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We present detailed investigations of the experimental signatures of chaos-assisted tunneling in the two-
dimensional annular billiard, as already summarized in Phys. Rev. Lett.84, 867 s2000d. We have performed
analog experiments with two-dimensional, electromagnetic resonators allowing for a direct simulation of the
corresponding quantum system. Spectra from a superconducting cavity with a high-frequency resolution are
combined with electromagnetic intensity distributions of high spatial resolution experimentally determined
using a normal conducting twin cavity. Thereby all eigenmodes were obtained with properly identified quan-
tum numbers. Besides distributions of quasidoublet splittings, which serve as fundamental observables for the
tunneling between whispering gallery types of modes, we also focus on the distributions of resonance widths
of the doublets. These directly reflect the role of lifetime of certain modes in the tunneling process. Here, as
theoretically expected, the class of so-called beach modes is found to play a particular role in mediating
between regular and chaotic states to enhance the tunneling strength. This behavior is found in the spectrum
and also in the structure of the wave functions.
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I. INTRODUCTION

In f1g the first experimental observation of chaos-assisted
tunneling in a quantum billiard has been presented. As sub-
sequent studies of dynamical tunneling in ultracold atoms
f2–8g have attracted a lot of attention, we provide in this
article a more detailed presentation of the results off1g. The
mechanism of chaos-assisted tunneling has been studied in a
vast literature of theoretical work during the last two decades
f9–27g, since it directly reflects the influence of chaotic
phase-space structures of a classical system ontosinglestates
of its quantum counterpart. The common tunneling, usually
defined as a classically forbidden passage of potential barri-
ers f28–30g, is hereby replaced by a classically also forbid-
den transition between dynamically distinct regions of the
underlying phase space. This means that according to certain
constants of motion—i.e., symmetries of the system—the
considered classical particle is confined to restricted types of
propagation and therefore trapped inside associated phase-
space regions. In contrast to this, by virtue of the so-called
“dynamical tunneling” f9g a quantum particle may leave
these regions and travel into others. While in the case of a
potential the tunneling probability depends on the size of the
barrier and the energy of the particle, dynamical tunneling is
solely governed by the coupling of distinct phase-space re-

gions according to the motion of the particle.
If the classical transport between distinct regions in phase

space is strongly influenced by a chaotic layer, the quantum
system typically exhibits chaos-assisted tunnelingf14g. Here,
a very interesting case is given if a discrete symmetry of the
system leads totwo related, but dynamically distinctregular
regions in phase space. Quantizing the associated tori leads
to quasidegenerate states, so-called quasidoublets, just re-
flecting the symmetry of the system. Coupling between these
distinct regions through a chaotic layer in phase space allows
one in a direct manner to influence the splitting of those
quasidoublets. The tunneling matrix element is hereby deter-
mined by the position of a quasidoublet in phase space rela-
tive to the chaotic layer.

The special role of chaotic phase-space structures in the
tunneling phenomenon was investigated for theannular bil-
liard f16g and for two coupled quartic oscillatorsf14g. In
these studies a typical feature of chaos-assisted tunneling
was found: namely, a characteristic crossing mechanism be-
tween quasidoublets and single chaotic states. Strong fluc-
tuations and large amplitudes could be observed for the split-
tings when an external parameter of the system was varied in
such a way that the chaotic part of phase space changes in
size and form. In addition, the distribution of splittings could
be very effectively modeled by Gaussian random matrices
for systems with mixed classical dynamics. A couple of years
ago, evidence for the existence of the new tunneling mecha-
nism was also found in optical cavitiesf31,32g, in deformed
atomic nucleif33g, and in ultracold atomsf2–4g.

All our investigations are based on analog experiments
with two-dimensional, electromagnetic resonatorssfor an
overview seef34gd. As an ideal system for first experiments
with superconducting microwave cavities, we used the two-
dimensional annular billiard off16g representing a paradigm
for chaos-assisted tunneling in billiard systemsf17–20,35g.
While first results of this investigation have already been
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published inf1g, the present paper describes the entire ex-
periment and its analysis in detail.

The article is organized as follows: In Sec. II the classical
system and the underlying phase-space structure are pre-
sented. We thereby provide information necessary for an un-
derstanding of its quantum counterpart. While the concentric
configuration of the quantum annular billiard can be dis-
cussed analyticallysas in Sec. IIId, our main interest is the
presentation of the experiments with the nonconcentric an-
nular billiard and of our experimental results. The micro-
wave experiments and the investigation of the quasidoublet
splittings are described in Sec. IV. The analysis of the data is
given by Secs. V–VII, which contain details omitted in our
previous Letterf1g. We conclude this article in Sec. VIII.

II. CLASSICAL ANNULAR BILLIARD AND ITS PHASE
SPACE

The annular billiardf16,36g consists of two circles: one of
radius R=1 defining the outer boundary and another with
radius r inside the first oneswith a center displacementdd
defining the inner boundaryssee Fig. 1d. The system is para-
digmatic for the investigation of quantum chaotic effects that
result from the possible configurations of the two-parameter
family sr ,dd. For any radiusr of the inner circle and the
particular eccentricityd=0 both circles are concentric. Only
in this case do the number of degrees of freedom and the
number of constants of motion of the propagating billiard

particlesenergyE and angular momentumLW d coincide. This
provides the regular case. Therefore, the one-parameter fam-
ily sr =const,dd allows us to study the transition from regular
to chaotic dynamics. If, on the other hand, the two properties
r and d are varied independently, the two-parameter family
sr ,dd can be used to investigate avoided crossings and dia-
bolic pointsf37g.

A. Family r +d=const

In the following the particular one-parameter family with
r +d=const, which is very suitable to study principal features
of chaos-assisted tunneling, is introduced. Figure 2 displays
how to construct geometrically the special family withr +d
=0.75, which has been used in all following investigations.

At any possible configuration of this family, the inner
circle is positioned inside the dashed limiting circle with
radiusr8=0.75 touching it in exactly one point. An attractive
feature of the geometry lies in the fact that the chaoticity can
be varied by changingr or d without any influence on the
motion between the dashed and outer circles. Inside this
strip, the billiard particle does not interact with the inner
circle and preserves its angular momentum after collisions
with the outer circle. Since in this case the billiard “looks”
rotationally symmetric for the particle, the dynamics is regu-
lar and possesses as many constants of motionsenergyE and

angular momentumLW d as degrees of freedom. The strip is
called thewhispering galleryregion of the billiard, where the
caustic of the innermost whispering gallery trajectory is just
the dashed circle with radiusr8=0.75.

Another specific feature results from the reflection sym-
metry of the systemssee also Fig. 2d. It is possible to attach
a direction of motion to the particular trajectories in the
whispering gallery region, which can be derived from the
sign of the corresponding angular momentum. As long as
conservation of angular momentum appliessi.e., the inner
circle is not hitd, it is not possible to transform clockwise
scwd motion into counterclockwisesccwd motion and vice
versa ssee Fig. 2d. Thus, the reflectional symmetry of the
system provides that whispering gallery trajectoriessalways
pairs with positive and negative sense of motiond cannotbe
transformed into each other due to conservation of angular
momentum.

The following subsection presents a more quantitative de-
scription of the ideas given here and introduces how to con-
struct portraits of the corresponding phase-space. This will
also demonstrate that all mentioned specific geometrical fea-
tures create a phase-space structure, which is essential to
observe chaos-assisted tunneling.

B. Construction of the phase space: Poincaré surfaces
of section

To construct an adequate Poincaré surface of section of
the classical phase space we use so-called Birkhoff coordi-
nates. They preserve a given area of phase space under the

FIG. 1. sColor onlined Geometry of the two-dimensional annular
billiard. The eccentricityd characterizes the center displacement of
the two circles. FIG. 2. The family of annular billiards withr +d=0.75 is very

suitable to study chaos-assisted tunneling. The shown trajectories
sarrowsd are located right within the so-called whispering gallery
region of the billiard.
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Hamiltonian flow; i.e., within Birkhoff coordinates Liou-
ville’s theorem for conservative systemsf16,38g applies. The
definition of the coordinates can be seen from Fig. 3. For
every collision of the pointlike billiard particle with the outer
circle the point of impact and the angle of reflection are
considered as coordinates. The first coordinateL is the nor-
malized arc length at the point of impact on the circumfer-
ence of the outer circle. The second coordinateS is related to
the direction of motion via the angle of reflectiona through

S= sina. s1d

The quantityS has a very useful graphical interpretation.

According to Fig. 3, the angular momentumLW of the re-
flected billiard particle is just given by

LW = RW 3 PW = uRW uuPW usinaeWz = SeWz. s2d

This is a consequence of the normalization of the momen-

tum, uPW u;p=1, and the radius of the outer circle,uRW u;R
=1. The sign of the reflection angle serves as a definition of
the sense of motion.

In the Poincaré surface of section, the conservation of the
angular momentumsS=constd is geometrically indicated by
horizontal, invariant curves in theLS plane. For eccentrici-
ties dÞ0 this occurs only if the billiard particle does not
collide with the inner circle—i.e., only for the whispering
gallery trajectories. Any collision with the inner circle vio-
lates the conservation of angular momentum and results in
chaotic motion.

However, in the particular case of the concentric billiard
sd=0d, collisions with the inner circle have no influence on
the angular momentumS. This characterizes the fully regular
system. This feature implies the existence of two different
types of regular orbits for the concentric billiard: First, there
is the class of whispering gallery trajectories showing no
collisions with the inner circle. Second, there is the class of
orbits hitting alternately the inner and the outer circles“star-
like orbits”d.

