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Generalized entropy arising from a distribution of q indices
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It is by now well known that the Boltzmann-Gibd8G) entropy can be usefully generalized using the
nonextensive entropies, which have been applied to a wide range of phenomena. However, it seems that even
more general entropies could be useful in order to describe other complex physical systems, a task which has
already been undertaken in the literature. Following this approach, we introduce here a quite general entropy
based on a distribution afindices thus generalizing, We establish some general mathematical properties for
the new entropic functional and explore some examples. We also exhibit a procedure for finding, given any
entropic functional, theg-indices distribution that produces it. Finally, on the road to establishing a quite
general statistical mechanics, we briefly address possible generalized constraints under which the present
entropy could be extremized, in order to produce canonical-ensemble-like stationary-state distributions for
Hamiltonian systems.
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[. INTRODUCTION In 1988, a possible generalization of BG statistical me-

Since Gibbs’ pioneering wordgL], it has become well chanics was proposdd®] on the basis of the following en-
established that standard, Boltzmann-GilB&) statistical ~ tropy
mechanics and the associated thermodynamics are valid W
when certain conditions are satisfied. The typical situation 1—Ei:1 pi’ hd
occurs for microscopic dynamics exhibitingrong chaos ~ S=k—————— |deR; S =Sc=-kZ pInp |,

(i.e., positive largest Liapunov expongrand, consistently, i=1
exponential mixing, ergodicity, short relaxation times, (1
Euclidean-like occupation of phase space and usual thermo- . .

dynamic extensivity. This is the scenario which typically oc- wherek is a positive constant, usually Boltzmann constant,
curs for short-range-interacting many-body Hamiltonian sysPUt from now on taken to be unity for simplicity. This gen-
tems, even if, rigorously speaking, the strict necessary angralization of .BG statllst_|cal mecham.cs is usuaIIy_ referr_ed to
sufficient conditions remain to be proved. On the other hand2S Nonextensive statistical mechanidés connection with

a vast class of natural and artificial systems exists for whicfil€modynamics was established & and later redefined in
the largest Liapunov exponent vanishes, situation which i$7]- Its denominatiomonextensiveomes from the following
referred to asveak chaosWeak chaos is typically associated Property: if we have two probabilisticallindependentys-
with power law, instead of exponential, sensitivity to the ini- €MS A and B, i.e., p;j(A+B)=pi(A)p;(B), we straightfor-
tial conditions and relaxationgmultifractal occupation of ~Wwardly verify that

phase space and thermodynamic nonextensivity. _ _

During the past 15 years a great deal of attention has been SA+B=SA+SBE +1-0SKAKB). ()
focused on systems where the usual BG statistical mechanGonsequentlyg=1 (the BG casgcorresponds to extensivity,
cal concepts prove inadequate. Phenomena which exhibjthereasq<1 (q>1) corresponds to superextensivitgub-
such anomalous behavior occur in systems involving longextensivity, where the nonnegativity o8, has been taken
range interactionge.g., gravitatiopy spin-glasses, mangan- into account. We should stress at this point that the denomi-
ites, long-range micro- or mesoscopic memory, turbulence imation “nonextensive” can be misleading. Indeed, when spe-
nonneutral plasma and classical fluids, Lévy anomalous diftial correlations are addressédstead of independent prob-
fusion, granular systems, phonon-electron anomalous thegpilities), it has been showf8] that S, is extensivefor the
malization in ion-bombarded solids, solar neutrinos, cosmiGppropriate value of. When no scale-invariar{pr similan

rays, galactic peculiar velocities, cosmological systemsgorrelations are present, the appropriate valug @quals
high-energy collisions of particles, black holes, quantum enynity.

qg-1

tanglement, lattice Lotka-Volterra growth modelydra viri- Within nonextensive statistical mechanics, many of the
dissima financial indices and othersee[2—4] for recent  ahove cited anomalous systefis-4] have found a frame of
reviews. interpretation. The success of such type of approach has led

to even more general formalisms. Such is the case of Beck-

Cohen superstatisti¢9—12], based on fluctuations of param-
*Electronic address: gtsek@chem.demokritos.gr eters such as the temperat(it8,14]. Other examples, such
"Electronic address: tsallis@cbpf.br, tsallis@santafe.edu as the early proposals by Curadidb] and by Anteneodo and
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Plastino[16], as well as, more recently, Kaniadales al. This is a convenient manner of writin§;s. Indeed, at

