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It is by now well known that the Boltzmann-GibbssBGd entropy can be usefully generalized using the
nonextensive entropies, which have been applied to a wide range of phenomena. However, it seems that even
more general entropies could be useful in order to describe other complex physical systems, a task which has
already been undertaken in the literature. Following this approach, we introduce here a quite general entropy
based on a distribution ofq indices thus generalizingSq. We establish some general mathematical properties for
the new entropic functional and explore some examples. We also exhibit a procedure for finding, given any
entropic functional, theq-indices distribution that produces it. Finally, on the road to establishing a quite
general statistical mechanics, we briefly address possible generalized constraints under which the present
entropy could be extremized, in order to produce canonical-ensemble-like stationary-state distributions for
Hamiltonian systems.
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I. INTRODUCTION

Since Gibbs’ pioneering wordsf1g, it has become well
established that standard, Boltzmann-GibbssBGd statistical
mechanics and the associated thermodynamics are valid
when certain conditions are satisfied. The typical situation
occurs for microscopic dynamics exhibitingstrong chaos
si.e., positive largest Liapunov exponentd and, consistently,
exponential mixing, ergodicity, short relaxation times,
Euclidean-like occupation of phase space and usual thermo-
dynamic extensivity. This is the scenario which typically oc-
curs for short-range-interacting many-body Hamiltonian sys-
tems, even if, rigorously speaking, the strict necessary and
sufficient conditions remain to be proved. On the other hand,
a vast class of natural and artificial systems exists for which
the largest Liapunov exponent vanishes, situation which is
referred to asweak chaos. Weak chaos is typically associated
with power law, instead of exponential, sensitivity to the ini-
tial conditions and relaxations,smultidfractal occupation of
phase space and thermodynamic nonextensivity.

During the past 15 years a great deal of attention has been
focused on systems where the usual BG statistical mechani-
cal concepts prove inadequate. Phenomena which exhibit
such anomalous behavior occur in systems involving long-
range interactionsse.g., gravitationd, spin-glasses, mangan-
ites, long-range micro- or mesoscopic memory, turbulence in
nonneutral plasma and classical fluids, Lévy anomalous dif-
fusion, granular systems, phonon-electron anomalous ther-
malization in ion-bombarded solids, solar neutrinos, cosmic
rays, galactic peculiar velocities, cosmological systems,
high-energy collisions of particles, black holes, quantum en-
tanglement, lattice Lotka-Volterra growth model,Hydra viri-
dissima, financial indices and othersssee f2–4g for recent
reviewsd.

In 1988, a possible generalization of BG statistical me-
chanics was proposedf5g on the basis of the following en-
tropy

Sq = k
1 − oi=1

W
pi

q

q − 1
Sq P R; S1 ; SBG = − ko

i=1

W

pi ln piD ,

s1d

wherek is a positive constant, usually Boltzmann constant,
but from now on taken to be unity for simplicity. This gen-
eralization of BG statistical mechanics is usually referred to
as nonextensive statistical mechanics. Its connection with
thermodynamics was established inf6g and later redefined in
f7g. Its denominationnonextensivecomes from the following
property: if we have two probabilisticallyindependentsys-
tems A and B, i.e., pijsA+Bd=pisAdpjsBd, we straightfor-
wardly verify that

SqsA + Bd = SqsAd + SqsBd + s1 − qdSqsAdSqsBd. s2d

Consequently,q=1 sthe BG cased corresponds to extensivity,
whereasq,1 sq.1d corresponds to superextensivityssub-
extensivityd, where the nonnegativity ofSq has been taken
into account. We should stress at this point that the denomi-
nation “nonextensive” can be misleading. Indeed, when spe-
cial correlations are addressedsinstead of independent prob-
abilitiesd, it has been shownf8g that Sq is extensivefor the
appropriate value ofq. When no scale-invariantsor similard
correlations are present, the appropriate value ofq equals
unity.

Within nonextensive statistical mechanics, many of the
above cited anomalous systemsf2–4g have found a frame of
interpretation. The success of such type of approach has led
to even more general formalisms. Such is the case of Beck-
Cohen superstatisticsf9–12g, based on fluctuations of param-
eters such as the temperaturef13,14g. Other examples, such
as the early proposals by Curadof15g and by Anteneodo and
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Plastino f16g, as well as, more recently, Kaniadakiset al.
formalism based in thek entropyf17g, do existf18,19g that
have started to exhibit their usefulness for applications.

