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Experimental investigations of chaos-assisted tunneling in a microwave annular billiard
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We present detailed investigations of the experimental signatures of chaos-assisted tunneling in the two-
dimensional annular billiard, as already summarized in Phys. Rev. 84867 (2000. We have performed
analog experiments with two-dimensional, electromagnetic resonators allowing for a direct simulation of the
corresponding quantum system. Spectra from a superconducting cavity with a high-frequency resolution are
combined with electromagnetic intensity distributions of high spatial resolution experimentally determined
using a normal conducting twin cavity. Thereby all eigenmodes were obtained with properly identified quan-
tum numbers. Besides distributions of quasidoublet splittings, which serve as fundamental observables for the
tunneling between whispering gallery types of modes, we also focus on the distributions of resonance widths
of the doublets. These directly reflect the role of lifetime of certain modes in the tunneling process. Here, as
theoretically expected, the class of so-called beach modes is found to play a particular role in mediating
between regular and chaotic states to enhance the tunneling strength. This behavior is found in the spectrum
and also in the structure of the wave functions.
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[. INTRODUCTION gions according to the motion of the particle.
i ) ) ) If the classical transport between distinct regions in phase
In [1] the first experimental observation of chaos-assstegpace is strongly influenced by a chaotic layer, the quantum
tunneling in a quantum biIIi_ard has bgen presented. As SUbs'ystem typically exhibits chaos-assisted tunneﬂt’h@. Here,
sequent studies of dynamical tunngllng n ultrapold_ atom very interesting case is given if a discrete symmetry of the
[2_.8] have attractgd a lot of att.entlon, we provide in this system leads towo related, but dynamically distineegular
article a more detailed presentation of the resultglofThe o qiqn in phase space. Quantizing the associated tori leads

mechanism of chaos-assisted tunneling has been studied ina quasidegenerate states, so-called quasidoublets, just re-

vast literature of theoretical work during the last two decade?lecting the symmetry of the system. Coupling between these

[9h_27]’ since it directly freflelcts .th? mfluenge of chaotic distinct regions through a chaotic layer in phase space allows
pf ase-space structures o a_crr?sswa systemsnn@lxpestates I one in a direct manner to influence the splitting of those
of its quantum counterpart. The common tunneling, usua Yquasidoublets. The tunneling matrix element is hereby deter-

defined as a classically forbidden passage of potential barrlh'ned by the position of a quasidoublet in phase space rela-
ers[28-30, is hereby replaced by a classically also forbid-tivle to tr?le challooticl IIayer quasidou np P

den ”a!"S‘“O” between dyn_amically distinct regions of the. The special role of chaotic phase-space structures in the
underlying phase Space. This means that according to Cert""iﬁnneling phenomenon was investigated for émaular bil-
constants of motion—i.e., symmetries of the .SyStem_thef'ard [16] and fortwo coupled quartic oscillator§l14]. In
considered classical particle is confined to restricted types G ose” studies a typical feature of chaos-assisted tunneling
propagation and therefore trapped inside associated phasgaq tound: namely, a characteristic crossing mechanism be-

space regions. In contrast to this, by virtue of the so-calleqeen quasidoublets and single chaotic states. Strong fluc-

“ﬁynamlca_\l tunnec:mg" [gl] a quaﬁtumvsﬁrltlcl_e rrr:ay Ieavef tuations and large amplitudes could be observed for the split-
these regions and travel into others. lle In the case o ﬁngs when an external parameter of the system was varied in

pote_ntial the tunneling probability_depends on the size Qf thesuch a way that the chaotic part of phase space changes in
barrier and the energy of the particle, dynamical tunneling iS;j; o 4nq form. In addition, the distribution of splittings could
solely governed by the coupling of distinct phase-space "®be very effectively modeled by Gaussian random matrices

for systems with mixed classical dynamics. A couple of years
ago, evidence for the existence of the new tunneling mecha-
*Present address: Max-Planck-Institut fur Astronomie, D-69117nism was also found in optical caviti¢31,32), in deformed

Heidelberg, Germany. atomic nuclei[33], and in ultracold atompg2—4.
"Present address: Siemens Management Consulting, D-81541 All our investigations are based on analog experiments
Munchen, Germany. with two-dimensional, electromagnetic resonatdfsr an
*Present address: d-fine GmbH, D-60313 Frankfurt am Mainoverview sed34]). As an ideal system for first experiments
Germany. with superconducting microwave cavities, we used the two-
Spresent address: Fraunhofer E(@rnst-Mach-Institut D-79104  dimensional annular billiard dfL6] representing a paradigm
Freiburg, Germany. for chaos-assisted tunneling in billiard systef@¥—20,33.

'Present address: Ericsson GmbH, D-40547 Diisseldorf, GermanWhile first results of this investigation have already been
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FIG. 1. (Color online Geometry of the two-dimensional annular

billiard. The eccentricityd characterizes the center displacement of ) . ) )
the two circles. FIG. 2. The family of annular billiards with+5=0.75 is very

suitable to study chaos-assisted tunneling. The shown trajectories
(arrowg are located right within the so-called whispering gallery

published in[1], the present paper describes the entire &Xtegion of the billiard.

periment and its analysis in detail.

The article is organized as follows: In Sec. Il the classical A iol f . f this familv. the i
system and the underlying phase-space structure are pre- t any possible configuration of this family, the inner
sented. We thereby provide information necessary for an unc_|rcle is positioned inside the dashed limiting circle with

derstanding of its quantum counterpart. While the concentri adiusr’=0.75 touching iF in _exactly one point. An att_ra_ctive
configuration of the quantum annular billiard can be dis- eature of the geometry lies in the fact that the chaoticity can

cussed analyticallyas in Sec. IlJ, our main interest is the P€ varied by changing or & without any influence on the

presentation of the experiments with the nonconcentric anfotion between the dashed and outer circles. Inside this

nular billiard and of our experimental results. The micro_strip, the billiard particle does not interact with the inner

wave experiments and the investigation of the quasidouble‘f'rde and preserves its angular momentum after collisions

splittings are described in Sec. V. The analysis of the data jith _the outer circle: Since in thi§ case the billiqrd ‘.‘IOOkS"
given by Secs. V-VII, which contain details omitted in our rotationally symmetric for the particle, the dynamics is regu-

previous Lettef1]. We conclude this article in Sec. VIl 1ar and possesses as many constants of mééiergy< and
angular momentunt) as degrees of freedom. The strip is
called thewhispering galleryregion of the billiard, where the
Il. CLASSICAL ANNULAR BILLIARD AND ITS PHASE caustic of the innermost whispering gallery trajectory is just
SPACE the dashed circle with radius=0.75.

Another specific feature results from the reflection sym-
metry of the systenfsee also Fig. 2 It is possible to attach
a direction of motion to the particular trajectories in the
whispering gallery region, which can be derived from the

digmatic for the investigation of quantum chaotic effects thatsfr?sg:vgt]i%nC%rfr?npour}g'rn%:Q%ﬂiiznmgmﬁgmihésir:ﬁg? as
result from the possible configurations of the two-paramete(l;. : ot ang ) PPIEE., -
family (r,8). For any radiug' of the inner circle and the circle is not hit), it is not possible to transform clockwise

particular eccentricityp=0 both circles are concentric. Only (cw) motion into counterclockwiséccw) motion and vice
in this case do the number of degrees of freedom and thversa(see Fig. 2. Thus, the reflectional symmetry of the

number of constants of motion of the propagating biIIiardgys[em.prOVId.e.S that Whlspermg gallery trajeqto(lalszvays

) ORI _ pairs with positive and negative sense of motioannotbe
particle (energy& and angular momenturfi) coincide. This  transformed into each other due to conservation of angular
provides the regular case. Therefore, the one-parameter fargiomentum.
ily (r=const ) allows us to study the transition from regular  The following subsection presents a more quantitative de-
to chaotic dynamics. If, on the other hand, the two propertiegcription of the ideas given here and introduces how to con-
r and o are varied independently, the two-parameter familystruct portraits of the corresponding phase-space. This will
(r,8) can be used to investigate avoided crossings and diggjso demonstrate that all mentioned specific geometrical fea-
bolic points[37]. tures create a phase-space structure, which is essential to

observe chaos-assisted tunneling.

The annular billiard 16,36 consists of two circles: one of
radius R=1 defining the outer boundary and another with
radiusr inside the first ongwith a center displacemerf)
defining the inner boundarigee Fig. 1 The system is para-

A. Family r+ é=const
B. Construction of the phase space: Poincaré surfaces

In the following the particular one-parameter family with .
of section

r+d=const, which is very suitable to study principal features
of chaos-assisted tunneling, is introduced. Figure 2 displays To construct an adequate Poincaré surface of section of
how to construct geometrically the special family with§  the classical phase space we use so-called Birkhoff coordi-
=0.75, which has been used in all following investigations. nates. They preserve a given area of phase space under the
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FIG. 3. Definition of the Birkhoff coordinates for the construc-
tion of adequate Poincaré surfaces of section of the classical phas
space.
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Hamiltonian flow; i.e., within Birkhoff coordinates Liou-
ville’s theorem for conservative systeris,38 applies. The —0sr
definition of the coordinates can be seen from Fig. 3. For
every collision of the pointlike billiard particle with the outer — -toF, . ... L
circle the point of impact and the angle of reflection are () ~%%°7%# 000 025 050 =050-025 000 0.35 0.50
considered as coordinates. The first coordinate the nor-
malized arc length at the point of impact on the circumfer- FIG. 4. Poincaré surfaces of section for the eccentric configura-
ence of the outer circle. The second coordirfaitg related to  tions 6=0.05, 0.10, 0.15, and 0.20 together with some examples of
the direction of motion via the angle of reflectianthrough  the generating trajectories in the configuration space. Here, the up-
per two trajectories are whispering gallery orkiteutrally stablg
S=sina. (1) while “spo” and “upo” label stable and unstable periodic orbits,
respectively.

The quantityS has a very useful graphical interpretation.

