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We carry out numerical experiments on a one-dimensional driven lattice gas to elucidate the statistical
properties of steady states far from equilibrium. By measuring the bulk density diffusion constantD, the
conductivity s, and the intensity of density fluctuations,x, we confirm that the Einstein relationDx=sT,
which is valid in the linear response regime about equilibrium, does not hold in such steady states. Here,T is
the environment temperature and the Boltzmann constant is set to unity. Recalling that the Einstein relation
provided the first step in the construction of linear response theory, we attempt to extend it to a generalized
form valid in steady states far from equilibrium. In order to obtain new relations among measurable quantities,
we define a complex effective temperatureQ− iF from studying the static response of the system to a slowly
varying potential in space. ReplacingT in the Einstein relation by the real part of the effective temperatureQ,
we numerically confirm that the relationDx=sQ holds in the nonequilibrium steady states far from equilib-
rium that we study. In addition to this extended form, we find the relationsL /2pdcx=sF, wherec represents
the propagation velocity of density fluctuations.
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I. INTRODUCTION

In 1905, Einstein derived the relationD=mT between the
diffusion constantD for noninteracting Brownian particles
suspended in an equilibrium fluid of temperatureT and
mobility m with respect to an external forcef1g. sHere, the
Boltzmann constant is set to unity.d This relation is now
called the “Einstein relation.” Through the development of
linear response theory, the original Einstein relation was ex-
tended to the form

Dx = sT, s1d

which is valid for interacting many-body systemsf2g. Here,
D should be considered as the bulk density diffusion con-
stant,x is the intensity of density fluctuations, ands is the
conductivity.

The Einstein relation is a universal relation in the linear
response regime about equilibrium. It represents the first step
in the construction of nonequilibrium statistical mechanics in
the linear response regime. With this in mind, if the Einstein
relation can be extended to some form valid for nonequilib-
rium steady statessNESS’sd far from equilibrium, realizing
an understanding of this form will be an important step in the
construction of a statistical mechanical theory of NESS’s.

With this motivation, because it is simpler to study one-
particle NESS systems than many-body systems, we previ-
ously analyzed a one-particle Langevin equation with a tilted
periodic potentialf3g. In that study, it was found that there
exists an extended Einstein relation with an effective tem-
perature that can be measured independently of the diffusion
constant and the differential mobility. Then, it is natural to
ask whether that result for a Brownian particle in NESS’s
can be extended to many-body interacting systems. In the
present paper, we address this question by studying a one-
dimensional driven lattice gassDLGd f4–6g as an example of
a many-body interacting system.

II. MODEL

Let hx be an occupation variable defined on each sitex of
a one-dimensional periodic latticex=1,2, . . . ,L. The vari-
able hx takes the value 1 if thexth site is occupied by a
particle and 0 if it is empty. In order to describe the model
simply, we introduce the variablehL+1, which is assumed to
be equal to h1. The array of occupation variables
sh1, . . . ,hLd is denoted byh and called the “configuration.”

The time evolution ofh is described by the following
rule: At each time step, randomly choose a nearest-neighbor
pair x andx+1, where 1øxøL, and exchange the values of
hx and hx+1 with probability csx;hd given by csx;hd
=ae−bQsh→hxd/2, wherehx is the configuration obtained from
h through this exchange,b=1/T is the inverse temperature
of the environment, andQsh→hxd represents the heat ab-
sorbed from the heat bath as a result of the change of con-
figurationh→hx in one Monte Carlo stepsMCSd. The con-
stanta is determined so thatcsx;hdø1. The particle number
N=ox=1

L hx is conserved throughout the time evolution, and
the averaged densityr̄=N/L is a parameter of the model.

In this paper, we study the DLG for which

Qsh → h8d = H0sh8d − H0shd − Eo
x=1

L

jxsh → h8d, s2d

whereE is a constant driving force,H0shd is the equilibrium
HamiltonianH0shd=−ox=1

L hxhx+1, and jxsh→h8d is the net
number of particles hopping fromx to x+1 for the configu-
ration changeh→h8 in one Monte Carlo step. In the argu-
ment below,k lE

s represents the statistical average in a NESS
with driving forceE.

