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We carry out numerical experiments on a one-dimensional driven lattice gas to elucidate the statistical
properties of steady states far from equilibrium. By measuring the bulk density diffusion cobstaime
conductivity o, and the intensity of density fluctuationg, we confirm that the Einstein relatioDy=oT,
which is valid in the linear response regime about equilibrium, does not hold in such steady state$.islere,
the environment temperature and the Boltzmann constant is set to unity. Recalling that the Einstein relation
provided the first step in the construction of linear response theory, we attempt to extend it to a generalized
form valid in steady states far from equilibrium. In order to obtain new relations among measurable quantities,
we define a complex effective temperat@e-id from studying the static response of the system to a slowly
varying potential in space. Replacifign the Einstein relation by the real part of the effective temperdtuyre
we numerically confirm that the relatidby=c¢0® holds in the nonequilibrium steady states far from equilib-
rium that we study. In addition to this extended form, we find the relatio27)cy=o®, wherec represents
the propagation velocity of density fluctuations.
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. INTRODUCTION Il. MODEL
In 1905, Einstein derived the relatidm= T between the Let », be an occupation variable defined on eachsité

diffusion constantD for noninteracting Brownian particles a one-dimensional periodic lattice=1,2, ... L. The vari-
suspended in an equilibrium fluid of temperatufeand able 7, takes the value 1 if theth site is occupied by a
mobility « with respect to an external for¢d]. (Here, the particle and O if it is empty. In order to describe the model
Boltzmann constant is set to unijtyThis relation is now simply, we introduce the variablg, ., which is assumed to
called the “Einstein relation.” Through the development ofbe equal to »,. The array of occupation variables
linear response theory, the original Einstein relation was ext#i, ...,7.) is denoted byy and called the “configuration.”
tended to the form The time evolution ofy is described by the following
rule: At each time step, randomly choose a nearest-neighbor
Dx=oT, D pair x andx+1, where kx=<L, and exchange the values of

which is valid for interacting many-body systeri. Here, 7« and 7. with probability c(x;7) given by c(x;7)

D should be considered as the bulk density diffusion con=a€e 772 where " is the configuration obtained from
stant, x is the intensity of density fluctuations, awdis the 7 through this exchangeg=1/T is the inverse temperature
conductivity. of the environment, an@(7n— 7*) represents the heat ab-

The Einstein relation is a universal relation in the linearsorbed from the heat bath as a result of the change of con-

response regime about equilibrium. It represents the first stefiguration »— 7* in one Monte Carlo steMCS). The con-

in the construction of nonequilibrium statistical mechanics instanta is determined so thai(x; 7) < 1. The particle number
the linear response regime. With this in mind, if the EinsteinN:2§:177X is conserved throughout the time evolution, and
relation can be extended to some form valid for nonequilibthe averaged densiiy=N/L is a parameter of the model.

rium steady state6NESS’9 far from equilibrium, realizing In this paper, we study the DLG for which
an understanding of this form will be an important step in the L
construction of a statistical mechanical theory of NESS’s. Q(— 7)) =Ho(7') = Ho(m) =ES jx(m— ), (2)

With this motivation, because it is simpler to study one-
particle NESS systems than many-body systems, we previ- ) . ] o
ously analyzed a one-particle Langevin equation with a tiltegvhereE is a constant driving forcedo() is the equilibrium
periodic potentia[3]. In that study, it was found that there HamiltonianHo(7)=~25_; 91, andj(n— 7') is the net
exists an extended Einstein relation with an effective temnhumber of particles hopping fromto x+1 for the configu-
perature that can be measured independently of the diffusiof@tion changep— »' in one Monte Carlo step. In the argu-
constant and the differential mobility. Then, it is natural to ment belowy )g represents the statistical average in a NESS
ask whether that result for a Brownian particle in NESS'swith driving force E.
can be extended to many-body interacting systems. In the Throughout this paper, we fig=0.5, and the numerical
present paper, we address this question by studying a onparametew introduced in the exchange probabilitix; ») is
dimensional driven lattice gd®LG) [4—6] as an example of set to exp—38). This value is chosen so thatx, ) <1 in
a many-body interacting system. the caseE<5. As a typical example of a NESS far from

x=1
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equilibrium, we study this model witB=4, and we consider
the casep=19/64 and 0.5, with.=64, 128, and 256. We

remark that because we attempted to evaluate precisely mea-
surable quantities introduced in the next section, it was hard

to obtain data in the cade> 256.