According to Fig. 3, the angular momentuth of the re-
flected billiard particle is just given by

The two types of orbits show different behavior when one
goes from the concentric billiard towards configurations with
6>0. This can be seen impressively in phase-space portraits
using the Birkhoff coordinatels andS. In Fig. 4 the Poincaré
surfaces of section for the eccentric configuratiofs
o o =0.05,0.10,0.15,0.20 of the family+6=0.75 are given.
This IS a consequence of the normalization of th? rnornenThey play a crucial role in the following investigations.
tum, [P|=p=1, and the radius of the outer circlf|=R  These sections contain three parts: an island of stable motion
=1. The sign of the reflection angle serves as a definition ofn the center, a chaotic sgavhich grows with increasing
the sense of motion. displacement), and—as expectediwo invariant whisper-

In the Poincaré surface of section, the conservation of thehg gallery regions(defining “the outer coast’ The sepa-
angular momentuniS=cons} is geometrically indicated by rated whispering gallery regions are located symmetrically
horizontal, invariant curves in theS plane. For eccentrici- with respect to the angular moment@r 0. Thus they differ
ties 6#0 this occurs only if the billiard particle does not by the sense of motion—i.e., the sign of the angular momen-
collide with the inner circle—i.e., only for the whispering tum of the billiard particle. Within Newtonian mechanics this
gallery trajectories. Any collision with the inner circle vio- is a conserved quantity.
lates the conservation of angular momentum and results in  For the eccentricities=0.05 and 0.20, Fig. 4 includes the
chaotic motion. trajectories which generate the structures in phase space.

However, in the particular case of the concentric billiard  Note that both the stable island in the center and the cha-
(6=0), collisions with the inner circle have no influence on otic sea arise from the two shortest periodic orljis’s) of
the angular momentui@ This characterizes the fully regular the corresponding configuratiah(see Fig. 5. This is due to
system. This feature implies the existence of two differenthe fact that for every eccentric configuration withx 8, the
types of regular orbits for the concentric billiard: First, therefirst—i.e., the shorter—po is hyperbolically unstalfigo)
is the class of whispering gallery trajectories showing noand the second—i.e., the longer—po is elliptically stable
collisions with the inner circle. Second, there is the class ofspg. Thus both together yield the typical structure of the
orbits hitting alternately the inner and the outer cir¢lstar-  phase-space sections. In the concentric &, both orbits
like orbits”). coalesce—i.e., have the same length—and show neutrally

L =R X P=|R||P|sinaé,= S&. (2)
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We have characterized the structure of the classical phase
space and thereby provided the information necessary for an
understanding of the properties of the quantum counterpart.
The following sections deal with the corresponding quantum
annular billiard and its experimental investigation. They
show that the classically separated whispering gallery re-
gions are coupled by the mechanism of chaos-assisted tun-
neling.

unstable

(r>6)

Ill. CONCENTRIC QUANTUM ANNULAR BILLIARD

In order to characterize the observables relevant for tun-
neling, the present section considers the concentric quantum

annular billiard of the familyr +5=0.75. Its eigenstates re-

. p sult from the quantization of the whispering gallery tori. Very
//’;\?f\ﬁ;‘u‘\\\ \ much as the classical whispering gallery trajectories, these
J%\\%A\\“\N\\ guagltum whispering gallery states occur in pairs, so-called
e oublets.

Due to rotational symmetry, the annular billiard with
=0.0 is integrable. Not only the energy but also the angu-

lar momentumcZ is a constant of motion. The quantum sys-

stable—i.e., bouncing ball—characteristitdho). As soon as  tem is described by the stationary Schrodinger equation
the system becomes slightly eccentric, both orbits are sepa- )
rated according to the Kolmogoroff-Arnold-Mosg¢AM ) or (A+k)¥(N]g=0 3
Poincaré-Birkhoff scenariB9—-41. They provide one stable jgiqe the billiard's domairg, with Dirichlet boundary con-
and one unstable fixed point, which show the characteristigjitiong
phase-space structures under perturbation. The same occurs
successively for every originally neutrally stable fixed point: W(r)|,6=0. (4)
namely, every periodic orbit of the concentric systems.

The only neutrally stable po’s that persist for afy O are
located within the whispering gallery region. Two orbits of
this type (with positive and negative sense of moticare !
given in Fig. 4 for the cases @=0.05 and 0.20. There is no In(Knm")Yn(knmR) = JIn(knmR)Yn(knm)=0. (5)
dependence on the eccentricity, since the orbits shown do ngje to the integrability, the quantum states are well defined
h|t the inner CiI‘C|e fOI‘ the Considered Values &)fAS de' by two quantum numbers: The angu'ar momentum quantum
scribed above, the conservation of angular momentum mangymber n=0,1,... and theradial quantum numbem
fests itself by invariant horizontal lines in theS plane. The =1 2 ... ThefunctionsJ, and Y, are the Bessel and Neu-
clearly visible separatrix in Fig. 4 a@=0.05 plays a particu- mann functions of the first kind anath order. Using polar

lar role for the topological structure of the phase space. Itgordinates, the eigenfunctions have the f¢ir,42
separates two types of orbits from each other: those ones,

which are mapped onto themselves under a reversal of the? nm(:®) = An nl In(knm0) Yn(knmR) = In(knmR) Yn(knmp) ]
sense of motiorii.e., a reflection with respect to the ax@s {cos(mp),

stable

+

FIG. 5. Universal stability behavior for the shortest periodic
orbits in case of > 8. For details see Sec. Il B.

The eigenvalues of this regular billiard can be calculated by
the transcendental equation

(6)

=0), and orbits, which are mapped onto the opposite side of

the phase space. In addition the latter ones feature a transi-

tion from starlike to whispering-gallery characteristicsSat They are normalized to unity Viad,—gm=Kneom\/2 and

=Q.7_5 yielding the separation of chaotic and regular region§4n¢O m=Kn20 m\;‘m_ This defines two'types of states: The

with increasings. first set withn=0 consists of singlets possessing rotational
With increasing5 the chaotic sea fills the gap between thesymmetry; the second set with# 0 consists of twofold-

two separated whispering gallery regions. In classical megegenerate states—i.e., doublets—without any rotationally

chanics, a transition between cw and ccw whispering gallergymmetric structurésee Fig. 6.

trajectories isnot possible. The Poincaré surfaces of section ~ opyiously, this quantum feature reflects the structure of

show such a transition for trajectories just below the twog|assical phase space. Only those types of trajectories with

borders of the whispering gallery regiofi§$0.75: The  ¢lassical angular momentuSi 0 are arranged in pairs with

ergodic features of transport within the chaotic sea becomgifferent senses of motior{see Sec. ) An Einstein-

more and more effective with increasidgThis is confirmed  Brillouin-Keller (EBK)- or Bohr-Sommerfeld quantization of

by calculations of the classical rate of transport as a functiorgq, (2),

of §[16]. According to this calculation, there is an effective \

coupling between phase-space regions in the direct vicinity [= |7€||75|sina:ﬁks;-nﬁ, 7)

of the two whispering gallery strips. The coupling can be

strongly enhanced by increasing the size of the chaotic seajields

sin(ne).
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FIG. 6. (Color onling Squared wave functions of the concentric £ 7. Ejgenfrequencies vs quantized angular momenta accord-
system withr=0.75 according to Eq6). On the left side the first ing to Eq. (8) for the concentric system with=0.75. The dashed

singlet (with rotational symmetryis given; the middle part shows line atS=0.75 marks the borderlinghe “beachy between the cha-

the first doubletwith even and odd parity, respectivelithe right- ¢ sea and the whispering gallery region in the classical phase

hand part shows a higher excited doublet for better understanding %fpace of the present setup. The solid bars denote those important

the quantum numberg, m). spectral regions, where quantum states pass the borderline and thus
couple the otherwise distinct phase-space regions.

S= E. (8) Within the picture of coupled but classically distinct phase
k space regions, Fig. 7 may be used as a map for the observa-
tion of chaos-assisted tunneling. The three displayed dou-
From this, the classical angular moment@which is as-  plets should exhibit a characteristic motion when the eccen-
signed to a given quantum doublet can be identified in thericity is changed from the concentric geomet(y=0)
corresponding phase-space portrait. towards an eccentric configurati¢f+ 0) (see Fig. 4. Dou-

It is instructive to see how the classical property “sense oblets with high angular momentupsuch as, e.g(30/1)] are
motion” (the sign ofS) is translated into the quantum picture. located within the whispering gallery region, and thus an
The two states of a doublet may be distinguished from eacihcrease in§ should not change them; i.e., the eigenfre-
other by their parity with respect to the billiardarbitrarily  quency should not move and the splitting should remain ex-
chosen line of symmetry(see the vertical dashed line in Fig. tremely small. The higher the angular momentum quantum
6). Obviously, this line is well defined after transition to ec- number of a quasidoublet, the easier to find it in the spectrum
centric configurations of the billiard. Both features—the of an eccentric case, since the position shows an even weaker
classical sense of motion as well as the quantum property afhange with variations oé.
parity—are directly related to the reflection symmetry of the  Following steadily the branch witm=1 towards smaller
system. angular momenta, the whispering gallery region is gradually

After calculating from Eq(5) an eigenvalue for a given |eft until the coupling to the chaotic sea becomes optimal at
angular momentum quantum number, the position of the cors=0.75. Exactly here, the doublé20/1) is located. For the
responding quantum state within the classical phase spaegcentric configurations, where angular momentum is not a
can be determined with the help of H&). In Fig. 7, thisis  good quantum number anymore, it comes to an enhanced
displayed for the spectrum of the concentric configuration‘smearing of states in angular momentum space” at this bor-
with r=0.75. For later comparison with the microwave ex- derline(broad Fourier spectrum i8); i.e., from the quantum
periments described in the next section, the conversion fromoint of view an overlap between whispering gallery region
eigenvalues to eigenfrequencies has already been carried odhd chaotic sea is realized. In this case, the classically for-
This is achieved byf=cgk/27 if the radiusR of the outer  bidden tunneling between whispering gallery trajectories
circle is converted from theoretical dimensionless units—i.e.with opposite senses of motion shows a maximum strength.
R=1, toR=1/8 m=125 mm. Thepectrum has been calcu- The quantum spectrum is expected to display a correspond-
lated within the frequency range up to 20 GHz. Figure 7ing maximum splitting of quasidoublets in the vicinity of this
shows a branch for each radial quantum numiverEach  borderline—i.e., “on the beach” of the chaotic §aa—20.
branch starts on the abscissa with the angular momentumherefore these beach modes play a particular role in the
quantum numben=0, which denotes a rotationally symmet- experimental observation of dynamical tunneling. As can be
ric singlet. The eigenfrequency is a monotonic function ofseen from Fig. 7, there exist only two windows at
the angular momentur8. For better orientation, the border- 8.75—10.50 GHz and at 19.25—20.00 GHz, which are acces-
line of the chaotic sea &=0.75 is given in the figure. In sible in the present experimetsolid bars.
addition, the positions of three selected doublets with quan- We have so far characterized the concentric quantum an-
tum numbergn=10/m=1), (201), and(30/1) are marked on nular billiard. This could be done with analytic calculations,
the first branch. Besides their eigenfrequency they signifias the system is integrable. For a detailed investigation of the
cantly differ in their quantized angular momenti8n chaos-assisted tunneling, however, one has to study the ec-
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FIG. 9. Excerpt from the transmission spectrum of the supercon-
ducting resonator in the concentric configuratin0.0. The dashed
lines mark the theoretical positions of the eigenvalues calculated
from Eq. (5) for all the states fron{0|1) to (10/1).