Throughout this paper, we fixb=0.5, and the numerical
parametera introduced in the exchange probabilitycsx;hd is
set to exps−3bd. This value is chosen so thatcsx,hdø1 in
the caseEø5. As a typical example of a NESS far from
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equilibrium, we study this model withE=4, and we consider
the casesr̄=19/64 and 0.5, withL=64, 128, and 256. We
remark that because we attempted to evaluate precisely mea-
surable quantities introduced in the next section, it was hard
to obtain data in the caseL.256.

III. EINSTEIN RELATION

Because we have little knowledge regarding relations
characterizing NESS’s of the DLG, let us start by investigat-
ing the validity of the Einstein relations1d by defining the
quantitiess, x, andD for this model. First, using the aver-

aged currentJ̄E, which is defined by

J̄E =
1

LKo
x=1

L

jxsh → h8dL
E

s

, s3d

the conductivitys is expressed as

s =
dJ̄E

dE
. s4d

Second, the intensity of large scale density fluctuations is
defined by

xsLd = kuĥ1u2lE
s , s5d

where

ĥnstd =
1
ÎL

o
x=1

L

hxsLtdeis2pn/Ldx. s6d

Third, the density diffusion constantD is defined as the co-
efficient of the diffusion term of the evolution equation de-
scribing the averaged behaviors of the density field. As an
example of such behaviors, we consider the time evolution
of the density field after a slowly varying weak potentialVx
is turned on att=0 in the case that the system is in a steady
state. HereVx is given by

Vx =
1
ÎL

V̂1e
−is2p/Ldx + c.c., s7d

where c.c. denotes the complex conjugate andV̂1 is a com-

plex number satisfyinguV̂1u /ÎL!1.
The averaged behavior in this case is represented approxi-

mately by the time evolution of a quantitykĥ1stdlE
V, where

k lE
V denotes the statistical average under the condition that

the equilibrium Hamiltonian becomesHVshd=H0shd
+ox=1

L hxVx when t.0. We define the response function
againstVx as

Rstd = − lim
uV̂1u→0

kĥ1stdlE
V

V̂1

. s8d

In order to see the behavior ofRstd, in Fig. 1, we plot

gstd = logU−
kĥ1s`dlE

V

V̂1

+
kĥ1stdlE

V

V̂1

U . s9d

Note that we have checked thatgstd takes the same value for

the casesuV̂1u /ÎL=0.05, 0.1, 0.15, and 0.2. It implies that we
can estimate the value of the right-hand side of Eq.s8d
within a numerical accuracy. It is seen in Fig. 1 thatgstd has
a linear slope in the early-time regime. Therefore, using this
linear slope,D is estimated from the form

uRs`d − Rstdu = const3 e−Ds2p/Ld2t s10d

in the early-time regime.sWe remark that we cannot deny a
possibility that the linear slope shown in the early-time re-
gime might be caused by finite-size effects. This is an unre-
solved problem.d

Using the above definitions ofs, x, and D, we confirm
the validity of Eq.s1d numerically for the equilibrium case
E=0. With regard to other relations in the linear response
theory, we can derive Eq.s1d from the Green-Kubo relation
and the fluctuation response relation, which have been
proved for DLG modelsf7g. Contrastingly, in NESS’s for our
DLG, we find that the two sides of Eq.s1d differ greatly.
Specifically, in the caser̄=19/64, we have confirmed that
ssLd and xsLd converge tos* =0.032 andx* =0.26 in the
limit L→`, while D has the anomalousL dependence
DsLd~ÎL, as shown in Fig. 2. This anomalous behavior is
essentially the same as that reported in Ref.f5g. Also, in the
caser̄=0.5, Eq.s1d is not valid because we have confirmed
that s* =0.037 andx* =0.32 in the limitL→`, while DsLd
~ÎL ssee Fig. 2d.