In this spirit we propose here a self-consistent and hope-
fully applicable generalization of standard nonextensive sta-
tistical mechanics. We will base our effort on the idea of
using not just oneq entropic index but a whole distribution
of them. The starting point, successfully applied in reasso-
ciation of folded proteinsf20g, cosmic raysf21g, and eco-
nomicsf22g, is an ordinary differential equation whose solu-
tion exhibits a crossover from aq statistics to aq8 statistics.
This solution might be thought as a generalized “exponen-
tial,” whose inverse function is therefore a generalized “loga-
rithm.” Two natural manners appear then for extending this
type of crossover to a whole spectrum ofq’s, the solution of
the full-spectrum ordinary differential equation being inter-
preted as a quite general exponential form, whose inverse is
therefore a quite general logarithm. The first manner consists
in using the generalized logarithm for defining a generalized
entropy which containsSq as a particular case; from there, as
usual, we obtain the stationary-state distribution by optimiz-
ing the generalized entropy under appropriate constraints.
This distribution doesnot necessarily have the generalized
exponential form, a nice property which however does occur
for nonextensive statistical mechanics. The second manner is
to look for a generalized entropy which, when optimized
under appropriate constraints, precisely provides the given
generalized exponential. Such entropy will in generalnot be
based on the corresponding generalized logarithm, a nice
property which, as already said, does occur for nonextensive
statistical mechanics. The first of these two manners is, al-
though far from trivial, mathematically simpler. This is the
one to which the present paper is dedicated. The second
manner remains as a task to be undertaken in a later occa-
sion.

In Sec. II we introduce our formalism by generalizing the
logarithmic and exponential functions, as well as the corre-
sponding entropic functional. In Sec. III we study some of
their basic properties. In Sec. IV we illustrate the theory with
some nontrivial examples, namely a Gaussian distribution of
q exponents and a sum of two delta functions. In Sec. V we
introduce and work out the idea of the inverse transformation
which enables to find, for a given entropic functional, the
distribution of exponents that produces it; an illustration is
provided as well. In Sec. VI we address the problem of the
constraints that can be used in order to obtain a canonical-
ensemble-like stationary distribution. In Sec. VII we investi-
gate the relation between the present formalism and Beck-
Cohen superstatistics. Finally, in Sec. VIII, we recapitulate
our results and discuss some future perspectives.

II. GENERALIZING THE NONEXTENSIVE ENTROPY
FUNCTIONAL

As well known, BG statistical mechanics is based on the
entropy functional

SBG = o
i=1

W

pi lnS 1

pi
D . s3d

This is a convenient manner of writingSBG. Indeed, at
equiprobability we havepi =1/W, hence the functional takes
the valuek lnsWd since the number ofsequald terms precisely
cancelspi in front of the logarithm. The lnsxd function is the
inverse of the expsxd function, which is the solution of the
following differential equationf2,3g:

dy

dx
= y, s4ad

ys0d = 1. s4bd

In the frame of nonextensive statistical mechanics Eqs.
s3d and s4ad are generalized as followsfEq. s4bd is main-
tained as it standsg:

Sq = o
i=1

W

pi lnqS 1

pi
D s5d

and

dy

dx
= yq. s6ad

The lnqsxd;fx1−q−1g / s1−qd function is the inverse of the
expqsxd;f1+s1−qdxg1/s1−qd function, which is the solution
of Eq. s6ad. For q=1 we have ln1sxd=lnsxd and exp1sxd
=expx, consequently we fall back to the BG case. Forq
,1, expqsxd is taken to be zero if 1+s1−qdxø0.

