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Distribution of resonance strengths in microwave billiards of mixed and chaotic dynamics
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A new measure for statistical properties of the wave function components of quantum systems, the distri-
bution of the product of two partial widths, is introduced. It is tested with data obtained in analog experiments
with microwave billiards, where the product of two partial widths equals the resonance strengths in the
microwave spectra. The billiards are from the family of the Limagons, one with chaotic and two with mixed
classical dynamics. For completely chaotic systems the partial widths generically obey a Porter-Thomas dis-
tribution. We show that in this case the distribution of their product equ&g distribution. While we find
deviations of the experimental strength distribution from kg distribution for the billiards with mixed
dynamics, the distributions agree perfectly for the chaotic billiard, when taking into account the experimental
threshold of detection in the theoretical description. Hence, the strength distribution provides another stringent
test for the connection between statistical properties of systems with classical chaotic dynamics and random
matrix theory.
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I. INTRODUCTION the family of the so-called Limacon billiard0,21].
) ) ) ) The paper is organized as follows: In Sec. I, we describe
In this work, we investigate the properties of resonancgne experiments with the superconducting microwave bil-

widths in quantum billiards. The resonance widths are reyigrgs. |n Sec. Ill, the RMT prediction for the strength distri-
lated to the wave functions. Their statistical distributionsy tion in a completely chaotic microwave billiard is intro-

provide information on the system which is complementaryy,ced and the data analysis as well as the experimental
to that on spectral fluctuations. Following the famous conyegyits are presented. We conclude in Sec. IV.

jecture by Bohigas, Giannoni, and Schifif, certain statis-
tical properties of the eigenvalues and the wave functions
have been found to be well described by random matrix
theory(RMT) (see, e.g.[2-5]). The RMT behavior has been
observed experimentally in several types of quantum sys- A. Microwave billiards of chaotic and mixed dynamics
tems, such as atonfi§], moleculeq 7], nuclei[8], solid state
systemg 9], and even in hadron spectfa0], as well as in
macroscopic analogs like microwave resonafdis 12, vi-

Il. EXPERIMENT

The Helmholtz equation for the electric field in cylindric
resonators is for a wavelength longer than twice the height of

. . . th tof22,2 ivalent to the Schrodi ti
brating quartz blocks and aluminum platg<s3], or optical e resonatof 3 equivalent to the Schrodinger equation

. . of a quantum billiard of corresponding shape. Hence, the
setups[14]. Mixed and integrable systems, on the Othe.reigenvalues and the wave functions of a quantum billiard can

handf, do not SIhOW th's type Olf un'lvelrsaal behawqr. A t_ranlic’"be determined experimentally by measuring the resonance
tion from regular to chaotic classical dynamics Is typically goq,encies and the electric field strengths in a flat cylindric

accorr_]panled by a transition from spectra with uncorrelate_%icrowave resonator. This analogy has been succesfully used
energies to spectra with RMT behavior. Recently, mtermeleor more than a decade for the study of quantum chaotic
ate behavior has also been observed for certain nuclear eXdhenomena in two-dimensional billiards, e fL1,19. The

ta“ons[_15’1ffﬂ- . . , experiments have been performed with normal conducting,
In this article we show(i) how chaotic behavior can be e.g., [24,29, as well as with superconducting resonators,
%.9.,[26,27). While normal conducting devices allow an ex-
perimental mapping of eigenfunctions at room temperature,
e.g., [25,28,29, superconducting resonators, due to their
high quality factors, are a prerequisite for obtaining essen-
tially complete sequences of eigenval(i£g]. Wave function
Mmeasurements have so far not been possible in superconduct-
ing resonators. Nevertheless, information about the wave
functions of a billiard can be obtained from the widths and
*Present address: d-fine GmbH, D-60313 Frankfurt am Mainthe amplitudes of the measured resonances. Namely, the par-

strengths of a microwave resonator dnglthat this behavior
differs from RMT behavior, if the classical dynamic is par-
tially integrable. To this extent, we consider data from our
earlier experiment§17-19 with three superconducting mi-
crowave resonators of different degrees of chaoticity fro