_FIG. 8 Modular microwave re.sonftor of the n'Ob'.um annular be realized. To obtain a good electric contact between the
billiard with an outer circle of radiu®=125 mm. The lid on the diff ¢ t d commercially available solder wire
right-hand side has two antennas for the excitation of the electroC Terent parts, we used cc . y .

e of 1.2 mm in diameter. This wire was mounted in a groove
magnetic fields. . -
located on outer rims of the components. The closed billiard

as tightly bolted together using a robust casing of stainless

centric cases. These are not accessible analytically, althou el

the whispering gallery modes can to some extent be approxi- gegiges geometrical imperfections of the resonator—e.g.,

mated by eigenfunctions of the concentric system. In thg,q, 4.t positioning or manufacturing tolerances of individual
following sections we describe in detail the investigation of 54 the real and ideal annular billiards differ by the mi-
the annular billiard .W'th the eccentr|C|t|e§;0.05, 0.10, " ¢rowave antennas used for excitation. To estimate their per-
0.15, and 0.2Gsee Fig. 4 with the help of microwave ex-  y,iing influence on the symmetry of the system and there-
periments. fore on the positions and especially on the splittings of
quasidoublets, we usddio differentresonator lids with es-
IV. MICROWAVE EXPERIMENTS sentially diffe.rent antenna positions in our measurements. In
case of the first setuflid A), the antennas were located at

In what follows we discuss the methods of experimentalS=0.907, expressed in units of the angular momentum—i.e.,
verification of the above scenario. This includes the details ofvithin the whispering gallery region—so that larger pertur-
the identification of quasidoublets. The measurements corbations of the relevant quasidoublets ab&#.75 were ex-
sist of two separated experiments: First, spectra of a supepected. In case of the second li@), the antennas were
conducting niobium billiardT=4.2 K) were measured, al- moved to the positior8=0.625 far below the border line
lowing the observation of quasidoublets. Second, thewnith S=0.75, so to speak inside the shadow region of the
experimental mapping of relevant wave functiditgensity  inner circle. Due to these geometrically different antenna
distributiong has been performed on a geometrically identi-patterns, lidB allowed us to investigate the configurations
cal copper resonatdil =300 K) in order to assign the angu- §=0.10, 0.15, and 0.20, whereas Adallowed us to measure
lar momentum. the case$=0.0 and 0.05.

In all eight measurements, the microwave spectrum was
recorded in the range up to 20 GHz with a resolution of
10 kHz. During the measurements, which typically took

The superconducting resonator was constructed fromi3-15 h for each configuration, the billiard was mounted
modular niobium parts(with the critical temperaturel,  inside an evacuated copper box, which itself was immersed
=9.2 K). The resonator has the heidgit7 mm and is closed in liquid helium. In equilibrium, the billiard remained at a
by a lid equipped with two antennas, as can be seen in Fig. &mperature of 4.2 K and a pressure of approximately
From the spatial dimensions results the transition frequencg mbar.
fi=co/2/h=21.4 GHz. Below this frequency, the billiard be-  Figure 9 shows a part of the spectrum for the concentric
haves fully two dimensional, and therefore, the electromageonfiguration5=0.0 in transmission mode. The power trans-
netic resonator represents a system which is analogous to thetted to antenna 2P, is measured with respect to the
guantum billiard. An overview of this technique, our typical power put into antenna B,,, as a function of frequency. The
experimental setup, and selected experiments can be foundiheoretical eigenvalues for the states betwdé6fl) and
[34,43. The inner circles were all manufactured as freely(10/1), expected according to Eq5), are marked with
movable rings of the desired radii. From this “constructiondashed lines in the figure. One clearly sees that the experi-
kit” several configurationgr, 8) of the annular billiard can mental resonances fall in general slightly below the calcu-

A. Measurements using the superconducting resonator
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FIG. 11. The quasidoublet taken from Fig. 10, measured with
strongly (lid A) and weakly(lid B) perturbing antennas. The fre-
guency axis is stretched by the factor of 10 in the magnifying
circles.

—40 0=0.15

-80

tions, we used lidB with only slightly perturbing antennas
outside the whispering gallery region. Since in this case the
80 , , antennas were located inside the shadow region of the inner
8.8 8.9 9.0 9.1 9.2 circle, only the eccentricitie$=0.10, 0.15, and 0.20 were
Frequency f (GHz) accessible. For these configurations, Fig. 11 enlarges the
quasidoublet of Fig. 10 in a direct comparison. ForAidthe
FIG. 10. Excerpt from the transmission spectrum for the supersplitting as well as the shape of the double resonance shows
conducting resonatoflid A) as a function of the eccentricity.  nearly no dependence on the eccentricity. With Bdthe
Besides a large number of singlets exactly one quasidoublet is otmeasurements display strong fluctuations: Besides a strong
served. The circles mark and enlarge this doublet. They show decrease of the splitting, the figure reveals for the first time
systematic motion towards smaller frequencies with increasing in our investigation a significant dependence on the chaotic-
The frequency axis has been stretched by the factor of 10 in thiy, Fluctuations of the quasidoublet splitting as a signature
magnifications. for an interaction with the chaotic singlets are theoretically

lated values, in spite of the thermal contraction of the reso€*Pected, especially in the vicinity of crossingst,16.
nator. Furthermore, the first modes with a low-angular- €nce, the experimental observation of chaos-assisted
momentum quantum numbarshow a strong splitting of the tunneling W|II be essentially baseq on measurements with lid
doublets. Both effects systematically decrease for higher B. The series of measurements with Adand the mapping of
This is due to imperfections of the mechanical Setup and Obl”lard wave fUnCtlonS, described in the next SubseCtlon, are
the adjustment of the resonator components. On the othéised to well identify the quasidoublets, to determine the as-
hand, the antennas which were used for excitati@me lidA  sociated(approximatg quantum numberén|m), and to de-
was installegl lead to an observable splitting for high Es-  duce the corresponding position in phase space—i.e., the
pecially in the case of higher angular momenta the exactuantized angular momentug& Since Eq(8) was originally
position and shape of the inner circle become less and lesferived for the regular, concentric case with conserved angu-
important: The perturbation saturates in the position of dar momentum, it is only approximately correct in the eccen-
given doublet as well as in the magnitude of its splitting. Intric scenario. However, also in the cased®# 0, quasidou-
context with the measurements of field distributions, we shalblets show positions and splittings, which systematically
reconsider this in more detalil. approach the exact doublets of the concentric case when an-
An excerpt from the frequency window between 8.75 andgular momentum and energy increase.
10.50 GHz is given in Fig. 10. It will be important for the _ i
subsequent analysis. Here, the transmission spectra for the B- Measurements using the normal conducting resonator
configurations$=0.0, 0.05, 0.10, 0.15, and 0.20 are dis- For a proper identification of quasidoublets a second ex-
played. They have been taken with the antennas oflid perimental setup was developed in order to measure electro-
closer look reveals, besides a large number of singlts, magnetic intensity distributions, which correspond to quan-
actly onequasidouble{marked by a circle It shows a de- tum probability densities. The structure of whispering gallery
creasing shift with increasing eccentricity and eventuallystates would easily allow us to assign the corresponding
reaches an almost fixed position in the spectrum. This is iuantum numbers, so that the determination of the quasidou-
perfect agreement with theoretical predictigdd]. As men-  blet’s position in the classical phase space becomes possible.
tioned above, even the concentric ca8e0.0 displays a Therefore, besides the enerfythe quantized angular mo-
measurable splitting. This is due to strongly perturbing animentumS may be systematically deduced as a function of
tennas within the whispering gallery regidiid A). To esti-  the eccentricitys. In this way its relevance for chaos-assisted
mate such an influence for the case of eccentric configuraunneling would be proven.

—40 6=0.20
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The experimental setup consists of a normal conducting
copper resonator, which was manufactured as a copy of th
superconducting billiard. As in the case of the niobium
“twin,” the copper resonator was composed modular compo-
nents. In contrast to the niobium resonator, which at 4.2 K is
not accessible for geometrical manipulations, room tempera
ture (300 K) allows us to map wave functions by means of a
field perturbation method originally introduced in accelerator
physics[45]. For a couple of years, this method was not only
used in the framework of quantum chapk-49, but as
well to observe pure electromagnetic field distributions in a
three-dimensional3D) Sinai billiard [50].

The principle of these measurements relies on the fact tha
the standing electromagnetic wave inside the cavity is per-
turbed by a small body. In this way, the integrated ratio of S8
stored electric and magnetic energy changes. As a conse
guence, the resonator exhibits a slight shift of its resonant

frequencyfy. Formally, a small metallic body yields , ,
FIG. 12. Photograph of the experimental setup, which was used

to measure electromagnetic intensity distributions. At the top, the

open billiard in concentric configuration is seen. Below this, the
d positioning unit for the perturbing magnetic body, properly aligned
to the resonator, is shown. The guiding magnet is located directly
below the bottom plate of the billiard on a movable sledge, which is
(R/ositioned by two stepper motors.

JF(F) = fo = F(F) = fo(C1EX(F) — ,BA(F), 9

where the constants andc, are determined by its size an
shape. Accordingly, the electric term in E®) may drasti-
cally differ from the magnetic term.

The task was then to adequately choose a perturbing bo

(including its positioning unjtsuch that the body could be  tion of both components of the electromagnetic field. As de-
moved inside the resonator. Furthermore, mainly the electrigcriped in[45], the interaction with a metallic body becomes
component of the field should be affectitle B term should  gptimal for an orientation along the lines of the electric field.
be suppressgdsince only in this case the correspondencerherefore, we used metallic cylinders oriented perpendicu-
with the quantum wave function is given. For the presenfarly to the billiard plane. With growing length and shrinking

experiments, a magnetic coupling between the perturbingross section such cylinders show more and more the desired

pody and_ the positioning unit pro"'d‘?s a very e'egaf.“ SOIu'electric component, while thB component is affected less
tion as it was shown in other microwave experiments

. . ; . and less. With increasing ratio length/radius of the body, the
[46-48. T?e pertu;blr?t%?_ody |tzglf COUS'S;;f a Fe:;'t'basedmeasured field distribution becomes more and more propor-
held fight and positioned through the billard's botiom plate /107 10 the exact quantum wave functip’.
® mmgof coppgjby help of an gxially premagnetized gﬁid- . A cylindrical body WiFh the length of 1.84 mm and the
ing magnet with diameter of 3 mm. The guiding magnet it_dlameter of 1.00 mntthis yields a volume of 1.45 min
self was mounted on a special positioning unit, consisting of;:gg;rg—::g;d and
two PC-controlled step motors. This concept allows to move
the body on a polar coordinate grid with practically arbitrary
(motor-restrictegl resolution.