Following the above rational used in generalizing BG sta-
tistics to nonextensive statistics we can go further and exam-
ine the effect of the contribution of a whole distribution ofq
exponents. Within the present generalization the entropy is
assumed to be of the following form:

Shfj = o
i=1

W

pi lnhfjS 1

pi
D ; o

i=1

W

shfj, s7d

where the lnhfj x function is the inverse of the exphfj x func-
tion, defined as the solution of

dy

dx
=E

−`

+`

fstdytdt, s8ad

ys0d = 1, s8bd

with

E
−`

+`

fstddt = 1ffstd ù 0 ∀ t P Rg. s9d

We will call the non-negative, normalized distributionf
the q-spectral function (QSF)since it represents the spec-
trum of q entropic indices that contribute to the entropic
functional. In this generalized framework, forfstd=dst−1d
we recover the BG entropySBG and for fstd=dst−qd we
recover the nonextensive entropySq, whered denotes Dirac’s
distribution. In fact, it is not necessary to impose normaliza-
tion onto fstd; it is enough to only ask for the integral
e−`

+`fstddt to befinite. If the function fstd is not normalized,
it introduces a very simple modification, namely it multiplies
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the associated generalized logarithm by a constantf23g. It is
therefore just for simplicity that we hereafter demandfstd to
be normalized.

We will now try to establish the form of lnhfjsxd. By defi-
nition of the exphfj x function, it is

dfexphfjsxdg

dx
=E

−`

+`

fstdfexphfjsxdgtdt, s10d

hence, by settingx=lnhfj y,

dy

dflnhfjsydg
=E

−`

+`

fstdytdt, s11d

hence

lnhfjsxd =E
1

xHE
−`

+`

fstdutdtJ−1

du f∀ x P s0, +`dg.

s12d

At equiprobabilitysi.e., pi =1/Wd we have

Shfj =E
1

WHE
−`

+`

fstdutdtJ−1

du. s13d

The generalized logarithm of Eq.s12d appears to be iso-
morphic to the generalized logarithm introduced recently by
Naudts f24g who started from a different perspective. The
Naudts logarithm is

lnfsxd =E
1

x du

fsud
. s14d

In our case

fsxd =E
−`

+`

fstdxtdt. s15d

It can also be proven, using Eq.s57d, that for any given
fsxd the corresponding QSF is

fsqd =
1

2p
E

−`

+`

fseivde−iqvdv. s16d

III. PROPERTIES OF THE GENERALIZED LOGARITHM
AND EXPONENTIAL FUNCTIONS AND THE

CORRESPONDING ENTROPY

We list now some useful properties that can be easily
proven for anynormalizeddistribution fsqd, given the fact
that fsqd is non-negative:

lnhfjs1d = 0. s17d

Hence

exphfjs0d = 1. s18d

Also

U d

dx
lnhfjsxdU

x=1
= U d

dx
exphfjsxdU

x=0
= 1, s19d

as well asmonotonicity, more precisely

d

dx
lnhfjsxd . 0 ∀ x P s0, +`d, s20d

and

d

dx
exphfjsxd . 0 ∀ x P Aexphfj

, s21d

wherePAexphfj
is the set of admissible values ofx for the

non-negative exphfjsxd function. When no negativeq contrib-
utes fi.e., if fsqd=0, ∀q,0g, then the following properties
hold also

d2

dx2 lnhfjsxd , 0 sconcavityd s22d

and

d2

dx2 exphfjsxd , 0 sconvexityd. s23d

Analogously, when no positiveq contributes fi.e., if
fsqd=0, ∀q.0g, then

d2

dx2 lnhfjsxd . 0 sconvexityd, s24d

and

d2

dx2 exphfjsxd . 0 sconcavityd. s25d

Also, if no q above unity contributesfi.e., if fsqd=0,
∀q.1g, then

lim
x→+`

lnhfjsxd = + `, s26d

and, if noq below unity contributesfi.e., if fsqd=0, ∀q,1g,
then

lim
x→0+

lnhfjsxd = − `. s27d

IV. EXAMPLES OF THE GENERALIZED ENTROPY

A. Gaussian distribution

As a first example of QSF, let us consider a Gaussian
distribution of entropic indices around a central indexq with
a variances.0:

fstd =
1

sÎ2p
e−st − qd2/2s2

. s28d

Using Eq.s12d we obtain, for the corresponding general-
ized logarithm,
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lnhq,sj x =
Îp

Î2s
es1 − qd2/2s2FerfS1 − q

Î2s
D

− erfS1 − q − s2 ln x
Î2s

DG , s29d

where erf is the error function. As special cases we obtain

lnhq,0jsxd =
x1−q − 1

1 − q
s30d

and

lnh1,sjsxd =
Îp

Î2s
erfSs ln x

Î2
D . s31d

The entropy functional is given by

Shq,sj =
Îp

Î2s
es1 − qd2/2s2o

i=1

W

piFerfS1 − q
Î2s

D
− erfS1 − q + s2 lns1/pid

Î2s
DG . s32d

In Fig. 1 we present, for typical values ofsq,sd, the en-
tropic functionshq,sjspd, the entropyShq,sjspd for a two-state
system, and the microcanonical entropyShq,sjsWd as a func-
tion of the number of statesW.