Now we ask whether it is possible to obtain an extension
of the Einstein relation valid for NESS’s of interacting many-
body systems by defining an appropriate measurable effec-
tive temperature. This question arises naturally, because we
have found that such an extended Einstein relation does hold
for NESS’s of one-particle systems. In this relation, the tem-
perature of the environment,T, is replaced by an effective
temperature, which can be measured independently of the
other quantities appearing in the Einstein relationf3g. By
analogy to that case, we seek to define an effective tempera-

FIG. 1. gstd is plotted with error bars in the caser̄=0.5,L=64,

and uV̂1u /ÎL=0.1 fsee Eq.s10dg. The slope of the fitted linesthe
dotted lined in the early stagest,150 MCSd corresponds to
Ds2p /Ld2. The slope ofgstd in the late stagest.150 MCSd differs
from Ds2p /Ld2.
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ture which when used in place ofT in Eq. s1d provides an
extended Einstein relation that is valid for NESS’s in inter-
acting many-body systems.

IV. EXTENDED EINSTEIN RELATIONS

In a previous study, we showed that the effective tempera-
ture appearing in the Einstein relation valid for NESS’s of a
Brownian particle can be measured by adding a slowly vary-
ing potential to the systemf3g. In a similar way, we wish to
determine an effective temperature by adding to the system a
slowly varying potential given by Eq.s7d. Due to the influ-
ence of this potential, we havekĥ1lE,V

s Þ0, wherek lE,V
s de-

notes the steady-state average in the system with driving
force E and potentialVx. Recalling that the relation

kĥ1lE=0,V
s = − V̂1

x

T
+ osuV̂1ud s11d

holds in the equilibrium case, we define the effective tem-

peratureû1 in NESS’s as

− lim
uV̂1u→0

kĥ1lE,V
s

V̂1

=
xsLd

û1

. s12d

Note that in NESS’s, the left-hand side of Eq.s12d is a com-
plex number in general. To see this concretely, we show that
khxlE,V

s under the influence of the potentialVx

=D sins2px/Ld has a component of coss2px/Ld ssee Fig. 3d.
Expressing explicitly thatû1 is a complex number, we write

û1 = Q − iF, s13d

whereQ and F are real numbers. In Fig. 5,Q and F are
displayed as functions ofL in the caser̄=19/64 andr̄=0.5.
It is seen that we have the anomalousL dependencesQsLd
~ÎL andFsLd~L. We remark thatF=0 in the caser̄=0.5
ssee Fig. 4d.

Noting that, from the graphs in Figs. 2 and 5,DsLd and
QsLd are both approximately proportional toÎL, we investi-
gate whether the Einstein relation can be extended to the
NESS’s by simply replacingT in s1d by QsLd. In Fig. 6, we
plot DsLdxsLd as a function ofssLdQsLd for the casesr̄

=19/64 and 0.5, withL=64, 128, and 256. The graph clearly
shows that the extended Einstein relation

DsLdxsLd = ssLdQsLd s14d

holds within the precision of the numerical computationsf8g.

V. FAILURE OF THE EXTENDED FLUCTUATION
RESPONSE RELATION

There are universal relations in the linear response regime
about equilibrium, such as the Einstein relation, the

FIG. 2. D as a function ofL for the caser̄=19/64ssolid circlesd
and r̄=0.5 sopen circlesd. The dotted line and the solid line repre-
sent 0.042ÎL+0.20 and 0.068ÎL+0.0413, respectively.

FIG. 3. The profiles ofkhxlE,V
s under the influence ofVx

=D sins2px/Ld in the caser̄=19/64 andL=64. D=0.1, 0.2, 0.3,
and 0.4 correspond to the circle, square, triangle, and plus,
respectively.