formalism based in th& entropy[17], do exist[18,19 that  equiprobability we have,=1/W, hence the functional takes

have started to exhibit their usefulness for applications.  the valuek In(W) since the number qequa) terms precisely
In this spirit we propose here a self-consistent and hopeeancelsp; in front of the logarithm. The Ifx) function is the

fully applicable generalization of standard nonextensive stainverse of the ex{x) function, which is the solution of the

tistical mechanics. We will base our effort on the idea offollowing differential equatiorf2,3]:

using not just one entropic index but a whole distribution

of them. The starting point, successfully applied in reasso- d_y:y (4a)
ciation of folded proteing20], cosmic rayg21], and eco- dx '

nomics[22], is an ordinary differential equation whose solu-

tion exhibits a crossover from @statistics to &’ statistics. y(0)=1. (4b)

This solution might be thought as a generalized “exponen- . - .
tial,” whose inverse function is therefore a generalized “loga- In the frame of nonextensive statistical mec_hamc_s Egs.
rithm.” Two natural manners appear then for extending thi§3,) and (4@ are generalized as followEg. (4b) is main-
type of crossover to a whole spectrumas, the solution of ~ @ined as it stands
the full-spectrum ordinary differential equation being inter- W 1
preted as a quite general exponential form, whose inverse is §= > Inq(—> (5)
therefore a quite general logarithm. The first manner consists i=1 Pi
in using the generalized logarithm for defining a generalizedand
entropy which contain§, as a particular case; from there, as
usual, we obtain the stationary-state distribution by optimiz- dy _ 4
ing the generalized entropy under appropriate constraints. &—y ' (63)
This distribution doesiot necessarily have the generalized
exponential form, a nice property which however does occur  The Iny(x) =[x*"%-1]/(1-q) function is the inverse of the
for nonextensive statistical mechanics. The second manner &y(X) =[1+(1-g)x]**™® function, which is the solution
to look for a generalized entropy which, when optimizedof Eq. (6a). For g=1 we have Ia(x)=In(x) and exp(x)
under appropriate constraints, precisely provides the giverexpx, consequently we fall back to the BG case. Fpr
generalized exponential. Such entropy will in genemattbe <1, exp(x) is taken to be zero if 161 -q)x<0.
based on the corresponding generalized logarithm, a nice Following the above rational used in generalizing BG sta-
property which, as already said, does occur for nonextensivestics to nonextensive statistics we can go further and exam-
statistical mechanics. The first of these two manners is, aline the effect of the contribution of a whole distributiongpf
though far from trivial, mathematically simpler. This is the exponents. Within the present generalization the entropy is
one to which the present paper is dedicated. The secormkssumed to be of the following form:
manner remains as a task to be undertaken in a later occa- W 1 W
sion. - _

In Sec. Il we introduce our formalism by generalizing the S = ,;1 B In{f}( pi) B 21 Sty @
logarithmic and exponential functions, as well as the corre- o _
sponding entropic functional. In Sec. Il we study some ofWhere the I, x function is the inverse of the eypx func-
their basic properties. In Sec. IV we illustrate the theory withtion, defined as the solution of

some nontrivial examples, namely a Gaussian distribution of dy +o

g exponents and a sum of two delta functions. In Sec. V we - :f f(rydr, (8a)
introduce and work out the idea of the inverse transformation dx J_.

which enables to find, for a given entropic functional, the

distribution of exponents that produces it; an illustration is y(0)=1, (8b)

provided as well. In Sec. VI we address the problem of the
constraints that can be used in order to obtain a canonical®
ensemble-like stationary distribution. In Sec. VIl we investi- i
gate the relation between the present formalism and Beck- f f(ndr=1f(r)=00 7 e R]. 9)
Cohen superstatistics. Finally, in Sec. VIII, we recapitulate -
our results and discuss some future perspectives. We will call the non-negative, normalized distributidn
the g-spectral function (QSF¥ince it represents the spec-
Il. GENERALIZING THE NONEXTENSIVE ENTROPY trum of q entropic indices that contribute to the entropic
FUNCTIONAL functional. In this generalized framework, fé¢7)=58(7-1)
o o we recover the BG entrop$ss and for f(7)=48(7—q) we
As well known, BG statistical mechanics is based on th&ecoyer the nonextensive entrofly wheres denotes Dirac’s

ith

entropy functional distribution. In fact, it is not necessary to impose normaliza-
w 1 tion onto f(7); it is enough to only ask for the integral
Se= 2 P In(—). (3)  JZf(ndrto befinite. If the functionf(7) is not normalized,
i=1 [ it introduces a very simple modification, namely it multiplies
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the associated generalized logarithm by a cong@8it It is
therefore just for simplicity that we hereafter demdig to
be normalized.

