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We study a class of nonequilibrium lattice models describing local redistributions of a globally conserved
quantity, which is interpreted as an energy. A particular subclass can be solved exactly, allowing us to define a
statistical temperatureTth along the same lines as in the equilibrium microcanonical ensemble. We compute the
response function and find that when the fluctuation-dissipation relation is linear, the slopeTFD

−1 of this relation
differs from the inverse temperatureTth

−1. We argue thatTth is physically more relevant thanTFD, since in the
steady-state regime, it takes equal values in two subsystems of a large isolated system. Finally, a numerical
renormalization group procedure suggests that all models within the class behave similarly at a coarse-grained
level, leading to a parameter that describes the deviation from equilibrium. Quantitative predictions concerning
this parameter are obtained within a mean-field framework.
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I. INTRODUCTION

The existence and the precise definition of intensive ther-
modynamical parameters in out-of-equilibrium systems still
remains an open issue. Indeed, the goal of a statistical ap-
proach for nonequilibrium systems, which remains to be con-
structed, would be to give a well-defined meaning to such
thermodynamical parameters, and to predict their relation
with extensive macroscopic variables like energy or volume.
Accordingly, many attempts have been made to define out-
of-equilibrium temperatures in the last decadesf1g.

In the context of glasses, which are nonstationary systems
with very large relaxation times, effective temperatures were
first introduced as phenomenological parameters allowing
one to account for experimental dataf2–4g. More recently,
the notion of effective temperature has been given a more
fundamental status, being defined as the inverse of the slope
of fluctuation-dissipation relationssFDRsd in the aging re-
gimef5g. This definition was guided by the dynamical results
obtained within a family of mean-field spin glass modelsf6g.
Interestingly, such a definition of the effective temperature
has been shown to satisfy the basic properties expected for a
temperaturef5g. Since then, a lot of numerical simulations
f7–13g and experimentsf14–18g have been conducted to test
the validity of this definition of temperature in the aging
regime of glassy materials. Yet, this definition seems not to
be always applicable as the measured FDR can be nonlinear.

Other classes of systems are far from equilibrium not due
to their slow relaxation toward the equilibrium state, but
rather because they are subjected to external constraints pro-
ducing fluxessof particles or energy for exampled traversing
the system, leading to energy dissipation. As a result, they
never reach an equilibrium state. Among these systems, one
can think of granular gases, sheared fluids or certain kinetic
spin models, to quote only a few of them.

Although the usual formalism of equilibrium statistical
physics does not apply to these systems, it is interesting to
note that the latter sometimes share with equilibrium systems
some quantitative properties, like critical behaviorf19,20g.
To describe the statistical properties of such nonequilibrium

systems, effective temperatures have been defined either
from FDRs f21–23g or from maximum entropy conditions
f23,24g, as originally proposed by Jaynesf25g. Still, the va-
lidity of these procedures remains to be clarified in the con-
text of nonglassy out-of-equilibrium systems.

When described in a probabilistic language, a common
feature of these systems is that they do not obey the detailed
balance property, considered as a signature of equilibrium
dynamics. Since the breaking of detailed balance plays an
important role in nonequilibrium systems, it may be useful to
distinguish between different forms of detailed balance
which should not be confused. In the literature, the term
“detailed balance” often refers to a canonical form which
reads

Wsbuade−Ea/T = Wsaubde−Eb/T s1d

whereWsb uad is the transition rate from statea to stateb.
This criterion on transition rates ensures that the statistical
equilibrium reached at large times by the system is indeed
the canonical equilibrium at temperatureT.

Still, the above approach requires one to know the equi-
librium distribution before defining the stochastic model. On
the contrary, one could try to find a stochastic model which
describes in the best possible way a given complex Hamil-
tonian system, without knowinga priori the equilibrium dis-
tribution. Such a stochastic model should at least preserve
the symmetries of the original Hamiltonian system, which
are the energy conservation and the time-reversal symmetry
t→−t sadditional symmetries—translation, rotation, etc.—
must also be taken into account when presentd. Energy con-
servation is easily implemented in the stochastic rules by
allowing only transitions between states with the same en-
ergy. On the other side, the time-reversal symmetry in the
Hamiltonian system can be interpreted in a stochastic lan-
guage as the equality between two opposite transition rates,
Wsb uad=Wsa ubd, a property called microcanonical detailed
balance or microreversibility.
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In the context of nonequilibrium systems, one expects that
the time-reversal symmetry is broken due to the presence of
fluxes or dissipation. Hence, a simple way to define a non-
equilibrium system is to consider more general microcanoni-
cal forms of detailed balance relations such as

Wsbuadfa = Wsaubdfb, s2d

where fa is the statistical weight of statea, and with Ea

=Eb.
In this paper, we study a classC of nonequilibrium lattice

models describing local redistributions of a globally con-
served quantity, which is interpreted as an energy. A particu-
lar subclassCs satisfies a microcanonical detailed balance
relation of the forms2d, which differs from microreversibil-
ity and can be solved exactly, allowing one to define a sta-
tistical temperatureTth along the same lines as in the equi-
librium microcanonical ensemble. The response function is
computed explicitly, and the FDR is found to be linear or
nonlinear depending on the model considered—the response
can even be nonlinear in the perturbing field. Very interest-
ingly, when the FDR is linear, its slope differs from the in-
verse temperatureTth

−1, which calls into question the rel-
evance of the FDR in defining a temperature in nonglassy
out-of-equilibrium systems. Finally, we implement numeri-
cally a functional renormalization group procedure to argue
that all the models within the classC behave at the coarse-
grained level as a member of the subclassCs. Predictions
about the renormalization procedure are also made using
mean-field arguments, and are quantitatively verified. Note
that a short version of some aspects of this work has ap-
peared inf26g, and that a related model, including kinetic
constraints, has also been introduced in the context of glassy
dynamicsf27g.

II. MODELS AND STEADY-STATE PROPERTIES

A. Definition

The models we consider in this paper are defined as fol-
lows. On each sitei of a d-dimensional lattice, a real variable
xi which can take either positive or negative values is intro-
duced. Dynamical rules are defined such that the quantity

E = o
i=1

N

gsxid s3d

is conserved. The functiongsxd, assumed to be positive with
continuous derivative, decreases forx,x0 and increases for
x.x0, wherex0 is an arbitrary given value. Without loss of
generality, we assumex0=0 andgsx0d=0. To clarify the pre-
sentation, we also assume in this section thatgsxd is an even
function ofx, but the generalization to nonsymmetricgsxd is
straightforward.

It is also necessary to introduce the reciprocal function
g−1syd, given as the positive root of the equationgsxd=y. The
dynamics is defined as follows. At each time step, a link
s j ,kd is randomly chosen on the lattice and the corresponding
variablesxj andxk are updated so as to conserve the energy
gsxjd+gsxkd of the link. To be more specific, the new values
xj8 andxk8 are given by

xj8 = ± g−1sqSjkd, xk8 = ± g−1
„s1 − qdSjk… s4d

with Sjk;gsxjd+gsxkd, andq a random variable drawn from
a distributioncsqd, assumed to be symmetric with respect to
q= 1

2 s0,q,1d. The new valuesxj8 andxk8 are either positive
or negative with equal probability, and without correlation
between the signs. Thus a model belonging to this class is
characterized by two functionsgsxd andcsqd.