FIG. 4. The profiles ofkhxlE,V
s under the influence ofVx

=D sins2px/Ld in the caser̄=0.5 andL=64. D=0.1, 0.2, 0.3, and
0.4 correspond to the circle, square, triangle, and plus, respectively.

FIG. 5. Q andF as functions ofL in the casesr̄=19/64ssolid
symbolsd andr̄=0.5 sopen symbolsd. QsLd andFsLd correspond to
the circle and square, respectively. The solid line, the dotted line,
and the dash-dotted line represent 0.36ÎL+1.4, 0.21L, and 0.58ÎL
+0.26. Note thatT=2.
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fluctuation-response relationsFRRd, and the Green-Kubo re-
lation. One may expect that other relations can be extended
in a similar way as was done for the Einstein relations14d in
NESS’s far from equilibrium. In this section, we investigate
an extension of the FRR.

The FRR connects the time-dependent response function
and the time correlation function. In order to define the re-
sponse function, we consider the situation that the perturba-
tion s7d is applied to the system whent=0. The response
function Rstd in this situation is defined by Eq.s8d. In the
equilibrium case, we can prove the FRR

Rstd =
1

T
Cstd, s15d

with the time correlation function

Cstd =
1

2
kuĥ1std − ĥ1s0du2lE

s . s16d

Because the Einstein relation was extended with the re-

placement ofT by û1, we expect that Eq.s15d can be ex-
tended in the form

Rstd =
1

û1

Cstd. s17d

Specifically, we numerically investigate the validity of Eq.
s17d in the caser̄=0.5 andL=64. BecauseF=0 in the case
r̄=0.5, Eq.s17d is rewritten asRstd=Q−1Cstd. In Fig. 7, we
plot Rstd as a function ofCstd during an interval 0ø t
ø800 MCS. It is seen thatRstd deviates fromQ−1Cstd sub-
stantially in an early-time regimes0ø tø150 MCSd where
the diffusion constantD was definedfsee Eq.s10dg. This

implies that Eq.s17d is not valid. Note thatRs`d= û1
−1Cs`d

holds by the very definition ofû1 given by Eq.s12d.
We remark that a generalized version of FRR of the non-

linear Langevin dynamics without the detailed balance con-
dition was presented by several authorsf17g. However, in
their formalism, a generalized force which defines a response
function is chosen so that the simple form of FRR holds, and
it seems that their response function cannot be measured di-
rectly in experiments. In contrast to the previous studies, we

consider a relation betweenCstd and Rstd which are mea-
sured directly.

VI. INTERPRETATION

In Secs. IV and V, we find that the Einstein relations14d is
extended with the diffusion constantD which is measured
from Rstd in the early-time regime and the effective tempera-
ture Q, while the extended FRRs17d is not valid unfortu-
nately. In paragraphs below, we shall provide the phenom-
enological understanding of validity of Eq.s14d and
invalidity of Eq. s17d.

The extended Einstein relations14d can be explained from

the following argument. LetJ̄sr ,Ed be the averaged particle
current in a system with densityr and driving forceE. When
the slowly varying potentials7d is applied to this system, first

the current should becomeJ̄skhxlE,V
s ,E−dVx/dxd, and as a

result a diffusive currentD, kshx+1−hxdlE,V
s should appear so

as to make the total current homogeneous inx; that is, it is
reasonable to assume that the quantity

J̄SkhxlE,V
s ,E −

dVx

dx
D − Dkshx+1 − hxdlE,V

s s18d

is independent ofx in a steady state. This can be rewritten as

ckĥ1lE,V
s + is

2p

L
V̂1 + i

2p

L
Dkĥ1lE,V

s = oS uV̂1u
L

,
kĥ1lE,V

s

L
D ,

s19d

wherec=]J̄sr̄ ,Ed /]r̄ represents the propagation velocity of
density fluctuations. From Eqs.s12d and s19d, we obtain

sû1 = Dx − i
L

2p
xc. s20d

This leads to the extended Einstein relations14d.
Here, we note that a microscopic derivation of Eq.s18d is

quite difficult. In particular, we have not been able to show
thatD defined by Eq.s10d andD in Eq. s18d are identical. In
relation to this point, we note that a different value ofD is
obtained if we consider the time regimetù150 MCS in Fig.
1. Using this value ofD, the relations14d cannot be con-