B. Two entropic indices

The general problem of two indices in a QSF corresponds
to the form

fstd = a1dst − q1d + a2dst − q2d. s33d

sIf we wish to have a normalized QSF we need to require
a1+a2=1.d Since the general case of Eq.s30d is quite un-
tractable, we will focus our attention onto two special cases,
referred to as thesymmetricand theasymmetricones. Let us
first consider the case where the two indices are symmetric
with regard toq=1, i.e.,q1=1−L /2 andq2=1+L /2 anda1
=a2=1/2. Wethen have

fstd =
1

2
fdst − 1 +L/2d + dst − 1 −L/2dg s34d

hence, using Eq.s12d,

lnLsxd =E
1

x 2

u1−L/2 + u1+L/2du=
4 arctansxL/2d − p

L
. s35d

In the limit L→0+ we recover lnLx=ln x and we will thus
be driven back to the BG case. The entropy functional is
given by

SL = o
i=1

W

pi

4 arctanspi
−L/2d − p

L
. s36d

It can be readily seen that, for equiprobability, the en-
tropic functional is given by

SL =
4 arctansWL/2d − p

L
. s37d

Notice that, whenW→`, the entropySL remains finite, in
contrast with the BG case.

FIG. 1. The entropic functionshq,sjspd stopd, the entropy
Shq,sjspd for a two-state systemsmiddled, and the W-state
microcanonical-ensemble entropyShq,sjsWd sbottomd. The four lines
correspond toq=1 ands=0.1, s=0.5, s=1, ands=0 sBG cased.
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In Fig. 2 we present, for typical values ofL, the entropic
functionsLspd, the entropySLspd for a two-state system, and
the microcanonical entropySLsWd as a function of the num-
ber of statesW.

We consider now the asymmetric case, defined as the spe-
cial case of Eq.s33d where one of the indices equals unity.
Then we have

fstd = a1dst − 1d + aqdst − qd sa1 + aq = 1d. s38d

This form might be of physical relevance. As already
mentioned, unlessa1+aq=1, fstd is not normalized ssee

f23gd. The differential equation corresponding to thesa1,aqd
generic case has already been successfully usedsin order to
describe, for instance, the reassociation of folded heme pro-
teins f20g and the flux of cosmic raysf21gd.

It can be proven that the corresponding generalized loga-
rithm is

lnha1,aq,qjsxd =
1

a1s1 − qd
lnF1 −

a1

a1 + aq
s1 − x1−qdG . s39d

We straightforwardly verify that lnha1,0,qjx=ln x and that
lnh0,1,qjx=lnq x. The corresponding entropic functional can be
written as

Sha1,aq,qj =
1

a1s1 − qdoi=1

W

pi lnF1 −
a1

a1 + aq
s1 − pi

q−1dG . s40d

In the microcanonical case this can be written as

Sha1,aq,qj =
1

a1s1 − qd
lnF1 −

a1

a1 + aq
s1 − W1−qdG . s41d

Like in the previous case, it can be shown that, forq.1,
the entropy remains finite whenW→ +`. In Fig. 3 we
present, for typical values ofsq,aqd and a1=1−aq, the en-
tropic function sha1,aq,qjspd, the entropySha1,aq,qjspd for two
states, and the entropySha1,aq,qjsWd in the microcanonical en-
semble as a function of the number of statesW.