The two types of orbits show different behavior when one
goes from the concentric billiard towards configurations with
d.0. This can be seen impressively in phase-space portraits
using the Birkhoff coordinatesL andS. In Fig. 4 the Poincaré
surfaces of section for the eccentric configurationsd
=0.05,0.10,0.15,0.20 of the familyr +d=0.75 are given.
They play a crucial role in the following investigations.
These sections contain three parts: an island of stable motion
in the center, a chaotic seaswhich grows with increasing
displacementdd, and—as expected—two invariant whisper-
ing gallery regionssdefining “the outer coast”d. The sepa-
rated whispering gallery regions are located symmetrically
with respect to the angular momentumS=0. Thus they differ
by the sense of motion—i.e., the sign of the angular momen-
tum of the billiard particle. Within Newtonian mechanics this
is a conserved quantity.

For the eccentricitiesd=0.05 and 0.20, Fig. 4 includes the
trajectories which generate the structures in phase space.

Note that both the stable island in the center and the cha-
otic sea arise from the two shortest periodic orbitsspo’sd of
the corresponding configurationd ssee Fig. 5d. This is due to
the fact that for every eccentric configuration withr .d, the
first—i.e., the shorter—po is hyperbolically unstablesupod
and the second—i.e., the longer—po is elliptically stable
sspod. Thus both together yield the typical structure of the
phase-space sections. In the concentric cased=0, both orbits
coalesce—i.e., have the same length—and show neutrally

FIG. 3. Definition of the Birkhoff coordinates for the construc-
tion of adequate Poincaré surfaces of section of the classical phase
space.

FIG. 4. Poincaré surfaces of section for the eccentric configura-
tions d=0.05, 0.10, 0.15, and 0.20 together with some examples of
the generating trajectories in the configuration space. Here, the up-
per two trajectories are whispering gallery orbitssneutrally stabled,
while “spo” and “upo” label stable and unstable periodic orbits,
respectively.
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stable—i.e., bouncing ball—characteristicssbbod. As soon as
the system becomes slightly eccentric, both orbits are sepa-
rated according to the Kolmogoroff-Arnold-MosersKAM d or
Poincaré-Birkhoff scenariof39–41g. They provide one stable
and one unstable fixed point, which show the characteristic
phase-space structures under perturbation. The same occurs
successively for every originally neutrally stable fixed point:
namely, every periodic orbit of the concentric systems.

The only neutrally stable po’s that persist for anydÞ0 are
located within the whispering gallery region. Two orbits of
this type swith positive and negative sense of motiond are
given in Fig. 4 for the cases ofd=0.05 and 0.20. There is no
dependence on the eccentricity, since the orbits shown do not
hit the inner circle for the considered values ofd. As de-
scribed above, the conservation of angular momentum mani-
fests itself by invariant horizontal lines in theLS plane. The
clearly visible separatrix in Fig. 4 atd=0.05 plays a particu-
lar role for the topological structure of the phase space. It
separates two types of orbits from each other: those ones,
which are mapped onto themselves under a reversal of the
sense of motionsi.e., a reflection with respect to the axisS
=0d, and orbits, which are mapped onto the opposite side of
the phase space. In addition the latter ones feature a transi-
tion from starlike to whispering-gallery characteristics atS
=0.75 yielding the separation of chaotic and regular regions
with increasingd.

With increasingd the chaotic sea fills the gap between the
two separated whispering gallery regions. In classical me-
chanics, a transition between cw and ccw whispering gallery
trajectories isnot possible. The Poincaré surfaces of section
show such a transition for trajectories just below the two
borders of the whispering gallery regionssuSu/0.75d: The
ergodic features of transport within the chaotic sea become
more and more effective with increasingd. This is confirmed
by calculations of the classical rate of transport as a function
of d f16g. According to this calculation, there is an effective
coupling between phase-space regions in the direct vicinity
of the two whispering gallery strips. The coupling can be
strongly enhanced by increasing the size of the chaotic sea.

We have characterized the structure of the classical phase
space and thereby provided the information necessary for an
understanding of the properties of the quantum counterpart.
The following sections deal with the corresponding quantum
annular billiard and its experimental investigation. They
show that the classically separated whispering gallery re-
gions are coupled by the mechanism of chaos-assisted tun-
neling.

III. CONCENTRIC QUANTUM ANNULAR BILLIARD

In order to characterize the observables relevant for tun-
neling, the present section considers the concentric quantum
annular billiard of the familyr +d=0.75. Its eigenstates re-
sult from the quantization of the whispering gallery tori. Very
much as the classical whispering gallery trajectories, these
quantum whispering gallery states occur in pairs, so-called
doublets.

Due to rotational symmetry, the annular billiard withd
=0.0 is integrable. Not only the energyE, but also the angu-

lar momentumLW is a constant of motion. The quantum sys-
tem is described by the stationary Schrödinger equation

usD + k2dCsrWduG = 0 s3d

inside the billiard’s domainG, with Dirichlet boundary con-
ditions

uCsrWdu]G = 0. s4d

The eigenvalues of this regular billiard can be calculated by
the transcendental equation

Jnskn,mrdYnskn,mRd − Jnskn,mRdYnskn,mrd=
!

0. s5d

Due to the integrability, the quantum states are well defined
by two quantum numbers: The angular momentum quantum
number n=0,1, . . . and theradial quantum numberm
=1,2, . . .. ThefunctionsJn and Yn are the Bessel and Neu-
mann functions of the first kind andnth order. Using polar
coordinates, the eigenfunctions have the formf16,42g

Cn,msr,wd = An,mfJnskn,mrdYnskn,mRd − Jnskn,mRdYnskn,mrdg

3Hcossnwd,

sinsnwd.
J s6d

They are normalized to unity viaAn=0,m=kn=0,m
Îp /2 and

AnÞ0,m=knÞ0,m
Îp /2. This defines two types of states: The

first set withn=0 consists of singlets possessing rotational
symmetry; the second set withnÞ0 consists of twofold-
degenerate states—i.e., doublets—without any rotationally
symmetric structuressee Fig. 6d.

Obviously, this quantum feature reflects the structure of
classical phase space. Only those types of trajectories with
classical angular momentumSÞ0 are arranged in pairs with
different senses of motionssee Sec. IId. An Einstein-
Brillouin-Keller sEBKd- or Bohr-Sommerfeld quantization of
Eq. s2d,

L = uRW uuPW usina = "kS=
!

n", s7d

yields

FIG. 5. Universal stability behavior for the shortest periodic
orbits in case ofr .d. For details see Sec. II B.
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S=
n

k
. s8d

From this, the classical angular momentumS which is as-
signed to a given quantum doublet can be identified in the
corresponding phase-space portrait.

It is instructive to see how the classical property “sense of
motion” sthe sign ofSd is translated into the quantum picture.
The two states of a doublet may be distinguished from each
other by their parity with respect to the billiard’ssarbitrarily
chosend line of symmetryssee the vertical dashed line in Fig.
6d. Obviously, this line is well defined after transition to ec-
centric configurations of the billiard. Both features—the
classical sense of motion as well as the quantum property of
parity—are directly related to the reflection symmetry of the
system.

After calculating from Eq.s5d an eigenvalue for a given
angular momentum quantum number, the position of the cor-
responding quantum state within the classical phase space
can be determined with the help of Eq.s8d. In Fig. 7, this is
displayed for the spectrum of the concentric configuration
with r =0.75. For later comparison with the microwave ex-
periments described in the next section, the conversion from
eigenvalues to eigenfrequencies has already been carried out.
This is achieved byf =c0k/2p if the radiusR of the outer
circle is converted from theoretical dimensionless units—i.e.,
R=1, to R=1/8 m=125 mm. Thespectrum has been calcu-
lated within the frequency range up to 20 GHz. Figure 7
shows a branch for each radial quantum numberm. Each
branch starts on the abscissa with the angular momentum
quantum numbern=0, which denotes a rotationally symmet-
ric singlet. The eigenfrequency is a monotonic function of
the angular momentumS. For better orientation, the border-
line of the chaotic sea atS=0.75 is given in the figure. In
addition, the positions of three selected doublets with quan-
tum numberssn=10um=1d, s20u1d, ands30u1d are marked on
the first branch. Besides their eigenfrequency they signifi-
cantly differ in their quantized angular momentumS.

Within the picture of coupled but classically distinct phase
space regions, Fig. 7 may be used as a map for the observa-
tion of chaos-assisted tunneling. The three displayed dou-
blets should exhibit a characteristic motion when the eccen-
tricity is changed from the concentric geometrysd=0d
towards an eccentric configurationsdÞ0d ssee Fig. 4d. Dou-
blets with high angular momentumfsuch as, e.g.,s30u1dg are
located within the whispering gallery region, and thus an
increase ind should not change them; i.e., the eigenfre-
quency should not move and the splitting should remain ex-
tremely small. The higher the angular momentum quantum
number of a quasidoublet, the easier to find it in the spectrum
of an eccentric case, since the position shows an even weaker
change with variations ofd.