Germany. tial widths related to the emitting and the receiving antennae
"Present address: Fraunhofer E@rnst-Mach-Institut D-79104  in the measurement of a spectrum are proportional to the

Freiburg, Germany. electric field intensity at the positions of the corresponding
*Electronic address: richter@ikp.tu-darmstadt.de antennae.
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The quantitied’,, andT’,;, are the partial widths related to
FIG. 1. Photograph of the three desymmetrized Limacon microthe antennae andb; I',, is the total width of the resonance
wave billiards(A=0.125,0.150,0.300 The degree of chaoticity of [27]. |t is given as the sum of the partial width3,., ¢
the corresponding classical billiard has been calculated to 0.5511’2,3,4, of thefour antennae, plus a term which takes into
0.66, and 1.00, respectively. account dissipation in the walls of the superconducting cav-
ity.
In the seminal experiment §27] the partial widths of the For each resonancg, the transmission measurements
resonances in a chaotic stadium billiard were shown to obeprovide the produck I, of the partial widths correspond-
a Porter-Thomas distribution. In the present work we extendng to the “channelsa andb. For lack of a better termwe
these investigations into the regime of mixed classical dy<call this product the strength of the resonapcwith respect
namics, namely, we analyze spectra of microwave billiardgo the transmission between the chanrsedb. (Note that
(Fig. 1) from the family of the Limacon§17,18. These bil-  often the partial width itself is called “strength'The reader
liards have been used [17] for the study of the spectral might wonder why we decided to measure the product of two
statistics of mixed systems as well as[i8] for a test of  partial widthsI",,I",, instead of determining a single partial
trace formulas for chaotic and mixed systems. In the presemidth directly from a reflection measurement|8f,2. There
work we focus on statistical properties of the partial widths.are two reasons. First, in a reflection measurement any addi-
The boundaries of the investigated billiards are defined ational reflections occurring at the interconnections in the sig-

a quadratic conformal map nal paths between the network analyzer and the resonator
(e.g., resulting from the microwave feedthroughs of the he-
W= Z+\Z2 (1) lium cryostaj make a reliable extraction of the resonance

parameters impossible. Second, in a reflection measurement

o the detected microwave signal results from a fully reflective
of the unit disk in the complex plane onto the complex planecqngition below and above the resonance frequency and is
The parametek [0,1/2] controls the degree of chaoticity reduced (depending on the coupling strengtacross the
of the billiard. We investigated Limacon billiards with pa- resonance, whereas in a transmission measurement the de-
rameter values\=0.125,1=0.150, andr=0.300. From @ tected signal below and above the resonance frequency is the
study of the Poincaré surfaces of a section of the correspongyjse floor and a transmitted signal across the resonance ex-
ing classical dynamics, the fractions of the chaotic phasgeeding the noise level is easily detected. The resonance
space were determined to be 0.55, 0.66, and 1.00, respegyengths are determined by fitting the resonance shape for-
tively [17]. The resonators were manufactured from electrony, a given in[30] to the transmission spectt&q. (31) in
welded niobium sheets, which become superconducting at [B0]). This formula is slightly more complicated than the
critical temperature of approximately 9.2[K2]. Four anten-  gq_called Breit-Wigner formula deduced from E@). Its
nae are attached to each resonator. The transmission specfgivation starts from electromagnetic field conditions of mi-
were measured with the help of a HP-8510B network anagrowave cavities and is based on R-matrix thel@y,32. It
lyzer at a temperature of=4.2 K—the resonators were js jnteresting to note that, while R-matrix theory is a standard
cooled down in a liquid helium cryostat—for all six possible theory in nuclear and atomic physics, one of the earliest pa-
antenna combination®,b), i.e., for the combinationél,2), pers on R-matrix theory[33] uses the object of our