B. Master equation

The system is described by the distributionP(hxij ,t),
which gives the probability to be in a configurationhxij at
time t. Its evolution is given by the master equation

]P

]t
„hxij,t… =E p

i

dxi8W„hxijuhxi8j…P„hxi8j,t…

−E p
i

dxi8W„hxi8juhxij…P„hxij,t…, s5d

whereWshxi8j u hxijd is the transition rate from configuration
hxij to configurationhxi8j. The transition rate can be decom-
posed into a sum over the links of the lattice:

Wshxi8juhxijd = o
k j ,kl

Wjkshxi8juhxijd, s6d

where Wjkshxi8j u hxijd accounts for the redistribution over a
given link s j ,kd:

Wjkshxi8juhxijd = F p
iÞ j ,k

dsxi8 − xidGE
0

1

dq csqd

3
1

4 o
s j,sk

d„xj8 − s jg
−1sqSjkd…

3dsxk8 − skg
−1
„s1 − qdSjk…d, s7d

where the variabless j ,sk= ±1 account for the random signs
appearing in Eq.s4d with probability 1

2—hence the factor14
in the above equation. After some algebra, the transition rate
Wshxi8j u hxijd can be rewritten as

Wshxi8juhxijd =
1

4o
k j ,kl

F p
iÞ j ,k

dsxi8 − xidG
3

ug8sxj8dg8sxk8du
Sjk

cSgsxj8d
Sjk

D
3d„gsxj8d + gsxk8d − Sjk…, s8d

whereg8sxd denotes the derivative ofgsxd.

C. Detailed balance and steady-state distribution

A case of particular interest is the subclass of models for
which the distributioncsqd is given by a symmetricb law,
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csqd =
Gs2hd
Gshd2 qh−1s1 − qdh−1 s9d

with h.0. In this case, the functionc(gsxj8d /Sjk) appearing
in the transition rates factorizes, if one takes into account the
d function. So the transition rate reads

Wshxi8juhxijd =
Gs2hd
4Gshd2 o

k j ,kl
F p

iÞ j ,k
dsxi8 − xidG

3
ug8sxj8dg8sxk8du

Sjk
2h−1 gsxj8d

h−1gsxk8d
h−1

3d„gsxj8d + gsxk8d − Sjk…. s10d

From this last expression, it can be checked that a detailed
balance relation is satisfied:

Wshxi8juhxijdp
i=1

N

fug8sxidugsxidh−1g

= Wshxijuhxi8jdp
i=1

N

fug8sxi8dugsxi8d
h−1g. s11d

As a result, the steady-state distributionPstshxij uEd, for a
given valueE of the energy, is readily obtained as

PstshxijuEd =
1

ZNsEdpi=1

N

fug8sxidugsxidh−1gdSo
i=1

N

gsxid − ED ,

s12d

whereZNsEd is a normalization factor that may be called an
effective smicrocanonicald partition function:

ZNsEd =E p
i=1

N

fdxiug8sxidugsxidh−1gdSo
i=1

N

gsxid − ED .

s13d

An important remark has to be made at this stage: Eqs.s12d
and s13d remain formally valid if one slightly changes the
definition of the model. This can be done in two different
ways. First, one could consider the case where the variables
hxij take only positive values. Then one only needs to re-
move the sum1

4os j,sk
in the transition rates given in Eq.s7d,

and Eq.s12d is recovered, with this timexi .0. Second, as
mentioned in Sec. II A, the model can be generalized by
assuming thatgsxd is not an even function. This is particu-
larly useful if one wants to include an external field which
breaks the1/2 symmetry—see Sec. III B. Actually, ifgsxd
decreases forx,x0, and increases forx.x0, the distribution
given in Eq.s12d also holds.1

The function ZNsEd can be computed using a Laplace
transform. Indeed, it appears rather clearly from Eq.s13d, by
making the change of variable«i =gsxid, that ZNsEd is actu-

ally independent of the functional form ofgsxd. One finds

ZNsEd = kNEhN−1 s14d

with kN=2NGshdN/GshNd. The fact thatZNsEd does not de-
pend ongsxd is actually not a coincidence, but comes from
the basic definition of the model given in Eq.s4d. Indeed, for
any functiongsxd, one could choose as the dynamical vari-
ables the local energies«i =gsxid, and solve the model for«i.
Coming back to the variablegsxid at the end of the calcula-
tions, the distributions12d would be recovered. Still, it
should not be concluded from this that all physical quantities
defined in the model are independent ofgsxd. In particular,
the response to a perturbing field depends strongly ongsxd,
since the field is coupled tox, and not to the energy
gsxd—see Sec. III B.

An interesting question is also to see under what condi-
tions microreversibilitysto be associated with the equilib-
rium behaviord can be recovered in this model. Microrevers-
ibility holds if ug8sxdugsxdh−1 is independent ofx, as can be
seen from Eq.s12d. Such a condition can be satisfied only if
gsxd is a power law, saygsxd=xp/p, where p is an even
integer to ensure the regularity ofgsxd around x=0. The
factor 1/p has been added for convenience, but is otherwise
arbitrary. One then has

ug8sxdugsxdh−1 = p1−huxuhp−1. s15d

Accordingly, microreversibility is recovered forh=1/p. On
the contrary, forhÞ1/p, significant differences from the
equilibrium behavior are expected. These differences may be
even stronger ifgsxd is not a power law.

III. NONEQUILIBRIUM TEMPERATURES

A. Statistical approach

1. Microcanonical equilibrium

In order to define a temperature in this model, one can try
to follow a procedure similar to that of the microcanonical
ensemble in equilibrium statistical physics. Indeed, one of
the main motivations when building the present model was
to find a model in which a global quantitysthe energyd is
conserved, so as to “mimic” in some sense a microcanonical
situation. Yet, as mentioned above, the absence of micror-
eversibility should yield important differences with the latter
case. For an equilibrium system in the microcanonical en-
semble, temperature is introduced in the following way. Con-
sidering a large systemS with fixed energy, one introduces a
partition into two subsystemsS1 andS2, with energyE, and
a numberN, of degrees of freedoms,=1,2d. These two
subsystems are no longer isolated, since they can mutually
exchange energy; the only constraint is thatE1+E2=E is
fixed. The key quantity is then the numberVN,

sE,d of acces-
sible states with energyE, in the subsystemS,; in systems
with continuous degrees of freedomslike a classical gas for
instanced, VN,

sE,d is the area of the hypersurface of energy
E, in phase space. Assuming that both subsystems do not
interact except by exchanging energy, the number of states of
the systemS compatible with the partitionsE1,E2d of the

1In this case, it is necessary to introduce two different reciprocal
functions,g−

−1syd which takes values ins−` ,x0g, andg+
−1syd which

takes values infx0, +`d. In the redistribution process, each of these
two intervals is chosen with equal probability.
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energy is equal toVN1
sE1dVN2

sE2d. But sinceE1+E2 is fixed,
the most probable valueE1

* is found from the maximum, with
respect toE1, of VN1

sE1dVN2
sE−E1d. Taking a logarithmic

derivative, one finds the usual result

U ] ln VN1

]E1
U

E1
*
= U ] ln VN2

]E2
U

E−E1
*
. s16d

Defining the microcanonical temperatureT, of subsystem,
by the relation

1

T,

= U ] ln VN,

]E,

U
E

,
*

s17d

one sees from Eq.s16d thatT1=T2, i.e., that the temperatures
are equal in both subsystemssthroughout the paper, the Bolt-
zmann constantkB is set to unityd. In addition, it can also be
shown that the common valueT does not depend on the
partition chosen; as a result,T is said to characterize the full
systemS.

2. “Microcanonical” stationary state

Very interestingly, this microcanonical definition of tem-
perature can be generalized in a rather straightforward way
to the present model. Still, it should be noticed first that
microscopic configurations compatible with the given value
of the energy are no longer equiprobable, as seen from the
distribution s12d, so thatVNsEd is no more relevant to the
problem. But starting again from a partition into two sub-
systems as above, one can determine the most probable value
E1

* from the maximum of the conditional probabilityPsE1uEd
that subsystemS1 has energyE1 given that the total energy is
E. Indeed, in the equilibrium case,PsE1uEd reads

PsE1uEd =
VN1

sE1dVN2
sE − E1d

VNsEd
s18d

which by derivation with respect toE1, yields precisely the
same result as Eq.s16d.