We will now try to establish the form of |p(x). By defi-
nition of the expy, x function, it is

d ( ) +0o0
B [ totemgrar, 0
X —00
hence, by setting=In;;, y,
dy J<+oo
—_— = f(r)y™dr, 11
dlIng(y)] — (7)Y 9
hence
X +o0 -1
Ings(X) :f f f(udrp dul[O x e (0, +)].
1 —o0
(12
At equiprobability(i.e., p;=1/W) we have
W +o0 -1
S{f}=J {f f(T)UTdT} du. (13
1 —

The generalized logarithm of E12) appears to be iso-

PHYSICAL REVIEW E 71, 046144(2009

as well asmonotonicity more precisely

d

o Ingy(x) > 00 x e (0, +), (20)
and

d
where e A is the set of admissible values wffor the

expm
non-negative exp(x) function. When no negative contrib-

utes(i.e., if f(gq)=0, Og< 0], then the following properties
hold also

2

d
B2 Ingsy( (22

X) <0 (concavity

and

2
e expp(x) <0  (convexity.
Analogously, when no positivey contributes|i.e., if
f(q)=0, Og>0], then

(23

morphic to the generalized logarithm introduced recently by

Naudts[24] who started from a different perspective. The

Naudts logarithm is

* du
In,(x) = fl m (14

In our case

P(x) = f f(r)x"dr. (15

It can also be proven, using E(7), that for any given
¢(x) the corresponding QSF is

1 (* . )
f(q)=z J H(e)e"dw. (16)

Ill. PROPERTIES OF THE GENERALIZED LOGARITHM
AND EXPONENTIAL FUNCTIONS AND THE
CORRESPONDING ENTROPY

We list now some useful properties that can be easily

proven for anynormalizeddistribution f(q), given the fact
that f(q) is non-negative:

Hence
expn(0) = 1. (18)
Also
d d
& In{f}(x) - = & eng}(x) - =1, (19)

2
—- Ini(x) >0 (convexity,

0l (29

and

d2
— expp(x) >0 (concavity. (25)
dx?

Also, if no q above unity contributesgi.e., if f(q)=0,
Og>1], then

lim In{f}(x) = +x, (26)

X—+00

and, if noq below unity contributesi.e., if f(q)=0, Og<1],
then

lim Ingg(x) = —o. (27)
x—0"

IV. EXAMPLES OF THE GENERALIZED ENTROPY
A. Gaussian distribution

As a first example of QSF, let us consider a Gaussian
distribution of entropic indices around a central inadpwith
a variances>0:

f(r)= 1

o\N2m

g (T2, (28)

Using Eq.(12) we obtain, for the corresponding general-
ized logarithm,
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[ 1- 04 : : T : T : |
INgg,q) X = \r_we(l _q)zmgz{erf(?q) — o001
V20 V20 - . 6=05
—- o=1
1-gq-o?Inx L =0 i
- erf(qf)} , (29) 03
V200 |
where erf is the error function. As special cases we obtain S02 |
1-q _ ‘
X 1
INgg (X)) = ——— 30
@o0 =" (30
0.1 —
and
\’77' oglnx
In X) = — erfl —= |. 31
{1’0}( ) \r’Ea' < \rE ) 31 @) 9 ol.s 1
The entropy functional is given by | ‘ |
[ w _ r ,»‘—~\\ — 501
%q o) — 7—_776(1 —q)2/2(r22 D; erf(g) 0.6 — Mr? \\\"3.. o z(l).S —
7 N20 i=1 V20 i SO\ o0
0.5 N -
1-q+ o2 In(1/p; N
- erf( q — ( p,)) : (32) i ; =0 Y )
\1’20' 04 '.' \\ '-' —
C] - 6=0.1 \