IIl. EINSTEIN RELATION

Because we have little knowledge regarding relations
characterizing NESS’s of the DLG, let us start by investigat-

ing the validity of the Einstein relatiofl) by defining the
quantitieso, x, andD for this model. First, using the aver-

aged currenflg, which is defined by

S
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FIG. 1. () is plotted with error bars in the cage=0.5,L=64,

and |\A/1|/\5E:0.1 [see EQ.(10)]. The slope of the fitted linéthe
dotted ling in the early stage(t<150 MCS corresponds to
D(27/L)2. The slope ofy(t) in the late stagét>150 MCS differs
from D(2w/L)2

_(nlDE | (in(t)e

|- (9)

¥(t) = log

Note that we have checked thgtt) takes the same value for
the case$V,|/\L=0.05, 0.1, 0.15, and 0.2. It implies that we

Second, the intensity of large scale density fluctuations i§an estimate the value of the right-hand side of ER).

J— 1 L
=\ Zikn—n)) (3
=1
§ E
the conductivityo is expressed as
dJ;
o= d—EE (4)
defined by
x(L) =(|mP)z, (5
where
1 L
() = =2 m(LyeCmx, (6)
VLx=1

Third, the density diffusion constait is defined as the co-

efficient of the diffusion term of the evolution equation de-

within a numerical accuracy. It is seen in Fig. 1 thét) has

a linear slope in the early-time regime. Therefore, using this
linear slopeD is estimated from the form

(10

in the early-time regime(We remark that we cannot deny a
possibility that the linear slope shown in the early-time re-
gime might be caused by finite-size effects. This is an unre-
solved problen).

Using the above definitions af, x, andD, we confirm
the validity of Eq.(1) numerically for the equilibrium case

IR() — R(t)| = constx gL

scribing the averaged behaviors of the density field. As arE=0. With regard to other relations in the linear response
example of such behaviors, we consider the time evolutionheory, we can derive Eq1) from the Green-Kubo relation

of the density field after a slowly varying weak potentgl

and the fluctuation response relation, which have been

is turned on at=0 in the case that the system is in a steadyproved for DLG model$7]. Contrastingly, in NESS's for our

state. HereV, is given by

V= é\?le“(z”’ DX+ c.c.,

0 )

where c.c. denotes the complex conjugate ﬁ(@ds a com-
plex number satisfyingVy|/VL<1.

The averaged behavior in this case is represented appro

mately by the time evolution of a quanti@yl(t»\E’, where

()\E’ denotes the statistical average under the condition that

the equilibrium Hamiltonian becomesHy/(7)=Hg(7)
+3_ 7V, when t>0. We define the response function
againstV, as

AWV
<771A(t)>E. )

Vi

R(t) =— lim
[V4|—0

In order to see the behavior &t), in Fig. 1, we plot

DLG, we find that the two sides of Edl) differ greatly.
Specifically, in the casp=19/64, we have confirmed that
o(L) and x(L) converge too+=0.032 andy-=0.26 in the
limit L—o, while D has the anomalous dependence
D(L)« L, as shown in Fig. 2. This anomalous behavior is
essentially the same as that reported in IRef. Also, in the
casep=0.5, Eq.(1) is not valid because we have confirmed

