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A new measure for statistical properties of the wave function components of quantum systems, the distri-
bution of the product of two partial widths, is introduced. It is tested with data obtained in analog experiments
with microwave billiards, where the product of two partial widths equals the resonance strengths in the
microwave spectra. The billiards are from the family of the Limaçons, one with chaotic and two with mixed
classical dynamics. For completely chaotic systems the partial widths generically obey a Porter-Thomas dis-
tribution. We show that in this case the distribution of their product equals aK0 distribution. While we find
deviations of the experimental strength distribution from theK0 distribution for the billiards with mixed
dynamics, the distributions agree perfectly for the chaotic billiard, when taking into account the experimental
threshold of detection in the theoretical description. Hence, the strength distribution provides another stringent
test for the connection between statistical properties of systems with classical chaotic dynamics and random
matrix theory.
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I. INTRODUCTION

In this work, we investigate the properties of resonance
widths in quantum billiards. The resonance widths are re-
lated to the wave functions. Their statistical distributions
provide information on the system which is complementary
to that on spectral fluctuations. Following the famous con-
jecture by Bohigas, Giannoni, and Schmitf1g, certain statis-
tical properties of the eigenvalues and the wave functions
have been found to be well described by random matrix
theorysRMTd ssee, e.g.,f2–5gd. The RMT behavior has been
observed experimentally in several types of quantum sys-
tems, such as atomsf6g, moleculesf7g, nucleif8g, solid state
systemsf9g, and even in hadron spectraf10g, as well as in
macroscopic analogs like microwave resonatorsf11,12g, vi-
brating quartz blocks and aluminum platesf13g, or optical
setups f14g. Mixed and integrable systems, on the other
hand, do not show this type of universal behavior. A transi-
tion from regular to chaotic classical dynamics is typically
accompanied by a transition from spectra with uncorrelated
energies to spectra with RMT behavior. Recently, intermedi-
ate behavior has also been observed for certain nuclear exci-
tationsf15,16g.

In this article we showsid how chaotic behavior can be
identified by the statistical properties of the resonance
strengths of a microwave resonator andsii d that this behavior
differs from RMT behavior, if the classical dynamic is par-
tially integrable. To this extent, we consider data from our
earlier experimentsf17–19g with three superconducting mi-
crowave resonators of different degrees of chaoticity from

the family of the so-called Limaçon billiardsf20,21g.
The paper is organized as follows: In Sec. II, we describe

the experiments with the superconducting microwave bil-
liards. In Sec. III, the RMT prediction for the strength distri-
bution in a completely chaotic microwave billiard is intro-
duced and the data analysis as well as the experimental
results are presented. We conclude in Sec. IV.

II. EXPERIMENT

A. Microwave billiards of chaotic and mixed dynamics

The Helmholtz equation for the electric field in cylindric
resonators is for a wavelength longer than twice the height of
the resonatorf22,23g equivalent to the Schrödinger equation
of a quantum billiard of corresponding shape. Hence, the
eigenvalues and the wave functions of a quantum billiard can
be determined experimentally by measuring the resonance
frequencies and the electric field strengths in a flat cylindric
microwave resonator. This analogy has been succesfully used
for more than a decade for the study of quantum chaotic
phenomena in two-dimensional billiards, e.g.,f11,12g. The
experiments have been performed with normal conducting,
e.g., f24,25g, as well as with superconducting resonators,
e.g.,f26,27g. While normal conducting devices allow an ex-
perimental mapping of eigenfunctions at room temperature,
e.g., f25,28,29g, superconducting resonators, due to their
high quality factors, are a prerequisite for obtaining essen-
tially complete sequences of eigenvaluesf12g. Wave function
measurements have so far not been possible in superconduct-
ing resonators. Nevertheless, information about the wave
functions of a billiard can be obtained from the widths and
the amplitudes of the measured resonances. Namely, the par-
tial widths related to the emitting and the receiving antennae
in the measurement of a spectrum are proportional to the
electric field intensity at the positions of the corresponding
antennae.
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In the seminal experiment off27g the partial widths of the
resonances in a chaotic stadium billiard were shown to obey
a Porter-Thomas distribution. In the present work we extend
these investigations into the regime of mixed classical dy-
namics, namely, we analyze spectra of microwave billiards
sFig. 1d from the family of the Limaçonsf17,18g. These bil-
liards have been used inf17g for the study of the spectral
statistics of mixed systems as well as inf18g for a test of
trace formulas for chaotic and mixed systems. In the present
work we focus on statistical properties of the partial widths.