To be more specific, the subsystems are defined in the
present model as a partition of the lattice, withN1 sites inS1
and N2 sites inS2. The conditional distributionPsE1uEd is
then given by

PsE1uEd =E p
i=1

N

dxiPstshxijuEddS o
iPS1

gsxid − E1D . s19d

Taking into account the lastd function, the first one can be
replaced byd(oiPS2

gsxid−sE−E1d), so thatPsE1uEd may be
written in a compact form as

PsE1uEd =
ZN1

sE1dZN2
sE − E1d

ZNsEd
. s20d

This result generalizes in a nice way the equilibrium distri-
bution Eq.s18d, since in equilibriumZNsEd reduces precisely
to VNsEd. The most probable valueE1

* satisfies

U ] ln PsE1uEd
]E1

U
E1

*
= 0 s21d

which yields

U ] ln ZN1

]E1
U

E1
*
= U ] ln ZN2

]E2
U

E−E1
*
. s22d

So in close analogy with the equilibrium approach, we define
a temperatureTth

, for subsystemS, through

1

Tth
, = U ] ln ZN,

]E,

U
E

,
*
. s23d

Then Eq.s22d implies thatTth
1 =Tth

2 .
At this stage, it is important to check that the common

valueTth of the temperature does not depend on the partition
chosen. With this aim, we show thatTth can be expressed as
a function of global quantities characterizing the whole sys-
tem, with no reference to the specific partition.

Let us computeZNsEd as a function ofZN1
sE1d and

ZN2
sE2d. Sincee0

EdE1PsE1uEd=1, one has from Eq.s20d

ZNsEd =E
0

E

dE1ZN1
sE1dZN2

sE − E1d. s24d

We assume the following general scaling form at largeN, for
ZN,

sE,d:

ZN,
sE,d = A, expfN,z,s«̄,dg s25d

with «̄,;E, /N, sthe index ,=1,2 labels the subsystemd.
This scaling form is demonstrated explicitly in Sec. III A 3.
Using a saddle-point calculation, one obtains forZNsEd a
relation of the formswith «̄=E/Nd

ZNsEd = ZN1
sE1

*dZN2
sE2

*dNE
0

«̄

d«1e
−Nbs«̄ds«1 − «̄1

* d2 s26d

wherebs«̄d=−1
2fl1z19s«̄1

*d+l2z29s«̄− «̄1
*dg and l,=N, /N. Thus

ln ZNsEd reads

ln ZNsEd = ln ZN1
sE1

*d + ln ZN2
sE − E1

*d −
1

2
ln bs«̄d + C

s27d

whereC does not depend onE. Taking the derivative with
respect toE yields, using Eq.s23d,

] ln ZN

]E
=

1

Tth

]E1
*

]E
+

1

Tth
S1 −

]E1
*

]E
D −

1

2N
b8s«̄d. s28d

In the limit N→` swith «̄ fixedd, the last term vanishes,
whereasTth has a finite limit due to the scaling form Eq.
s25d, so that

] ln ZN

]E
=

1

Tth
. s29d

As a result,Tth can be computed from the global quantity
ZNsEd instead ofZN1

sE1d or ZN2
sE2d, and is thus independent
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of the partition chosen. This temperature characterizes the
statistical state of the whole system. From Eq.s14d, the equa-
tion of state of the system is

E = hNTth. s30d

In the case of a quadratic energy, i.e.,gsxd= 1
2x2, it has been

shown above that the equilibrium behavior is recovered for
h= 1

2. This result is confirmed by Eq.s30d, which reduces for
h= 1

2 to the usual form of the energy equipartition. On the
contrary, forhÞ 1

2, a generalized form of equipartition holds
in the sense that all the sites have the same average energy
«̄=E/N swhich is not surprising given the homogeneity of
the systemd, but this average energy per degree of freedom is
equal tohTth instead of12Tth. This point will be discussed in
more detail later on.

Up to now, we have considered only the “microcanonical”
sin a generalized sensed distributionPstshxij uEd. Yet it would
be interesting to introduce also the analogous of the canoni-
cal distribution. To do so, we compute the distribution
Pcanshxijd associated with a smallsbut still macroscopicd sub-
systemS1 of a large isolated systemS. The degrees of free-
dom hxij with i =N1+1, . . . ,N have to be integrated out since
they belong to the reservoir. One finds for the remaininghxij
si =1, . . . ,N1d the following distribution:

Pcanshxijd =
1

ZNsEdpi=1

N1

ug8sxidugsxidh−1

3E p
i=N1+1

N

fdxiug8sxidugsxidh−1gdSo
i=1

N

gsxid − ED .

s31d

The above integral is nothing but the partition function
ZN2

(E−oi=1
N1 gsxid), with N2=N−N1, which can be expanded

to first order as

ln ZN2SE − o
i=1

N1

gsxidD = ln ZN2
sEd −

1

Tth
o
i=1

N1

gsxid s32d

assuming thatoi=1
N1 gsxid!E, which is true as long asN1

!N. The derivative of lnZN2
sEd has been identified with

1/Tth using Eq.s23d, up to corrections that vanish in the limit
N1/N→0, sinceE is the total energy rather than the energy
E2 of the reservoir. Introducing this last result into Eq.s31d,
one finally finds

Pcanshxijd =
1

ZN1

canp
i=1

N1

ug8sxidugsxidh−1 3 expS−
1

Tth
o
i=1

N1

gsxidD
s33d

whereZN1

can=ZN2
sEd /ZNsEd—note thatE is the energy of the

global system which includes the reservoir. This “canonical”
distribution appears to be useful in order to compute the
FDR, as discussed below in Sec. III B.

3. Entropy and thermodynamics

From Eq.s29d, it is tempting to generalize the notion of
microcanonical entropy throughSsEd=ln ZNsEd. Indeed, this

definition is not only an analogy, but as we shall see, it can
be associated with a time-dependent entropy which is maxi-
mized by the dynamics. To define the entropy, one needs first
to introduce the probability measurePEshxij ,td restricted to
the hypersurface of energyE:

Pshxij,td = PEshxij,tddSo
i=1

N

gsxid − ED . s34d

Then the dynamical entropy is defined as

SEstd = −E p
i=1

N

dxiPshxij,tdln
PEshxij,td

fshxijd
s35d

where fshxijd;pi=1
N ug8sxidugsxidh−1. Using the master equa-

tion s5d, it can be shown thatSEstd is a nondecreasing func-
tion of time—see Appendix A. As a result,SEstd is maximal
in the stationary state, and the corresponding valueSsEd is
given by

SsEd = −E p
i=1

N

dxiPshxijuEdln
1

ZNsEd
= ln ZNsEd s36d

which matches exactly the definition proposed above on the
basis of Eq.s29d.

Using Eq.s14d, one can computeSsEd and check explic-
itly that the entropy per siteSsEd /N becomes in the thermo-
dynamic limit a well-defined functionzs«̄d of the energy den-
sity «̄=E/N. The entropySsEd reads

SsEd = NFln 2Gshd −
1

N
ln GshNd + h ln EG . s37d

Using lnGsxd<x ln x−x for largex allows us to writeSsEd
=Nzs«̄d with

zs«̄d = h ln «̄ + ln 2Gshd − hsln h − 1d. s38d

On the other hand, the equilibrium thermodynamic for-
malism is most often formulated in terms of the canonical
ensemble. In the present model, since a canonical distribu-
tion has been derived, it may also be possible to define an
equivalent of the canonical thermodynamic formalism. In-
deed, from Eq.s33d, one can easily see that the average
energykEl is given by

kEl = −
] ln ZN

can

]b
s39d

whereb;Tth
−1 is the inverse temperature. A generalized free

energyFsTthd is also naturally introduced through

FsTthd = − Tth ln ZN
can. s40d

The generalized partition functionZN
can can be easily com-

puted, as it is factorized:

ZN
can= FE

−`

`

dxug8sxdugsxdh−1e−gsxd/TthGN

s41d

which leads toZN
can=f2GshdTth

h gN. So the free energy is given
by

NONEQUILIBRIUM TEMPERATURES IN STEADY-STATE… PHYSICAL REVIEW E 71, 046140s2005d

046140-5



F = − NTthfln 2Gshd + h ln Tthg. s42d

In equilibrium, the entropyS is related to the free energyF
through]F /]T=−S. This relation is also satisfied within the
present model:

]F

]Tth
= − Nfhsln Tth + 1d + ln 2Gshdg = − Nzs«̄d s43d

where the last equality is obtained by using the equation of
stateTth= «̄ /h, and comparing with Eq.s38d.