(1,9, (1,9, (2,3, (2,4, and(3,4. investigation—i.e., an electromagnetic resonator—as a prime
example.
B. Extraction of the resonance parameters Our procedure for the extraction of the resonance param-

eters from the experimental data differs from that used in
The relative power transmitted from antersmgo antenna [27] in two respects. First, even in measurements with the
b through the cavity superconducting niobium resonators at a temperaturé of
=4.2 K there is a significant contribution of losses due to
p dissipation in the walls to the resonance widths that cannot
—outh ISil? a#b, (2) be neglected. 1727] the losses had been reduced consider-
Pin.a ably by cooling the system down ©=1.8 K. Second, as
already mentioned above, we perform the analysis for trans-
is proportional to the absolute square of the matrix elementnission spectra. Thus, we cannot measure the individual par-
S,, of the scattering matrixS-matriX. It relates the ampli- tial widths but only the products of, respectively, two partial
tudes of the electromagnetic waves entering chamana  widths[34]. Of course, as the transmission was measured for
those of the waves exiting via chanrel Close to the fre- all combinations of the four antennae, the partial widths can,
quencyf,, of the uth resonance, the matrix elemes, can  in principle, be calculated from combinations of the mea-
be written as sured products of partial widths. The errors for the deduced
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partial widths are, however, large. Moreover, the RMT pre-
diction for the distribution of the product of two partial

widths may be derived from that for the partial widths them-
selves. Hence, the investigation of the strength distribution @ ="
establishes a direct and relatively quick procedure for the L L

! ! Lol "‘.'|-- ] | |.—
study of statistical properties of the wave function compo- i #4png Fiens)
nents of quantum billiards.

For each of the three resonators six transmission spectr.

have been analyzed up to a maximum frequency of 20 GHz L B B e L A
The network analyzer was run in a continuous sweep mode _20 - (d)

with the sweep time set to 0.050 s, where 201 data points
were taken in steps of 10 kHz. The resonance frequépcy
the total widthT',, and the strengti’,,I",, of each reso-
nanceu and each antenna combinatiéa,b) were deter-
mined by proceeding as described[80,35. A numerical —100 HACHLIE N
simulation reveals that the accuracy in the determination of
the strength of a resonance is a few percent for a total width
of 10 kHz, while it is less than 0.01% for a total width of the  FIG. 2. Part of the transmission spectrum of the superconduct-
order of 40 kHz, which is the typical width of the resonancesing A=0.300 Limagon microwave billiard. The upper part shows
in the available transmission spectra. Indeed, the theoretic@lagnifications of the transmission spectrum in the vicinity of two
formula for the line shape cannot be fit to some very narrovsinglets(a) and (c) and a doubletb). For all three cases the reso-
resonance curves, because the number of data points is inance formulas of30] have been fitted to the measured spectrum.
sufficient. Moreover, resonances in the transmission spectra

with peak heights below a certain value, that is, a very wealg—» ang three examples of resonances investigated in the
electric field at the position of an antenna, may not be de'present paper. The resonance shape shown in Fay.i®
tected. However, since the resonance frequency does not dgascribed by the parametersf, =(5.83427251+6
pend on the combination of antennae ufsee Eq.(3) and X 10°8) GHz I',=(12.1+0.9 kHz g and T4l
the relative uncertainties of the resonance frequenties _ (0554003 kHZ2  while Fig. ) vyields |
given below], an essentially complete sequence of resonancg(6'142 1'41 09+5’< 10°8) GHz, T '2(11 4+0.3 kHz anMd

. * y Ty 4+0. ,

frequencies is obtained by comparing the six transmissiorf, T.,=(1.18+0.02 kHz2. Figure 2b) shows two slightly
wal .18+0. :

spectra. . :
P overlapping resonances. To these a two-level R-matrix for-

Individual resonance sequences from a single combina- .
. . . ula[30,35 has been fitted. The parameters of the doublet
tion of two antennae are incomplete since resonances may % Fig. 2 are f,=(6.10384442+& 100 GHz, T,

missed for bei ither t ki ited f i
issed for being either too weakly excited for a part|cularﬁ(16_5io_8 kHz, and I',,T",,=(0.48+0.01 kHZ? for the