The boundaries of the investigated billiards are defined as
a quadratic conformal map

w = z+ lz2 s1d

of the unit disk in the complex plane onto the complex plane.
The parameterlP f0,1/2g controls the degree of chaoticity
of the billiard. We investigated Limaçon billiards with pa-
rameter valuesl=0.125, l=0.150, andl=0.300. From a
study of the Poincaré surfaces of a section of the correspond-
ing classical dynamics, the fractions of the chaotic phase
space were determined to be 0.55, 0.66, and 1.00, respec-
tively f17g. The resonators were manufactured from electron
welded niobium sheets, which become superconducting at a
critical temperature of approximately 9.2 Kf12g. Four anten-
nae are attached to each resonator. The transmission spectra
were measured with the help of a HP-8510B network ana-
lyzer at a temperature ofT=4.2 K—the resonators were
cooled down in a liquid helium cryostat—for all six possible
antenna combinationssa,bd, i.e., for the combinationss1,2d,
s1,3d, s1,4d, s2,3d, s2,4d, ands3,4d.

B. Extraction of the resonance parameters

The relative power transmitted from antennaa to antenna
b through the cavity

Pout,b

Pin,a
~ uSabu2 a Þ b, s2d

is proportional to the absolute square of the matrix element
Sab of the scattering matrixsS-matrixd. It relates the ampli-
tudes of the electromagnetic waves entering channela to
those of the waves exiting via channelb. Close to the fre-
quencyfm of the mth resonance, the matrix elementSab can
be written as

Sab = dab − i
ÎGmaGmb

f − fm +
i

2
Gm

. s3d

The quantitiesGma and Gmb are the partial widths related to
the antennaea andb; Gm is the total width of the resonance
f27g. It is given as the sum of the partial widthsGmc, c
=1,2,3,4, of thefour antennae, plus a term which takes into
account dissipation in the walls of the superconducting cav-
ity.

For each resonancem, the transmission measurements
provide the productGmaGmb of the partial widths correspond-
ing to the “channels”a andb. For lack of a better term, we
call this product the strength of the resonancem with respect
to the transmission between the channelsa andb. sNote that
often the partial width itself is called “strength”.d The reader
might wonder why we decided to measure the product of two
partial widthsGmaGmb instead of determining a single partial
width directly from a reflection measurement ofuSaau2. There
are two reasons. First, in a reflection measurement any addi-
tional reflections occurring at the interconnections in the sig-
nal paths between the network analyzer and the resonator
se.g., resulting from the microwave feedthroughs of the he-
lium cryostatd make a reliable extraction of the resonance
parameters impossible. Second, in a reflection measurement
the detected microwave signal results from a fully reflective
condition below and above the resonance frequency and is
reduced sdepending on the coupling strengthd across the
resonance, whereas in a transmission measurement the de-
tected signal below and above the resonance frequency is the
noise floor and a transmitted signal across the resonance ex-
ceeding the noise level is easily detected. The resonance
strengths are determined by fitting the resonance shape for-
mula given inf30g to the transmission spectrasEq. s31d in
f30gd. This formula is slightly more complicated than the
so-called Breit-Wigner formula deduced from Eq.s3d. Its
derivation starts from electromagnetic field conditions of mi-
crowave cavities and is based on R-matrix theoryf31,32g. It
is interesting to note that, while R-matrix theory is a standard
theory in nuclear and atomic physics, one of the earliest pa-
pers on R-matrix theoryf33g uses the object of our
investigation—i.e., an electromagnetic resonator—as a prime
example.

Our procedure for the extraction of the resonance param-
eters from the experimental data differs from that used in
f27g in two respects. First, even in measurements with the
superconducting niobium resonators at a temperature ofT
=4.2 K there is a significant contribution of losses due to
dissipation in the walls to the resonance widths that cannot
be neglected. Inf27g the losses had been reduced consider-
ably by cooling the system down toT=1.8 K. Second, as
already mentioned above, we perform the analysis for trans-
mission spectra. Thus, we cannot measure the individual par-
tial widths but only the products of, respectively, two partial
widths f34g. Of course, as the transmission was measured for
all combinations of the four antennae, the partial widths can,
in principle, be calculated from combinations of the mea-
sured products of partial widths. The errors for the deduced

FIG. 1. Photograph of the three desymmetrized Limaçon micro-
wave billiardssl=0.125,0.150,0.300d. The degree of chaoticity of
the corresponding classical billiard has been calculated to 0.55,
0.66, and 1.00, respectively.
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partial widths are, however, large. Moreover, the RMT pre-
diction for the distribution of the product of two partial
widths may be derived from that for the partial widths them-
selves. Hence, the investigation of the strength distribution
establishes a direct and relatively quick procedure for the
study of statistical properties of the wave function compo-
nents of quantum billiards.