In Fig. 1 we present, for typical values 6d,0), the en-  * 5| /7/ ' NN\ A
tropic functionsyg,,(p), the entropySq,,(p) for a two-state L[ 003 A\
system, and the microcanonical entra@y (W) as a func- 02} // \‘-.,' .
tion of the number of stateg/. o W

o1/ o=l \
'/ \}
B. Two entropic indices 4 i . ‘ . | . |

The general problem of two indices in a QSF correspond: (b) ’ o2 o P oo o8 1

to the form
f(7)=a,8(7—qy) + 87— qp). (33 " — om0 g
6 -- o=01 P

(If we wish to have a normalized QSF we need to require | st itlm i i
a;+a,=1.) Since the general case of E@O) is quite un- sk = 2 _
tractable, we will focus our attention onto two special cases | 7~ 1
referred to as theymmetricand theasymmetricones. Let us AN o=0 7~ o0l |
first consider the case where the two indices are symmetrig | g o=t |
with regard toq=1, i.e.,q;=1-L/2 andg,=1+L/2 anda, * ;| / i
=a,=1/2. Wethen have L S

1 2.4+ e -
f(T)=5[5(7—1+L/2)+5(T—1—L/2)] (34) I e, ]
L Ll .
L c=1 il
hence, using Eq12), " L el e
(C) 1 10 100 1000
x 2 4 arctaitx-'?) - 7 W
In(x) = T2, apdu= - (39) - -
L u +u L FIG. 1. The entropic functionsy (p) (top), the entropy

Sqge(p) for a two-state system(middle), and the W-state

In t.he limit L — 0" we recover Ipx=In x and we will t_hus _ microcanonical-ensemble entrofy, ,,(W) (bottom. The four lines
be driven back to the BG case. The entropy functional isorrespond taj=1 ando=0.1,5=0.5, 0=1, ando=0 (BG case.

given by

4 arctattW-?) — 7
(36) S = ] . (37)

4 arctarip %) -
i .

w
SL:%pi

It can be readily seen that, for equiprobability, the en-Notice that, whenW— o, the entropyS_ remains finite, in
tropic functional is given by contrast with the BG case.
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FIG. 2. The entropic functios, (p) (top), the entropyS_(p) for
a two-state system(middle), and the W-state microcanonical-
ensemble entrop$ (W) (bottom). The four lines correspond to
=1,L=5,L=10, and forL=0 (BG casg.

In Fig. 2 we present, for typical values bf the entropic
functions, (p), the entropyS (p) for a two-state system, and
the microcanonical entrop§ (W) as a function of the num-
ber of statedv.

We consider now the asymmetric case, defined as the spe-
cial case of Eq(33) where one of the indices equals unity.

Then we have

f(=a;8(r-1+ad7-q) (y+a=1). (38

This form might be of physical relevance. As already

mentioned, unlessy+a,=1, f(7) is not normalized (see

PHYSICAL REVIEW E 71, 046144(2009

[23]). The differential equation corresponding to t#,a,)
generic case has already been successfully (isenrder to
describe, for instance, the reassociation of folded heme pro-
teins[20] and the flux of cosmic rayg21]).

It can be proven that the corresponding generalized loga-
rithm is

4 —xl‘q)} . (39)

1

We straightforwardly verify that l{glyovq}lenx and that
Ing 1 gX=Ing X. The corresponding entropic functional can be
written as

q
a; +ay

1 W
Sayagq = mz P In{l - (1- P?_l)} . (40

In the microcanonical case this can be written as

1 A }

S{al,aq,q}_ al(l _q) In|:l a1+aq(l W) 1. (4D

Like in the previous case, it can be shown that,dor 1,
the entropy remains finite wheW— +o. In Fig. 3 we
present, for typical values dfy,a;) anda;=1-a,, the en-
tropic function s{alvaq,q}(p), the entropys{allaq,q}(p) for two
states, and the entrof$(, o (W) in the microcanonical en-
semble as a function of the number of stafés

V. CALCULATION OF THE QSF FOR A GIVEN ENTROPIC
FUNCTIONAL

We have seen so far how from a given QSF we can pro-
duce the corresponding entropic functional. We will now
work in the reverse way: given a specific entropic functional,
we will find (if possible the QSF that produces it. Consider
a general entropic functional of the form

