manifests itself in observed structure of the op- QT 10— T35 T30

timal escape path.

We remind the reader that the notion ofi@isy precursor
was originally introduced by Wiesenfield9] during studies FIG. 7. (a) The locally connected FBEsolid closed curvg
of noisy dynamical systems near bifurcations. It is wellunstable node of period @rossel and points on the optimal es-
known that dynamical systems are very sensitive to fluctuaeape path obtained from the Monte Carlo simulatiffilied circles
tions near a bifurcation point. It was shown that even weakvith D=5x 1073, Points of the MPEP are shown by empty squares.
noise is able to induce the appearance of additional peaks i) Thex (solid line) andy (dashed lingcomponents of the optimal
a power spectrum of response of a noisy dynamical systerifuctuational force. All units are dimensionless.
indicating its proximity to the bifurcation point. It is also
known that the response of a dynamical system near bifur- Xoup = X2 — Y2+ ax, + £
cation can be characterized by a bell-shaped dependence of T An T e
the signal-to-noise ratio on the noise intensity. It is this fact
that allows one to speak of coherence resonance at the noisy Y1 = XnYn + X + By + £, (13)
precursor of a bifurcatiofb0]. However, all previous studies

were concerned with the different bifurcations of attractorsWhere fﬁ, gﬁ are statistically independent sources of white,

themselves, whereas in many real situations dynamical inst S auSsian noise of zero mean that are of equal interGit
bilities can also be caused by bifurcations of the basins o% d y
or the chosen values of the control parameters).7, 8

attraction[51]. Our above results clearly show that analysis_

of the structure of the optimal escape paths allows us to dravVO'S' this map has stable points at the origin and at infinity,

a conclusion about the presence of an instability caused b?ngﬁfdeﬁ% theoli‘gsFai% r-]r:ga%czjl:gd%%éo?tt?s'nti:gl;ﬂgn;t;
bifurcation of the basin boundary. petiing p P |

homeomorphic to a circle. To find the boundary condition on
the LC FBB and the optimal escape path, we use exactly the
IV FLUCTUATIONAL TRANSITIONS same technique as |n.the case of the LD_FBB, above. The
results of our calculations are presented in Fig. 7. As can
ACROSS AN LC FBB L
clearly be seen from this figure, the syst¢h3) leaves the
We now consider the same escape problem, but in astable pointO at the origin along a unique optimal escape
system possessing a LC FBB. This type of FBB is generallypath and approaches the LC FBB at the unique point shown
observed in two-dimensional noninvertible analytic andin Fig. 7(a). Moreover, our calculations have shown that the
nonanalytic map§4,52]. We will take as our model a typical optimal fluctuational forcgsee Fig. Tb)] becomes equal to
nonanalytic quadratic map driven by noise, zero at this moment.
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According to our previous results, this means that the sysOur statistical analyses of fluctuational trajectories have
tem (13) reached the boundary at this point, and its furtheryielded solutions of the boundary-value problem for both
relaxation to infinity is noise-free and completely specifiedtypes of FBB, and have revealed the optimal fluctuational
by the deterministic structure of the FBB. Our calculationsforces moving the systent4) and(13) from one attractor to
have shown that the boundary poAtorresponds exactly to the other. We were also able to find the unique optimal es-
the repelling boundary point of period 9, which plays the rolecape path in both cases. The original saddles forming the
of the unique boundary condition on this LC FBB. Moreover,homoclinic structure of the syste() play a key role in the
our studies have shown that this repelling point plays the rolédormation of the escape paths inside the LD FBB, and the
of the boundary condition over a wide range of the controldifference in their local stability defines the hierarchical re-
parametersr and 8. Note that noise-induced escape from thelationship between them. We have also considered fluctua-
attractor surrounded by an LC FBB in E@.3) was consid- tional transitions in a dynamical system exhibiting a “fractal-
ered earlier in the pioneering work of Grassbeidés], who  fractal” boundary crisis. It is shown that noise can effectively
succeeded in calculating the optimal escape path, albeit withhove the accessible boundary point inside the domain of
out finding the boundary condition on the LC FBB or the attraction, giving rise to a noisy precursor of the boundary

mechanism of escape. crisis that manifests itself in the structure of the optimal es-
To find the MPEP, we treated the following enlarged sys-cape path. We have generalized the notion of a noisy precur-
tem: sor to the case of a bifurcation of the basin boundary. The

results obtained can be applied directly to the other maps and
flows having the same type of FBB.
We emphasize that similar behavior is expected for fluc-

— 2 2 X
Xn+1=Xp — Yt aXp t A,

Yne1 = 2XYn + @Xn + BYn+ N}, tuational transitions between chaotic attractors separated by
FBBs [23]. It has therefore become possible to predict a

ne1=[(2%0 + BN+ 2¥ N JIA, scenario of escape through a fractal boundary using a deter-
ministic analysis of the FBB structure. Furthermore, recent
N,y = [= (2yn + QNS + (2% + @NT/A, (14) results[22] have shown that the boundary conditions at cha-

otic attractors can also be related to the homoclinic structure
supplemented by the boundary conditions at the steady poirind thus found deterministically. Among a variety of pos-
O and at the repeller of period 9. He=(2x,+a)(2x,  sible applications, we would mention a new method of chaos
+B)+2y,(2y,+a) is the determinant of the Jacobian written control in the presence of fluctuations that can now be de-
for the system(13). As is seen from Fig. (&), the MPEP  veloped[53].
coincides almost perfectly with the optimal path obtained
from the Monte Carlo simulations. ACKNOWLEDGMENTS
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