Following steadily the branch withm=1 towards smaller
angular momenta, the whispering gallery region is gradually
left until the coupling to the chaotic sea becomes optimal at
S=0.75. Exactly here, the doublets20u1d is located. For the
eccentric configurations, where angular momentum is not a
good quantum number anymore, it comes to an enhanced
“smearing of states in angular momentum space” at this bor-
derlinesbroad Fourier spectrum inSd; i.e., from the quantum
point of view an overlap between whispering gallery region
and chaotic sea is realized. In this case, the classically for-
bidden tunneling between whispering gallery trajectories
with opposite senses of motion shows a maximum strength.
The quantum spectrum is expected to display a correspond-
ing maximum splitting of quasidoublets in the vicinity of this
borderline—i.e., “on the beach” of the chaotic seaf17–20g.
Therefore these beach modes play a particular role in the
experimental observation of dynamical tunneling. As can be
seen from Fig. 7, there exist only two windows at
8.75–10.50 GHz and at 19.25–20.00 GHz, which are acces-
sible in the present experimentssolid barsd.

We have so far characterized the concentric quantum an-
nular billiard. This could be done with analytic calculations,
as the system is integrable. For a detailed investigation of the
chaos-assisted tunneling, however, one has to study the ec-

FIG. 6. sColor onlined Squared wave functions of the concentric
system withr =0.75 according to Eq.s6d. On the left side the first
singlet swith rotational symmetryd is given; the middle part shows
the first doubletswith even and odd parity, respectivelyd. The right-
hand part shows a higher excited doublet for better understanding of
the quantum numberssn,md.

FIG. 7. Eigenfrequencies vs quantized angular momenta accord-
ing to Eq. s8d for the concentric system withr =0.75. The dashed
line atS=0.75 marks the borderlinesthe “beach”d between the cha-
otic sea and the whispering gallery region in the classical phase
space of the present setup. The solid bars denote those important
spectral regions, where quantum states pass the borderline and thus
couple the otherwise distinct phase-space regions.
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centric cases. These are not accessible analytically, although
the whispering gallery modes can to some extent be approxi-
mated by eigenfunctions of the concentric system. In the
following sections we describe in detail the investigation of
the annular billiard with the eccentricitiesd=0.05, 0.10,
0.15, and 0.20ssee Fig. 4d with the help of microwave ex-
periments.

IV. MICROWAVE EXPERIMENTS

In what follows we discuss the methods of experimental
verification of the above scenario. This includes the details of
the identification of quasidoublets. The measurements con-
sist of two separated experiments: First, spectra of a super-
conducting niobium billiardsT=4.2 Kd were measured, al-
lowing the observation of quasidoublets. Second, the
experimental mapping of relevant wave functionssintensity
distributionsd has been performed on a geometrically identi-
cal copper resonatorsT=300 Kd in order to assign the angu-
lar momentum.

A. Measurements using the superconducting resonator

The superconducting resonator was constructed from
modular niobium partsswith the critical temperatureTc
=9.2 Kd. The resonator has the heighth=7 mm and is closed
by a lid equipped with two antennas, as can be seen in Fig. 8.
From the spatial dimensions results the transition frequency
f t=c0/2 /h<21.4 GHz. Below this frequency, the billiard be-
haves fully two dimensional, and therefore, the electromag-
netic resonator represents a system which is analogous to the
quantum billiard. An overview of this technique, our typical
experimental setup, and selected experiments can be found in
f34,43g. The inner circles were all manufactured as freely
movable rings of the desired radii. From this “construction
kit” several configurationssr ,dd of the annular billiard can

be realized. To obtain a good electric contact between the
different parts, we used commercially available solder wire
of 1.2 mm in diameter. This wire was mounted in a groove
located on outer rims of the components. The closed billiard
was tightly bolted together using a robust casing of stainless
steel.

Besides geometrical imperfections of the resonator—e.g.,
inexact positioning or manufacturing tolerances of individual
parts—the real and ideal annular billiards differ by the mi-
crowave antennas used for excitation. To estimate their per-
turbing influence on the symmetry of the system and there-
fore on the positions and especially on the splittings of
quasidoublets, we usedtwo differentresonator lids with es-
sentially different antenna positions in our measurements. In
case of the first setupslid Ad, the antennas were located at
S=0.907, expressed in units of the angular momentum—i.e.,
within the whispering gallery region—so that larger pertur-
bations of the relevant quasidoublets aboveS=0.75 were ex-
pected. In case of the second lidsBd, the antennas were
moved to the positionS=0.625 far below the border line
with S=0.75, so to speak inside the shadow region of the
inner circle. Due to these geometrically different antenna
patterns, lidB allowed us to investigate the configurations
d=0.10, 0.15, and 0.20, whereas lidA allowed us to measure
the casesd=0.0 and 0.05.

In all eight measurements, the microwave spectrum was
recorded in the range up to 20 GHz with a resolution of
10 kHz. During the measurements, which typically took
13–15 h for each configuration, the billiard was mounted
inside an evacuated copper box, which itself was immersed
in liquid helium. In equilibrium, the billiard remained at a
temperature of 4.2 K and a pressure of approximately
2 mbar.

Figure 9 shows a part of the spectrum for the concentric
configurationd=0.0 in transmission mode. The power trans-
mitted to antenna 2,Pout, is measured with respect to the
power put into antenna 1,Pin, as a function of frequency. The
theoretical eigenvalues for the states betweens0u1d and
s10u1d, expected according to Eq.s5d, are marked with
dashed lines in the figure. One clearly sees that the experi-
mental resonances fall in general slightly below the calcu-

FIG. 8. Modular microwave resonator of the niobium annular
billiard with an outer circle of radiusR=125 mm. The lid on the
right-hand side has two antennas for the excitation of the electro-
magnetic fields.

FIG. 9. Excerpt from the transmission spectrum of the supercon-
ducting resonator in the concentric configurationd=0.0. The dashed
lines mark the theoretical positions of the eigenvalues calculated
from Eq. s5d for all the states froms0u1d to s10u1d.
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lated values, in spite of the thermal contraction of the reso-
nator. Furthermore, the first modes with a low-angular-
momentum quantum numbern show a strong splitting of the
doublets. Both effects systematically decrease for highern.
This is due to imperfections of the mechanical setup and of
the adjustment of the resonator components. On the other
hand, the antennas which were used for excitationshere lidA
was installedd lead to an observable splitting for highn. Es-
pecially in the case of higher angular momenta the exact
position and shape of the inner circle become less and less
important: The perturbation saturates in the position of a
given doublet as well as in the magnitude of its splitting. In
context with the measurements of field distributions, we shall
reconsider this in more detail.

An excerpt from the frequency window between 8.75 and
10.50 GHz is given in Fig. 10. It will be important for the
subsequent analysis. Here, the transmission spectra for the
configurationsd=0.0, 0.05, 0.10, 0.15, and 0.20 are dis-
played. They have been taken with the antennas of lidA. A
closer look reveals, besides a large number of singlets,ex-
actly onequasidoubletsmarked by a circled. It shows a de-
creasing shift with increasing eccentricity and eventually
reaches an almost fixed position in the spectrum. This is in
perfect agreement with theoretical predictionsf44g. As men-
tioned above, even the concentric cased=0.0 displays a
measurable splitting. This is due to strongly perturbing an-
tennas within the whispering gallery regionslid Ad. To esti-
mate such an influence for the case of eccentric configura-

tions, we used lidB with only slightly perturbing antennas
outside the whispering gallery region. Since in this case the
antennas were located inside the shadow region of the inner
circle, only the eccentricitiesd=0.10, 0.15, and 0.20 were
accessible. For these configurations, Fig. 11 enlarges the
quasidoublet of Fig. 10 in a direct comparison. For lidA, the
splitting as well as the shape of the double resonance shows
nearly no dependence on the eccentricity. With lidB the
measurements display strong fluctuations: Besides a strong
decrease of the splitting, the figure reveals for the first time
in our investigation a significant dependence on the chaotic-
ity. Fluctuations of the quasidoublet splitting as a signature
for an interaction with the chaotic singlets are theoretically
expected, especially in the vicinity of crossingsf14,16g.

Hence, the experimental observation of chaos-assisted
tunneling will be essentially based on measurements with lid
B. The series of measurements with lidA and the mapping of
billiard wave functions, described in the next subsection, are
used to well identify the quasidoublets, to determine the as-
sociatedsapproximated quantum numberssnumd, and to de-
duce the corresponding position in phase space—i.e., the
quantized angular momentumS. Since Eq.s8d was originally
derived for the regular, concentric case with conserved angu-
lar momentum, it is only approximately correct in the eccen-
tric scenario. However, also in the case ofdÞ0, quasidou-
blets show positions and splittings, which systematically
approach the exact doublets of the concentric case when an-
gular momentum and energy increase.

B. Measurements using the normal conducting resonator

For a proper identification of quasidoublets a second ex-
perimental setup was developed in order to measure electro-
magnetic intensity distributions, which correspond to quan-
tum probability densities. The structure of whispering gallery
states would easily allow us to assign the corresponding
quantum numbers, so that the determination of the quasidou-
blet’s position in the classical phase space becomes possible.
Therefore, besides the energyE, the quantized angular mo-
mentumS may be systematically deduced as a function of
the eccentricityd. In this way its relevance for chaos-assisted
tunneling would be proven.

FIG. 10. Excerpt from the transmission spectrum for the super-
conducting resonatorslid Ad as a function of the eccentricityd.
Besides a large number of singlets exactly one quasidoublet is ob-
served. The circles mark and enlarge this doublet. They show a
systematic motion towards smaller frequencies with increasingd.
The frequency axis has been stretched by the factor of 10 in the
magnifications.