For each of the three resonators six transmission spectra
have been analyzed up to a maximum frequency of 20 GHz.
The network analyzer was run in a continuous sweep mode
with the sweep time set to 0.050 s, where 201 data points
were taken in steps of 10 kHz. The resonance frequencyfm,
the total widthGm, and the strengthGmaGmb of each reso-
nancem and each antenna combinationsa,bd were deter-
mined by proceeding as described inf30,35g. A numerical
simulation reveals that the accuracy in the determination of
the strength of a resonance is a few percent for a total width
of 10 kHz, while it is less than 0.01% for a total width of the
order of 40 kHz, which is the typical width of the resonances
in the available transmission spectra. Indeed, the theoretical
formula for the line shape cannot be fit to some very narrow
resonance curves, because the number of data points is in-
sufficient. Moreover, resonances in the transmission spectra
with peak heights below a certain value, that is, a very weak
electric field at the position of an antenna, may not be de-
tected. However, since the resonance frequency does not de-
pend on the combination of antennae usedfsee Eq.s3d and
the relative uncertainties of the resonance frequenciesfm

given belowg, an essentially complete sequence of resonance
frequencies is obtained by comparing the six transmission
spectra.

Individual resonance sequences from a single combina-
tion of two antennae are incomplete since resonances may be
missed for being either too weakly excited for a particular
combination of antennae or being located too close to each
othersDfm!Gmd. A careful comparison of the six individual
spectra reveals that at most 4% of the resonances are missed
in an individual spectrum. We estimate the probability that a
resonance is missed in all six transmission spectra to be ap-
proximately 10−6, where the correlations between the
strengths of the different spectra have been taken into ac-
count. An analysis of the nearest-neighbor spacing distribu-
tion sNNSDd of the resonance frequencies results in a prob-
ability of the order of 10−5 for two resonances to be too
closely spaced for detection. The probability that one out of
103 resonances might have escaped detection is 0.1. This has
been verified independently by estimating the expected num-
ber of resonances from the geometry of the billiards and
Weyl’s formula f36,37g. We therefore use the expression
“complete” for the resulting sequences of resonances. In this
way 1163, 1173, and 946 resonances were identified for the
billiards with l=0.125, 0.150, and 0.300, respectively. The
strengths depend on the choice of the antennaea and b.
Hence, their data sets are incomplete, and, consequently, a
threshold of detection has to be taken into account in the
theoretical description of the statistical properties of the
strengths.

For an illustration of the method of analysis, Fig. 2 shows
a transmission spectrum of thel=0.300 billiard obtained for
one specific choice of antennae denoted below witha=1,

b=2 and three examples of resonances investigated in the
present paper. The resonance shape shown in Fig. 2sad is
described by the parametersfm=s5.834 272 51±6
310−8d GHz, Gm=s12.1±0.4d kHz, and Gm1Gm2

=s0.55±0.03d kHz2, while Fig. 2scd yields fm

=s6.144 141 09±5310−8d GHz, Gm=s11.4±0.3d kHz, and
Gm1Gm2=s1.18±0.02d kHz2. Figure 2sbd shows two slightly
overlapping resonances. To these a two-level R-matrix for-
mula f30,35g has been fitted. The parameters of the doublet
in Fig. 2 are fm=s6.103 844 42±8310−8d GHz, Gm

=s16.5±0.8d kHz, and Gm1Gm2=s0.48±0.01d kHz2 for the
lower lying resonance andfm8=s6.106 401 98±8310−8d
GHz, Gm8=s15.2±0.8d kHz, and Gm81Gm82=s0.12±0.03d
kHz2 for the higher lying one.

In Fig. 3 the total widths and, for comparison, the square
root of the strengths of the resonances are plotted for one
antenna combination of thel=0.300 billiard versus the reso-
nance frequency. They show strong fluctuations around a
slow secular variation which is removed before the data are
further analyzed by fitting a polynomial of fifth order to the
total widths and scaling all widths with this polynomial as in
f27g.