>H]at 0+=0.037 andy»=0.32 in the limitL — o, while D(L)

oL (see Fig. 2

Now we ask whether it is possible to obtain an extension
of the Einstein relation valid for NESS'’s of interacting many-
body systems by defining an appropriate measurable effec-
tive temperature. This question arises naturally, because we
have found that such an extended Einstein relation does hold
for NESS'’s of one-particle systems. In this relation, the tem-
perature of the environment, is replaced by an effective
temperature, which can be measured independently of the
other quantities appearing in the Einstein relat[@h By
analogy to that case, we seek to define an effective tempera-
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. FIG. 3. The profiles of(n0g, under the influence o,
FIG. 2. D as a function ot for the casep=19/64(solid circleg =Asin(2mx/L) in the casép=19/64 andL=64.A=0.1, 0.2, 0.3,

andp=0.5 (open circles The dotted line and the solid line repre- and 0.4 correspond to the circle, square, triangle, and plus,
sent 0.042L+0.20 and 0.068L+0.0413, respectively. respectively.

ture which when used in place dfin Eq. (1) provides an =19/64 and 0.5, with. =64, 128, and 256. The graph clearly
extended Einstein relation that is valid for NESS’s in inter-shows that the extended Einstein relation
acting many-body systems.
9 Many-nocy sy D(L)x(L) = o(L)O(L) (14
IV. EXTENDED EINSTEIN RELATIONS holds within the precision of the numerical computatif8ls
In a previous study, we showed that the effective tempera- V. FAILURE OF THE EXTENDED FLUCTUATION
ture appearing in the Einstein relation valid for NESS's of a RESPONSE RELATION
Brownian particle can be measured by adding a slowly vary- There are universal relations in the linear response regime
ing potential to the systef8]. In a similar way, we wish to about equilibrium, such as the Einstein relation, the
determine an effective temperature by adding to the system a
slowly varying potential given by Ed7). Due to the influ- ' ' ‘ ‘ '
ence of this potential, we havgy)g ,# 0, where( )z, de- 0.52
notes the steady-state average in the system with driving
force E and potentialV,. Recalling that the relation

(iRoy==Va + o[V 1y

holds in the equilibrium case, we define the effective tem- 0.48

perature@l in NESS's as

<;]i>é,v - & (12

- lim

) s .
o Vi o, FIG. 4. The profiles of(ngg, under the influence oW,

=A sin(2mx/L) in the casep=0.5 andL=64.A=0.1, 0.2, 0.3, and
Note that in NESS's, the left-hand side of E@2) is a com- 0.4 correspond to the circle, square, triangle, and plus, respectively.
plex number in general. To see this concretely, we show that

<77x>§’\, under the influence of the potentialV, 64 - ;
=A sin(27x/L) has a component of c@mx/L) (see Fig. 3
Expressing explicitly that, is a complex number, we write '
- S el ]
9,=0-id, (13) & 16

where® and ® are real numbers. In Fig. % and ® are
displayed as functions df in the casep=19/64 andp=0.5.
It is seen that we have the anomalduslependence® (L) 4r
x\L and®(L)=L. We remark thatb=0 in the case=0.5 64 128 756
(see Fig. &4 L

Noting that, from the graphs in F!gs. 2 “gnd B(.L) anq FIG. 5. ® and® as functions oL in the casep=19/64(solid
O(L) are both approximately proportional td., we investi-  gympolg andp=0.5 (open symbols ®(L) andd(L) correspond to
gate whether the Einstein relation can be extended to thge circle and square, respectively. The solid line, the dotted line,
NESS’s by simply replacing in (1) by ©(L). In Fig. 6, we  and the dash-dotted line represent G1361.4, 0.21, and 0.58L
plot D(L)x(L) as a function ofa(L)®(L) for the casep  +0.26. Note thaff=2.
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FIG. 6. Dy as a function ofs®. The casep=19/64 andp FIG. 7. R(t) as a function ofC(t) in the casép=0.5 andL=64

=0.5 correspond to the solid symbols and the open symbols, respegying an interval 6<t<800 MCS. The slope of the thin line rep-
tively. The cased =64, 128, and 256 correspond to the square,;ggentg®1.

triangle, and circle, respectively.