FIG. 11. The quasidoublet taken from Fig. 10, measured with
strongly slid Ad and weaklyslid Bd perturbing antennas. The fre-
quency axis is stretched by the factor of 10 in the magnifying
circles.
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The experimental setup consists of a normal conducting
copper resonator, which was manufactured as a copy of the
superconducting billiard. As in the case of the niobium
“twin,” the copper resonator was composed modular compo-
nents. In contrast to the niobium resonator, which at 4.2 K is
not accessible for geometrical manipulations, room tempera-
ture s300 Kd allows us to map wave functions by means of a
field perturbation method originally introduced in accelerator
physicsf45g. For a couple of years, this method was not only
used in the framework of quantum chaosf46–49g, but as
well to observe pure electromagnetic field distributions in a
three-dimensionals3Dd Sinai billiard f50g.

The principle of these measurements relies on the fact that
the standing electromagnetic wave inside the cavity is per-
turbed by a small body. In this way, the integrated ratio of
stored electric and magnetic energy changes. As a conse-
quence, the resonator exhibits a slight shift of its resonant
frequencyf0. Formally, a small metallic body yields

]fsrWd = f0 − fsrWd = f0„c1EW
2srWd − c2BW

2srWd…, s9d

where the constantsc1 andc2 are determined by its size and
shape. Accordingly, the electric term in Eq.s9d may drasti-
cally differ from the magnetic term.

The task was then to adequately choose a perturbing body
sincluding its positioning unitd such that the body could be
moved inside the resonator. Furthermore, mainly the electric
component of the field should be affectedstheB term should
be suppressedd, since only in this case the correspondence
with the quantum wave function is given. For the present
experiments, a magnetic coupling between the perturbing
body and the positioning unit provides a very elegant solu-
tion as it was shown in other microwave experiments
f46–48g. The perturbing body itself consists of a Ferrit-based
permanent magnet with linear dimensions of<1 mm. It was
held tight and positioned through the billiard’s bottom plate
s5 mm of copperd by help of an axially premagnetized guid-
ing magnet with diameter of 3 mm. The guiding magnet it-
self was mounted on a special positioning unit, consisting of
two PC-controlled step motors. This concept allows to move
the body on a polar coordinate grid with practically arbitrary
smotor-restrictedd resolution.

Figure 12 shows the experimental setup. This device al-
lows us to measure any desired electromagnetic field distri-
bution of the annular billiard with parametersr and d with
high geometrical resolution. We typically used 1/10 of the
wavelength. Besides the positioning of the perturbing body, a
PC simultaneously controls a network analyzer, determining
frequency shifts]fsr ,wd via very sensitive phase measure-
ments ssee also Fig. 13d. According to Eq.s9d this finally
yields the local electromagnetic field intensity.

Since the material of the perturbing bodies is given by our
positioning method, only its geometrical shape could be ad-

justed to the desired suppression of theBW component in Eq.
s9d. In the quasi-two-dimensional resonatorswith a transition
frequency f t<30 GHz, resulting from its height of 5 mmd
the electric field vector is perpendicular to the bottom of the
billiard and the magnetic field vector is parallel to its plane
sTM0 modesd: These facts are used for an effective separa-

tion of both components of the electromagnetic field. As de-
scribed inf45g, the interaction with a metallic body becomes
optimal for an orientation along the lines of the electric field.
Therefore, we used metallic cylinders oriented perpendicu-
larly to the billiard plane. With growing length and shrinking
cross section such cylinders show more and more the desired

electric component, while theBW component is affected less
and less. With increasing ratio length/radius of the body, the
measured field distribution becomes more and more propor-
tional to the exact quantum wave functionuCu2.

A cylindrical body with the length of 1.84 mm and the
diameter of 1.00 mmsthis yields a volume of 1.45 mm3d

FIG. 12. Photograph of the experimental setup, which was used
to measure electromagnetic intensity distributions. At the top, the
open billiard in concentric configuration is seen. Below this, the
positioning unit for the perturbing magnetic body, properly aligned
to the resonator, is shown. The guiding magnet is located directly
below the bottom plate of the billiard on a movable sledge, which is
positioned by two stepper motors.

FIG. 13. sColor onlined Principle of control of the experimental
mapping of electromagnetic field distributions in the annular bil-
liard. The PC sets the position of the perturbing body and sends
commands to the network analyzer. The measured frequency shift
]f is recorded as a function of the positionsr ,wd.
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turned out to be the best choice. The resolution of ten sam-
pling points per wavelength requires a two-dimensional grid
with 200 sat 2 GHzd to 20 000 sat 20 GHzd points. The
above perturbing body ensured a safe and accurate guidance
with maximum errors in the range of 1−2 mm in the abso-
lute position. This guarantees the spatial resolution even at
20 GHz and the errors lie in the range of the general adjust-
ment tolerance for the positioning unitsnot exceeding
1 mmd. In repeated measurements performed under identical
conditions the frequency shifts could be reproduced within
5%.

C. Measurement of the family r +d=0.75

Before the measurements are described in detail, some
estimates of the resolution and errors shall be given. We
discuss to which extent experimental verification of the the-
oretical predictions depends on the interplay between the
4-K and 300-K setups. In particular, we have to specify the
ranges of resolution, which are accessible by the two test
stands, and the resolution which is necessary to allow the
observation of chaos-assisted tunneling.

As shown in f16g, for an unambiguous verification of
chaos-assisted tunneling, relative quasidoublet splittings
uDf / f u have to be followed over about 18 orders of magni-
tude as a function of the eccentricityd. However, even for
superconducting resonators, a maximum resolution of the or-
der of the reciprocal quality factor, 1 /Q<10−6, may be ex-
pected. Nevertheless, as shown inf17–20g, there exists a
very special class of quasidoublets, for which experimental
observation of their splitting seems to be realistic. This class
of so-called beach modes is characterized by an angular mo-
mentum that locates them directly on the borderline of the
chaotic sea in the classical phase space. This provides an
optimal coupling between the whispering gallery region and
chaotic states. As a consequence, the quasidoublet splitting is
amplified by several orders of magnitude atS=0.75.

For a demonstration, Fig. 14 displays the theoretically ex-
pected splittings within this important windowf51g for three
experimentally investigated configurationssd=0.10, 0.15,
and 0.20d. The figure shows the quasidoublet splittings of the
family with the radial quantum numberm=1 in the range of
n=10–30 as a function of the quantized angular momentum
S=n/k. The border of the chaotic sea splits the figure into
two parts: Below the beach—i.e., inside the classically cha-
otic region—larger splittings are correlated with larger
eccentricities—i.e., chaoticities—of the billiard. In contrast,
beyond the borderline, the quasidoublets display strong fluc-
tuations accompanied by decreasing splittingsson the aver-
aged for increasing angular momenta in this regular phase-
space region. The fluctuations are caused by crossings
between quasidoublets and adjacent chaotic statesf14,16g.
The most striking “indication” of chaos-assisted tunneling is
just given by this emergingmaximum structurein the distri-
bution of splittings directly on the beach atS=0.75.

The usage of a superconducting resonator should indeed
allow us to observe this effect of chaos-assisted tunneling
above the resolution limitsuDf / f u=10−6d. Beach modes are
expected to fall right inside the frequency windows between

8.75 and 10.50 GHz and between 19.25 and 20.00 GHz, re-
spectivelyssee also Fig. 7d. In order to detect their particular
splitting, we included further windows with quasidoublets
inside the chaotic seafmode s10u1dg as well as inside the
whispering gallery regionfmodess27u1d–s30u1dg in our ex-
perimental investigation. These additional quasidoublets lie
on the borders of the region shown in Fig. 14. This extension
of the experimentally investigated range is only possible
with the high resolution of the superconducting resonators as
well as the unambiguous identification of the quantum num-
bers in the maps of the wave functions. Since the normal
conducting resonator promises quality factors only in the
range ofQ<103–104, we briefly discuss the spectral prop-
erties of our geometry, in order to estimate its experimental
limits.

Table I gives for all configurations of the annular billiard
the expected mean values for the number of levels,Nsmooth,
according to the Weyl formulaf52g, the level densityrsmooth,
the level distanceD, and the resulting minimum quality fac-
tor Qmin, which is necessary to resolve levels at 10 and
20 GHz, respectively. The respective minimum quality factor
for resolving two levels increases continuously with the ec-
centricity d sfactor of &2d and even stronger with the fre-
quency f sfactor of *4d. Especially for highd and high f
resolving resonances with the normal conducting resonator
becomes more and more difficult. Nevertheless, especially in
the relevant window around 10 GHz the copper billiard will
allow us to distinguish resonances separated by the corre-
sponding mean level spacingD as long as the antennas pro-
vide sufficient coupling to a given field distribution. On the
other hand, a comparison with the splittings of Fig. 14
clearly rules out a direct verification by using the normal

FIG. 14. sColor onlined Theoretically predicted quasidoublet
splittings in the vicinity of the beach of the chaotic sea atS=0.75
sdashed vertical lined as a function of the quantized angular momen-
tum S=n/k. The calculated data points for three of the investigated
billiard configurationssd=0.10, 0.15, and 0.20d are marked by dif-
ferent symbols and are interconnected. In addition, all the different
quasidoubletss10u1d–s30u1d are sorted by grey scales. Here, related
data points of a given statesnu1d fall one upon the other and are
denoted by one grey scale level. The dashed horizontal line at
uDf / f u=10−6 shows the experimental limit of resolution.
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conducting setup only, even if only the largest splittings are
considered. This means that the copper billiard will not allow
us to resolve both modes of a given quasidoublet and that
slight splittings of doublets can only be resolved with a su-
perconducting resonatorsas in f53gd.

