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Nonequilibrium temperatures in steady-state systems with conserved energy
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We study a class of nonequilibrium lattice models describing local redistributions of a globally conserved
guantity, which is interpreted as an energy. A particular subclass can be solved exactly, allowing us to define a
statistical temperaturg;, along the same lines as in the equilibrium microcanonical ensemble. We compute the
response function and find that when the fluctuation-dissipation relation is linear, theTsippéthis relation
differs from the inverse temperatuir@}. We argue thaly, is physically more relevant thaf-p, since in the
steady-state regime, it takes equal values in two subsystems of a large isolated system. Finally, a numerical
renormalization group procedure suggests that all models within the class behave similarly at a coarse-grained
level, leading to a parameter that describes the deviation from equilibrium. Quantitative predictions concerning
this parameter are obtained within a mean-field framework.
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I. INTRODUCTION systems, effective temperatures have been defined either

The existence and the precise definition of intensive therffom FDRs[21-23 or from maximum entropy conditions
modynamical parameters in out-of-equilibrium systems still 23,24, as originally proposed by Jayng25). Still, the va-
remains an open issue. Indeed, the goal of a statistical aﬂjdlty of these procedures remains to be clarified in the con-
proach for nonequilibrium systems, which remains to be context of nonglassy out-of-equilibrium systems.
structed, would be to give a well-defined meaning to such When described in a probabilistic language, a common
thermodynamical parameters, and to predict their relatiofieature of these systems is that they do not obey the detailed
with extensive macroscopic variables like energy or volumebalance property, considered as a signature of equilibrium
Accordingly, many attempts have been made to define outdynamics. Since the breaking of detailed balance plays an
of-equilibrium temperatures in the last decaflel important role in nonequilibrium systems, it may be useful to

In the context of glasses, which are nonstationary system@istinguish between different forms of detailed balance
with very large relaxation times, effective temperatures weravhich should not be confused. In the literature, the term
first introduced as phenomenological parameters allowingdetailed balance” often refers to a canonical form which
one to account for experimental dd-4]. More recently, reads
the notion of effective temperature has been given a more
fundamental status, being defined as the inverse of the slope ~EJT — ~EglT
of fluctuation-dissipation relation€~DRs9 in the aging re- W(Bla)e™/T= W(a| Be™™ @
gime[5]. This definition was guided by the dynamical results
obtained within a family of mean-field spin glass modéls ~ WhereW(B| a) is the transition rate from staie to state3.
Interestingly, such a definition of the effective temperatureThis criterion on transition rates ensures that the statistical
has been shown to satisfy the basic properties expected foreguilibrium reached at large times by the system is indeed
temperaturg5]. Since then, a lot of numerical simulations the canonical equilibrium at temperature
[7-13 and experimentgl4—18 have been conducted to test  Still, the above approach requires one to know the equi-
the validity of this definition of temperature in the aging librium distribution before defining the stochastic model. On
regime of glassy materials. Yet, this definition seems not tdhe contrary, one could try to find a stochastic model which
be always applicable as the measured FDR can be nonlinealescribes in the best possible way a given complex Hamil-

Other classes of systems are far from equilibrium not dudgonian system, without knowing priori the equilibrium dis-
to their slow relaxation toward the equilibrium state, buttribution. Such a stochastic model should at least preserve
rather because they are subjected to external constraints pritie symmetries of the original Hamiltonian system, which
ducing fluxes(of particles or energy for exampléraversing  are the energy conservation and the time-reversal symmetry
the system, leading to energy dissipation. As a result, they— -t (additional symmetries—translation, rotation, etc.—
never reach an equilibrium state. Among these systems, orgust also be taken into account when pregeamergy con-
can think of granular gases, sheared fluids or certain kinetigervation is easily implemented in the stochastic rules by
spin models, to quote only a few of them. allowing only transitions between states with the same en-

Although the usual formalism of equilibrium statistical ergy. On the other side, the time-reversal symmetry in the
physics does not apply to these systems, it is interesting tblamiltonian system can be interpreted in a stochastic lan-
note that the latter sometimes share with equilibrium systemguage as the equality between two opposite transition rates,
some quantitative properties, like critical behavi@®,20.  W(B|a)=W(«|B), a property called microcanonical detailed
To describe the statistical properties of such nonequilibriunbalance or microreversibility.
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In the context of nonequilibrium systems, one expects that Xj' =+ g_l((ﬁk), X, = £ gi(1- DSk (4)
the time-reversal symmetry is broken due to the presence of
fluxes or dissipation. Hence, a simple way to define a nonwith §,=g(x)+g(x,), andq a random variable drawn from
equilibrium system is to consider more general microcanoniq distributiony(q), assumed to be symmetric with respect to
cal forms of detailed balance relations such as q:% (0<q<1). The new values! andx; are either positive
W(B|a)f , = W(q| B)f s, ) or negative Wif[h equal probability, and W@thout co_rrelation_
between the signs. Thus a model belonging to this class is
where f,, is the statistical weight of state, and withE,  characterized by two functiorggx) and ¢(q).
=Eg.
Iﬁn this paper, we study a clagsof nonequilibrium lattice
models describing local redistributions of a globally con-
served quantity, which is interpreted as an energy. A particu- The system is described by the distributi®{{x},t),