Figure 12 shows the experimental setup. This device al-
lows us to measure any desired electromagnetic field distri-
bution of the annular billiard with parametersand § with
high geometrical resolution. We typically used 1/10 of the
wavelength. Besides the positioning of the perturbing body, arr-

cables

PC simultaneously controls a network analyzer, determining

magnetic
body

drive

magnetic
body

PC

frequency shifts?f(p, @) via very sensitive phase measure-

ments(see also Fig. 13 According to Eq.(9) this finally | receive

yields the local electromagnetic field intensity. 7\ I ere— parameters
Since the material of the perturbing bodies is given by our + snirt af meagurement

positioning method, only its geometrical shape could be ad-
justed to the desired suppression of Bieomponent in Eq.
(9). In the quasi-two-dimensional resonatwith a transition FIG. 13. (Color onling Principle of control of the experimental
frequencyf,~30 GHz, resulting from its height of 5 MM  mapping of electromagnetic field distributions in the annular bil-
the electric field vector is perpendicular to the bottom of theliard. The PC sets the position of the perturbing body and sends
billiard and the magnetic field vector is parallel to its planecommands to the network analyzer. The measured frequency shift
(TMg modes: These facts are used for an effective separadf is recorded as a function of the position, ¢).

network analyzer
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turned out to be the best choice. The resolution of ten sam:-

pling points per wavelength requires a two-dimensional grid 10

with 200 (at 2 GH2 to 20000 (at 20 GH2 points. The | |me=020
above perturbing body ensured a safe and accurate guidanc 10, §=0.15
with maximum errors in the range of 1-2 mm in the abso- _ | [.s-0.10

lute position. This guarantees the spatial resolution even axX 10 I
20 GHz and the errors lie in the range of the general adjust-= I
ment tolerance for the positioning uniinot exceeding

1 mm). In repeated measurements performed under identica
conditions the frequency shifts could be reproduced within
5%.

ing
—
o

i

|

|

Splitt
4

C. Measurement of the familyr+6=0.75 I T 1 3
N I T T S N Wy | 1

Before the measurements are described in detail, som
estimates of the resolution and errors shall be given. We
discuss to which extent experimental verification of the the-
oretical predictions depends on the interplay between the FIG. 14. (Color onling Theoretically predicted quasidoublet
4-K and 300-K setups. In particular, we have to specify thesplittings in the vicinity of the beach of the chaotic se&at0.75
ranges of resolution, which are accessible by the two tedgdashed vertical lineas a function of the quantized angular momen-
stands, and the resolution which is necessary to allow thBm S=n/k. The calculated data points for three of the investigated
observation of chaos-assisted tunneling. billiard configurationg §=0.10, 0.15, and 0.2Care marked by dif-

As shown in[16], for an unambiguous verification of ferent symbols and are interconnected. In addition, all the different
chaos-assisted tunneling, relative quasidoublet splittinggt@sidoublets101)<301) are sorted by grey scales. Here, related

|Af/f| have to be followed over about 18 orders of magni-J2t Points of a given stai@|1) fall one upon the other and are
tude as a function of the eccentricity However, even for denOtﬁd bZ one grey scale level. The dashed horizontal line at
superconducting resonators, a maximum resolution of the o#-Af/ﬂ_lU shows the experimental limit of resolution.
der of the reciprocal quality factor, @~10°, may be ex- 8.75 and 10.50 GHz and between 19.25 and 20.00 GHz, re-
pected. Nevertheless, as shown[liv—20, there exists a spectively(see also Fig. 7 In order to detect their particular
very special class of quasidoublets, for which experimentagplitting, we included further windows with quasidoublets
observation of their splitting seems to be realistic. This classnside the chaotic sefmode (10/1)] as well as inside the
of so-called beach modes is characterized by an angular merhispering gallery regioimodes(271)—30/1)] in our ex-
mentum that locates them directly on the borderline of theperimental investigation. These additional quasidoublets lie
chaotic sea in the classical phase space. This provides a@m the borders of the region shown in Fig. 14. This extension
optimal coupling between the whispering gallery region andof the experimentally investigated range is only possible
chaotic states. As a consequence, the quasidoublet splitting\th the high resolution of the superconducting resonators as
amplified by several orders of magnitudeSa0.75. well as the unambiguous identification of the quantum num-
For a demonstration, Fig. 14 displays the theoretically exbers in the maps of the wave functions. Since the normal
pected splittings within this important windo\g1] for three  conducting resonator promises quality factors only in the
experimentally investigated configuratiorig=0.10, 0.15, range ofQ~10°-10" we briefly discuss the spectral prop-
and 0.20. The figure shows the quasidoublet splittings of theerties of our geometry, in order to estimate its experimental
family with the radial quantum numben=1 in the range of [imits.
n=10-30 as a function of the quantized angular momentum Table | gives for all configurations of the annular billiard
S=n/k. The border of the chaotic sea splits the figure intothe expected mean values for the number of lewggeo!
two parts: Below the beach—i.e., inside the classically chaaccording to the Weyl formulgs2], the level densitys™eoth
otic region—Ilarger splittings are correlated with largerthe level distanc®, and the resulting minimum quality fac-
eccentricities—i.e., chaoticities—of the billiard. In contrast, tor Q,,;,, which is necessary to resolve levels at 10 and
beyond the borderline, the quasidoublets display strong fluc20 GHz, respectively. The respective minimum quality factor
tuations accompanied by decreasing splittiGgs the aver-  for resolving two levels increases continuously with the ec-
age for increasing angular momenta in this regular phasecentricity § (factor of <2) and even stronger with the fre-
space region. The fluctuations are caused by crossingguencyf (factor of =4). Especially for highs and highf
between quasidoublets and adjacent chaotic sfd#46. resolving resonances with the normal conducting resonator
The most striking “indication” of chaos-assisted tunneling isbecomes more and more difficult. Nevertheless, especially in
just given by this emerginghaximum structurén the distri-  the relevant window around 10 GHz the copper billiard will
bution of splittings directly on the beach & 0.75. allow us to distinguish resonances separated by the corre-
The usage of a superconducting resonator should indeeghonding mean level spaciiiyy as long as the antennas pro-
allow us to observe this effect of chaos-assisted tunnelingide sufficient coupling to a given field distribution. On the
above the resolution limi(|Af/f|=107°). Beach modes are other hand, a comparison with the splitings of Fig. 14
expected to fall right inside the frequency windows betweerclearly rules out a direct verification by using the normal
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TABLE |. Basical spectral properties of the investigated annular
billiards at a frequency of 20 GHA0 GHZ.
Configuration 6=0.0 0.05 0.10 0.15 0.20
Nsmooth 255 306 353 398 438
[52] [65] [78] [89] [99]
pSmooth (GHZ 1) 28 33 37 42 46 : . —
(13 [15] (18 [0 22 _ \/\M{\
D (MHz) 36 30 27 24 22 i 800K
[79]  [65] [57] [50]  [46] ot ’ ’ T
Qmin 555 656 750 837 917 of a0} I ]
[127] [153] [177] [199] [219 4.2K . . .

19.28 19.32 19.36 19.40 19.44
Frequency f (GHz)

conducting setup only, even if only the largest splittings are
considered. This means that the copper billiard will not allow  FIG. 16. (Color onling Comparison between the warm and the
us to resolve both modes of a given quasidoublet and thaiold measurements at very high frequencies. For notation see Fig.
slight splittings of doublets can only be resolved with a su-15. The position of the whispering gallery mo¢#41) is nearly
perconducting resonatdas in[53]). invariant under variations i@ (dashed line fors=0).

Figure 15 shows the measured transmission spectrum in
the frequency range between 8.88 and 8.96 GHz, obtained=18/m=1), indicating a typical field structure as expected
with the copper billiard at 300 K and with the niobium reso- also for higher-lying whispering gallery states. Indeed, the
nator at 4.2 K, respectively, both of them using Adn the =~ measurement at 300 K shows only one broad resonance and
configurations=0.20. Above these spectra, the field distribu-just that field distribution, which is excited more effectively.
tions, as measured via resonances of the normal conductif@nly in the 4-K measurement the quasidoublet structure with
setup, are presented. This demonstrates how the resonancesth states of different parity is clearly visible. All other
emerging from the 4-K measuremeiiéee Figs. 10 and 11 modes possess a chaotic structure with strong field contribu-
could be successively identified in a systematic way. Thdions from outside the whispering gallery region. Conse-
assignments between the results for the warm and cold resquently, these modes emerge as singlets in the spectrum of
nators are obvious. As described in Sec. IV A, the displacethe superconducting resonator.
ments of resonances between the two measurements, which Figure 16 demonstrates that the field distribution mea-
based on practically identical billiards, are due to imperfec-surements apply without any problem even at frequencies
tions of the geometry and perturbations of the system’s symaround 20 GHz. Again, spectra of the configurati&n0.20
metry. Obviously, at least in the window around 10 GHzat 300 K and 4.2 K using lich are shown, this time in the
these displacements are smaller than the mean level spacingnge between 19.28 and 19.44 GHz. Among a large number
and therefore tolerable. In addition, Fig. 15 nicely allows usof chaotic states, the very highly excited whispering gallery
to verify the above-mentioned properties: The state in thenode(44/1) could be found and has been clearly identified
middle is clearly the beach mode with quantum numbersising again a local resolution of 1/10 of the given wave-
length. The expected position of the corresponding concen-
tric eigenfrequency$=0.0, dashed lineconfirms that whis-
pering gallery modes with increasing excitation energy show
a smaller and smaller displacement in their frequency, even if
the eccentricity is far away from the concentric cdkere

6=0.20. The figure shows that a principle assignment of
both spectra at 300 K and 4.2 K, respectively, is still pos-
0 300K ' v i sible. Due to the high level density, however, it becomes
& 40k | impossible to resolve very closely lying modes in the normal
2 conducting billiard and to assign these modes to resonances
5—30 w2K = = = of the superconducting resonator. Therefore the following
% 0 analysis will mainly concentrate on the frequency range
~ around 10 GHz and only a few quasidoublets between 12
-80 : : : and 14 GHz will be considered.
8.88 8.90 8.92 8.94 8.96

In order to include not only the quasidoublets, which are
relevant for chaos-assisted tunneling, in the analysis but also