V. CALCULATION OF THE QSF FOR A GIVEN ENTROPIC
FUNCTIONAL

We have seen so far how from a given QSF we can pro-
duce the corresponding entropic functional. We will now
work in the reverse way: given a specific entropic functional,
we will find sif possibled the QSF that produces it. Consider
a general entropic functional of the form

S= o
i=1

W

sspid, s42ad

ssxd = x lnhfjS1

x
D . s42bd

We have

lnhfjsxd =E
1

x du

E
−`

+`

fstdutdt

⇔
d

dx
flnhfjsxdg

=
1

E
−`

+`

fstdxtdt

⇔ E
−`

+`

fstdxtdt

=
1

d

dx
flnhfjsxdg

⇔ E
−`

+`

fstdet ln xdt =
1

d

dx
flnhfjsxdg

.

s43d

FIG. 2. The entropic functionsLspd stopd, the entropySLspd for
a two-state systemsmiddled, and the W-state microcanonical-
ensemble entropySLsWd sbottomd. The four lines correspond toL
=1, L=5, L=10, and forL=0 sBG cased.
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We set

v = − i ln x. s44d

Then, from Eq.s43d, we obtain

1
Î2p

E
−`

+`

fstdeivtdt =
1

Î2p

eiv

d

dv
flnhfjseivdg

. s45d

The LHS of Eq.s45d is however nothing but the Fourier
transform off. Thus, inverting the transform, we have

fsqd =
i

2p
E

−`

+` eivs1−qd

d

dv
flnhfjseivdg

dv. s46d

Inserting the entropy functional of Eq.s7d into Eq. s46d
we finally get

fsqd =
1

2p
E

−`

+` e−ivq

sse−ivd − i
d

dv
fsse−ivdg

dv. s47d

Equations47d is quite important. Indeed, it shows that the
QSF corresponding to a large class of entropy functionals
can be explicitly calculated. It is straightforward to check
that for s given by BG or by nonextensive statistics we get
fsqd=dsq−q0d as anticipated.

In order to be able to derive the normalized QSF associ-
ated with a given entropy, the entropy functional must fulfill
the following requirements.

s1d It must be possible to write the total entropyS as a
sum of the entropic functions for each statefEq. s39dg.

s2d The functions must satisfyss1d=0, which is in fact a
quite reasonable requirement for an entropy.

s3d Furthermore, we must have:

Udssxd
dx

U
x=1

= − 1. s48d

This condition is equivalent to having the QSF normalized to
unity. If we abandon the normalization of the QSF then we
can consistently drop this last requirement.

s4d The function ssxd must be definedsor analytically
continuedd on the unitary circle and it must also be differen-
tiable in the same domain.

s5d The integral of Eq.s47d must converge.
As a nontrivial illustration, we will now use the present

method to find the QSF associated with an exponential en-
tropic form. Let us assume

S= o
i=1

W

pis1 − espi−1d/pid, s49d

hence

ssxd = xs1 − esx−1d/xd. s50d

It is trivial to see that Eq.s50d fulfills all the criteria set
above, and we can thus find a normalized QSF for it. Using
Eq. s47d we get

fsqd =
1

e
o
n=0

`
dsq − nd

n!
. s51d

Although different, entropys46d has some resemblance with
that introduced by Curadof15g. We claim no particular
physical justification for the forms46d. In the present con-
text, it has been chosen uniquely with the purpose of illus-
trating the mathematical procedure involved in the inverse
QSF problem.

FIG. 3. The entropic functionsha1,aq,qjspd stopd, the entropy
Sha1,aq,qjspd for a two-state systemsmiddled, and the W-state
microcanonical-ensemble entropySha1,aq,qjsWd sbottomd. The four
lines correspond toq=2, a1=1−aq, and aq=0.9, aq=0.6, aq=0.3,
andaq=0 sBG cased.
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VI. THE CANONICAL ENSEMBLE

To obtain, for the canonical ensemble within the standard
nonextensive thermostatistics, the distribution corresponding
to the physically relevant stationary state, we must optimize
the entropic functional

Sq = o
i=1

W

pi lnqS 1

pi
D . s52d

Besides normalization of the probabilities, we use the fol-
lowing energy constraintsseef7,25g and references thereind:

oi=1

W
pi

qEi

oi=1

W
pi

q
= U, s53d

wherehEij are the eigenvalues of the Hamiltonian. The op-
timizing distribution can be written as a generalized expo-
nential form as follows:

pi =
expq− bEi

oi=1

W
expq− bEi

, s54d

whereb is an inverse-temperature-like parameter. As we see,
the stationary distribution involves precisely theinverse
function of the generalized logarithm that entered into the
definition of the entropy. The following question arises:In
the general case considered in the present paper, is it pos-
sible to write the energy constraint in such a way that the
stationary state distribution is described by the inverse func-
tion of the generalized logarithm used in the definition of the
entropy?Let us right away say that, if this is possible, we
have not succeded in doing it. It seems that this nice property
is not very general, and it appears to be lost when we extend
further sor differentlyd than nonextensive thermostatistics.