III. THEORY, ANALYSIS, AND DISCUSSION

According to the Bohigas-Giannoni-Schmit conjecture
f1g, the statistical properties of a quantum billiard whose
classical dynamics is fully chaotic coincide with those of
random matrices from the Gaussian orthogonal ensemble
sGOEd. This implies that the components of the
eigenvectors—with respect to any basis—have a Gaussian
distribution centered at zerof2g. Accordingly, the partial
widths have ax2 distribution with one degree of freedom
which—in the present context—is usually called a Porter-
Thomas distributionf2,38g. Writing

FIG. 2. Part of the transmission spectrum of the superconduct-
ing l=0.300 Limaçon microwave billiard. The upper part shows
magnifications of the transmission spectrum in the vicinity of two
singletssad and scd and a doubletsbd. For all three cases the reso-
nance formulas off30g have been fitted to the measured spectrum.
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ta = Gma, s4d

the Porter-Thomas distribution reads

PPTstautaddta = s2pta/tad−1/2expS−
ta

2ta
Ddta

ta
. s5d

Here, the parameterta is the expectation value

ta =E
0

`

taPPTstautaddta s6d

of ta. It depends on the channela under consideration, that is,
the experimental data have to be evaluated for each antenna
separately. Note that in Eq.s5d we use the notation of con-
ditional distributions. The vertical bar separates the argu-
ments of P into the random variablesto the leftd and the
parameterssto the rightd. For any value of the parameters the
conditional distributions are normalized to unity.

As outlined in Sec. II, transmission measurements provide
a direct access to the products of two partial widths, that is,
the strength of a resonance. If the partial widthsGma andGmb
both follow a Porter-Thomas distribution, their product has a
so-calledK0-distribution,

Psyddy =E
0

`

dtaE
0

`

dtbPPTstautadPPTstbutbddsy − tatbddy

=

K0SÎ y

tatb
D

pÎ y

tatb

dy

tatb
. s7d

Here, K0 is a Bessel function of imaginary argumentf39g.
The expression Eq.s7d is normalized to unity and the expec-

tation value ofy is tatb. The product of expectation values

tatb = Gma Gmb s8d

=GmaGmb for a Þ b s9d

depends on the combinationsa,bd of antennae. We estimated
it by the experimental average

tatb = Nab
−1o

m=1

Nab

GmaGmb s10d

of the Nab available products of partial widths.
Since the distribution in Eq.s7d diverges fory→0, we

follow f40g and transform it to the logarithmic variable

z= log10S y

tatb
D . s11d

This yields

Pszddz=
lns10d

p
10z/2K0s10z/2ddz. s12d

For each Limaçon billiard the histogram shown in Fig. 4 was
obtained by superimposing the distributions of all six com-

FIG. 3. The total widthssupper figured and the square root of the
strengthsslower figured versus the resonance frequency of thel
=0.300 Limaçon billiard for one antenna combination. The full line
is the polynomial of fifth order obtained from a fit to the total
widths. All strengths are rescaled with this polynomial in order to
remove their secular dependence on the frequency

FIG. 4. The Distribution of the resonance strengths of the three
Limaçon billiards. For each histogram the strength distributions of
all six transmission spectra have been superimposed. While ex-
pected deviations from the GOE behaviorsfull lined are clearly
visible for the billiards showing mixed dynamicssl=0.125 andl
=0.150d, the agreement between the RMT prediction, i.e., theK0

distribution given in Eq.s12d, and the measured strength distribu-
tion is good for the fully chaotic billiardsl=0.300d over more than
six orders of magnitude.
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binations of antennae. The strength distributions of the two
billiards with a mixed classical dynamics deviates from GOE
behavior, while we find good agreement for the chaotic bil-
liard. For comparison, we show in Fig. 5 the corresponding
NNSD of the eigenvalues obtained by evaluating for each
billiard the spectra of all antenna combinations. Forl
=0.125, 0.150 the NNSD clearly deviates from the NNSD
for random matrices from the GOE, that is, the so-called
Wigner distribution, whereas forl=0.300 the agreement is
very good. Hence, we observe exactly the same behavior as
for the strength distributions. However, there is one impor-
tant difference, namely, while the spectral properties of regu-
lar systems generically have a Poissonian statistics, and there
exist interpolating formulas for the mixed systemsf17g, there
still is no general theory for the properties of the wave func-
tions of such systems.