combination of antennae or being located too close to eac ) - 8
other(Af,<T',). A careful comparison of the six individual lower lying resonance and, =(6.106 401988 10™)

spectra reveals that at most 4% of the resonances are miss@mlﬁzz’ I,,=(15.2+0.8 kHz, and I',/[',,=(0.12+0.03

in an individual spectrum. We estimate the probability that akHz” for the higher lying one. _

resonance is missed in all six transmission spectra to be ap- N Fig. 3 the total widths and, for comparison, the square

proximately 108, where the correlations between the root of the str_eng_ths of the resonances are plotted for one

strengths of the different spectra have been taken into a@ntenna combination of the=0.300 billiard versus the reso-

count. An analysis of the nearest-neighbor spacing distripu?@nce frequency. They show strong fluctuations around a

tion (NNSD) of the resonance frequencies results in a probf"OW secular varlatlon WhICh is remoyed be_fore the data are

ability of the order of 10° for two resonances to be too further_analyzed by f|tt|ng a polynor_mal qf fifth orde_r to th.e

closely spaced for detection. The probability that one out ofotal widths and scaling all widths with this polynomial as in

10° resonances might have escaped detection is 0.1. This h y

been verified independently by estimating the expected num-

ber of resonances from the geometry of the billiards and

Weyl's formula [36,37. We therefore use the expression Ill. THEORY, ANALYSIS, AND DISCUSSION

“complete” for the resulting sequences of resonances. In this

way 1163, 1173, and 946 resonances were identified for the According to the Bohigas-Giannoni-Schmit conjecture

billiards with A=0.125, 0.150, and 0.300, respectively. The[1], the statistical properties of a quantum billiard whose

strengths depend on the choice of the antenmaand b.  classical dynamics is fully chaotic coincide with those of

Hence, their data sets are incomplete, and, consequently,random matrices from the Gaussian orthogonal ensemble

threshold of detection has to be taken into account in th¢GOE). This implies that the components of the

theoretical description of the statistical properties of theeigenvectors—with respect to any basis—have a Gaussian

strengths. distribution centered at zerf2]. Accordingly, the partial
For an illustration of the method of analysis, Fig. 2 showswidths have ay? distribution with one degree of freedom

a transmission spectrum of the=0.300 billiard obtained for which—in the present context—is usually called a Porter-

one specific choice of antennae denoted below wittl, Thomas distributior§2,38]. Writing

out/Pia (4B)
Pi/Py (dB)
P,./P,. (dB)

oot

P e/ Py (dB)
|
[}
o
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FIG. 3. The total widthgupper figurg and the square root of the ‘ 03 -

strengths(lower figure versus the resonance frequency of the o2 .

=0.300 Limacon billiard for one antenna combination. The full line B ]

is the polynomial of fifth order obtained from a fit to the total 0.1 -]

widths. All strengths are rescaled with this polynomial in order to 0.0 L ]
remove their secular dependence on the frequency —6

Z
ta= F,La, (4) FIG. 4. The Distribution of the resonance strengths of the three

Limacon billiards. For each histogram the strength distributions of
all six transmission spectra have been superimposed. While ex-
t, )dta pected deviations from the GOE behavidull line) are clearly

Ppr(ty 7)dt, = (Zwtalra)"l/zexy<— > ) (5)  visible for the billiards showing mixed dynami¢s=0.125 and\
Ta/ Ta

the Porter-Thomas distribution reads

=0.150, the agreement between the RMT prediction, i.e., Kge
Here, the parameter, is the expectation value distribution given in Eq(12), and the measured strength distribu-
tion is good for the fully chaotic billiard\ =0.300 over more than
* six orders of magnitude.
Ta:f taPPT(ta| 7o)t (6)
° tation value ofy is 7,7,. The product of expectation values

of t,. It depends on the chanrelunder consideration, that is,

the experimental data have to be evaluated for each antenna TaTh =L pal'up (8)
separately. Note that in E¢5) we use the notation of con-
ditional distributions. The vertical bar separates the argu- =l .l fora#b 9

ments of P into the random variabléto the lefy and the
parametersto the righj. For any value of the parameters the
conditional distributions are normalized to unity.

depends on the combinatida, b) of antennae. We estimated
it by the experimental average

As outlined in Sec. II, transmission measurements provide Nap
a direct access to the products of two partial widths, that is, TaTp= N;&E T ol b (10)
the strength of a resonance. If the partial widthg andr’,;, u=1

both follow a Porter-Thomas distribution, their product has a : . .
so-calledK,-distribution, of the N,, available products of partial widths.