FIG. 6. Dx as a function ofsQ. The casesr̄=19/64 andr̄
=0.5 correspond to the solid symbols and the open symbols, respec-
tively. The casesL=64, 128, and 256 correspond to the square,
triangle, and circle, respectively.

FIG. 7. Rstd as a function ofCstd in the caser̄=0.5 andL=64
during an interval 0ø tø800 MCS. The slope of the thin line rep-
resentsQ−1.
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firmed numerically. This result suggests that memory effects
in a single-mode description cannot be neglected in the late
stage of the relaxation process after the potential is turned
on. Because the memory effects arise from a nonlinear cou-
pling between different modes, the simple assumptions18d in
NESS’s is far from the trivial.

The nontrivial nature of the extended Einstein relation
s14d can be seen through the failure of the extended FRR
s17d. For example, because we cannot observe the exponen-
tial decaying regime ofCs`d−Cstd even in the early-time
regime unlike the behavior ofRs`d−Rstd ssee Fig. 1d, we
cannot define the diffusion constantD properly from the as-
sumption that loguCs`d−Cstdu=−Ds2p /Ld2t+const, though
in the equilibrium case, the same value ofD is obtained
whether it is defined from loguCs`d−Cstdu or loguRs`d
−Rstdu because of the FRRs15d.

The nonexponential decaying behavior ofCstd may be
related to a long-time tail of the time correlation function of
current fluctuations. Indeed, using the continuity equation,
Cstd is expressed by

Cstd = S2p

L
D21

2KUok=1

Lt

o
x=1

L

jx„hsk − 1d → hskd…eis2p/LdxU2L
E

s

.

s21d

It is expected that the behavior ofCstd in a shorter-time
regime than the diffusion timeD−1s2p /Ld−2 has common
features with that of

Bstd =
1

2KUok=1

Lt

o
x=1

L

f jx„hsk − 1d → hskd… − J̄EgU2L
E

s

,

s22d

which is displayed in Fig. 8 in the caser̄=0.5 andL=128.
The graph is consistent with the relationBstdt~ t4/3 which
was derived from the theoretical analysis of fluctuating hy-
drodynamicsf5g.

We remark that these observations onRstd andCstd can-
not be explained from the assumption that the time evolution
of the density field is described by a linear Langevin equa-
tion of ĥ1std, because under this assumption both relations

s14d ands17d are derived though Eq.s17d was found not too
valid. This implies that the dynamical aspect of the system is
too complicated. It may be surprising that the extended Ein-
stein relation holds with the appropriate choice ofD.

Finally, from Eq.s20d, we find a new relation

L

2p
csLdxsLd = ssLdFsLd. s23d

We investigated the validity of Eq.s23d in numerical experi-
ments. We numerically measuredc from the oscillatory be-
havior of the time correlation functions16d. In one example
of this analysis, we considered allti satisfyingCstid−Cs`d
=0, whereti−1, ti. Then,c can be estimated from the relation

c
2p

L
sti+1 − tid = p. s24d

We have confirmed thatc converges toc* =0.17 in the case
r̄=19/64 in the limit L→`. In Fig. 9, we plot
sL /2pdcsLdxsLd as a function ofssLdFsLd for the casesr̄
=19/64, withL=64, 128, and 256.sNote thatc=F=0 for
the caser̄=0.5.d This graph clearly shows that the extended
Einstein relations23d holds within the precision of the nu-
merical computations.