W
S=>s(p), (423
i=1
1
S(x) =X In{f}<;> . (42b)
We have
X d d
I (x) = f — ]
! f f(nudr
SR S f " f(oxdr
f f(nxdr -
- d; o [ tmernrs d;
d_X[In{f}(X)] - d_X[In{f}(X)]
(43
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We set 03 ' l ' ' I ' l
— a=0.9
w=-ilnx. (44) I a:=0.6
D >~ -- q=0'3 -
Then, from Eq.(43), we obtain " e e\ N
Va e N
. t 7 N
(™, 1 g ;o 2D
—| f(ndUdr=—— . (49 sl [ /.4 A\ 1
21— \52771["] (€9)] g //
{f} L
dow /,_.-'
The LHS of Eq.(45) is however nothing but the Fourier ey / _— 7
transform off. Thus, inverting the transform, we have /7 006
1/ a =0 aq=03
i toe gel-g o . | . | ‘ I . I .
f(g) = ZT +dw. (46) @ 0 0.2 04 , 0.6 08 1
- > |
dw[ln{f}(e )] [ T T T T — ;q=0v9
Inserting the entropy functional of Eq7) into Eq. (46) 061 s ~ Ry
we flna‘”y get I ///A.“" ............ ""--,\\\ ._-. aq;O'
05 24 RN q
1 (* g ieq r // ."‘-.\\\ )
= — L /- N
f(q) wa_w d » dw. (47 i A ,A:.\ A
s(e™) - |£[S(e )] “ 03k /// ; a =06 ! .
1 \
L R \ 4
Equation(47) is quite important. Indeed, it shows that the 02} /{f’ a=03 a,=09 "f.\\ .
QSF corresponding to a large class of entropy functionals 7 ":\ 1
can be explicitly calculated. It is straightforward to check 0L a,=0
that for s given by BG or by nonextensive statistics we get i L
f(g)=8(g—qp) as anticipated. ®) ° 02 o e 08 1
In order to be able to derive the normalized QSF associ-
ated with a given entropy, the entropy functional must fulfill L T T LR R AR
the following requirements. 6‘_ — a0 ]
(1) It must be possible to write the total entrofyas a I i igz
sum of the entropic functios for each stat¢Eq. (39)]. sk 2o i
(2) The functions must satisfys(1)=0, which is in fact a . 1
quite reasonable requirement for an entropy. = 4= q
(3) Furthermore, we must have: S \ aco ]
d X L aq=0_3 eq=0.6 4
w e o f
1 i N S
This condition is equivalent to having the QSF normalized to 7 e N 7
unity. If we abandon the normalization of the QSF then we i e e sraad ¢ o raguadl ¢ ¢ o gang
can consistently drop this last requirement. ©" 10 W 1% 1000

(4) The functions(x) must be definedor analytically
continued on the unitary circle and it must also be differen-  FIG. 3. The entropic functiors, o q(p) (top), the entropy
tiable in the same domain. S{alyaq,q}(p) for a two-state systemmiddle), and the W-state
(5) The integral of Eq(47) must converge. microcanonical-ensemble entro@alvaqvq}(vw (bottom. The four
As a nontrivial illustration, we will now use the present lines correspond tg=2, & =1-a,, anda;=0.9,8,=0.6,8,=0.3,
method to find the QSF associated with an exponential erd1da;=0 (BG casg.
tropic form. Let us assume

o

W _1s dq-n)
5= 3 p(1-ehm), (49 f@=g2 = 54
i=1
hence Although different, entropy46) has some resemblance with
S(x) = X(1 — XDy (50) that introduced by Curad®l5]. We claim no particular

physical justification for the forn{46). In the present con-
It is trivial to see that Eq(50) fulfills all the criteria set text, it has been chosen uniquely with the purpose of illus-
above, and we can thus find a normalized QSF for it. Usindrating the mathematical procedure involved in the inverse
Eq. (47) we get QSF problem.
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VI. THE CANONICAL ENSEMBLE VII. CONNECTION WITH THE BECK-COHEN