FIG. 15. (Color online Comparison between the normal con- Chaotic states, all measured field distributions will be system-
ducting(300 K) and the superconducting.2 K) measurement and atically classified by two quantum numbers. This procedure
identification via experimentally obtained field distributidumian- ~ accounts for the fact that every state of an eccentric configu-
tum numbergn|m) including parity] for the configurations=0.20.  ration is nothing but a-variation-induced geometrical defor-

Frequency f (GHz)
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fo = 4.706572GHz

f,=19.47122GHz

f, = 4.763278GHz f, = 4.811654GHz

(1]1)

FIG. 18. (Color online An example of a scar, found for the
configuration5=0.20 in the frequency range around 20 GHz—i.e.,
at the upper end of the spectrum. On the left-hand side the corre-
sponding unstable periodic orbit of the classical system is shown for
comparison.

f, = 6.487502GHz

reflectional symmetry, which is tilted with respect to the old
one(defined by the antennpky an angle of=29°. This lack
of adjustment therefore falls right within the generally ex-
pected range of geometrical imperfections of the mechanical
setup, and hence, it is in principle unavoidable. In addition,
this observation is in total agreement with Fig. 9, where geo-
metrical perturbations within the superconducting resonator
of the same order resulted in shifts of the modes towards
_ ) _ lower frequencies, especially in the case of low-angular-
FIG. 17. (quor onling Cor_nparlso_n betwet_an ex_penmentally momentum quantum numbens. These shifts showed a
;Qrezis#éfﬁteznsfg r?:gr::r:?j;ca”y j‘m“'a‘eﬁg tsh'de S1ales — stronger saturation with increasimg The reason is that for
: ng ntum quantum numt € CONCeN”  an increasings=n/k the perturbation of rotational symmetry
tric system. Tiny perturbations of the eccentricity lead to the devel; L
opment of a tilted line of symmetry. has a decre_asm_g impact on the_states, as can be seen from
mode(10/1) in Fig. 17. At such high angular momenta, the
mation of a corresponding state in the concentric system. Iperturbing influence of the antennas is again stronger than
this picture chaotic modes represent strongly deformedhe symmetry breaking induced by the geometry itself. Ac-
states, while whispering gallery modes represent weakly dezording to this, it is not possible to assign a proper parity to
formed states of the concentric billiard. The strength of thisthe experimental modgl0/1) with respect to the new line of
deformation simply reflects that a changing eccentricity has g@ymmetry as induced by the perturbation. In fact, once again
considerably stronger impact on some states than on othefe axis of the unperturbed system is preferred, since with
due to their different composition of angular momentumrespect to this line of symmetry the antennas are located
Fourier components. The assigned quantum num@ers) symmetrically.
therefore become systematically “better” with increasing an- The figure also demonstrates how for an arbitrary
gular momentum of the states. That is exactly what distindeformation—i.e., for a certain eccentricity of the family
guishes whispering gallery modes from chaotic ones. +6=0.75—even chaotic modes might be systematically la-
To obtain a more vivid description of this scheme, Fig. 17beled with the two quantum numbe(plus parity of the
compares some modes of the concentric configuration originally unperturbed concentric modes, in just counting the
=0.75,6=0.0, as they were measured in the experimentnumber of half wave trains in the (giving 2n) andp (giving
with those calculated from Ed6), respectively. From this, m) directions, respectively. This has already been introduced
even for a very precisely assembled copper resonator tinin Figs. 15 and 16. In this way, nearly every measured field
perturbations of the geometry are sufficient to obtain considdistribution has been characterized by two quantum num-
erable deformations of the field distributions and hence ders. The only exceptions are chaotic modes constituting a
lowering of the resonance frequency. This emerges espestrong scar structufg4-56—i.e., a strongly enhanced field
cially for modes with a low quantized angular momentumamplitude along classically unstable periodic orbits. An ex-
S=n/k. Follow-up measurements of the cavity’s geometricalample can be seen in Fig. 18. This assignment procedure
shape yielded a total displacement between the two centeketween quantum numbers and field distributions was finally
of the inner and outer circles, respectively, of only 0.6 mm adransferred to the resonances of the superconducting resona-
the origin of the perturbed rotational symmetry. This corre-tor. The results for the configurations with I which also
sponds to an eccentricity 8=4.8X 1073, As indicated in the include the case$=0.0 and 0.05, are given in the level
figure, this also leads to the constitution of a new line ofschemes of Figs. 19 and 20. Here, the absolute positions of
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FIG. 19. Level scheme of identified resonances, experimentally FIG. 20. Sequel of Fig. 19.
taken using the superconducting resonator withAlich the spectral
range around 10 GHz. The dashed lines indicate the wandering d¥€ach modes. This would finally prove that meaningful tun-
quasidoublets of the familjn=1 as a function of. neling amplitudes can only be expected if the coupling be-
tween the whispering gallery region and the chaotic sea be-
the found resonances including the quantum numb®m)  comes more effective.
and parity are shown as a function of the eccentricity In a final step and for a quantitative investigation of this
Furthermore, the figure nicely demonstrates how in particuspiitting behavior, all identified resonances of the normal
lar quasidoublets of the famil;n=1 move in the frequency conducting and the superconducting configurations were de-
spectrum under variations of (dashed lines As stated  scribed by Lorentz curves. According to this, the exact eigen-
above, this is a direct consequence of the deformation of thﬁequenciesfﬂ as well as the widthd, [full width at half
original concentric system under an increasifigFinally,  maximum (FWHM)] were determined with a relative accu-
every quasidoublet shows a saturation of this wandering ghcy of better than % 1077 in order to make use of the maxi-
very high eccentricities, since the maximum possible extenmum accessible range of resolutiomp to Q~10°) at the
sion of the field is reached, even if the size of the inner circlegiven spectral scanning using 10-kHz steps. Formally, this

is further skrinked. was achieved via a numerical fitting of the line shape
The higher the angular momentus the faster emerges

the saturation and the smaller is the deformation of the con-
centric mode under variations ifi To make this angular-
momentum-dependent wandering effect more clear, Figs. 21
and 22 respectively, show mod&0/1) (with S~0.59-0.66
and the region around mod&0/1) (with S=0.83 in a direct
comparison. Obviously, stronger frequency displacements 46 the data. This so-called “skewed Lorentzian shape”
well as stronger changes in the field patterns can be observé87-59 is particularly suitable for the given set of data
for the modes with a lower-angular-momentum quantunrPoints. We note here, however, that recently an alternative
numbern. description of resonances in microwave billiards has been
In particular, the highly excited modes arou¢@®|1) will derived [60]. Equation(10) allows the characterization of
play a crucial role in the verification of chaos-assisted tunoth isolated singletéN=1) and strongly interacting quasi-
neling, since their large angular momentum guarantees a pé@oublets(N=2). Here,C, andD,, describe the strength of a
sition far away from the chaotic sea. Their tiny quasidoubletcertain resonance and the asymmetry of its line shape, re-
splitting (see Fig. 1% should be even smaller than for the spectively. In addition, these properties also characterize the

ou )
in

G
Eﬁﬂ(f__fﬂ_)_'_z B, f* (10)

=

linear =1 (f —f )2+ _FZ =0
M 4 M
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FIG. 21. (Color online Mode (101) under

E variations of the eccentricity. At the top the
g 65 — (1014 ] drastically changing field distributions can be
B seen, below the corresponding frequency shift.
a
% 6.0 B (10/2)
E + — (10[1) —(10]1),

55

0.00 0.05 0.10 0.15 0.20

Eccentricity ¢

influence of neighboring resonances. Furthermore, a morproperties, which were involved in the investigation: the
general background on the data is regarded by the secomdsonances of the geometrical configuratiairs0.0, 0.05,
sum in Eq.(10). Taking small frequency windows, it is usu- 0.10, 0.15, and 0.20 for measurements at 300 and 4.2 K us-
ally sufficient to reduce this expression to a straight lineing strongly perturbing antennadid A) in the window
(G=1) for an adequate description of the data. For a demon8.75—10.50 GHzbeach regionas well as mod€10/1) (cha-
stration of the quality of this procedure, which was per-otic sea and the modeg27/1)«(30/1) (whispering gallery
formed with specific initial values and windows for each of region. In addition, for the configurations=0.10, 0.15, and
the identified resonances, Fig. 23 shows the numerical fittin§-20 at 4.2 K using weakly perturbing anteniiiéc B) all the

for the weakly excited quasidoublé29|1), of the configu- ~ States of the familyn=1 between(0|1) and (30[1) were ex-
ration (r=0.65,5=0.10 in the superconducting state. These Perimentally determined and included in the analysis.
high-lying angular momentum states were excited so weakly qu ea(_:h individual resonance of the data set its position
that additional measurements with a resolution of 250 HZNd its width were determined by means of E#%0) and

instead of 10 kHz became necessary in the direct vicinity ofinally labeled with its quantum numbens(angular momen-
the two resonances. tum), m (radial componenf andp (parity). The crucial ob-

servable which allows an experimental access to chaos-
assisted tunneling is basically the quasidoublet splitting of
the whispering gallery states. Besides the dependence on the
chaoticity of the system, we first will consider the question
The starting point for the following analysis is given by how the magnitude of the splitting is dominated by the cor-
the data sets as described in the previous section. To stagsponding position in phase space and whether a classifica-
with an overview, we will first give a summary of all those tion by chaotic, regular, and beach states can be confirmed in

V. RESULTS

FIG. 22. (Color onling A spectral window for
modes betweef27/1) and (30|1), where the fre-
quencies as well as the field distributions are
nearly invariant under variations it
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FIG. 23. (Color onling Numerical fit of the resonance shape oy | 4| r. ]
given by Eq.(10) to the weakly excited quasidoublet®9|1). of k= &l \ T
the configuration(r=0.65, 5=0.10. In this case the resolution of £ 10 1=m =
the measurement was increased to 250 Hz, instead of 10 kHz. Th'g, 107° |- \ .
relative splitting of the doublet igAf/f|~3x 107C. 207 I R I
107k | .
the experiment. For this reason, Fig. 24 shows, foorastant 107 [ 1 42K
eccentricity (here 6=0.20, the normalized quasidoublet ol 1 11id B
splitting |Af/f|=|(feyer—fodd)/ feved VErsus the angular mo- 10_4 E ‘ E
mentumS=n/k with k=(27/cy)(feyent fodd /2. Here, every 10 " lm -
identified quasidoublet out of the window 8.75-10.50 GHz 10°F " .
with quantum numbersi and m has been considered. The 10 L beach — | _
diagram displays the overall splitting behavior within a nar- 16 I I TP I
row frequency window—i.e., for a nearly constant energy— 0.00 0.25 0.50 0.75 1.00
and allows a direct comparison of the three different experi- S=n/k
mental conditions. Due to a few insufficiently resolved
resonances where the fit of EQLO) did not converge, the FIG. 24. (Color onling For the eccentricity5=0.20 observed

size of the data sets slightly varies. In all three subfigures thepiittings of quasidoublets taken from the window 8.75—10.50 GHz
classification by chaotic and regular states becomes clearlys a function of the quantized angular moment8niThe family
visible. Low-angular-momentum quantum numberghar-  m=2 indicates the transitiofdashed curvebetween chaoti¢grey)
acterize states with strong contributions of the wave functiorand regular modeéblack), respectively.
outside the whispering gallery region and hence have to be
denoted as chaotic. In contrast to this, modes with a higlother hand, the position of this transition at higher eccentrici-
angular momentum are nearly exclusively localized rightties is more and more shifted towards the beacB=0.75.
within the whispering gallery region and therefore are ofThe comparison of the three experimental conditions indi-
regular nature. cates that differences clearly manifest themselves only in the
The kind of illustration, which was chosen in Fig. 24, whispering gallery region—i.e., in the range of small split-
separates both types of states in a natural way by their by

about three to four orders of magnitude differing splittings. 110 T S S S E
Astonishingly, the radial quantum number provides a se- -1 \