VII. THERMODYNAMIC CONSIDERATION

Here, we devote space to thermodynamic consideration
related to our results. We first study the equilibrium caseE
=0 by considering a situation that a perturbation potential is
applied to the equilibrium system. When we choose a slowly
varying potential, we can regardVx and khxlE=0,V

s as smooth
quantitiesVsxd and rsxd. By use of the chemical potential
msr ,Td of the equilibrium systemfwithout the potential
Vsxdg, a density profile under the influence ofVsxd is deter-
mined by a relation that

m„rsxd,T… + Vsxd = const inx, s25d

which is equivalent to

FIG. 8. Bstdt as a function oft in the caser̄=0.5 andL=128.
The guided linesthe dashed lined representsBstdt~ t4/3.

FIG. 9. k−1cx as a function ofsF, wherek=2p /L, for the case
r̄=19/64. Note that for the caser̄=0.5,c=F=0. The casesL=64,
128, 192, and 256 correspond to the square, triangle, diamond, and
circle, respectively. The straight line representssL /2pdcx=sF. The
error bars represent the standard deviations of the statistical
samples. In addition to the statistical error bars, there exists a fitting
error which is less than 5% of the quantities.
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S ]m

]r
D

T

dr

dx
+

dV

dx
= 0. s26d

Note that the fluctuation relation

S ]m

]r
D

T

−1

=
x

T
s27d

holds in the equilibrium state. As another relation in this
situation, we have the total zero-current condition

− D
dr

dx
+ J̄Sr,−

dV

dx
D = 0. s28d

By expanding the second term of Eq.s28d in dV/dx, we
obtain

D
dr

dx
+ s

dV

dx
= 0. s29d

A combination of Eqs.s26d, s27d, ands29d leads to the Ein-
stein relations1d. In the equilibrium case, we can show just
the opposite that a combination of the Einstein relations1d
and the relations29d derives the fluctuation relations27d
through the relations25d.

In connection with the above-mentioned thermodynamic
consideration, we introduce our previous study on a two-
dimensional DLGf9g. First, we remark that an appropriate
definition of the chemical potential for a NESS is not known
unless we use the local equilibrium assumption. Because in
NESS’s far from equilibrium, the local equilibrium assump-
tion is not valid, we attempted to define a chemical potential
without this assumption. Focusing on a density response in a
direction perpendicular to the driving force, we defined a
nonequilibrium chemical potential by a similar relation with
Eq. s25d and constructed an extended thermodynamic func-
tion from measurable quantities. As a nontrivial prediction,
we showed numerically that the rate function of density fluc-
tuation was determined by this extended thermodynamic
function. A theoretical framework behind these observations
has been uncoveredf10g. We remark that the Einstein rela-
tion s1d was also observed in a direction perpendicular to the
driving forcef11g and that the argument in the previous para-
graph can be applied to this case.

In the present paper, we have reported that the extended
Einstein relations14d and the relations23d hold in NESS’s,
and a combination of both the relations and Eq.s19d that
corresponds to the Fourier transform of Eq.s29d leads to the
definition of the effective temperatures12d. Because in the
caseE=0 the relations11d is derived from Eqs.s26d and
s27d, one might expect that there exists a nonequilibrium
chemical potential even for the present NESS’s. For ex-
ample, as a trial, one might propose a nonequilibrium chemi-

cal potentialm̂1sr̂1, û1d as

m̂1sr̂1,û1d + V̂1 = 0. s30d

However, Eqs.s30d and s12d lead to

S m̂1

r̂1
D−1

=
x

û1

. s31d

Because the relations31d is hard to be interpreted as an ex-
tended form of the fluctuation relations27d, the definition
s30d seems not to be useful. Taking into consideration that
the relations30d is just one trial, there might be a plausible
definition of a chemical potential for NESS’s, but we have
not found it yet. The difficulty that does not arise in the
equilibrium case lies in the wave number dependence ofD,
as is expected from the system size dependence ofD shown
in Fig. 2. This wave number dependence is not observed in
the equilibrium case and prevents us from pushing ahead
further thermodynamic consideration.