) ) consider a relation betwee@(t) and R(t) which are mea-
fluctuation-response relatidffRR), and the Green-Kubo re- sured directly.

lation. One may expect that other relations can be extended

in a similar way as was done for the Einstein relatitd) in

NESS's far from equilibrium. In this section, we investigate VI. INTERPRETATION

an extension of the FRR. , . . . .
The FRR connects the time-dependent response function In Secs. IV and V, we find that the Einstein relatidd) is

and the time correlation function. In order to define the re-c<ended with the diffusion constadt which is measured

sponse function, we consider the situation that the perturbé-rom R(t) in the early-time regime and the effective tempera-

tion (7) is applied to the system wherr0. The response turte |® Iwhile the eﬁtertl)dled FRM?L iS” not \(glidthunforr]tu—
function R(t) in this situation is defined by Ed8). In the nately. In paragrapns below, we shall provide the phenom-

. enological understanding of validity of Eq(14) and
equilibrium case, we can prove the FRR invalidity of Eq. (17).

The extended Einstein relati¢h4) can be explained from
the following argument. Led(p,E) be the averaged particle
current in a system with densipyand driving forceE. When
the slowly varying potential?) is applied to this system, first

1. . s the current should becoml{<77X>EV,E—dVX/dx), and as a
CH) = §<|’71(t) - mOP%E. (16)  (esult a diffusive currerd, ((my1— m0)g y should appear so

) ) i ) as to make the total current homogeneous;ithat is, it is
Because the Einstein relation was extended with the IS easonable to assume that the quantity

placement ofT by ?91, we expect that Eq(15) can be ex-

- dv,
tended in the form iwzyf - 5) D= mey (19

1
R(®) = A;C(t)- (17 is independent ok in a steady state. This can be rewritten as

1
Specifically, we numerically investigate the validity of Eq. () +i02—77\A/ +i2—TrD<“ S :O(M <771>SE,V>
(17) in the case=0.5 andL=64. Becaus&=0 in the case Iev 1T e L' L /)
p=0.5, Eq.(17) is rewritten asR(t)=01C(t). In Fig. 7, we (19)
plot R(t) as a function ofC(t) during an interval Gt .
<800 MCS. It is seen thaR(t) deviates from®~1C(t) sub-  wherec=4J(p,E)/dp represents the propagation velocity of
stantially in an early-time regimé@<t=<150 MCS where  density fluctuations. From Eq&l2) and(19), we obtain
the diffusion constanD was definedsee Eq.(10)]. This ]
implies that Eq.(17) is not valid. Note thaR(oo):@fC(oo) ablz Dy - iz—Xc. (20
holds by the very definition of)l given by Eq.(12). Tr

We remark that a generalized version of FRR of the non-This leads to the extended Einstein relatid#).

linear Langevin dynamics without the detailed balance con- Here, we note that a microscopic derivation of EL) is
dition was presented by several authft§]. However, in  quite difficult. In particular, we have not been able to show
their formalism, a generalized force which defines a responstatD defined by Eq(10) andD in Eq. (18) are identical. In
function is chosen so that the simple form of FRR holds, andelation to this point, we note that a different valuefis
it seems that their response function cannot be measured dibtained if we consider the time regirbz 150 MCS in Fig.
rectly in experiments. In contrast to the previous studies, wd. Using this value oD, the relation(14) cannot be con-

1
R(t) = 'I_'C(t)' (15

with the time correlation function
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FIG. 8. B(t)t as a function oft in the casep=0.5 andL=128. FIG. 9. k™lcy as a function otr®, wherek=2/L, for the case

The guided line(the dashed linerepresents(t)t=<t*%, p=19/64. Note that for the cage=0.5,c=®=0. The cases =64,
128, 192, and 256 correspond to the square, triangle, diamond, and

firmed numerically. This result suggests that memory effectsircle, respectively. The straight line represe(hté2m)cy=o®. The
in a single-mode description cannot be neglected in the laterror bars represent the standard deviations of the statistical
stage of the relaxation process after the potential is turnegamples. In addition to the statistical error bars, there exists a fitting
on. Because the memory effects arise from a nonlinear colfrror which is less than 5% of the quantities.
pling between different modes, the simple assumptid@) in
NESS's is far from the trivial. (14) and(17) are derived though Eq17) was found not too