Since the distribution in Eq(7) diverges fory—0, we
o o follow [40] and transform it to the logarithmic variable
P(y)dy = f dt, f Aty Ppr(ta| 72) Ppr(ty| ) 8y — tatp)dy
0 0

z= Iogw(L) . (11)
TaTh
KO( \ : ) d This yields
- TaTh y . (7) y
’TaT
LAY} —yT ’ P(2)dz= M1oﬂ2|<o(10ﬂ2)dz. (12)
TaTh m

Here, K, is a Bessel function of imaginary argumgi39]. For each Limacon billiard the histogram shown in Fig. 4 was
The expression Ed7) is normalized to unity and the expec- obtained by superimposing the distributions of all six com-
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1 0 T T T T T T T T T T T T | T T T T _ ta
0.8 A=0.125 1 T2, dt,

r T Ppr(ta TarXa)dty = 8- O(ty — XaTa) —,
0.6 ] prltd 72 ) Nxa)) 2mt/7, a7 Ta
041 - (13)
0.2F —

PRI R N N RO S N N A -] exp — <
0.0 D T T T T I T T T T I T T T 1 | ) 1 1 1 : N(Xa) f % > @(X Xa)dx erfc< X )
0.8~ A=0.150 \2mx B V2
o 0.6 = E (14
A 04 = Here,®(x) is the step function. The parametgrdenotes
0.2 - the threshold of detection. It depends on the chaangider
o ] consideration. Note that fog, # 0 the quantityr, no longer
0.0 K equals the expectation value gif but equals the ratio
08— A=0.300 «
0.6 - fo taPpr(ta T2 dt,
0.4 - Ta= - (15
0.2 : _: fo taPPT(ta| o= 1)dt,
1 1 1 1 I 1 1 1 1 I -
0.0 By virtue of Eq.(13) the distribution of the product of two
0 1 3 4 . ; : _
S partial widths defined in Eq.7) becomes

FIG. 5. The NNSDs for the three billiards from the family of the P(vIx..x.)d :fmdt det Podt. 7 X)) Por(ti] 7. X
Limagons. For the chaotic billiarth =0.300 the distribution coin- (Vixaxe)dy R pr(ta 7 Xa) Per(te| 7, )

cides with the Wigner distribution, i.e., with that of random matri-
ces from the GOE, while the two other billiards show a behavior in X 8y — tatp)dy. (16)

between GOE and Poisson statistics, [SEd. This distribution parametrically depends on both threshold

parameters, andx,. Note that it does not depend egpand

Tp, When normalizingy to its expectation value.
binations of antennae. The strength distributions of the two Since in the experiment the threshold of detection is not
billiards with a mixed classical dynamics deviates from GOEsharp, an even more subtle analysis is appropriate, namely,
behavior, while we find good agreement for the chaotic bil-the step function entering Eq&l3) and (14) has to be re-
liard. For comparison, we show in Fig. 5 the correspondingPlaced by a smooth step function,
NNSD of the eigenvalues obtained by evaluating for each 2 (X2
billiard the spectra of all antenna combinations. For 0.(x) = (1 + /—f e’ dY>- (17)
=0.125, 0.150 the NNSD clearly deviates from the NNSD v
for random matrices from the GOE, that is, the SO-Ca”e(j\k)te that the normalization resu“ing from E(q_4) can no
Wigner distribution, whereas for=0.300 the agreement is longer be expressed in a closed form.
very good. Hence, we observe exactly the same behavior as The threshold parametexs, x, and the diffusenesshave
for the strength distributions. However, there is one imporbeen determined for each antennae combination from a fit of
tant difference, namely, while the spectral properties of reguthe distribution Eq.(16) to the experimental distributions
lar systems generically have a Poissonian statistics, and theRa.4(y). Technically, this amounts to a search of that set of
exist interpolating formulas for the mixed systefi3], there  parameter values,, x, ande, for which the generalized en-
still is no general theory for the properties of the wave func-tropy [38]

tions of such systems.
Still, even for the chaotic billiard, we observe small de- S= —f Pexp(y)ln<h‘&>dy (18
viations between the measured strength distribution and the Pyl %)