Figure 15 shows the measured transmission spectrum in
the frequency range between 8.88 and 8.96 GHz, obtained
with the copper billiard at 300 K and with the niobium reso-
nator at 4.2 K, respectively, both of them using lidA in the
configurationd=0.20. Above these spectra, the field distribu-
tions, as measured via resonances of the normal conducting
setup, are presented. This demonstrates how the resonances,
emerging from the 4-K measurementsssee Figs. 10 and 11d
could be successively identified in a systematic way. The
assignments between the results for the warm and cold reso-
nators are obvious. As described in Sec. IV A, the displace-
ments of resonances between the two measurements, which
based on practically identical billiards, are due to imperfec-
tions of the geometry and perturbations of the system’s sym-
metry. Obviously, at least in the window around 10 GHz
these displacements are smaller than the mean level spacing
and therefore tolerable. In addition, Fig. 15 nicely allows us
to verify the above-mentioned properties: The state in the
middle is clearly the beach mode with quantum numbers

sn=18um=1d, indicating a typical field structure as expected
also for higher-lying whispering gallery states. Indeed, the
measurement at 300 K shows only one broad resonance and
just that field distribution, which is excited more effectively.
Only in the 4-K measurement the quasidoublet structure with
both states of different parity is clearly visible. All other
modes possess a chaotic structure with strong field contribu-
tions from outside the whispering gallery region. Conse-
quently, these modes emerge as singlets in the spectrum of
the superconducting resonator.

Figure 16 demonstrates that the field distribution mea-
surements apply without any problem even at frequencies
around 20 GHz. Again, spectra of the configurationd=0.20
at 300 K and 4.2 K using lidA are shown, this time in the
range between 19.28 and 19.44 GHz. Among a large number
of chaotic states, the very highly excited whispering gallery
modes44u1d could be found and has been clearly identified
using again a local resolution of 1/10 of the given wave-
length. The expected position of the corresponding concen-
tric eigenfrequencysd=0.0, dashed lined confirms that whis-
pering gallery modes with increasing excitation energy show
a smaller and smaller displacement in their frequency, even if
the eccentricity is far away from the concentric caseshere
d=0.20d. The figure shows that a principle assignment of
both spectra at 300 K and 4.2 K, respectively, is still pos-
sible. Due to the high level density, however, it becomes
impossible to resolve very closely lying modes in the normal
conducting billiard and to assign these modes to resonances
of the superconducting resonator. Therefore the following
analysis will mainly concentrate on the frequency range
around 10 GHz and only a few quasidoublets between 12
and 14 GHz will be considered.

In order to include not only the quasidoublets, which are
relevant for chaos-assisted tunneling, in the analysis but also
chaotic states, all measured field distributions will be system-
atically classified by two quantum numbers. This procedure
accounts for the fact that every state of an eccentric configu-
ration is nothing but ad-variation-induced geometrical defor-

TABLE I. Basical spectral properties of the investigated annular
billiards at a frequency of 20 GHzf10 GHzg.

Configuration d=0.0 0.05 0.10 0.15 0.20

Nsmooth 255 306 353 398 438

f52g f65g f78g f89g f99g
rsmoothsGHz−1d 28 33 37 42 46

f13g f15g f18g f20g f22g
D sMHzd 36 30 27 24 22

f79g f65g f57g f50g f46g
Qmin 555 656 750 837 917

f127g f153g f177g f199g f219g

FIG. 15. sColor onlined Comparison between the normal con-
ductings300 Kd and the superconductings4.2 Kd measurement and
identification via experimentally obtained field distributionsfquan-
tum numberssnumd including parityg for the configurationd=0.20.

FIG. 16. sColor onlined Comparison between the warm and the
cold measurements at very high frequencies. For notation see Fig.
15. The position of the whispering gallery modes44u1d is nearly
invariant under variations ind sdashed line ford=0d.
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mation of a corresponding state in the concentric system. In
this picture chaotic modes represent strongly deformed
states, while whispering gallery modes represent weakly de-
formed states of the concentric billiard. The strength of this
deformation simply reflects that a changing eccentricity has a
considerably stronger impact on some states than on others
due to their different composition of angular momentum
Fourier components. The assigned quantum numberssnumd
therefore become systematically “better” with increasing an-
gular momentum of the states. That is exactly what distin-
guishes whispering gallery modes from chaotic ones.

To obtain a more vivid description of this scheme, Fig. 17
compares some modes of the concentric configurationsr
=0.75,d=0.0d, as they were measured in the experiment
with those calculated from Eq.s6d, respectively. From this,
even for a very precisely assembled copper resonator tiny
perturbations of the geometry are sufficient to obtain consid-
erable deformations of the field distributions and hence a
lowering of the resonance frequency. This emerges espe-
cially for modes with a low quantized angular momentum
S=n/k. Follow-up measurements of the cavity’s geometrical
shape yielded a total displacement between the two centers
of the inner and outer circles, respectively, of only 0.6 mm as
the origin of the perturbed rotational symmetry. This corre-
sponds to an eccentricity ofd=4.8310−3. As indicated in the
figure, this also leads to the constitution of a new line of

reflectional symmetry, which is tilted with respect to the old
onesdefined by the antennasd by an angle of<29°. This lack
of adjustment therefore falls right within the generally ex-
pected range of geometrical imperfections of the mechanical
setup, and hence, it is in principle unavoidable. In addition,
this observation is in total agreement with Fig. 9, where geo-
metrical perturbations within the superconducting resonator
of the same order resulted in shifts of the modes towards
lower frequencies, especially in the case of low-angular-
momentum quantum numbersn. These shifts showed a
stronger saturation with increasingn. The reason is that for
an increasingS=n/k the perturbation of rotational symmetry
has a decreasing impact on the states, as can be seen from
modes10u1d in Fig. 17. At such high angular momenta, the
perturbing influence of the antennas is again stronger than
the symmetry breaking induced by the geometry itself. Ac-
cording to this, it is not possible to assign a proper parity to
the experimental modes10u1d with respect to the new line of
symmetry as induced by the perturbation. In fact, once again
the axis of the unperturbed system is preferred, since with
respect to this line of symmetry the antennas are located
symmetrically.

The figure also demonstrates how for an arbitrary
deformation—i.e., for a certain eccentricity of the familyr
+d=0.75—even chaotic modes might be systematically la-
beled with the two quantum numberssplus parityd of the
originally unperturbed concentric modes, in just counting the
number of half wave trains in thew sgiving 2nd andr sgiving
md directions, respectively. This has already been introduced
in Figs. 15 and 16. In this way, nearly every measured field
distribution has been characterized by two quantum num-
bers. The only exceptions are chaotic modes constituting a
strong scar structuref54–56g—i.e., a strongly enhanced field
amplitude along classically unstable periodic orbits. An ex-
ample can be seen in Fig. 18. This assignment procedure
between quantum numbers and field distributions was finally
transferred to the resonances of the superconducting resona-
tor. The results for the configurations with lidA, which also
include the casesd=0.0 and 0.05, are given in the level
schemes of Figs. 19 and 20. Here, the absolute positions of

FIG. 17. sColor onlined Comparison between experimentally
measuredsleft sided and numerically simulatedsright sided states
for different angular momentum quantum numbersn of the concen-
tric system. Tiny perturbations of the eccentricity lead to the devel-
opment of a tilted line of symmetry.

FIG. 18. sColor onlined An example of a scar, found for the
configurationd=0.20 in the frequency range around 20 GHz—i.e.,
at the upper end of the spectrum. On the left-hand side the corre-
sponding unstable periodic orbit of the classical system is shown for
comparison.
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the found resonances including the quantum numberssnumd
and parity are shown as a function of the eccentricityd.
Furthermore, the figure nicely demonstrates how in particu-
lar quasidoublets of the familym=1 move in the frequency
spectrum under variations ofd sdashed linesd. As stated
above, this is a direct consequence of the deformation of the
original concentric system under an increasingd. Finally,
every quasidoublet shows a saturation of this wandering at
very high eccentricities, since the maximum possible exten-
sion of the field is reached, even if the size of the inner circle
is further skrinked.

The higher the angular momentumS, the faster emerges
the saturation and the smaller is the deformation of the con-
centric mode under variations ind. To make this angular-
momentum-dependent wandering effect more clear, Figs. 21
and 22 respectively, show modes10u1d swith S<0.59–0.66d
and the region around modes30u1d swith S<0.83d in a direct
comparison. Obviously, stronger frequency displacements as
well as stronger changes in the field patterns can be observed
for the modes with a lower-angular-momentum quantum
numbern.

In particular, the highly excited modes arounds30u1d will
play a crucial role in the verification of chaos-assisted tun-
neling, since their large angular momentum guarantees a po-
sition far away from the chaotic sea. Their tiny quasidoublet
splitting ssee Fig. 14d should be even smaller than for the

beach modes. This would finally prove that meaningful tun-
neling amplitudes can only be expected if the coupling be-
tween the whispering gallery region and the chaotic sea be-
comes more effective.