The nontrivial nature of the extended Einstein relationvalid. This implies that the dynamical aspect of the system is
(14) can be seen through the failure of the extended FRRoo complicated. It may be surprising that the extended Ein-
(17). For example, because we cannot observe the exponestein relation holds with the appropriate choicelnf

tial decaying regime ofc(«)—C(t) even in the early-time Finally, from Eq.(20), we find a new relation

regime unlike the behavior dR(«)-R(t) (see Fig. 1, we

cannot define the diffusion constadtproperly from the as- LC(L))((L) = o(L)D(L). (23)
sumption that loffC(e) - C(t)|=—D(27/L)%+const, though 27

in the equilibrium case, the same value Dfis obtained e jnyestigated the validity of Eq23) in numerical experi-

whether it is defined from Idg(<)-C(t)| or logR(x) ments. We numerically measuredrom the oscillatory be-
~R(t)| because of the FRRLS). _ havior of the time correlation functiofl6). In one example

The nonexponential decaying behavior ©ft) may be  of this analysis, we considered ajlsatisfying C(t;) —C(=)
related to a long-time tail of the time correlation function of - \heret,_, <t.. Then,c can be estimated from the relation
current fluctuations. Indeed, using the continuity equation,

C(t) is expressed b 2
( ) P y CT(tH.l_ t,) =1T. (24)
Lt L 2 s
C(t) = (2_7">2} S S (k= 1) — (k))& We have confirmed that converges ta:=0.17 in the case
L)2\|o= p=19/64 in the limit L—. In Fig. 9, we plot

(L/2m)c(L)x(L) as a function ofo(L)D(L) for the casep
(21) =19/64, withL=64, 128, and 256(Note thatc=d=0 for
the case=0.5) This graph clearly shows that the extended

It is expected that the behavior @(t) in a shorter-time  gjnstein relation(23) holds within the precision of the nu-
regime than the diffusion tim®~*(27/L)2 has common erical computations.

features with that of

oL 5\ S VIl. THERMODYNAMIC CONSIDERATION
B(t) 25 > [ix(n(k=1) — n(k)) —FE] , Here, we devote space to thermodynamic consideration
k=1x=1 related to our results. We first study the equilibrium ckse

=0 by considering a situation that a perturbation potential is
(22)  applied to the equilibrium system. When we choose a slowly
which is displayed in Fig. 8 in the cage=0.5 andL=128. Varyi”_g potential, we can regaid, and<’7x>é=0,\{ as smooth
The graph is consistent with the relati@it)tot*3 which guantitiesV(x) and p(x). By use of the chemical potential

was derived from the theoretical analysis of fluctuating hy-#(p,T) of the equilibrium systenwithout the potential
drodynamicg5]. V(x)], a density profile under the influence ¥fx) is deter-

We remark that these observations Rft) andC(t) can-  mined by a relation that
not be explained from the assumption that the time evolution %) T) + V(X) = const inx 25
of the density field is described by a linear Langevin equa- #pX),T) + V(X ' (25)
tion of 7,(t), because under this assumption both relationsvhich is equivalent to

046143-5



K. HAYASHI AND S.-I. SASA PHYSICAL REVIEW E 71, 046143(2005

~ o\ -1
(‘?—“) 9o dV_ (26) (ﬂ> =X, (31)
&p TdX dx 1 61
Note that the fluctuation relation Because the relatiof81) is hard to be interpreted as an ex-
tended form of the fluctuation relatiof27), the definition
au\t x (30) seems not to be useful. Taking into consideration that
a_p N = T (27) the relation(30) is just one trial, there might be a plausible

definition of a chemical potential for NESS'’s, but we have
holds in the equilibrium state. As another relation in thisnhot found it yet. The difficulty that does not arise in the
situation, we have the total zero-current condition equilibrium case lies in the wave number dependenck,of
as is expected from the system size dependenée sifown
dp dv in Fig. 2. This wave number dependence is not observed in
—D& +ip,—&) =0. (28)  the equilibrium case and prevents us from pushing ahead
further thermodynamic consideration.