. . « 10 LIRS Jy m=1 =]
quential order of the states. Here, large radial quantum num<_ ", *'1‘ \ 4.2K
bers(m=3-5) characterize chaotic states with a nearly con- < 10_3 - . ‘ 14 B
stant splitting of the order of the mean level spacing or above o 10 " v a1
(this depends on the number of families in the present E 10 F \,ﬁ_ .
frequency window. Via the family withm=2 the quasidou- = ;45 ‘.- i
blet splittings in the given frequency window experience the & 167 B | ;\ ]
transition into the range of regular whispering gallery states .f 1

: - o ; o . . U0 Ji E T E S R S
with m=1. Strikingly, this transition is carried out in a very 0.00 0.25 050 0.75 1.00
steady way and completed clearly before the classical bor S=n/k

derline of the chaotic sea &=0.75 is reached.

It is important to note that the exact form of the curve  F|G. 25. (Color online Quasidoublet splittings of the family
depends on the choice of the frequency window and the egn=1 (black with angular momentum quantum numbers1—30
centricity, although the general transition behavior from chain the case of weakly perturbing antenndisl B) again for &
otic to regular is universal. Two features have been observe0.20. For comparison also the modes witk: 1 (grey) from Fig.
on the one hand, a transition at higher frequency is mediate24 (lower par} are included. Obviously, a local maximum of the
by a family of higher radial quantum numberand, on the family m=1 occurs atS=0.75.
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FIG. 26. (Color onling Splittings of the familym=1 in the FIG. 27. (Color online Comparison of the splittings in the su-

zoomed-in window aroun8=0.75. The figure shows a comparison perconducting staté4.2 K) using strongly(lid A) and weakly(lid
between the warm and the cold measurement, where in both casB$ perturbing antennas, respectively. In the latter case only three of
lid A was used. Different symbols denote the varying eccentriity five eccentricities were accessible. We have used the same notation
Diverse grey scales have been taken for a better separation of thas in Fig. 26. In the lower subfigure all the modes betwdil)
quasidoublets, whereby neighboring data points, all of which beand(30/1) are displayed. While the upper figure shows nearly con-
longing to the same stat@|1), are given in the same grey scale. stant, perturbation-induced splittings, the lower illustration repro-
The splittings of the warm measuremé&800 K) fall in the range of  duces the already found maximum structure of Fig. 25 in the range
the resolution limit for normal conducting resonatdr/Qz,10™%). around the beach &=0.75. As already indicated in the theoretical
This is also the reason for some missing data points. As a cons@rediction(see Fig. 14 also here the data points show a systemati-
guence of the strong perturbation of the antennas, also the points ofl rise in the chaotic seg5<0.75 and a fluctuating fall in the
the cold measuremeri.2 K) lie on this level(i.e., about two or-  whispering gallery regiofS>0.75.
ders of magnitude above their resolution limtieing nearly invari-
ant under a variation id. come small very rapidly with increasing angular momentum
as well as with increasing eneri¥6—20. Beside this theo-
tings. Already at first sight, the splittings in the case ofretical expectation, the experiment also shows a sharp de-
weakly perturbing antennadid B) are about one order of cline inside the chaotic sea; therefore, semiclassical argu-
magnitude below the corresponding values for strongly perments are invalid and a direct correlation with an increased
turbing antennaglid A). tunneling probability is obvious.

Before this behavior is studied in more detail, the transi- Especially in the region of this maximum it is now impor-
tion range aroun&®=0.75 will be closely inspected with re- tant to investigate the particular influence of the chaoticity,
spect to a significant splitting structure, which allows us notsince the tunneling probability is a function of the coupling
only to classify states as “chaotic” or “regular,” but also ac-of the two separated whispering gallery regions and therefore
counts for the special character of the beach modes. For thiirectly depending on the structure of the chaotic &s=e
purpose, Fig. 25 enlarges the lower part of Fig. 24—i.e.Fig. 4). For this purpose, Figs. 26 and 27 show in detail the
shows the splittings of the modé4|1)—(30/1). Beside the splittings of the whispering gallery states in the direct vicin-
typical transition behavior from chaotic to regular statesity of the beach line aB=0.75. For a more systematic sepa-
(now also form=1), as described above, a substructure beration of different effects at different measuring conditions,
comes visible in the range aroui®*0.75, indicating a first Fig. 26 shows at first a comparison of the experiments at
piece of evidence for chaos-assisted tunneling. Here, in th800 K and 4.2 K, respectively, where in both cases strongly
direct vicinity of the beach—i.e., at the crossover betweerperturbing antennafid A) were used. In Fig. 27 the com-
chaotic sea and whispering gallery region—the splittings reparison of this case and the weakly perturbing anterics
veal a very impressivlcal maximumindeed indicating that B) at 4.2 K can finally be seen.
due to the strong coupling of the two classically separated These two figures reflect another central result of the pre-
phase-space regions, the class of beach modes residing heented experiments on chaos-assisted tunneling. For a vari-
has drastically amplified splittings—i.e., an increased tunnelable eccentricitys (five different symbols for the measure-
ing probability. Independent from the tunneling itself, it is ments using lidA, three in the case of li8), primarily three
semiclassically expected that beyond this borderline in thgroups of states for the familgpn=1 are shown: the mode
whispering gallery region, the quasidoublet splittings be-(101) inside the chaotic sea, the mod@s1)—21/1) near
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the beach line, and the mode¥|1)<(30/1) far outside in the VI. QUALITY FACTORS
whispering gallery regiorisee also Fig. 7 for the concentric

case. In addition, in the case of liB all states between . . . : . :
(101) and (30/1) are given in order to make clearly visible billiard only yields discrete eigenvalues, the experiment pro-

the detailed structure of the emerging local maximum. For &1d€S resonances with a finite width(we use the FWHM

discrimination, the splittings of different quasidoublets are ! N€refore, itis very instructive to transfer the investigations
sorted by different grey scales. on the splittings as described in the last section also to these

Due to the resolution limit of the normal conducting reso-Widths in order to look for further signatures of chaos-
nator(1/QZ,10°%), only a small fraction of the splittings can assisted tu.nnellng. The width of a resonance of a microwave
be determined from the 300-K measurement. Although théesonator is caused by two different mechanisms: First, a
measurement at 4.2 K using the superconducting resonatfiaction of the energy stored in the resonator is dissipated by
with lid A allows us to record all searched splittings, it is Ohmic losses at the inner surfaces. Besides different kinds of
impossible to draw any physical conclusion concerning théligh-frequency losses in the case of normal conducting and
tunneling from that data. The reason is that all these splitsuperconducting resonators, respectively, the purity of these
tings are nearly identical, showing no dependence on theurfaces plays the important role. The second mechanism is
frequencyf, the angular momentum quantum numiperor  caused by the coupling to the resonator, which beside the
the eccentricitys. For comparison, see also the example ofexcitation also takes a certain portion of energy from the
the quasidoublet18|1) of Fig. 11 (left half). Obviously, the system.
antennas of lidA, which are mounted right inside the whis-  Formally, for a given resonance with frequenéyand
pering gallery region(at S=0.907, lead to a perturbation- idth T' the connection between these two kinds of losses
induced amplification of the splittings by two orders on mag-might be expressed in terms of the loaded quality facor

nitude with respect to the principal resolution limit of the 5,4 the unloaded quality facta®, in the following way
superconducting resonattt/Qz, 10°). Therefore, the data (61,62

points of both subfigures agree fairly well.
A totally different behavior occurs when Il is used(see _f_ 11
Fig. 27). To emphasize again, the corresponding systems of Q r 1 +p’ (11)
the given two subfigures only differ in the very position of
their antennas. As already indicated in Fig. 25 for the eccen- Us G
tricity 6=0.20, in using lidB a local maximum of quasidou- o= 2mf—L=—. (12
blet splittings emerges in this region. This structure is even Po Rs
intensified now by the two additional eccentriciti€s 0.10 According to this, the unloaded quality fact@, which is
and 6=0.15. A comparison with the theoretical prediction, as, directly accessible in the measurement, is only deter-

: . ™ J 9 G Mhined by the properties of the resonator and the excited
in the general behavior of the sphttmg_s within .thIS window mode. Tr):is is eipr%ssed by the stored energy in the electro-
of angular momenta. Also the data points of Fig. 14 obey amagnetic field Uy, and the dissipated power per periat

distinct maximum structure arourgk=0.75 with a systemati- . ; X
cal rise in the chaotic sea and a statistical fall in the Whis-WhICh might be converted into the geometry fac@for a

pering gallery region. Note that after minimizing the impr:lctcons’t"’lnt su_rface resstan&_g. In _contrast FO this, for the
of the antennas on the symmetry, the remaining imperfecoaded quality factoQ_, which might be directly deduced

tions of the resonator lead to a smoothing of the maximun{rom the eigenfrequencland the width", also the coupling

for the experimental curvisee Fig. 27(bottom]. A closer 10 the_ field inside the resonator, which is paramgtnzed py the
inspection reveals even more agreement with the theoretic&Pupling factorg, plays an important role. Only in the lim-
curve. Also the experimental rise of the quasidoublet splititing case of an extremely weak coupling;—0, are both
tings in the chaotic sea features a systematical behavioguality factors identical.