In a final step and for a quantitative investigation of this
splitting behavior, all identified resonances of the normal
conducting and the superconducting configurations were de-
scribed by Lorentz curves. According to this, the exact eigen-
frequenciesfm as well as the widthsGm ffull width at half
maximumsFWHMdg were determined with a relative accu-
racy of better than 5310−7 in order to make use of the maxi-
mum accessible range of resolutionsup to Q<106d at the
given spectral scanning using 10-kHz steps. Formally, this
was achieved via a numerical fitting of the line shape
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to the data. This so-called “skewed Lorentzian shape”
f57–59g is particularly suitable for the given set of data
points. We note here, however, that recently an alternative
description of resonances in microwave billiards has been
derived f60g. Equation s10d allows the characterization of
both isolated singletssN=1d and strongly interacting quasi-
doubletssN=2d. Here,Cm andDm describe the strength of a
certain resonance and the asymmetry of its line shape, re-
spectively. In addition, these properties also characterize the

FIG. 19. Level scheme of identified resonances, experimentally
taken using the superconducting resonator with lidA in the spectral
range around 10 GHz. The dashed lines indicate the wandering of
quasidoublets of the familym=1 as a function ofd.

FIG. 20. Sequel of Fig. 19.
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influence of neighboring resonances. Furthermore, a more
general background on the data is regarded by the second
sum in Eq.s10d. Taking small frequency windows, it is usu-
ally sufficient to reduce this expression to a straight line
sG=1d for an adequate description of the data. For a demon-
stration of the quality of this procedure, which was per-
formed with specific initial values and windows for each of
the identified resonances, Fig. 23 shows the numerical fitting
for the weakly excited quasidoublets29u1d± of the configu-
ration sr =0.65,d=0.10d in the superconducting state. These
high-lying angular momentum states were excited so weakly
that additional measurements with a resolution of 250 Hz
instead of 10 kHz became necessary in the direct vicinity of
the two resonances.

V. RESULTS

The starting point for the following analysis is given by
the data sets as described in the previous section. To start
with an overview, we will first give a summary of all those

properties, which were involved in the investigation: the
resonances of the geometrical configurationsd=0.0, 0.05,
0.10, 0.15, and 0.20 for measurements at 300 and 4.2 K us-
ing strongly perturbing antennasslid Ad in the window
8.75–10.50 GHzsbeach regiond as well as modes10u1d scha-
otic sead and the modess27u1d–s30u1d swhispering gallery
regiond. In addition, for the configurationsd=0.10, 0.15, and
0.20 at 4.2 K using weakly perturbing antennasslid Bd all the
states of the familym=1 betweens0u1d and s30u1d were ex-
perimentally determined and included in the analysis.

For each individual resonance of the data set its position
and its width were determined by means of Eq.s10d and
finally labeled with its quantum numbersn sangular momen-
tumd, m sradial componentd, andp sparityd. The crucial ob-
servable which allows an experimental access to chaos-
assisted tunneling is basically the quasidoublet splitting of
the whispering gallery states. Besides the dependence on the
chaoticity of the system, we first will consider the question
how the magnitude of the splitting is dominated by the cor-
responding position in phase space and whether a classifica-
tion by chaotic, regular, and beach states can be confirmed in

FIG. 21. sColor onlined Mode s10u1d under
variations of the eccentricityd. At the top the
drastically changing field distributions can be
seen, below the corresponding frequency shift.

FIG. 22. sColor onlined A spectral window for
modes betweens27u1d and s30u1d, where the fre-
quencies as well as the field distributions are
nearly invariant under variations ind.
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the experiment. For this reason, Fig. 24 shows, for aconstant
eccentricity shere d=0.20d, the normalized quasidoublet
splitting uDf / f u;usfeven− foddd / fevenu versus the angular mo-
mentumS=n/k with k=s2p /c0dsfeven+ foddd /2. Here, every
identified quasidoublet out of the window 8.75–10.50 GHz
with quantum numbersn and m has been considered. The
diagram displays the overall splitting behavior within a nar-
row frequency window—i.e., for a nearly constant energy—
and allows a direct comparison of the three different experi-
mental conditions. Due to a few insufficiently resolved
resonances where the fit of Eq.s10d did not converge, the
size of the data sets slightly varies. In all three subfigures the
classification by chaotic and regular states becomes clearly
visible. Low-angular-momentum quantum numbersn char-
acterize states with strong contributions of the wave function
outside the whispering gallery region and hence have to be
denoted as chaotic. In contrast to this, modes with a high
angular momentum are nearly exclusively localized right
within the whispering gallery region and therefore are of
regular nature.

The kind of illustration, which was chosen in Fig. 24,
separates both types of states in a natural way by their by
about three to four orders of magnitude differing splittings.
Astonishingly, the radial quantum numberm provides a se-
quential order of the states. Here, large radial quantum num-
berssm=3–5d characterize chaotic states with a nearly con-
stant splitting of the order of the mean level spacing or above
sthis depends on the number ofm families in the present
frequency windowd. Via the family withm=2 the quasidou-
blet splittings in the given frequency window experience the
transition into the range of regular whispering gallery states
with m=1. Strikingly, this transition is carried out in a very
steady way and completed clearly before the classical bor-
derline of the chaotic sea atS=0.75 is reached.

It is important to note that the exact form of the curve
depends on the choice of the frequency window and the ec-
centricity, although the general transition behavior from cha-
otic to regular is universal. Two features have been observed:
on the one hand, a transition at higher frequency is mediated
by a family of higher radial quantum numberm and, on the

other hand, the position of this transition at higher eccentrici-
ties is more and more shifted towards the beach atS=0.75.
The comparison of the three experimental conditions indi-
cates that differences clearly manifest themselves only in the
whispering gallery region—i.e., in the range of small split-

FIG. 23. sColor onlined Numerical fit of the resonance shape
given by Eq.s10d to the weakly excited quasidoubletss29u1d± of
the configurationsr =0.65, d=0.10d. In this case the resolution of
the measurement was increased to 250 Hz, instead of 10 kHz. The
relative splitting of the doublet isuDf / f u<3310−6.

FIG. 24. sColor onlined For the eccentricityd=0.20 observed
splittings of quasidoublets taken from the window 8.75–10.50 GHz
as a function of the quantized angular momentumS. The family
m=2 indicates the transitionsdashed curved between chaoticsgreyd
and regular modessblackd, respectively.

FIG. 25. sColor onlined Quasidoublet splittings of the family
m=1 sblackd with angular momentum quantum numbersn=1–30
in the case of weakly perturbing antennasslid Bd again for d
=0.20. For comparison also the modes withmÞ1 sgreyd from Fig.
24 slower partd are included. Obviously, a local maximum of the
family m=1 occurs atS=0.75.
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tings. Already at first sight, the splittings in the case of
weakly perturbing antennasslid Bd are about one order of
magnitude below the corresponding values for strongly per-
turbing antennasslid Ad.

Before this behavior is studied in more detail, the transi-
tion range aroundS=0.75 will be closely inspected with re-
spect to a significant splitting structure, which allows us not
only to classify states as “chaotic” or “regular,” but also ac-
counts for the special character of the beach modes. For this
purpose, Fig. 25 enlarges the lower part of Fig. 24—i.e.,
shows the splittings of the modess1u1d–s30u1d. Beside the
typical transition behavior from chaotic to regular states
snow also form=1d, as described above, a substructure be-
comes visible in the range aroundS=0.75, indicating a first
piece of evidence for chaos-assisted tunneling. Here, in the
direct vicinity of the beach—i.e., at the crossover between
chaotic sea and whispering gallery region—the splittings re-
veal a very impressivelocal maximum, indeed indicating that
due to the strong coupling of the two classically separated
phase-space regions, the class of beach modes residing here
has drastically amplified splittings—i.e., an increased tunnel-
ing probability. Independent from the tunneling itself, it is
semiclassically expected that beyond this borderline in the
whispering gallery region, the quasidoublet splittings be-

come small very rapidly with increasing angular momentum
as well as with increasing energyf16–20g. Beside this theo-
retical expectation, the experiment also shows a sharp de-
cline inside the chaotic sea; therefore, semiclassical argu-
ments are invalid and a direct correlation with an increased
tunneling probability is obvious.

Especially in the region of this maximum it is now impor-
tant to investigate the particular influence of the chaoticity,
since the tunneling probability is a function of the coupling
of the two separated whispering gallery regions and therefore
directly depending on the structure of the chaotic seassee
Fig. 4d. For this purpose, Figs. 26 and 27 show in detail the
splittings of the whispering gallery states in the direct vicin-
ity of the beach line atS=0.75. For a more systematic sepa-
ration of different effects at different measuring conditions,
Fig. 26 shows at first a comparison of the experiments at
300 K and 4.2 K, respectively, where in both cases strongly
perturbing antennasslid Ad were used. In Fig. 27 the com-
parison of this case and the weakly perturbing antennasslid
Bd at 4.2 K can finally be seen.