By expanding the second term of E@®8) in dV/dx, we

obtain VIIl. DISCUSSION
dp dV_ Equations(14) and(23) constitute the main results of this
D—+0c—=0. (29) ) T
dx dx paper. In the following, we give five important remarks that
are peripherally related to these main results.
A combination of Eqs(26), (27), and(29) leads to the Ein- First, we give an argument from which to understand a

stein relati.on(l). In the eq_uiliprium case, we can show just physical meaning o, as the effective temperature. Effec-
the opposite that a combination of the Einstein relalin  tjye temperatures have been studied mainly in glassy systems
and the relation(29) derives the fluctuation relatiof27)  [12_16. The simplest characterization of temperature may
through the relatiorf25). . _be provided by the equipartition. The law of equipartition is
In connection with the above-mentioned thermodynamiGegarded as one example of an energy distribution law that
consideration, we introduce our previous study on a twotan be expressed by the canonical distribution. Out of equi-
dimensional DLG[9]. First, we remark that an appropriate |iprium, the equipartition law and the canonical distribution
definition of the chemical potential for a NESS is not known yo not hold in general. Indeed, the steady distribupg(v)
unless we use the local equilibrium assumption. Because ijfrers greatly from the canonical one. However, as demon-
NESS's far from equilibrium, the local equilibrium assump- girated in Refs[3,13], by constructing measurement meth-
tion is not valid, we attempted to define a chemical potential,ys to extract behavior at some large time and/or length

V\{ithogt this assumption. Focusing ona density response in &cales, the equipartition law and the canonical distribution
direction perpendicular to the driving force, we defined ag e recovered at these scales.

nonequilibrium chemical potential by a similar relation with Hypothesizing a similar situation for the NESS's we
Eq. (25 and constructed an extended thermodynamic funcgy,qy we assume a simple form for the modification of the
tion from measurable quantities. As a nontrivial pred'C“On'steady-state measure under the condition that the potential

we showed numerically that the rate function of density ﬂuc‘varying slowly in space is added to the system. The form we
tuation was determined by this extended thermodynami¢qnsider is

function. A theoretical framework behind these observations
has been uncoverdd0]. We remark that the Einstein rela-

1 N
S — — .S —(7_160,"V1+c.Cc)
tion (1) was also observed in a direction perpendicular to the Pev(7) = ZVDE(ﬂ)e e (32
driving force[11] and that the argument in the previous para- )
graph can be applied to this case. for |V4| <1, whereZ, is a normalization constant. From Eq.

_In the present paper, we have reported that the extendqdy) we can derive Eq(12), which is the definition ofg;.
Einstein relation(14) and the relatior(23) hold in NESS's,  \we pelieve that the simple forr82), which describes the
and a combination of both the relations and Et) that  yesponse of the steady-state measure to this slowly varying
corresponds to the Fourier transform of E29) leads to the potential, is a good starting point to investigate NESS's.
definition of the effective temperatufd@?2). Because in the Second, we remark that our main result also holds for the
caseE=0 the relation(11) is derived from Eqs(26) and  caseH,(7)=0, which is an example of asymmetric simple
(27), one might expect that there exists a nonequilibriumgyciysion procesASEP. Specifically, we consider the case
chemical potential even for the present NESS's. For €X5»=0.5 andL=64. y and o are calculated theoretically as
ample, as a trial, one might propose a nonequilibrium chemij((l_):o_25 ando(L)=0.043. The diffusion constam(L) is

cal potentiali,(p,, 61) as measured numerically d3(L)=0.68(see Fig. 10 O is also
measured a®(L)=3.9 from Eq.(12). Thus the relation
(P, bl) +\71: 0. (30) D(L)x(L)=0(L)®(L) seems valid. Study of the large-scale
behavior of the system might give new insights into the
However, Eqs(30) and(12) lead to ASEP.
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bars in the casp=0.5,L=64, andV,|/\L=0.1[see Eq(10)]. The
slope of the fitted lingthin line) in the early stagét<150 MC9
corresponds t®(27/L)2.