Still, even for the chaotic billiard, we observe small de-
viations between the measured strength distribution and the
K0 distribution atz values smaller thanz.−3. These are due
to the experimental threshold of detection for narrow reso-
nances and resonances with small strengths. It is taken into
account in the theoretical description by normalizing the
Porter-Thomas distribution to unity in the range of observ-
able data. This procedure is equivalent to introducing a sharp
cutoff into the Porter-Thomas distribution as lately discussed
in f41g. Accordingly,PPTstautad in Eq. s5d is replaced by

PPTstauta,xaddta =
1

Nsxad

expS−
ta

2ta
D

Î2pta/ta

Qsta − xatad
dta
ta

,

s13d

Nsxad =E
0

` expS−
x

2
D

Î2px
Qsx − xaddx ; erfcSÎxa

2
D .

s14d

Here,Qsxd is the step function. The parameterxa denotes
the threshold of detection. It depends on the channela under
consideration. Note that forxaÞ0 the quantityta no longer
equals the expectation value ofta, but equals the ratio

ta =

E
0

`

taPPTstautaddta

E
0

`

taPPTstauta = 1ddta

. s15d

By virtue of Eq.s13d the distribution of the product of two
partial widths defined in Eq.s7d becomes

Psyuxa,xbddy =E
0

`

dtaE
0

`

dtbPPTstauta,xadPPTstbutb,xbd

3dsy − tatbddy. s16d

This distribution parametrically depends on both threshold
parametersxa andxb. Note that it does not depend onta and
tb, when normalizingy to its expectation value.

Since in the experiment the threshold of detection is not
sharp, an even more subtle analysis is appropriate, namely,
the step function entering Eqs.s13d and s14d has to be re-
placed by a smooth step function,

Qesxd =
1

2S1 +
2

Îp
E

0

x/Î2e

e−y2
dyD . s17d

Note that the normalization resulting from Eq.s14d can no
longer be expressed in a closed form.

The threshold parametersxa, xb and the diffusenesse have
been determined for each antennae combination from a fit of
the distribution Eq.s16d to the experimental distributions
Pexpsyd. Technically, this amounts to a search of that set of
parameter valuesxa, xb ande, for which the generalized en-
tropy f38g

S= −E PexpsydlnS Pexpsyd
Psyuxa,xbdDdy s18d

is maximized. It turned out that the parametere can be cho-
sen the same for all antenna combinations.

Here, the experimental distributionPexpsyd is not a con-
tinuous probability density but rather a suitable histogram.
Except for binning the data, the maximum entropy procedure
is equivalent to the method of maximum likelihoodf42g. In
Fig. 6 we show the distribution obtained for one of the an-
tenna combinations and for comparison the corresponding

FIG. 5. The NNSDs for the three billiards from the family of the
Limaçons. For the chaotic billiardsl=0.300d the distribution coin-
cides with the Wigner distribution, i.e., with that of random matri-
ces from the GOE, while the two other billiards show a behavior in
between GOE and Poisson statistics, seef17g.

DISTRIBUTION OF RESONANCE STRENGTHS IN… PHYSICAL REVIEW E 71, 046202s2005d

046202-5



experimental distribution. In this example the resulting val-
ues for the fit parameters aree=0.0075, andxa=xb=0.0057;
the latter are identical within the numerical accuracy. Now
the agreement between the theoretical curve and the experi-
mental result has improved considerably.

From these results we may conclude that the deviations
from the RMT behavior observed forz smaller thanz.−3
indeed are due to the experimental threshold of detection. In
the present example the deviations are small, because the
strength distribution already is close to zero for these values
of z. For two coupled chaotic systems, or generally chaotic
systems with one broken symmetryf13,38g, however, this is
not the case. There, the probability that the strengths take a
value below the experimental threshold, that is, belowz.
−3, is large and it is thus essential to include the experimen-
tal threshold of detection in the theoretical description. Ex-

periments on spectral properties of two coupled chaotic mi-
crowave billiards have been performedf43g. In a
forthcoming publication, we shall present our results on the
corresponding strength distributions.

IV. CONCLUSION

In the present work we experimentally study statistical
properties of the partial widths for three different billiards
from the family of the Limaçons. Two of them have a mixed
classical dynamics, one is chaotic. We measured transmis-
sion spectra, thereby obtaining products of two partial widths
from the line shape of the resonances in the spectra. For a
comparison with RMT we derived an analytic expression for
the distribution of the products of two Porter-Thomas distrib-
uted random variables. Furthermore, we took into account
the unavoidable experimental threshold of detection. As a
result, we obtained a good agreement between the RMT pre-
diction and the experimental distribution in the case of the
chaotic Limaçon billiard, while we find deviations for the
billiards with a mixed classical dynamics. For the strength
distribution of the latter no theoretical model is available. In
a subsequent publication we plan to use the strength distri-
bution for the experimental study of the effect of partial sym-
metry breaking on the distribution of wave function compo-
nents with two coupled chaotic microwave billiards. As
outlined above, in such systems the treatment of the experi-
mental detection threshold is of much greater importance
than in the present work.
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