which is indicated by the fact that those data points of the In order to demonstrate that in the given experiments
highest eccentricityy=0.20 represent the highest splittings mainly the coupling characterizes the behavior of the sys-
for the individual quasidoublets. Additionally, splittings in tems, Figs. 28 and 29 show the loaded quality fac®ys
both curves—the experimental and theoretical ones—showetermined from the quasidoublets versus angular momen-
strong fluctuations in the transition to the whispering gallerytum. Here, for both states of a given quasidoublet Vi,
region whend is varied. As already mentioned in the theo- and f,q the quality factorsQFY®™=fgyefTeven and QP
retical framework, this is basically caused by crossings of=f /T 44 are displayed separately. Again, the sizes of the
whispering gallery quasidoublets with chaotic stdtb$16. data sets of the three different measurements might differ
Finally, the experimental curve also clearly displays that therom each other, since the numerical fitting for very weakly
accessible window for an observation of chaos-assisted turexcited resonances may have allowed a determination of the
neling was fully utilized: Only in the range of the experimen- resonance frequency but not of the resonance width. As in
tal resolution limit(1/Q=~10"), which is reached by a few Figs. 26 and 27 also in the given figures, for measurements
data points, some of the quasidoublets eventually cannot hesing lid A only the modeg10/1) (chaotic sep (18/1)—(21]1)
resolved and therefore are missing even in the lower subfiglbeach, and (2711)<30{1) (whispering gallery regionare

ure of Fig. 27. This also demonstrates how critically an ob-plotted, while in the case of weakly perturbing antentlias
servation of chaos-assited tunneling rests on the usage & all modes(101)—30/1) are given. At first sight, only the
superconducting resonators. lower subfigure of Fig. 29 shows an almost exponential de-

While the theoretical treatment of the quantum annular
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FIG. 28. (Color onling Loaded quality factors determined from FIG. 29. (Color onling Comparison of loaded quality factors in
the states shown in Fig. 26 at 300 and 4.2 K, respectively, usinghe superconducting staté.2 K) using strongly(lid A) and weakly
strongly perturbing antenndbd A). Normally, for each quasidou- (lid B) perturbing antennas, respectively. Again, per quasidoublet
blet two quality factors could be reducéseparately for the even there are two quality factors givéwhich are nearly identical in the
and the odd stajeBoth subfigures shown averagenearly constant lower subfigurg In comparison to the already explained bifurca-
quality factors as a function of the quantized angular momentuniional structure for strongly perturbing antenrapper subfigurg
with an apparent bifurcational structure towards larger value§ of the lower diagram shows quality factors, nearly exponentially in-
which is slightly present already in the normal conducting case andreasing withS (log Q, linearly depends oi%) up to the expected
clearly observable in the superconducting state. The reason for thlsmit of 108. This nicely reflects the systematical disapproach be-
strong asymmetry in the excitation of both states of a given quasitween the antenndocated atS=0.625 and the balance point of the
doublet is basically composed of three effects: first, the more andield distribution(approximately aB=n/k). In addition, it might be
more increasing localization of field distributions at higher angulardeduced from the very symmetrical excitation of both states of a
momenta, and second, the nodal line structure of these fields, whigjiven quasidoublet that indeed there is only very little impact on the
is strongly correlated with the angular momentum guantum numbemode structure by the weak coupling to the fields.

n, and, third, the spatially fixed coupling to these fields.

g tum numbern along a circulation around the center. For-

pendence between the quality facQy and the quantize mally

angular momentun® (log Q_ = S) with very weak fluctua-
tions. In contrast, among experimental conditions usind\lid
a very interesting behavior can be observed: Already slightly
present in the 300 K case and much stronger at 4.2 K, the
quality factors indicateon the averagea nearly constant
trend with S. But in considering both parities of a given applies. Exactly the ratio of these two polar anglef\ ¢, is
guasidoublet separately, a bifurcation of the quality factorsrucial for the asymmetric behavior of the resonance widths.
towards largesS can be observed. This effect is in particular The closer this ratio lies nearby an integer number—which
obvious for the highly excited whispering gallery modesmeans the better a fixed number of wave trains fits in be-
(271)—301) in the lower subfigure of Fig. 28. Here, the tween the antennas—the more effective one of the two pari-
quality factors of both parities partly differ by more than oneties will be excited(antennas in the range of a field maxi-
order of magnitude, confirming the direct observation on thenum). This yields a large width and a low-quality factor,
spectrum that one state of a given quasidoublet possessesespectively. In contrast, the corresponding second parity
much smaller width than the other ofsee also, e.g., Fig. 11 will be excited nearly in a node of the field—i.e., very
for mode(181) in the beach region ineffectively—therefore, a small width and a high-quality
From a geometrical point of view, the explanation of thisfactor occur. One recognizes that this leads to strongly asym-
behavior is straightforward and can be directly confirmed bymetrically distributed widths for one quasidoublet. In the in-
the measured wave functio300 K, lid A). Two things are  verse case, where the ratid A¢ falls exactly between two
important: On the one hand, the polar angleetween both integers, both parities are excited in a similarly effective or
antennasAl and A2 is constant(a=86°). On the other ineffective way; thus, the corresponding quality factors are
hand, the polar anglé¢ between two nodal lines of a given symmetrically distributed for both states of a quasidoublet.
field distributionchangeswith the angular momentum quan- Determining the degree of asymmetry for both quality fac-

360°
Ao =
¢ 2n

(13
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FIG. 30. (Color onling Frequency dependence of quality factors  F|G. 31. (Color onlin® Polar Fourier transformation of the
in the case of familym=1 (black andm# 1 (grey), respectively, modes(10/1) from the chaotic sea181) from the beach region,
for the eccentricitys=0.20. In the lower subfigure all staté81)-  and(30/1) from the whispering gallery region for the configuration
(30[1) are considered. Here, the dashed circle marks a clearly obs=0.20. Regular field distributions feature more and more sharply
servable minimum in the beach region. localized Fourier components beyond the be@tdshed lines

tors in such away yields a perfect agreement with the obser- B— 0 andQ_ — Q. (14)
vations of Fig. 28 for the system with [id.

In the case of field measurements at 300 K the given resd=xactly for this reason, the splittings of the states are almost
lution only allows us to observe the more effectively excitedfree of perturbations by the antennas; hence, their origin is
parity, even though the corresponding modes produce Based on chaos—_asssted tunneling. .
weakly formed double resonance, which allows us to fix two N order to verify the frequency dependence of the quality
widths. Here, states with an even parity are found exacﬂ)factors in a last step, Fig. 30 s_hows again for the eccentricity
when /A falls in the close vicinity of an even integer. In 9=0-20 (compare Fig. 2h beside the modes from Figs. 28
return, an odd state is to be observed exactly whthg is and 29 of the familym=1, also additional states taken from

close to an odd integer. Again, this behavior clearly reflectdn® Window 8.75-10.50 GHz. In the case of weakly perturb-

how strongly the system is perturbed by the antennas of li hg ?\T:Taséfnsaﬁi chr’gf@lnﬁ_e(l‘q’oglé r:gigﬁgfédgri?h Tﬁ;?’ al-
A. In substantial contrast to this, the quality factors in case o bp 9 y 9 :

. . . . . hough the quality factors strongly diverge due to the dis-
lid B show in general an almost identical formation for both cussed asymmetry of excitation, their mean formation re-

parities of a quasidouble{lsee Fig. 29(bottom]. Fur';her- _mains nearly constant. Furthermore, the quality factors of the
more, the exponential decrease of the resonance widths Witf}.t1asm= 1" within the window 8.75-10.50 GHz show a

Sindicates that the perturbation by the antenflesated at  gjmilar behavior as the ones of the famity=1, simply be-
S=0.623 becomes weaker and weaker such that especiallgayse both classes are affected by the geometry of the exci-
in the case of highly excited whispering gallery states theation in the same way, whereas in the case of weakly per-
coupling to the field is nearly free of an influence on thetyrbing antennaglower subfigurg the quality factors of
quality factor. Formally, the coupling factgs steadily de- these two classes are separated by more than one order of
creases and the influence of the excitation disappears, magnitude. This huge gain in lifetinj@5] allows us, on the
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one hand, to identify easily the states of the faminyz1 ~ n ~ n _ po

directly in the spectrunfevenwithout measuring the corre- i norm K =\ df Po,k—0 = 2k , (16)
sponding wavefunction On the other hand, here a natural Po
classification with respect to chaotic, beach, and regulafinally yields the curves as given in Fig. 31.

modes also directly emerges from the quality factors. In par- From this, it becomes quite obvious that the beach mode
ticular the familym=1 passes through all three kinds of (181) provides a real coupling between the chaotic sea and
states in the figure. Thus, from the quality factor representathe whispering gallery region. In contrast, the moEd 1)
tion [Fig. 30 (bottom], as well as from the splitting repre- and(30/1) are localized only inside one of these two subre-
sentation(Fig. 25, a very steady transitional behavior arises.gions. The figure also nicely points up how the information

In the picture of quality factors it also becomes very ob-apout the corresponding angular momentum quantum num-
vious what happens in the region of the discussed resolutiopern is encrypted in the wave function of a certain mode and
limit of 1/Q=~107°. At the end, the field strength maximum “how good” this quantum number is. This can be seen from
reaches a more and more fixed position within the geometrgalculating the expected quantized angular momentum of a
for an increasing angular momentum quantum numfier given state according t8=n/k,: Right at this position the
therefore, also its distance from the antennas becomes cofolar Fourier transform yields a maximum. Furthermore, the
stant. Thus, the almost exponential dependence between thiggher the quantum number the sharper the corresponding
distance and the loaded quality facttwg Q_=S) [as found  peak and also the better the agreement of its position ith
in Fig. 29 (bottom] just leads in frequency representation to This demonstrates in the Fourier space of the wave functions
the observable, slowly forming saturation of the quality fac-how widely smeared chaotic states with “bad” quantum
tors in the whispering gallery regidisee Fig. 3Qbottom].  numbersn [mode (10/1)] transform into regular states with