B. Fluctuation-dissipation relations

As recalled in the Introduction, temperatures are usually
defined in out-of-equilibrium systems as the inverse slope of
the FDR, when this relation is linear. This approach has been
shown to be physically meaningful in the context of glassy
models in the aging regimef6g. In this case, the long time
slope of the FDR gives an effective temperature which dif-
fers from the heat bath temperature. Still, for nonequilibrium
steady-state systems which are not glassy, no justification has
been proposed to show that the inverse slope of the FDR
satisfies the basic properties expected for a temperature. For
instance, one expects a temperature to take equal values in
two subsystems of a large system, when the stationary state
has been reached. The present model thus allows us to test
explicitly the validity of the FDR definition of temperature.

A natural observable to consider in this model is

Mstd = o
i=1

N

xistd. s44d

The steady-state correlation functionCstd of the system is
then defined as the normalized autocorrelation of the observ-
ableMstd between timet=0 andt:

Cstd =
1

N
ŠfMstd − kMlgfMs0d − kMlg‹ s45d

where the angular bracketsk¯l denote an average over all
possible trajectories of the system. Calculations are easier
using the canonical distributionPcanshxijd; since this distribu-
tion is factorized, the random variablesxi andxj are indepen-
dent if i Þ j , so thatCstd reduces to

Cstd = Šfxstd − kxlgfxs0d − kxlg‹ s46d

wherex stands for any of the variablesxi—all sites have the
same average values.

The aim of the FDR is to relate the correlation and re-
sponse of a given observable. One thus needs to introduce a
perturbation which generates variations ofx so that a re-
sponse could be defined. A simple way to perturb the system
is to add to the energy a linear term proportional to an ex-
ternal fieldh: one then replacesE by Eh defined as

Eh = o
i=1

N

ghsxid = o
i=1

N

gsxid − hxi + ch. s47d

Without loss of generality, the new functionghsxd is shifted
by a constantch so that the minimum value ofghsxd remains

equal to 0. If the second derivativeg9s0d does not vanish,ch

is given to leading order inh by ch=h2/2g9s0d. In order to
define the response function, one assumes that the system is
subjected to a fieldhÞ0 for t,0, and that it has reached a
steady state. Then at timet=0, the fieldh is switched off.
The stime-dependentd response is defined fort.0 through

xstd ; U ]

]h
U

h=0
K 1

N
o
i=1

N

xistdL
h

s48d

where the indexh on the brackets indicates that the average
is taken over the dynamics in the presence of the fieldh. The
observablekN−1oixistdlh can be computed as

K 1

N
o
i=1

N

xistdL
h

=E p
i=1

N

dxidxi8Gt
0
„hxijuhxi8j…

3 Pcanshxi8j,hdS 1

N
o
i=1

N

xiD s49d

whereGt
0shxij u hxi8jd is the zero-field Green function, i.e., the

probability for the system to be in a configurationhxij at time
t, given that it was in a configurationhxi8j at timet=0, in the
absence of field. The response functionxstd is obtained by
taking the derivative of the above equation with respect toh,
at h=0:

xstd =E p
i=1

N

dxidxi8Gt
0shxijuhxi8jd

3 Pcanshxi8j,0d
] ln Pcan

]h
shxi8j,0dS 1

N
o
i=1

N

xiD . s50d

The canonical distributionPcanshxij ,hd in the presence of a
field takes the same form as Eq.s33d, simply replacinggsxd
by ghsxd. Thus one finds for the logarithmic derivative of
Pcanshxij ,hd

] ln Pcan

]h
shxi8j,0d = U −

] ln ZN
can

]h
U

h=0
+ o

i=1

N S xi

Tth
−

1

g8sxid

− sh − 1d
xi

gsxid
D . s51d

Note thatdch/dh=0 at h=0, due to the regularity ofgsxd.
The derivative of the partition function yields

U ] ln ZN
can

]h
U

h=0
=

1

Tth
Ko

i=1

N

xiL −Ko
i=1

N

viL s52d

wherevi stands for

vi ;
1

g8sxid
+ sh − 1d

xi

gsxid
. s53d

Replacing the expressions51d in Eq. s50d, one finally finds,
using the factorization of the canonical distribution,
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xstd =
1

Tth
Cstd − Šfxstd − kxlgfvs0d − kvlg‹, s54d

where indices are omitted just as in Eq.s46d. Compared to
the usual form of the FDR, an additional term appears which
corresponds to the correlation of the variablesx and v. In
general, this new correlation function is not proportional to
Cstd, so that a parametric plot ofxstd versusCstd, usually
referred to as a fluctuation-dissipation plot, would be nonlin-
ear.

Yet, in the case wheregsxd is an even function ofx, some
important simplifications occur. On the one hand, the aver-
age values ofx andv vanish. On the other hand, the corre-
lation xstdvs0d becomes proportional to the “hopping corre-
lation function” Fstd, defined as

Fstd =K 1

N
o
i=1

N

fistdL . s55d

The variablesfistd are history-dependent random variables,
which are equal to 1 if no redistribution involving sitei
occurred betweent=0 and t, and are equal to 0 otherwise.
The proportionality of both correlation functions can be un-
derstood as follows. If there was a redistribution on sitei
between 0 andt, xistd becomes fully decorrelated fromvi,
due to the fact that the sign ofxistd is chosen at random, and
that the average valueskxl and kvl vanish for an evengsxd.
On the contrary, if no redistribution occurred,xistdvis0d
=xis0dvis0d. The same reasoning also holds forCstd, so that
one has

Cstd = kx2lFstd, kxstdvs0dl = kxvlFstd. s56d

As a result, the FDR can be expressed, in the case of an even
function gsxd, as

xstd = S 1

Tth
−

kxvl
kx2l

DCstd. s57d

So the FDR is indeed linear in this case, and one can define
an effective temperatureTFD from the inverse slope of this
relation. This yields

1

TFD
=

1

Tth
−

kxvl
kx2l

. s58d

Still, as long askxvlÞ0, the temperatureTFD differs from
the temperature Tth defined above from statistical
considerations—a more detailed discussion on this point is
given below in Sec. III C.

Even though the two temperatures are not equal, one can
wonder whether they are proportional, in the sense that the
ratio Tth/TFD would be independent ofTth. From Eq.s58d,
one has

Tth

TFD
= 1 −

kxvlkgsxdl
hkx2l

, s59d

where we have used the relationsTth= «̄ /h and «̄=kgsxdl.
The correlationkxvl can be written in a more explicit form
as

kxvl =K x

g8sxd
+ sh − 1d

x2

gsxdL . s60d

From Eqs.s59d and s60d, it appears that the ratioTth/TFD
generally depends onTth, since the averagek¯l is done with
the one-site distribution which is a function of temperature.

Now in the particular case wheregsxd is a power law,
namely,gsxd=xp/p swith p an even integerd, Eq. s59d actu-
ally simplifies to

TFD = f2 + psh − 1dgTth. s61d

Note that for 2+psh−1dø0, the above equation would lead
to a negativeTFD, i.e., a negative responsexstd to the pertur-
bationh, which is rather counterintuitive. Actually,xstd does
not become negative in this case but diverges and Eq.s61d is
no longer valid, indicating the breakdown of linear
response—the response is then nonlinear withh even forh
→0. This may be seen from the correlationkxvl, which can
be written

kxvl = AE
0

`

dx x1+psh−1de−xp/pTth, s62d

where the constantA depends onp and h. If 1+psh−1d
ø−1 si.e., the same condition as aboved, the integral di-
verges at its lower bound, andxstd becomes infinite. To keep
the susceptibility finite, one needs to consider values ofh
such thath.1−2/p. It is interesting to note that as soon as
p.2, the equilibrium valueh=1/p does not satisfy the
above inequality, so that the equilibrium response is nonlin-
ear in this case. This is somewhat reminiscent of the Landau
theory for phase transitions, in which the magnetizationkml
becomes nonlinear with the magnetic field at the critical
point, where the term inm2 in the expansion of the free
energy vanishes.