These two figures reflect another central result of the pre-
sented experiments on chaos-assisted tunneling. For a vari-
able eccentricityd sfive different symbols for the measure-
ments using lidA, three in the case of lidBd, primarily three
groups of states for the familym=1 are shown: the mode
s10u1d inside the chaotic sea, the modess18u1d–s21u1d near

FIG. 26. sColor onlined Splittings of the familym=1 in the
zoomed-in window aroundS=0.75. The figure shows a comparison
between the warm and the cold measurement, where in both cases
lid A was used. Different symbols denote the varying eccentricityd.
Diverse grey scales have been taken for a better separation of the
quasidoublets, whereby neighboring data points, all of which be-
longing to the same statesnu1d, are given in the same grey scale.
The splittings of the warm measurements300 Kd fall in the range of
the resolution limit for normal conducting resonators1/Q'10−4d.
This is also the reason for some missing data points. As a conse-
quence of the strong perturbation of the antennas, also the points of
the cold measurements4.2 Kd lie on this levelsi.e., about two or-
ders of magnitude above their resolution limitd, being nearly invari-
ant under a variation ind.

FIG. 27. sColor onlined Comparison of the splittings in the su-
perconducting states4.2 Kd using stronglyslid Ad and weaklyslid
Bd perturbing antennas, respectively. In the latter case only three of
five eccentricities were accessible. We have used the same notation
as in Fig. 26. In the lower subfigure all the modes betweens10u1d
ands30u1d are displayed. While the upper figure shows nearly con-
stant, perturbation-induced splittings, the lower illustration repro-
duces the already found maximum structure of Fig. 25 in the range
around the beach atS=0.75. As already indicated in the theoretical
predictionssee Fig. 14d, also here the data points show a systemati-
cal rise in the chaotic seasS,0.75d and a fluctuating fall in the
whispering gallery regionsS.0.75d.
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the beach line, and the modess27u1d–s30u1d far outside in the
whispering gallery regionssee also Fig. 7 for the concentric
cased. In addition, in the case of lidB all states between
s10u1d and s30u1d are given in order to make clearly visible
the detailed structure of the emerging local maximum. For a
discrimination, the splittings of different quasidoublets are
sorted by different grey scales.

Due to the resolution limit of the normal conducting reso-
nators1/Q'10−4d, only a small fraction of the splittings can
be determined from the 300-K measurement. Although the
measurement at 4.2 K using the superconducting resonator
with lid A allows us to record all searched splittings, it is
impossible to draw any physical conclusion concerning the
tunneling from that data. The reason is that all these split-
tings are nearly identical, showing no dependence on the
frequencyf, the angular momentum quantum numbern, or
the eccentricityd. For comparison, see also the example of
the quasidoublets18u1d of Fig. 11 sleft halfd. Obviously, the
antennas of lidA, which are mounted right inside the whis-
pering gallery regionsat S=0.907d, lead to a perturbation-
induced amplification of the splittings by two orders on mag-
nitude with respect to the principal resolution limit of the
superconducting resonators1/Q'10−6d. Therefore, the data
points of both subfigures agree fairly well.

A totally different behavior occurs when lidB is usedssee
Fig. 27d. To emphasize again, the corresponding systems of
the given two subfigures only differ in the very position of
their antennas. As already indicated in Fig. 25 for the eccen-
tricity d=0.20, in using lidB a local maximum of quasidou-
blet splittings emerges in this region. This structure is even
intensified now by the two additional eccentricitiesd=0.10
andd=0.15. A comparison with the theoretical prediction, as
introduced in the last section, shows a fairly good agreement
in the general behavior of the splittings within this window
of angular momenta. Also the data points of Fig. 14 obey a
distinct maximum structure aroundS=0.75 with a systemati-
cal rise in the chaotic sea and a statistical fall in the whis-
pering gallery region. Note that after minimizing the impact
of the antennas on the symmetry, the remaining imperfec-
tions of the resonator lead to a smoothing of the maximum
for the experimental curvefsee Fig. 27sbottomdg. A closer
inspection reveals even more agreement with the theoretical
curve. Also the experimental rise of the quasidoublet split-
tings in the chaotic sea features a systematical behavior,
which is indicated by the fact that those data points of the
highest eccentricityd=0.20 represent the highest splittings
for the individual quasidoublets. Additionally, splittings in
both curves—the experimental and theoretical ones—show
strong fluctuations in the transition to the whispering gallery
region whend is varied. As already mentioned in the theo-
retical framework, this is basically caused by crossings of
whispering gallery quasidoublets with chaotic statesf14,16g.
Finally, the experimental curve also clearly displays that the
accessible window for an observation of chaos-assisted tun-
neling was fully utilized: Only in the range of the experimen-
tal resolution limits1/Q<10−6d, which is reached by a few
data points, some of the quasidoublets eventually cannot be
resolved and therefore are missing even in the lower subfig-
ure of Fig. 27. This also demonstrates how critically an ob-
servation of chaos-assited tunneling rests on the usage of
superconducting resonators.

VI. QUALITY FACTORS

While the theoretical treatment of the quantum annular
billiard only yields discrete eigenvalues, the experiment pro-
vides resonances with a finite widthG swe use the FWHMd.
Therefore, it is very instructive to transfer the investigations
on the splittings as described in the last section also to these
widths in order to look for further signatures of chaos-
assisted tunneling. The width of a resonance of a microwave
resonator is caused by two different mechanisms: First, a
fraction of the energy stored in the resonator is dissipated by
Ohmic losses at the inner surfaces. Besides different kinds of
high-frequency losses in the case of normal conducting and
superconducting resonators, respectively, the purity of these
surfaces plays the important role. The second mechanism is
caused by the coupling to the resonator, which beside the
excitation also takes a certain portion of energy from the
system.

Formally, for a given resonance with frequencyf and
width G the connection between these two kinds of losses
might be expressed in terms of the loaded quality factorQL
and the unloaded quality factorQ0 in the following way
f61,62g:

QL =
f

G
=

Q0

1 + b
, s11d

Q0 = 2pf
U0

P0
=

G

RS
. s12d

According to this, the unloaded quality factorQ0, which is
not directly accessible in the measurement, is only deter-
mined by the properties of the resonator and the excited
mode. This is expressed by the stored energy in the electro-
magnetic field,U0, and the dissipated power per period,P0,
which might be converted into the geometry factorG for a
constant surface resistanceRS. In contrast to this, for the
loaded quality factorQL, which might be directly deduced
from the eigenfrequencyf and the widthG, also the coupling
to the field inside the resonator, which is parametrized by the
coupling factorb, plays an important role. Only in the lim-
iting case of an extremely weak coupling,b→0, are both
quality factors identical.

In order to demonstrate that in the given experiments
mainly the coupling characterizes the behavior of the sys-
tems, Figs. 28 and 29 show the loaded quality factorsQL
determined from the quasidoublets versus angular momen-
tum. Here, for both states of a given quasidoublet withfeven

and fodd, the quality factorsQL
even= feven/Geven and QL

odd

= fodd/Godd are displayed separately. Again, the sizes of the
data sets of the three different measurements might differ
from each other, since the numerical fitting for very weakly
excited resonances may have allowed a determination of the
resonance frequency but not of the resonance width. As in
Figs. 26 and 27 also in the given figures, for measurements
using lidA only the modess10u1d schaotic sead, s18u1d–s21u1d
sbeachd, and s27u1d–s30u1d swhispering gallery regiond are
plotted, while in the case of weakly perturbing antennasslid
Bd all modess10u1d–s30u1d are given. At first sight, only the
lower subfigure of Fig. 29 shows an almost exponential de-
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pendence between the quality factorQL and the quantized
angular momentumS slog QL~Sd with very weak fluctua-
tions. In contrast, among experimental conditions using lidA
a very interesting behavior can be observed: Already slightly
present in the 300 K case and much stronger at 4.2 K, the
quality factors indicateon the averagea nearly constant
trend with S. But in considering both parities of a given
quasidoublet separately, a bifurcation of the quality factors
towards largerS can be observed. This effect is in particular
obvious for the highly excited whispering gallery modes
s27u1d–s30u1d in the lower subfigure of Fig. 28. Here, the
quality factors of both parities partly differ by more than one
order of magnitude, confirming the direct observation on the
spectrum that one state of a given quasidoublet possesses a
much smaller width than the other onefsee also, e.g., Fig. 11
for modes18u1d in the beach regiong.

From a geometrical point of view, the explanation of this
behavior is straightforward and can be directly confirmed by
the measured wave functionss300 K, lid Ad. Two things are
important: On the one hand, the polar anglea between both
antennasA1 and A2 is constant sa<86°d. On the other
hand, the polar angleDw between two nodal lines of a given
field distributionchangeswith the angular momentum quan-

tum numbern along a circulation around the center. For-
mally,

Dw =
360°

2n
s13d

applies. Exactly the ratio of these two polar angles,a /Dw, is
crucial for the asymmetric behavior of the resonance widths.
The closer this ratio lies nearby an integer number—which
means the better a fixed number of wave trains fits in be-
tween the antennas—the more effective one of the two pari-
ties will be excitedsantennas in the range of a field maxi-
mumd. This yields a large width and a low-quality factor,
respectively. In contrast, the corresponding second parity
will be excited nearly in a node of the field—i.e., very
ineffectively—therefore, a small width and a high-quality
factor occur. One recognizes that this leads to strongly asym-
metrically distributed widths for one quasidoublet. In the in-
verse case, where the ratioa /Dw falls exactly between two
integers, both parities are excited in a similarly effective or
ineffective way; thus, the corresponding quality factors are
symmetrically distributed for both states of a quasidoublet.
Determining the degree of asymmetry for both quality fac-

FIG. 28. sColor onlined Loaded quality factors determined from
the states shown in Fig. 26 at 300 and 4.2 K, respectively, using
strongly perturbing antennasslid Ad. Normally, for each quasidou-
blet two quality factors could be reducedsseparately for the even
and the odd stated. Both subfigures showon averagenearly constant
quality factors as a function of the quantized angular momentum
with an apparent bifurcational structure towards larger values ofS,
which is slightly present already in the normal conducting case and
clearly observable in the superconducting state. The reason for this
strong asymmetry in the excitation of both states of a given quasi-
doublet is basically composed of three effects: first, the more and
more increasing localization of field distributions at higher angular
momenta, and second, the nodal line structure of these fields, which
is strongly correlated with the angular momentum quantum number
n, and, third, the spatially fixed coupling to these fields.