It is rather speculative whether thgaximumof quasidou-  “good” quantum numbera [mode(30/1)] at higher angular
blet splittings atS=0.75, which was equated with the experi- momentum. Thus, besides the splittings and quality factors
mental evidence of chaos-assisted tunneling for the beadhis reveals a third observable for the chaoticity of a state,
modes, now appears in the form ofranimum as observable yielding again for the beach modes a significant structure in
on the branch of quality factors for the famitg=1 (dashed the direct vicinity of the crossover &=0.75.
circle in Fig. 30. Analytically, the quantized angular mo-
mentum of the centroid of this minimum giv&s=0.73. The
physical interpretation of this minimum could be that the

particularly effective coupling of the beach modes to the cha-  This work deals with new features of the relation between
otic sea provides a wider smearing of the corresponding classical system and the spectrum of its quantum counter-
wave functions across the whole billiard than for modes juspart. The two-dimensional annular billiard of the famity
outside the minimum, where the coupling is effectively + 5=const has a mixed phase space, containing two separated
weaker. On the other hand, the stronger a wave function ifegular regions and a chaotic sea with a stable island. In the
smeared across the billiard—i.e., delocalized—the more “i%]uantum ana|og system, the regu|ar regions are Coup|ed to
seen” of the dissipative parts of the surface. Therefore, ithe chaotic sea, and in this way they are coupled to each
might be expected that beach modes not only display largesther. This causes a splitting of the doublets of eigenstates
splittings but also smaller quality factors, as observed in thehat correspond to the classical whispering gallery trajecto-
experiment. ries: This is referred to as chaos-assisted tunneling. Experi-
mentally, these quasidoublets were measured with a very
high resolution using a superconducting resonator and were
VIl. POLAR FOURIER TRANSFORMATION subsequently identified via electromagnetic field distribu-

To visualize this smearing of states in angular momentun{ions of a normal conducting twin resonator. In this way,
space, Fig. 31 exemplary contrasts the polar Fourier transmghao;—asssted_ tunneling was observed experimentally for the
mations[63] of mode (10]1) (chaotic sep of mode (181) f|rs.t time. In this observatlon., the so-called beach modes_—
(beach region and of mode(30/1) (whispering gallery re- which correspond to the orbits on the border of the chaotlc_
gion) again for the configuratioa=0.20. Formally, this was S€a—played a major role. The beach modes show a maxi-
obtained by Fourier transforming the experimental frequencynUm of doublet splitting. This indicates a maximum of tun-
shift of as taken from the field distribution measurementsN€ling probability at the border of the chaotic sea. In addition

[compare Eq(9)] along circles of radiug, around the ori- to the splitting, we investigated resonance widths and found
gin, respectively a weak maximum of the widths at the beach modes. This

amounts to enhanced dissipation and is explained by the fact
that these modes are coupled to trajectories all over the bil-
liard via their coupling to the chaotic states.

VIIl. CONCLUSION

brmaztmpg
I (po,K) = f " dbof(py,b)explibk).  (15)
b,

min=—7P0

Here, the variablé=py¢ characterizes the polar arc length.

h " o ACKNOWLEDGMENTS
A subsequent averaging across all ragiinormalization to a
maximum amplitude of unity and rescaling of tkeaxis to We are particularly grateful to O. Bohigas for encouraging
the quantized angular moment®an/kg, with ky=being the  us to study this novel mechanism of tunneling and him as
present eigenvalue, well as S. Tomsovic and D. Ullmo for their kind invitations

046201-19



HOFFERBERTEet al. PHYSICAL REVIEW E 71, 046201(2005

to Orsay and many fruitful discussions. We thank E. Doronalso like to thank H. Lengeler for numerous hints on field
and S. Frischat for many calculations and especially foistrength measurements at high frequencies. This work has
guiding us to “look on the beach.” We are also grateful to R.been supported by the Deutsche Forschungsgemeinschaft
Egydio de Carvalho for providing us with numerical data and(DFG) under Contract Nos. SFB 185, Ri 242/16, and SFB
to D. Boosé for his interest in our experiments. We would634.

[1] C. Dembowski, H.-D. Graf, A. Heine, R. Hofferbert, H. Reh- (1999.
feld, and A. Richter, Phys. Rev. Let&4, 867 (2000. [31] J. U. Nockel and A. D. Stone, Naturg.ondon 385 45
[2] W. K. Hensinger, H. Haffner, A. Browaeys, N. R. Heckenberg, (1997.
K. Helmerson, C. McKenzie, G. J. Milburn, W. D. Phillips, S. [32] J. U. Nockel and A. D. Stone, i@ptical Processes in Micro-
L. Rolston, H. Rubinsztein-Dunlop, and B. Upcroft, Nature cavities edited by R. K. Chang and A. J. CampilldVorld

(London 412 52 (2001). Scientific, Singapore, 1996
[3] D. A. Steck, W. H. Oskay, and M. G. Raizen, Scien2@3 [33] S. Aberg, Phys. Rev. Lett32, 299 (1999. Note, however, in
274 (200). our opinion the term “chaos-assisted tunneling” has here been
[4] D. A. Steck, W. H. Oskay, and M. G. Raizen, Phys. Rev. Lett. used in a different physical situation.
88, 120406(2002. [34] A. Richter, inEmerging Applications of Number Theory, The
[5] A. Mouchet and D. Delande, Phys. Rev.6#, 046216(2003. IMA Volumes in Mathematics and its Applicationl. 109,
[6] D. Delande and J. Zakrzewski, Phys. Rev. 88, 062110 edited by D. A. Hejhal, J. Friedman, M. C. Gutzwiller, and A.
(2003. M. Odlyzko (Springer, New York, 1999 p. 479.
[7] W. K. Hensinger, N. R. Heckenberg, G. J. Milburn, and H. [35] G. Hackenbroich and J. U. Néckel, Europhys. Le38, 371
Rubinsztein-Dunlop, J. Opt. B: Quantum Semiclassical Gpt. (1997.
R83(2003. [36] M. Hentschel and K. Richter, Phys. Rev.a@6, 056207(2003;

[8] W. K. Hensinger, A. Mouchet, P. S. Julienne, D. Delande, N. M. Hentschel, Ph.D. thesis, TU Dresden, 2001.
R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. RevV.0A [37] M. V. Berry and M. Wilkinson, Proc. R. Soc. London, Ser. A

013408(2004. 392 15(1984.
[9] M. J. Davis and E. J. Heller, J. Chem. Phyis, 246 (1981). [38] M. V. Berry, Eur. J. Phys2, 91 (198J.
[10] M. Wilkinson, Physica D21, 341(1986. [39] H. G. SchusterDeterministic Chags2nd revised ed(VCH,
[11] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rev. Léd, Weinheim, 1988
1479(1990. [40] M. Tabor, Chaos and Integrability in Nonlinear Dynamics
[12] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rev. Lé8&, 5 (Wiley, New York, 1989.
(1990. [41] E. Oftt, Chaos in Dynamical Systent€ambridge University
[13] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. R&23 43 Press, Cambridge, England, 1993
(1993. [42] D. Boosé(private communication
[14] S. Tomsovic and D. Ullmo, Phys. Rev. B0, 145(1994. [43] H.-J. StéckmannQuantum Chaos: An IntroductiofiCam-
[15] F. Leyvraz and D. Ulimo, J. Phys. R9, 2529(1996. bridge University Press, Camebridge, England, 2999
[16] O. Bohigas, D. Boosé, R. Egydio de Carvalho, and V. Mar-[44] O. Bohigas(private communication
vulle, Nucl. Phys. A560, 197 (1993. [45] L. C. Maier, Jr. and J. C. Slater, J. Appl. Phy&3, 68 (1952.
[17] E. Doron and S. D. Frischat, Phys. Rev. Létg, 3661(1995. [46] S. Sridhar, D. O. Hogenboom, and Balam A. Willemsen, J.
[18] E. Doron and S. D. Frischat, J. Phys.30, 3613(1997. Stat. Phys.68, 239(1992.
[19] E. Doron and S. D. Frischat, Phys. Rev.5, 1421(1998. [47] A. Gokirmak, D. H. Wu, J. S. A. Bridgewater, and S. M. An-
[20] S. D. Frischat, Ph.D. thesis, Universitat Heidelberg, 1996. lage, Rev. Sci. Instrum69, 3410(1998.
[21] P. Gerwinski and P. Seba, Phys. Rev5H, 3615(1994). [48] D. H. Wu, J. S. A. Bridgewater, A. Gokirmak, and S. M. An-
[22] R. Roncaglia, L. Bonci, F. M. lzrailev, B. J. West, and P. lage, Phys. Rev. Lett81, 2890(1998.
Grigolini, Phys. Rev. Lett.73, 802 (1994). [49] C. Dembowski, H.-D. Graf, R. Hofferbert, H. Rehfeld, A.
[23] A. Shudo and K. S. Ikeda, Phys. Rev. Let4, 682 (1995. Richter, and T. Weiland, Phys. Rev. &0, 3942(1999.
[24] O. Brodier, P. Schlagheck, and D. Ullmo, Phys. Rev. L8it, [50] U. Dérr, H.-J. Stéckmann, M. Barth, and U. Kuhl, Phys. Rev.
064101(2001). Lett. 80, 1030(1998.
[25] A. Mouchet, C. Miniatura, R. Kaiser, B. Grémaud, and D. [51] R. Egydio de Carvalh@private communication
Delande, Phys. Rev. B4, 016221(2001). [52] H. P. Baltes and E. R. HilfSpectra of Finite SystentBibliog-
[26] R. Artuso and L. Rebuzzini, Phys. Rev. @3, 036221(2003. raphisches Institut AG, Zirich, 1976
[27] T. Onishi, A. Shudo, K. S. Ikeda, and K. Takahashi, Phys. Rev[53] C. Dembowski, H.-D. Graf, A. Heine, H. Rehfeld, A. Richter,
E 68, 056211(2003. and C. Schmit, Phys. Rev. B2, R4516(2000.
[28] W. Greiner, Quantum Mechanics, An Introductiodth ed.,  [54] E. J. Heller, Phys. Rev. Let63, 1515(1984).
(Springer, Berlin, 2000 [55] E. J. Heller, Lect. Notes Phy263 162 (1986.

[29] A. Messiah,Quantum MechanicéDover, New York, 2000 [56] E. B. Bogomolny, Physica (81, 169(1988.
[30] C. A. Stafford and B. R. Barrett, Phys. Rev. @, 051305 [57] H. Alt, P. von Brentano, H.-D. Gréaf, R.-D. Herzberg, M. Phil-

046201-20



EXPERIMENTAL INVESTIGATIONS OF CHAQOS-.. PHYSICAL REVIEW E 71, 046201(2009

ipp, A. Richter, and P. Schardt, Nucl. Phys 580, 293(1993. E 67, 066208(2003.
[58] H. Alt, P. von Brentano, H.-D. Graf, R. Hofferbert, M. Philipp, [61] CERN Accelerator Schoo{Hamburg, 1988 edited by S.
H. Rehfeld, A. Richter, and P. Schardt, Phys. Lett3B6, 7 Turner, CERN 89-04, 1989.
(1996. [62] CERN Accelerator SchodDxford, 1991, edited by S. Turner,
[59] M. Philipp, Ph.D. thesis, Universitat zu Koln, 1997. CERN 92-03, 1992.

[60] F. Beck, C. Dembowski, A. Heine, and A. Richter, Phys. Rev.[63] E. Doron and S. D. Frischdprivate communication

046201-21