K distribution atz values smaller tham=-3. These are due s maximized. It turned out that the parameteran be cho-

to the experimental threshold of detection for narrow resosen the same for all antenna combinations.

nances and resonances with small strengths. It is taken into Here, the experimental distributioP,{y) is not a con-
account in the theoretical description by normalizing thetinuous probability density but rather a suitable histogram.
Porter-Thomas distribution to unity in the range of observ-Except for binning the data, the maximum entropy procedure
able data. This procedure is equivalent to introducing a shar equivalent to the method of maximum likelihopP]. In
cutoff into the Porter-Thomas distribution as lately discussedrig. 6 we show the distribution obtained for one of the an-
in [41]. Accordingly, Pp(t,| 7,) in Eq. (5) is replaced by tenna combinations and for comparison the corresponding
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L] L L B B B B B periments on spectral properties of two coupled chaotic mi-
04l 3 crowave billiards have been performef43]. In a
0 33_ E forthcoming publication, we shall present our results on the
= R . corresponding strength distributions.
A 02 —
0.1 - IV. CONCLUSION
098_' = ':é R '_é — '(') = _2 In the present work we experimentally study statistical
z properties of the partial widths for three different billiards

from the family of the Limagons. Two of them have a mixed
FIG. 6. A comparison of the experimental strength distributionc|assical dynamics, one is chaotic. We measured transmis-
of the resonances for one antenna combination in the chaotigjon spectra, thereby obtaining products of two partial widths
Limacon billiard (histogram with the theoretical predictiofthick  from the line shape of the resonances in the spectra. For a
line) including a threshold of detectiofEq. (16)]. The threshold  comparison with RMT we derived an analytic expression for
parameters and the parameter for the smooth cutoff were detefgq gjstribution of the products of two Porter-Thomas distrib-
mined by a fit of the theoretical to the experimental CUNV&JO 10 random variables. Furthermore, we took into account
=%,=0.0057 ance=0.0075. The thin line shows thé, distribution 0 oy oidable experimental threshold of detection. As a
Egs.(7) and(12), i.e., tk_\e RMT prediction for chaotic systems with result, we obtained a good agreement between the RMT pre-
no threshold of detection. diction and the experimental distribution in the case of the
. o ] ) chaotic Limacon billiard, while we find deviations for the
expenmenta] distribution. In this example the resulting val-pjjliards with a mixed classical dynamics. For the strength
ues for the fit parameters aeer0.0075, anck,=x,=0.0057;  jstribution of the latter no theoretical model is available. In
the latter are identical within the nl_JmericaI accuracy. Nowa subsequent publication we plan to use the strength distri-
the agreement between the theoretical curve and the expegytion for the experimental study of the effect of partial sym-
mental result has improved considerably. ~ metry breaking on the distribution of wave function compo-
From these results we may conclude that the deviationfents with two coupled chaotic microwave billiards. As
from the RMT behavior observed farsmaller tharz=-3  ytiined above, in such systems the treatment of the experi-

the present example the deviations are small, because than in the present work.

strength distribution already is close to zero for these values

of z. For tvyo coupled chaotic systems, or generally phgotlc ACKNOWLEDGMENTS

systems with one broken symmefid3,38, however, this is

not the case. There, the probability that the strengths take a This work has been supported by the DFG within SFB
value below the experimental threshold, that is, below  634. We thank T. Guhr for several discussions and many
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tal threshold of detection in the theoretical description. Ex-experiments.
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