FIG. 29. sColor onlined Comparison of loaded quality factors in
the superconducting states4.2 Kd using stronglyslid Ad and weakly
slid Bd perturbing antennas, respectively. Again, per quasidoublet
there are two quality factors givenswhich are nearly identical in the
lower subfigured. In comparison to the already explained bifurca-
tional structure for strongly perturbing antennassupper subfigured,
the lower diagram shows quality factors, nearly exponentially in-
creasing withS slog QL linearly depends onSd up to the expected
limit of 106. This nicely reflects the systematical disapproach be-
tween the antennaslocated atS=0.625d and the balance point of the
field distributionsapproximately atS=n/kd. In addition, it might be
deduced from the very symmetrical excitation of both states of a
given quasidoublet that indeed there is only very little impact on the
mode structure by the weak coupling to the fields.
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tors in such a way yields a perfect agreement with the obser-
vations of Fig. 28 for the system with lidA.

In the case of field measurements at 300 K the given reso-
lution only allows us to observe the more effectively excited
parity, even though the corresponding modes produce a
weakly formed double resonance, which allows us to fix two
widths. Here, states with an even parity are found exactly
whena /Dw falls in the close vicinity of an even integer. In
return, an odd state is to be observed exactly whena /Dw is
close to an odd integer. Again, this behavior clearly reflects
how strongly the system is perturbed by the antennas of lid
A. In substantial contrast to this, the quality factors in case of
lid B show in general an almost identical formation for both
parities of a quasidoubletfsee Fig. 29sbottomdg. Further-
more, the exponential decrease of the resonance widths with
S indicates that the perturbation by the antennasslocated at
S=0.625d becomes weaker and weaker such that especially
in the case of highly excited whispering gallery states the
coupling to the field is nearly free of an influence on the
quality factor. Formally, the coupling factorb steadily de-
creases and the influence of the excitation disappears,

b → 0 andQL → Q0. s14d

Exactly for this reason, the splittings of the states are almost
free of perturbations by the antennas; hence, their origin is
based on chaos-assisted tunneling.

In order to verify the frequency dependence of the quality
factors in a last step, Fig. 30 shows again for the eccentricity
d=0.20 scompare Fig. 25d, beside the modes from Figs. 28
and 29 of the familym=1, also additional states taken from
the window 8.75–10.50 GHz. In the case of weakly perturb-
ing antennas all the modess0u1d–s30u1d are considered. Here,
the two upper subfigures nicely demonstrate again that, al-
though the quality factors strongly diverge due to the dis-
cussed asymmetry of excitation, their mean formation re-
mains nearly constant. Furthermore, the quality factors of the
statesmÞ1 within the window 8.75–10.50 GHz show a
similar behavior as the ones of the familym=1, simply be-
cause both classes are affected by the geometry of the exci-
tation in the same way, whereas in the case of weakly per-
turbing antennasslower subfigured the quality factors of
these two classes are separated by more than one order of
magnitude. This huge gain in lifetimef35g allows us, on the

FIG. 30. sColor onlined Frequency dependence of quality factors
in the case of familym=1 sblackd and mÞ1 sgreyd, respectively,
for the eccentricityd=0.20. In the lower subfigure all statess0u1d–
s30u1d are considered. Here, the dashed circle marks a clearly ob-
servable minimum in the beach region.

FIG. 31. sColor onlined Polar Fourier transformation of the
modess10u1d from the chaotic sea,s18u1d from the beach region,
ands30u1d from the whispering gallery region for the configuration
d=0.20. Regular field distributions feature more and more sharply
localized Fourier components beyond the beachsdashed linesd.
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one hand, to identify easily the states of the familym=1
directly in the spectrumsevenwithout measuring the corre-
sponding wavefunctiond. On the other hand, here a natural
classification with respect to chaotic, beach, and regular
modes also directly emerges from the quality factors. In par-
ticular the family m=1 passes through all three kinds of
states in the figure. Thus, from the quality factor representa-
tion fFig. 30 sbottomdg, as well as from the splitting repre-
sentationsFig. 25d, a very steady transitional behavior arises.

In the picture of quality factors it also becomes very ob-
vious what happens in the region of the discussed resolution
limit of 1/ Q<10−6. At the end, the field strength maximum
reaches a more and more fixed position within the geometry
for an increasing angular momentum quantum numbern;
therefore, also its distance from the antennas becomes con-
stant. Thus, the almost exponential dependence between this
distance and the loaded quality factorslog QL~Sd fas found
in Fig. 29 sbottomdg just leads in frequency representation to
the observable, slowly forming saturation of the quality fac-
tors in the whispering gallery regionfsee Fig. 30sbottomdg.

It is rather speculative whether themaximumof quasidou-
blet splittings atS=0.75, which was equated with the experi-
mental evidence of chaos-assisted tunneling for the beach
modes, now appears in the form of aminimum, as observable
on the branch of quality factors for the familym=1 sdashed
circle in Fig. 30d. Analytically, the quantized angular mo-
mentum of the centroid of this minimum givesS<0.73. The
physical interpretation of this minimum could be that the
particularly effective coupling of the beach modes to the cha-
otic sea provides a wider smearing of the corresponding
wave functions across the whole billiard than for modes just
outside the minimum, where the coupling is effectively
weaker. On the other hand, the stronger a wave function is
smeared across the billiard—i.e., delocalized—the more “is
seen” of the dissipative parts of the surface. Therefore, it
might be expected that beach modes not only display larger
splittings but also smaller quality factors, as observed in the
experiment.

VII. POLAR FOURIER TRANSFORMATION

To visualize this smearing of states in angular momentum
space, Fig. 31 exemplary contrasts the polar Fourier transfor-
mationsf63g of mode s10u1d schaotic sead, of mode s18u1d
sbeach regiond, and of modes30u1d swhispering gallery re-
giond again for the configurationd=0.20. Formally, this was
obtained by Fourier transforming the experimental frequency
shift ]f as taken from the field distribution measurements
fcompare Eq.s9dg along circles of radiusr0 around the ori-
gin, respectively

] f̃sr0,kd =E
bmin=−pr0

bmax=+pr0

db]fsr0,bdexpsibkd. s15d

Here, the variableb=r0w characterizes the polar arc length.
A subsequent averaging across all radiir0, normalization to a
maximum amplitude of unity and rescaling of thek axis to
the quantized angular momentumS=n/k0, with k0=being the
present eigenvalue,

] f̃normS n

k0
D =K] f̃Sr0,

n

k0
=

r0

2k0
kDL

r0

, s16d

finally yields the curves as given in Fig. 31.
From this, it becomes quite obvious that the beach mode

s18u1d provides a real coupling between the chaotic sea and
the whispering gallery region. In contrast, the modess10u1d
and s30u1d are localized only inside one of these two subre-
gions. The figure also nicely points up how the information
about the corresponding angular momentum quantum num-
bern is encrypted in the wave function of a certain mode and
“how good” this quantum number is. This can be seen from
calculating the expected quantized angular momentum of a
given state according toS=n/k0: Right at this position the
polar Fourier transform yields a maximum. Furthermore, the
higher the quantum numbern, the sharper the corresponding
peak and also the better the agreement of its position withS.
This demonstrates in the Fourier space of the wave functions
how widely smeared chaotic states with “bad” quantum
numbersn fmode s10u1dg transform into regular states with
“good” quantum numbersn fmodes30u1dg at higher angular
momentum. Thus, besides the splittings and quality factors
this reveals a third observable for the chaoticity of a state,
yielding again for the beach modes a significant structure in
the direct vicinity of the crossover atS=0.75.

VIII. CONCLUSION

This work deals with new features of the relation between
a classical system and the spectrum of its quantum counter-
part. The two-dimensional annular billiard of the familyr
+d=const has a mixed phase space, containing two separated
regular regions and a chaotic sea with a stable island. In the
quantum analog system, the regular regions are coupled to
the chaotic sea, and in this way they are coupled to each
other. This causes a splitting of the doublets of eigenstates
that correspond to the classical whispering gallery trajecto-
ries: This is referred to as chaos-assisted tunneling. Experi-
mentally, these quasidoublets were measured with a very
high resolution using a superconducting resonator and were
subsequently identified via electromagnetic field distribu-
tions of a normal conducting twin resonator. In this way,
chaos-assisted tunneling was observed experimentally for the
first time. In this observation, the so-called beach modes—
which correspond to the orbits on the border of the chaotic
sea—played a major role. The beach modes show a maxi-
mum of doublet splitting. This indicates a maximum of tun-
neling probability at the border of the chaotic sea. In addition
to the splitting, we investigated resonance widths and found
a weak maximum of the widths at the beach modes. This
amounts to enhanced dissipation and is explained by the fact
that these modes are coupled to trajectories all over the bil-
liard via their coupling to the chaotic states.
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