. . . SUPERSTATISTICS
To obtain, for the canonical ensemble within the standard

nonextensive thermostatistics, the distribution corresponding Recently, a generalization of the BG statistics has been
to the physically relevant stationary state, we must optimizeproposed by Beck and Cohen. This generalized superstatis-

the entropic functional tics assumes that there may be strong deviations from the
W classical BG case when there are temperature fluctuations
Sq:E b In (1) (52) within the system. Along that line, the Boltzmann factor
= N/ exp(—BE) is generalized as follows:
Besides normalization of the probabilities, we use the fol- e _
1 - BE
lowing energy constraintsee[7,25] and references thergin B(E) fo g(B)e =dB, (56)
w
Eizl PE; whereg(B) is the probability distribution of the inverse tem-
—EW 0 U, (53)  perature in the system. Quite recently, an entropic functional
i=1 Pi has been derived that corresponds to superstatistics. This

where{E;} are the eigenvalues of the Hamiltonian. The Op_functlonal Is of the form

timizing distribution can be written as a generalized expo- S=> s(p) (579
nential form as follows: i v

b= e A (54) X a+Kly)
- SV exp- BE sy = | oY (57b)
= 0 1_K_(y)
whereg is an inverse-temperature-like parameter. As we see, E
the stationary distribution involves precisely theverse where
function of the generalized logarithm that entered into the
definition of the entropy. The following question arisés: B(y)
the general case considered in the present paper, is it pos- Ky)=—o—" . (570
sible to write the energy constraint in such a way that the f B(u)du
0

stationary state distribution is described by the inverse func-
tion of the generalized logarithm used in the definition of the
entropy?Let us right away say that, if this is possible, we
have not succeded in doing it. It seems that this nice propert
is not very general, and it appears to be lost when we exten
further (or differently) than nonextensive thermostatistics.

Let us present an attempt along that line. We assume th
the entropy is given by Eq.7). The corresponding energy
constraint is assumed to be given as follows:

In Egs. (5789570, E" stands for the lowest admissible
energy for the system aralis a Lagrange multiplier. Using
g.(57b and Eq.(47) we can in principle get the QSKQq)
or a given temperature distribution functigg). Thus, in
gtrinciple at least, the various superstatistics can be accom-
modated into the presently proposed formalism.
There are certain cases however, where the present for-
malism can go further. For example, it appears that through
w [ q superstatistics we can only produce the so-called nonexten-
2., | fopidag sive entropies§, for g=1, while in the present formalism we
= =U. (55) can have them for arbitrary values @f

+oo
SU | Hapidg
o VIIl. CONCLUSIONS
In the case wherd(q)=48(q—q,) we get back to the usual In the present work, we study the properties of a general-
nonextensive constraint. ized entropic function based on a distributiongpEntropic
The stationary state canonical probability distribution isindices. We introduce the idea gfspectral functionQSH
the one that optimizes the entropy functional under this enand exhibit three nontrivial examples: the case of a Gaussian,
ergy constraint. In all the examples that we have given iras well as both symmetric and nonsymmetric choices within
Sec. IV, this calculation is analytically untractable. Neverthe-a sum of two delta functions. We also introduce the notion of
less, it can be trivially shown that the solutiam not the  an inverse QSF problem, in the sense that, given some en-
inverse function of the generalized logarithm that enteredropic functional, we present a procedure for explicitly cal-
into the definition of the entropy. It seems thus, that the exculating the QSF that produces it.
ponential form is not a generic feature but rather a peculiar Also, we have briefly discussed the canonical ensemble
“coincidence,” only valid for the nonextensive family of en- and its corresponding energy constraint. We have verified
tropiesS,. It remains, however, as an open and rather chalthat, in the general case, the stationary state probability dis-
lenging problem to come up with an energy constraint thatribution seems to beot the generalized exponential which
would produce the corresponding generalized exponential iis the inversefunction of the generalized logarithm used to
the generic case. define the entropy. Altering the form of the constraint in
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order to produce such exponential remains therefore as arentional approaches. On a different vein, it would be theo-
open problem. retically valuable to find nontrivial special cases for which
We have also pointed out the connection of the preserthe canonical ensemble distribution could be explicitly cal-
work to the Beck-Cohen superstatistics. Incidentally, weculated, since this would allow a deeper analysis of the prop-
have shown that there are examples of entropies that can legties of the optimizing distribution.
produced within the current theory which appear to be not
admissible within the frame of Beck-Cohen superstatistics.
It would certainly be very interesting to apply the present
formalism to concrete physical systerfgsg., high precision The authors would like to gratefully acknowledge fruitful
experiments in turbulent systejrthat would defy more con- and enlightening discussions with Dr. A. Provata.
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