1 ' plausible to conjecture that we need to specify a sdale
explicitly so as to have a hydrodynamic description. We do
not understand how the formal derivation in Rf7] corre-
sponds to this observation.

Fourth, we make a comment on the diffusion of a marked
particle. The diffusion is characterized by a tracer diffusion
constant, which is not equal to the bulk diffusion constant
defined by Eq.(10). One may question whether the tracer
diffusion constant can be involved in a universal relation for

25 00 300 300 NESS's. We have not found such a relation yet, but it may be
t an interesting future problem to seek it. We note that the
- ; : tracer diffusion constant does not have the anomalods-
FIG. 10. In the casélg(77)=0 (ASEP), (1) is plotted with error pendence in contrast to the casemnf

The final remark we wish to present regards the possibil-
ity of an experiment that can check the extended Einstein
relations we have proposed. We conjecture that it may be

Third, we remark on a connection with fluctuating hydro- best to study a system in which colloid particles, confined to

dynamics. Note that the system in our numerical experiment@n€ dimension, are driven through a periodic array of optical
may be too small for the dynamical behavior to be describedf@Ps[18]. By defining the effective temperature in the same

within the framework of fiuctuating hydrodynamics, while Way as done in Eq12), the validity of the extended Einstein
large enough so that we can check universal relations arourf§'ations will be checked.

equilibrium states. The fact th@(L)x= VL (see Fig. 2 in

such small systems seems to imply that bare parameters ap-
pearing in fluctuating hydrodynamics depend on a length
scale¢ at which the hydrodynamic description is defined. The authors acknowledge H. Tasaki, T. Harada, and M.
[Note that the scaling relatio@(L)«\L can be derived Sano for stimulating discussions on NESS’s. This work was
within the framework of fluctuating hydrodynamics, irre- supported by a grant from the Ministry of Education, Sci-
spective of the values of the bare paramelgig Thus, itis  ence, Sports and Culture of Jap@o. 14654064

ACKNOWLEDGMENTS

[1] A. Einstein, Ann. Phys17, 549 (1909; Investigations on the [10] S. Sasa and H. Tasaki, e-print cond-mat/0411052.

Theory of Brownian MovemeiiDover, New York, 1958 [11] K. Hayashi(unpublishedl

[2] R. Kubo, Rep. Prog. Phys29, 255(1966. [12] L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev5h,
[3] K. Hayashi and S. Sgsa, Phys. Rev6E, 066119(2004). 3898(1997.

[4] (Sl'ggztz' J. L. Lebowitz, and H. Spohn, J. Stat. Phge, 497 [13] L. Berthier and J.-L. Barrat, Phys. Rev. Let89, 095702

- (2002.

[5] gdgg?lgggeren, R. Kutner, and H. Spohn, Phys. Rev. Ls. [14] A. B. Kolton, R. Exartier, L. F. Cugliandolo, D. Dominguez,
[6] H. Spohn, Large Scale Dynamics of Interacting Particles and N. Gronbech-Jensen, Phys. Rev. L88, 227001(2002.
[7] K. Hayashi and S. Saganpublishedl [16] T. Harada, e-print cond-mat/0310547, Europhys. Lgtt.be

[8] There is a puzzle that the extended Einstein relation seems to publisheq. _
connect thiD with o, because is evaluated from the short- [17] G. L. Eyink, J. L. Lebowitz, and H. Spohn, J. Stat. Phg8,

time behavior of the system, while is measured as the long- 385(1996, and references therein
time average in the steady state. [18] P. T. Korda, M. B. Taylor, and D. G. Grier, Phys. Rev. Lett.
[9] K. Hayashi and S. Sasa, Phys. Rev6B, 035104R) (2003. 89, 128301(2002.

046143-7