Finally, considering the specific casegsxd= 1
2x2 as inf26g,

the above restriction disappears since1−2/p=0 for p=2.
The temperatureTFD is then defined for allh.0.2 Using
Eqs.s30d ands61d, one can writeTFD in a very simple form
which does not depend onh:

TFD = 2«̄, s63d

where«̄ is the energy density«̄= 1
2kx2l.

To sum up, several different cases have to be distin-
guished. For general regular functionsgsxd with gsxd,xp for
x→0, wherep.2 is an even integer, the response is nonlin-
ear with the fieldh if hø1−2/p. Otherwise, the response is
linear and the susceptibilityxstd can be defined. In this case,
the FDRsor equivalently, the fluctuation-dissipation plotd is
generically nonlinear. Now, several additional assumptions
on gsxd can be made: ifgsxd is even, the FDR is linear,
leading to the definition ofTFD as the inverse slope of the
FDR; yet,TFD is a priori not proportional toTth. In addition,

2Actually, only the behavior ofgsxd in the vicinity of x=0 is
responsible for the divergence of the susceptibilityxstd. For an even
regular functiongsxd such thatg9s0dÞ0, one hasgsxd,x2 for x
→0, and the response remains linear inh for all positive value ofh.
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if gsxd is a power lawsand if the response is lineard, thenTFD

becomes proportional toTth. The equalityTFD=Tth is recov-
ered only forp=2 andh= 1

2, i.e., when linear response and
microreversibility hold.

C. Physical relevance of the different temperatures

In the preceding sections, two different temperatures have
been introduced: a first onesTthd from statistical consider-
ations, and a second onesTFDd from a FDR. These two tem-
peratures do not only have different definitions, but they also
take different values, as seen from Eq.s59d. In this section,
we wish to compare the physical relevance of these two defi-
nitions, and see whether or not both of them satisfy the basic
properties expected for a temperature.

1. Inhomogeneous version of the model

Considering a homogeneous system as we have done up
to now, it is clear that ifTth takes the same value in two
subsystems, so doesTFD since the two temperatures are re-
lated through Eq.s59d. Indeed, ifgsxd=xp/p these two tem-
peratures are proportional according to Eq.s61d, so that they
may be considered to be identical up to a redefinition of the
temperature scale. As a result, it seems not to be possible to
discriminate between these two definitions within the present
model.

Actually, this apparent equivalence of both temperatures
comes from the fact that the parameterh is the same
throughout the system. So one could try to propose a gener-
alization of the model in whichh would not be constant, still
keeping the model tractable. This can be realized in the fol-
lowing way. Introducing on each sitei a parameterhi .0, we
define on each links j ,kd a distributionc jksqd through

c jksqd =
Gsh j + hkd
Gsh jdGshkd

qh j−1s1 − qdhk−1. s64d

The redistribution rules are assumed to keep the same form
as in Eq.s4d. Yet the links s j ,kd now need to be oriented
sincec jksqd is no longer symmetric, so that the fractionq is
attributed to sitej , whereas 1−q is attributed to sitek, pre-
cisely as in Eq.s4d.

Note, however, that even though the redistribution process
is locally biased ifh j Þhk, there is no global energy flux in
the system since the forms64d has been chosen to preserve
the detailed balance relation. As a result, the steady-state
distribution can be computed exactly for any set of variables
hhij. To simplify the discussion, we restrict the results pre-
sented here to the simple casegsxd= 1

2x2, but generalization
to other functionsgsxd is rather straightforward. In this case,
the “microcanonical” distributionPshxij uEd takes essentially
the same form as previously:

PshxijuEd =
1

Z̃NsEd
p
i=1

N

uxiu2hi−1dS1

2o
i=1

N

xi
2 − ED . s65d

Following the same reasoning as above, one can define both
Tth andTFD in this generalized model. In particular, the tem-
perature Tth

, is defined from the conditional probability

PsE1uEd as in Eq.s23d. Considering again a partition of a
large isolated system into two subsystemsS1 and S2, one
finds for the subsystemS,

Tth
, =

«̄,

khl,

, TFD
, = 2«̄,, s66d

wherekhl, is the average ofhi over the subsystemS,:

khl, ;
1

N,
o
iPS,

hi . s67d

If one chooses the set of variableshhij such that khl1

Þ khl2, the equalityTth
1 =Tth

2 , which is true from the very
definition of Tth

, —see Eq. s22d—implies «̄1Þ «̄2. Conse-
quently, equipartition of energy breaks down, and from Eq.
s66d one hasTFD

1 ÞTFD
2 : the fluctuation-dissipation tempera-

ture does not take equal values in the two subsystems.3

This last point is indeed reminiscent of recent numerical
results reported in the context of binary granular gasesf22g,
where the temperature associated with each species of grains
from a FDR does not equilibrate. These results indicate that
for nonglassysystems, the temperature defined from the
FDR does not satisfy the basic properties required for a tem-
perature, such as the equality of the temperatures of sub-
systems when a steady state has been reached. On the con-
trary, the temperature Tth defined from statistical
considerations satisfies this property, and may thus be given
a more fundamental status.

Finally, it should be noticed that the relationTth= «̄ /h
indicates that the temperatureTth is not simply a measure of
the average energy, but also takes into account the fluctua-
tions of energy. Indeed, a large value ofh corresponds on the
one hand to a low value of the temperature, and on the other
hand to a sharp distributioncsqd, which in turn leads to
small energy fluctuations in the system, as can be seen for
instance from the canonical distribution given in Eq.s33d.

2. How to define a thermometer?

Once a temperature has been formally defined in a sys-
tem, a very important issue is to be able to measure it, at
least within a conceptual experiment. This question is in gen-
eral highly nontrivial for out-of-equilibrium systems. In the
context of glassy systems for instance, it has been proposed
to use a simple harmonic oscillator connected to the system
as a thermometerf5g. Still, in order to measure a temperature
associated with a given time scalet sassumed to be large
with respect to the microscopic time scalet0d, one must use
a harmonic oscillator with a characteristic time scale of the
order oft sseef28g for a numerical realizationd. In this case,
the temperature is obtained through the usual relation«̄osc

= 1
2T, where«̄osc is the average kinetic energy of the oscilla-

tor. For glassy systems, this temperature has also been shown
to identify with the temperature defined from the FDRf5g.

Interestingly, in the present model which is not glassy, a
somewhat analogous procedure would be to connect a new

3The same conclusions hold for more general functionsgsxd, but
the results then take a less concise form.
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site to the system, and make it interact with the other sites
using the current kinetic rules of the model; this new site
would play the role of a thermometer. Assuming againgsxd
= 1

2x2, the temperature read off from the average energy of
the thermometer is preciselyTFD. At first sight, this seems to
be in contradiction with the above discussion in which we
argued thatTth was the physically relevant temperature. The
paradox comes from the fact that we used without justifying
it the relation «̄osc=

1
2T to define the temperatureT of the

thermometer as a function of the measurable quantity«̄osc.
Accordingly, such a definition does not ensure thatT is the
temperature of the system.

One of the most important properties ofTth is precisely
that it takes equal values within subsystems in contact. Ac-
tually, to obtainTth, one needs to know the equation of state
of the thermometer, which relates measurable quantities like
the average energy«̄osc to the temperatureTth. Indeed, the
fact that it is necessary to know the equation of state of the
thermometer in order to measure the temperature is not a
specificity of nonequilibrium states, but is also true in equi-
librium situations, in which one must know for instance the
relation between the height of a liquid in a vertical pipe and
the temperature of this liquid. In the same way, the relation
«̄osc=

1
2T invoked above is not obvious in itself, but results

from equilibrium statistical mechanics. As a result, there is
no clear reason why this last relation should hold for generic
nonequilibrium situations.