Let us present an attempt along that line. We assume that
the entropy is given by Eq.s7d. The corresponding energy
constraint is assumed to be given as follows:

oi=1

W E
−`

+`

fsqdpi
qdqEi

oi=1

W E
−`

+`

fsqdpi
qdq

= U. s55d

In the case wherefsqd=dsq−q0d we get back to the usual
nonextensive constraint.

The stationary state canonical probability distribution is
the one that optimizes the entropy functional under this en-
ergy constraint. In all the examples that we have given in
Sec. IV, this calculation is analytically untractable. Neverthe-
less, it can be trivially shown that the solutionis not the
inverse function of the generalized logarithm that entered
into the definition of the entropy. It seems thus, that the ex-
ponential form is not a generic feature but rather a peculiar
“coincidence,” only valid for the nonextensive family of en-
tropiesSq. It remains, however, as an open and rather chal-
lenging problem to come up with an energy constraint that
would produce the corresponding generalized exponential in
the generic case.

VII. CONNECTION WITH THE BECK-COHEN
SUPERSTATISTICS

Recently, a generalization of the BG statistics has been
proposed by Beck and Cohen. This generalized superstatis-
tics assumes that there may be strong deviations from the
classical BG case when there are temperature fluctuations
within the system. Along that line, the Boltzmann factor
exps−bEd is generalized as follows:

BsEd =E
0

+`

gsbde−bEdb, s56d

wheregsbd is the probability distribution of the inverse tem-
perature in the system. Quite recently, an entropic functional
has been derived that corresponds to superstatistics. This
functional is of the form

S= o
i

sspid, s57ad

ssyd =E
0

x a + K−1syd

1 −
K−1syd

E*

, s57bd

where

Ksyd =
Bsyd

E
0

+`

Bsuddu

. s57cd

In Eqs. s57ad–s57cd, E* stands for the lowest admissible
energy for the system anda is a Lagrange multiplier. Using
Eq. s57bd and Eq.s47d we can in principle get the QSFfsqd
for a given temperature distribution functiongsbd. Thus, in
principle at least, the various superstatistics can be accom-
modated into the presently proposed formalism.

There are certain cases however, where the present for-
malism can go further. For example, it appears that through
superstatistics we can only produce the so-called nonexten-
sive entropiesSq for qù1, while in the present formalism we
can have them for arbitrary values ofq.

VIII. CONCLUSIONS

In the present work, we study the properties of a general-
ized entropic function based on a distribution ofq entropic
indices. We introduce the idea ofq-spectral functionsQSFd
and exhibit three nontrivial examples: the case of a Gaussian,
as well as both symmetric and nonsymmetric choices within
a sum of two delta functions. We also introduce the notion of
an inverse QSF problem, in the sense that, given some en-
tropic functional, we present a procedure for explicitly cal-
culating the QSF that produces it.

Also, we have briefly discussed the canonical ensemble
and its corresponding energy constraint. We have verified
that, in the general case, the stationary state probability dis-
tribution seems to benot the generalized exponential which
is the inversefunction of the generalized logarithm used to
define the entropy. Altering the form of the constraint in
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order to produce such exponential remains therefore as an
open problem.

We have also pointed out the connection of the present
work to the Beck-Cohen superstatistics. Incidentally, we
have shown that there are examples of entropies that can be
produced within the current theory which appear to be not
admissible within the frame of Beck-Cohen superstatistics.

It would certainly be very interesting to apply the present
formalism to concrete physical systemsse.g., high precision
experiments in turbulent systemsd that would defy more con-

ventional approaches. On a different vein, it would be theo-
retically valuable to find nontrivial special cases for which
the canonical ensemble distribution could be explicitly cal-
culated, since this would allow a deeper analysis of the prop-
erties of the optimizing distribution.
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