VIII. DISCUSSION

Equationss14d ands23d constitute the main results of this
paper. In the following, we give five important remarks that
are peripherally related to these main results.

First, we give an argument from which to understand a

physical meaning ofû1 as the effective temperature. Effec-
tive temperatures have been studied mainly in glassy systems
f12–16g. The simplest characterization of temperature may
be provided by the equipartition. The law of equipartition is
regarded as one example of an energy distribution law that
can be expressed by the canonical distribution. Out of equi-
librium, the equipartition law and the canonical distribution
do not hold in general. Indeed, the steady distributionpE

sshd
differs greatly from the canonical one. However, as demon-
strated in Refs.f3,13g, by constructing measurement meth-
ods to extract behavior at some large time and/or length
scales, the equipartition law and the canonical distribution
are recovered at these scales.

Hypothesizing a similar situation for the NESS’s we
study, we assume a simple form for the modification of the
steady-state measure under the condition that the potential
varying slowly in space is added to the system. The form we
consider is

pE,V
s shd =

1

ZV
pE

sshde−sĥ−1û1
−1V̂1+c.c.d s32d

for uV̂1u!1, whereZV is a normalization constant. From Eq.

s32d, we can derive Eq.s12d, which is the definition ofû1.
We believe that the simple forms32d, which describes the
response of the steady-state measure to this slowly varying
potential, is a good starting point to investigate NESS’s.

Second, we remark that our main result also holds for the
caseH0shd=0, which is an example of asymmetric simple
exclusion processsASEPd. Specifically, we consider the case
r=0.5 andL=64. x and s are calculated theoretically as
xsLd=0.25 andssLd=0.043. The diffusion constantDsLd is
measured numerically asDsLd=0.68ssee Fig. 10d. Q is also
measured asQsLd=3.9 from Eq. s12d. Thus the relation
DsLdxsLd=ssLdQsLd seems valid. Study of the large-scale
behavior of the system might give new insights into the
ASEP.
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Third, we remark on a connection with fluctuating hydro-
dynamics. Note that the system in our numerical experiments
may be too small for the dynamical behavior to be described
within the framework of fluctuating hydrodynamics, while
large enough so that we can check universal relations around
equilibrium states. The fact thatDsLd~ÎL ssee Fig. 2d in
such small systems seems to imply that bare parameters ap-
pearing in fluctuating hydrodynamics depend on a length
scale, at which the hydrodynamic description is defined.
fNote that the scaling relationDsLd~ÎL can be derived
within the framework of fluctuating hydrodynamics, irre-
spective of the values of the bare parametersf5g.g Thus, it is

plausible to conjecture that we need to specify a scale,
explicitly so as to have a hydrodynamic description. We do
not understand how the formal derivation in Ref.f17g corre-
sponds to this observation.

Fourth, we make a comment on the diffusion of a marked
particle. The diffusion is characterized by a tracer diffusion
constant, which is not equal to the bulk diffusion constantD
defined by Eq.s10d. One may question whether the tracer
diffusion constant can be involved in a universal relation for
NESS’s. We have not found such a relation yet, but it may be
an interesting future problem to seek it. We note that the
tracer diffusion constant does not have the anomalousL de-
pendence in contrast to the case ofD.

The final remark we wish to present regards the possibil-
ity of an experiment that can check the extended Einstein
relations we have proposed. We conjecture that it may be
best to study a system in which colloid particles, confined to
one dimension, are driven through a periodic array of optical
trapsf18g. By defining the effective temperature in the same
way as done in Eq.s12d, the validity of the extended Einstein
relations will be checked.
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FIG. 10. In the caseH0shd=0 sASEPd, gstd is plotted with error

bars in the caser̄=0.5,L=64, anduV̂1u /ÎL=0.1 fsee Eq.s10dg. The
slope of the fitted linesthin lined in the early stagest,150 MCSd
corresponds toDs2p /Ld2.
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