Yet an important point must be mentioned at this stage.
One of the specificities of nonequilibrium states is that there
is not a unique way to define a thermal contact between two
systems. In equilibrium, it is usually enough to consider the
weak interaction limit in which the energy associated with
the interaction process is very small compared to the other
energies involved. On the contrary, for nonequilibrium sys-
tems, the conservation of energy is not sufficient, since the
dynamics can be much richer, as illustrated by the presence
of the parameterh in the present model. Above, we assumed
that the new site used as a thermometer was driven by the
same dynamical rules as the system it is in contact with. Yet,
in a practical situation, one would rather use a thermometer
with a known equation of state to measure the temperature of
another system for which the equation of state isunknown.
As a consequence, the dynamics of the thermometer is ex-
pected in general to be different from that of the system.
Determining the properties that a thermometer has to satisfy
in order to measure correctly the temperature thus remains an
open question.

IV. RENORMALIZATION APPROACH

A. Breaking of detailed balance

If csqd is different from ab law, no simple detailed bal-
ance relation has been found in this model. In the absence of
such a relation, it is rather hopeless to find the stationary
distribution Pstshxij uEd, even though some sophisticated al-
gebraic methods have proven to be efficient in some cases
f29,30g. Yet, the fact that we were not able to find a detailed
balance relation in the model is not a proof that the relation

does not exist. As a result, it appears useful to test numeri-
cally the existence of nonzero probability fluxes in the
steady-state regime.

As discussed in Sec. II C, the steady-state distribution can
be fully determined in terms of the dynamics of the local
energy«i =gsxid. In the following, we thus use these vari-
ables«i as the dynamical variables. The dynamics of«i is the
same as that of the variablesxi if one considers the case
gsxid=xi, restrictingxi to be positive. The detailed balance
property is checked by measuring with numerical simula-
tions the probabilitypabs«a,«b,d«d to observe on a given site
i a direct transition from a value«i P f«a,«a+d«g to a new
value «i8P f«b,«b+d«g, as well as the reverse probability
pbas«b,«a,d«d to go from the intervalf«b,«b+d«g to the in-
terval f«a,«a+d«g. These probabilities are actually obtained
by averaging over all sitesi. One then computes the ratio

R=
pabs«a,«b,d«d
pbas«b,«a,d«d

s68d

which becomes independent ofd« in the limit of smalld«. In
addition, a simple parametrization is to set«b=«a+D, and to
computeR as a function of«a for a fixed value ofD. Figure
1 presents the numerical results obtained forRs«ad with D
= «̄, using distributionscsqd which differ significantly from
b laws such as the sinelike distributioncsqd
=sp /2dusins2pqdu, and the “square box” onecsqd=2 for 1

4
,q,

3
4, andcsqd=0, otherwise.b laws are also shown for

comparison. As expected,Rs«ad=1 for b laws, whereas
Rs«adÞ1 for other distributions, thus giving further evidence
that detailed balance is broken in this case.4

4Note, however, that this is not a strict test of the absence of
detailed balance. Such a test would require one to compute the
probability of observing transitions betweenN-site configurations
h«ij and h«i8j, which is hard to measure numerically.

FIG. 1. RatioRs«ad of forward and backward probabilities of a
transition path;Rs«adÞ1 indicates a breaking of detailed balance.
Distributions csqd used are the sinelike distributionsnd and the
square box onesLd—see text for details. Results forb laws csqd
with h=1 ssd and 2s1d are also presented for comparison, show-
ing as expected that detailed balance is satisfied for these
distributions.
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B. Numerical renormalization procedure

Even though detailed balance is broken microscopically
whencsqd is different from ab law, one can wonder whether
the macroscopic properties of the model differ significantly
or not from those in the presence of detailed balance. Indeed,
some studiesf19,20g have shown that a weak breaking of
detailed balance does not influence the critical properties of
particular classes of spin models. In the present model, nu-
merical simulations suggest that even for distributionscsqd
with a behavior far fromb laws, no spatial correlations ap-
pear within two-point functions. Note that this result is also
consistent with the vanishing of two-point correlations in the
q model for granular matterf31g, which presents some for-
mal similaritiessalthough in a different spiritd, but also im-
portant differences, with the present model. In particular, the
q model is static, and the role played by time here corre-
sponds to the vertical space direction. In addition, the dy-
namics of theq model is equivalent to a synchronous dynam-
ics, and the conserved quantity is linear since it represents
the vertical component of forces between grains.

In order to test whether macroscopic properties are influ-
enced or not by the breaking of detailed balance at the mi-
croscopic level, one can try to use a renormalization group
approach. Even though such an approach might not seem
natural in a context where no diverging length scale appears,
this is actually a standard way to compute the effective dy-
namics at a coarse-grained level. Since no analytical solution
is available forcsqd different from ab law, one has to resort
to numerical simulations.

With this aim, the following renormalization procedure is
introduced. Thed-dimensional lattice is divided into cellssor
blocksd of linear sizeL, and the effective dynamics between
cells is measured from numerical simulations of the micro-
scopic dynamics. To be more specific, when running the mi-
croscopic dynamics, one has to choose at random a link of
the lattice at each time step, and to redistribute the energy
over the link. If both sites of this link belong to the same
block, then the redistribution is only an intrablock dynamics,
and corresponds precisely to the degrees of freedom that
have to be integrated out by the renormalization procedure.
As a result, nothing is recorded during this particular pro-
cess.

On the contrary, if the chosen link lies between two dif-
ferent cells, then the process is considered as a redistribution
between blocks, and the effective fractionqR of energy re-
distributed is computed. Having chosen an orientation of the
lattice, one can label for instance by 1 and 2 the two blocks
involved in the process. Clearly, the total energy of these two
blocks is conserved during this process. One thus computes
the energyEb

18 andEb
28 of each block after the repartitioning,

and defines the effective redistributed fractionqR as the ratio:

qR =
Eb

18

Eb
18 + Eb

28
. s69d

To obtain the renormalized energy, one should actually di-
vide Eb by the size of the blocksso that the energy density is
conservedd, but this is not essential here since we consider
only energy ratios. The histogram of the values ofqR ob-

tained when running the microscopic dynamics is recorded,
which gives the renormalized distributioncLsqd. One would
like to test if for large values ofL, detailed balance is recov-
ered, which would mean that the distributioncLsqd con-
vergessin some sense to be specifiedd toward ab law. As
usual with renormalization procedures, the correct way to
obtain large block sizes is not to consider large blocks from
the beginning, but instead to start from small blocks and to
iterate the procedure until the desired size is reached.

As a result, we started from cells of sizeL=2 and com-
puted successivelyc2sqd, c4sqd, c8sqd, etc., by applying re-
cursively the same procedure with a microscopic dynamics
defined by the renormalizedcLsqd obtained at the step be-
fore. Numerical results obtained starting from an initial dis-
tribution csqd=sp /2dusins2pqdu are shown on Fig. 2, for
space dimensionsd=1 and 2. ForLù4, the resulting distri-
butionscLsqd can be very well fitted byb laws, i.e., by a test
distributionctestsqd of the form

ctestsqd =
Gs2hLd
GshLd2 fqs1 − qdghL−1 s70d

with only one free parameterhL. This parameterhL is an
increasing function ofL, which can be easily understood
from the fact that increasing the size of the blocks reduces
the fluctuations of energysdensityd from one block to an-
other. So if one lets the sizeL go to infinity, the distribution
cLsqd eventually converges to a Diracd function centered on
q= 1

2. This means that theb laws found from fitting the data
are to be understood as preasymptotic distributions rather
than as true limit distributions.

Very interestingly, the fitting parameterhL is found to be
linear with Ld, as seen in the inset of Fig. 2. This behavior
can be interpreted in the following way, assuming that the
initial distributioncsqd is ab law with parameterh. As seen
from the calculations done in Sec. II C, the local distribution
of the energy«i =gsxid is given by ag law of exponenth and
scale parameterb=1/Tth:

FIG. 2. Renormalized distributioncLsqd for increasing sizesL,
in dimensiond=1. Full lines correspond to one-parameter fits with
b distributions. Inset: parameterhL from the fit plotted as a function
of Ld for d=1 s1d and 2ssd; dashed line is the mean-field predic-
tion given in Eq.s87d.
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ps«id =
bh

Gshd
«i

h−1e−b«i . s71d

The «i’s are independent random variables, so that the block
energiesEb, defined as

Eb = o
iPblock

«i , s72d

are distributed according tob laws with exponenthLd,
whereLd is the number of sites within a block. Then taking
the ratioqR=Eb

1/ sEb
1+Eb

2d, one obtains forqR a b distribution
of parameterhLd, as is well known from the properties ofg
laws.

So starting from ab law for csqd, the above analytical
argument shows thatb laws are again obtained from the
renormalization procedure, with a parameterhL linear in Ld.
Interestingly, the coefficient of proportionality is precisely
the parameterh of the microscopic lawcsqd. So when start-
ing from an arbitrary distributioncsqd, it is natural to define
an effective parameterhe from the fitting parameterhL as

he =
hL

Ld . s73d

One can then interprethe as the parameter of the micro-
scopicb law which would give the same macroscopic be-
havior of the system as the initial distributioncsqd.

C. Mean-field predictions

In this section, we aim to predict within a mean-field
framework the effective exponenthe introduced above, for
an arbitrary distributioncsqd. In a mean-field description,
one assumes that the two-site steady-state distribution
P2sx1,x2d can be factorized as a product of one-site distribu-
tions:

P2sx1,x2d = P1sx1dP1sx2d. s74d

This assumption is valid ifcsqd is a b law, as can be seen
from Eq. s33d. For more generalcsqd, it remainsa priori
only an approximation. In order to deal with the renormal-
ization procedure, it is more convenient to work with the
distribution ps«id of the local energy«i ;gsxid, rather than
with P1sxid. In terms of the variablesh«ij, the redistribution
rules read

« j8 = qs« j + «kd, «k8 = s1 − qds« j + «kd. s75d

Numerical simulations show that after a sufficient coarse-
graining by the renormalization procedure, the renormalized
distribution cLsqd becomes ab law with parameterhL

=heL
d. The associated renormalized distribution of the block

energiesEb is then ag law with exponenthL and scale pa-
rameterbL:

pLsEbd =
bL

hL

GshLd
Eb

hL−1e−bLEb. s76d

The exponenthL can be determined from the first and second
moments of the distributionpLsEbd. Indeed, one finds an av-

erage valuekEbl=hL /bL, and a variance varsEbd=hL /bL
2,

with varsEbd=kEb
2l−kEbl2. As a result,hL is given by

hL =
kEbl2

kEb
2l − kEbl2 . s77d

If the initial distribution ps«id is factorized, the block ener-
giesEb are sums of independent random variables—see Eq.
s72d. So the average value and the variance ofEb are simply
the sums of the average and variance of the variables«i:

kEbl = k«lLd, varsEbd = vars«dLd. s78d

From Eq. s77d, the effective exponenthe=hL /Ld is thus
found to be

he =
k«l2

vars«d
. s79d

So if we know the two first moments of the distributionps«d,
we are able to computehe.

To obtain these moments for an arbitrarycsqd, we use the
following steady-state master equation for the distribution
ps«d:

ps«d =E
0

`

d«1ps«1dE
0

`

d«2ps«2dE
0

1

dq csqd

3d„« − qs«1 + «2d…. s80d

This equation can be considered as describing the redistribu-
tion process over an isolated single link. Yet, it can also be
derived from a mean-field version of the model, in which
redistributions can occur over any pair of sites of the
system—see Appendix B. Introducing the Laplace transform
p̂ssd defined asp̂ssd;e0

`d« e−s«ps«d, one can rewrite Eq.
s80d as

p̂ssd =E
0

1

dq csqdE
0

`

d«1ps«1dE
0

`

d«2ps«2de−sqs«1+«2d.

s81d

The integrals over«1 and«2 can be factorized into a product
of Laplace transforms:

p̂ssd =E
0

1

dq csqdp̂sqsd2. s82d

From the last equation, the successive moments ofps«d can
be obtained, since they are given by the derivatives ofp̂ssd in
s=0:

k«l = − Udp̂

ds
U

s=0
, k«2l = Ud2p̂

ds2U
s=0

. s83d

Note also that by definition,p̂s0d=1. Taking the first deriva-
tive of Eq. s82d in s=0, one recovers thatkql= 1

2. More in-
terestingly, the second derivative of Eq.s82d yields
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Ud2p̂

ds2U
s=0

= 2E
0

1

dq q2csqdFSUdp̂

ds
U

s=0
D2

+ Ud2p̂

ds2U
s=0
G .

s84d

In terms of moments, the last equation reads

k«2l = 2kq2lfk«l2 + k«2lg. s85d

To computehe, we only need the ratiok«l2/ k«2l, which is
easily found from the preceding equation:

k«2l
k«l2 =

2kq2l
1 − 2kq2l

. s86d

Taking into account thatkql= 1
2, he is found to be

he =
1

8varsqd
−

1

2
. s87d

D. Analytical arguments

To conclude this section dedicated to renormalization
group approaches, we wish to give a heuristic analytical ar-
gument that may help to understand the numerical results
presented on Fig. 2. As explained above, the renormalization
can be worked out exactly in the case wherecsqd is ab law.
The numerical procedure shows that other distributionscsqd
converge tob laws under renormalization. From an analyti-
cal point of view, it is more convenient to work with the
distributionps«d of the local energy, rather than withcsqd. A
b law csqd is associated with ag law for ps«d so that it
would be interesting to check analytically whether an arbi-
trary ps«d converges to ag law under renormalization. Note
that an implicit assumption here is that theN-site energy
distribution is factorized, in a mean-field spirit.

A general calculation for an arbitrary initial distribution
ps«d is in fact highly nontrivial. We thus restrict the follow-
ing calculations to an initialps«d which differs only slightly
from a g law:

ps«d = pgs«d + ldps«d s88d

wherel!1 is an arbitrarily small parameter, andpgs«d is a
g distribution similar to that used in Eq.s71d. Since the
renormalization conserves the average energy,ps«d and
pgs«d must have the same average value«̄ so as to become
equivalent after renormalization. Taking also into account the
normalization condition,dps«d has to satisfy

E
0

`

d« dps«d = 0, E
0

`

d« «dps«d = 0. s89d

Let M ;Ld be the number of sites in a block. The renormal-
ized energy«R is given by «R=Eb/M. The distribution of
p1s«Rd is more easily obtained using a Laplace transform:

p̂1ssd = p̂ss/MdM . s90d

Obviously, a fixed point for this equation ispssd=e−s«̄, which
leads tops«d=ds«− «̄d. The aim of the present calculation is
to see whetherps«d andpgs«d converge “in the same way” or
not toward thed distribution.

Replacing Eq.s88d into Eq.s90d and expanding up to first
order inl, one has

dp̂1ssd = Mp̂gS s

M
DM−1

dp̂S s

M
D . s91d

IteratingK times the renormalization procedure, one gets

dp̂Kssd = MKdp̂S s

MKDp
n=0

K−1

p̂g,nS s

MK−nDM−1

. s92d

The renormalizedg distributionp̂g,nssd obtained aftern itera-
tions is given by

p̂g,nssd = S1 +
s«̄

hMnD−hMn

. s93d

Then Eq.s92d can then be rewritten

dp̂Kssd = MKS1 +
s«̄

hMKD−hsMK−1d

dp̂S s

MKD . s94d

Using the relation

lim
K→`

S1 +
s«̄

hMKD−hsMK−1d

= e−s«̄ s95d

one ends up withdp̂Kssd<MKe−s«̄dp̂ss/MKd. Expanding
dp̂ssd in powers ofs for s→0, one hasdp̂ssd=g2s

2+Oss3d,
since the terms of order 0 and 1 vanish due to Eq.s89d. This
yields

dp̂Kssd < e−s«̄g2s
2

MK s96d

which goes to 0 whenK→` as expected. Yet, this is not
enough to show thatps«d and pgs«d converge “in the same
way” toward the distributionds«− «̄d. To do so, one has to
show thatdp̂Kssd goes to 0 more rapidly than the “distance”
betweenp̂g,Kssd and the infiniteK limit p̂g,`ssd=e−s«̄. A way
to quantify this “distance” is to introduce the quantity

DK =E
0

`

dsup̂g,Kssd − p̂g,`ssdu, s97d

which can be shown easily to take the asymptotic formDK
<1/sh«̄MKd. The convergence criterion can be written as

lim
K→`

dp̂Kssd
DK

= 0. s98d

This requires thatg2=0 in the expansion ofdp̂0ssd, which
implies that the distributionsps«d and pgs«d have the same
variances2=sg

2. Such a condition is actually natural, as the
variance becomessK

2 =s2/MK under renormalization. If the
two distributions take the same form after renormalization,
they should have in particular the same variancesK

2 =sg,K
2 ,

and one recoverss2=sg
2.

Obviously, the above arguments are not fully rigorous,
and remain somehow at a heuristic level, but they already
give some insights on the mechanisms leading to the conver-
gence process observed numerically.
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V. CONCLUSION

The class of models studied in the present paper is a very
interesting example in which one can define a meaningful
temperatureTth from the conditional energy distribution of
two subsystems, a procedure similar to the one used in the
equilibrium microcanonical ensemble. These models exhibit
a rich behavior which includes linear as well as nonlinear
response to a perturbation, and linear or nonlinear
fluctuation-dissipation relations when the response is linear.
Our major result is that the temperatureTFD deduced from
the slineard FDR does not coincide with the statistical tem-
peratureTth, and thatTFD does not take equal values in two
subsystems when one considers an inhomogenous version of
the model. This suggests that FDRs are not necessarily the
relevant way to define a temperature in the context of non-
glassy out-of-equilibrium steady-state systems.

In addition, a numerical renormalization procedure sug-
gests that detailed balance is generically restored on a
coarse-grained level when it is not satisfied by the micro-
scopic dynamics. This renormalization procedure yields a pa-
rameterhe describing the deviation from equilibrium, which
can be analytically computed within a mean-field approxima-
tion. This leads to a macroscopic description of the system
with two parameters, namely,Tth andhe.

Finally, from a more general point of view, the present
work raises important questions concerning the way to ex-
tend the concepts of statistical mechanics and thermodynam-
ics to out-of-equilibrium systems. On the one hand, the very
definition of thermometers in nonequilibrium systems ap-
pears to be a highly nontrivial issue, as the way to couple the
thermometer to the system is not unique. Thus one may need
to impose some—still unknown—prescriptions on the cou-
pling to get a well-defined measurement. On the other hand,
the present work may be of some relevance for the descrip-
tion of nonequilibrium systems in which a global quantity is
conserved. For instance, one may think of the two-
dimensional turbulence where the vorticity is globally con-
servedf32–34g, or of dense granular matter in a container
with fixed volume, in which the sum of the local free vol-
umes would also be conserved. Indeed, the present model,
for which the probability distribution is generically nonuni-
form over the mutually accessible statessi.e., states with the
same value of the energy or volume, etc.d may allow one in
particular to go beyond the so-called Edwards’ hypotheses
f9,35,36g, according to which all accessible blocked states
have the same probability to be occupied.
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APPENDIX A: TIME-DEPENDENT ENTROPY

In this appendix, we show that the time-dependent en-
tropy SEstd defined in Eq.s35d is a nondecreasing function of

time. Taking the derivative ofSEstd with respect to time, one
finds

dSE

dt
= −E p

i=1

N

dxi
]P

]t
shxij,tdln

PEshxij,td
fshxijd

sA1d

since the integral of the time derivative of the logarithm
vanishes. One can then use the master equation to express
]P/]t as a function ofPshxij ,td and of the transition rates.
The obtained expression can be symmetrized by permuting
the integration variablesxi andxi8. Using the detailed balance
relation Eq.s12d, one can writedS/dt in the following way:

dS

dt
=

1

2
E p

i=1

N

dxidxi8Wshxi8juhxijdfshxijdFPEshxij,td
fshxijd

−
PEshxi8j,td

fshxi8jd
GFln

PEshxij,td
fshxijd

− ln
PEshxi8j,td

fshxi8jd
G .

sA2d

In this form, it is clear that the time derivative of the entropy
is always positive. It vanishes only for the steady-state dis-
tribution PEshxijd= fshxijd /ZNsEd, and the corresponding
maximum value of the entropy is equal toSsEd=ln ZNsEd.

APPENDIX B: MEAN-FIELD MASTER EQUATION

In Sec. IV C, a simple steady-state master equation was
introduced to describe the one-site distributionps«id of the
energy«i ;gsxid—see Eq.s80d—in the case of an arbitrary
distribution csqd. We show here how this simple equation
can be derived from the master equation associated with an
N-site model with infinite range interactions. Introducing
such long range interactions is a usual way to build a mean-
field version of a model. To be more specific, we generalize
the model introduced in Eq.s4d in order to allow redistribu-
tions over any pair of sitess j ,kd, and not only on the links of
the lattice. As a result, the lattice becomes useless in this
version of the model.

The transition rates read

Wsh«i8juh«ijd =
1

N
o
j,k

F p
iÞ j ,k

ds«i8 − «idGds« j8 + «k8 − « j − «kd

3E
0

1

dq csqdd„« j8 − qs« j + «kd…, sB1d

where the sum runs over all pairss j ,kd. The factor 1/N is
introduced so that each site keeps, in the thermodynamic
limit N→`, a probability per unit time of the order of 1 to
be involved in a redistribution.

The stationary distributionPMFsh«ijd satisfies the follow-
ing master equation:
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PMFsh«ijd E p
i=1

N

d«i8Wsh«i8juh«ijd

=E p
i=1

N

d«i8Wsh«ijuh«i8jdPMFsh«i8jd. sB2d

The first integral is the total exit rate from configurationh«ij,
and is equal tosN−1d /2 from Eq.sB1d. So the last equation
can be rewritten in a more explicit form:

PMFsh«ijd =
2

NsN − 1d oj,k
E

0

`

d« j8E
0

`

d«k8ds« j8 + «k8 − « j − «kd

3 E
0

1

dq csqdd„« j − qs« j8 + «k8d…

3PMFs« j8,«k8,h«ijiÞ j ,kd. sB3d

In order to go further, one has to assume that the distribution
PMFsh«ijd factorizes:

PMFsh«ijd = p
i=1

N

ps«id, sB4d

where ps«d is the one-site distribution. This assumption is
justified in the limit of largeN. Integrating over all variables
except«1, one gets

ps«1d = o
j=1

N−1

o
k=j+1

N
2

NsN − 1d E p
i=2

N

d«i p
iÞ j ,k

ps«idE
0

`

d« j8ps« j8d

3E
0

`

d«k8ps«k8d 3 ds« j8 + «k8 − « j − «kd

3E
0

1

dq csqdd„« j − qs« j8 + «k8d…. sB5d

The right-hand sidesRHSd can then be decomposed into two
terms, one corresponding toi =1 and the other one toi .1,
which are called, respectively,R1 and R2 in the following:
ps«1d=R1+R2. The first termR1 is associated with redistri-
butions involving sitej =1 as well as another arbitrary sitek.
It is actually independent ofk, so thatR1 is the sum ofsN
−1d identical terms. Integrating over«k removes thed distri-
bution ds«18+«k8−«1−«kd, and one finds

R1 =
2

N
E

0

`

d«18ps«18dE
0

`

d«28ps«28dE
0

1

dq csqd

3d„«1 − qs«18 + «28d…. sB6d

On the other hand, the second termR2 is the contribution
from all the redistributions involving sitesj =2, . . . ,N, but
not site j =1. There aresN−1dsN−2d /2 such pairs of links,
which all give the same contribution toR2. So R2 can be
written

R2 =
N − 2

N
ps«1dE

0

`

d«28ps«28dE
0

`

d«38ps«38d

3 E
0

1

dq csqdE
0

`

d«2d„«2 − qs«28 + «38d…. sB7d

All the integrals in the RHS of the above equation give a
contribution equal to 1, so thatR2=s1−2/Ndps«1d; one thus
recovers Eq.s80d.
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