lar subclassCs satisfies a microcanonical detailed balancewhich gives the probability to be in a configuratigx} at

ity and can be solved exactly, allowing one to define a sta-

tistical temperaturdy, along the same lines as in the equi- 9P

librium microcanonical ensemble. The response function is —({x}t) :f T dx W(x 3 {x HPEx },t)

computed explicitly, and the FDR is found to be linear or dt i

nonlinear depending on the model considered—the response

can even be nonlinear in the perturbing field. Very interest- —f 11 dx W H{xH P{xi} 1), (5)
ingly, when the FDR is linear, its slope differs from the in- i

verse temperaturé'{hl, which calls into question the rel- ) N ] )
evance of the FDR in defining a temperature in nonglassyvhere W({x'}[{x}) is the transition rate from configuration
out-of-equilibrium systems. Finally, we implement numeri- {Xi} to configuration{x'}. The transition rate can be decom-
cally a functional renormalization group procedure to argug?osed into a sum over the links of the lattice:

that all the models within the clagsbehave at the coarse-

grained level as a member of the subcl&gs Predictions WX D = 2 Wi (XD, (6)
about the renormalization procedure are also made using (k0

mean-field arguments, and are quantitatively verified. Note

that a short version of some aspects of this work has apvhere W ({x'}|{x}) accounts for the redistribution over a
peared in[26], and that a related model, including kinetic given link (j,k):

constraints, has also been introduced in the context of glassy

B. Master equation

dynamics[27]. , ) !
W o = TT 2 -] | dava
II. MODELS AND STEADY-STATE PROPERTIES 1k 0
- 1
A. Definition % 2 > 8(x - Ujg_l(cﬁk))
The models we consider in this paper are defined as fol- 7%k
lows. On each siteof ad-dimensional lattice, a real variable X 8%~ o @ (L - a)S)), (7)

X; which can take either positive or negative values is intro-
duced. Dynamical rules are defined such that the quantity where the variables;, o= +1 account for the random signs
N appearing in Eq(4) with probability 5—hence the factof;
E=S g(x) 3) in the above equation. After some algebra, the transition rate
i=1

W({x'}|{x;}) can be rewritten as

is conserved. The functiog(x), assumed to be positive with

continuous derivative, decreases for X, and increases for WX H{x}) = EE [ H S/ —xi)}

X>Xo, Wherexg is an arbitrary given value. Without loss of (k0 Li#]k

generality, we assumg =0 andg(xy) =0. To clarify the pre- 9’ )g' )| g(x)

sentation, we also assume in this section g{a} is an even X ! k t/f( ' )

function ofx, but the generalization to nonsymmetgi) is Sk Sk
straightforward. X 8(g(x]) +g(x) — S s (8)

It is also necessary to introduce the reciprocal function
g~(y), given as the positive root of the equatigix)=y. The  whereg’(x) denotes the derivative @f(x).
dynamics is defined as follows. At each time step, a link
(j,k) is randomly chosen on the lattice and the corresponding
variablesx; andx, are updated so as to conserve the energy
g(xj) +g(x,) of the link. To be more specific, the new values A case of particular interest is the subclass of models for
x; andx, are given by which the distributiony(q) is given by a symmetri@ law,

C. Detailed balance and steady-state distribution
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ally independent of the functional form gfx). One finds
) = 2D iy — gyt @ NP o
L) Zy(E) = kyE™ (14)
with 7>0. In this case, the functiof(g(xj)/Sy) appearing jth x=2NT'(7)N/T'(3N). The fact thaiZy(E) does not de-
in the transVuon rates fapt.orlzes, if one takes into account th%end ong(x) is actually not a coincidence, but comes from
& function. So the transition rate reads the basic definition of the model given in Ed). Indeed, for
r'(27) any functiong(x), one could choose as the dynamical vari-
W({x{ }{x}) = AL )22 [ [T a(x - Xi)] ables the local energies=g(x;), and solve the model fas;.
G Lizik Coming back to the variablg(x) at the end of the calcula-
tions, the distribution(12) would be recovered. Still, it
should not be concluded from this that all physical quantities
defined in the model are independentggk). In particular,
X 8(g(%]) + g(x%) = S - (10)  the response to a perturbing field depends stronglg(an

From this last expression, it can be checked that a detailed'¢® the field is coupled tox, and not to the energy

balance relation is satisfied: g(x)—;ee Seg. Il B. L .
An interesting question is also to see under what condi-

N tions microreversibility(to be associated with the equilib-
WX D TT [lg’ () ]g(x) 7] rium behavioy can be recovered in this model. Microrevers-
i=1 ibility holds if |g’(x)|g(x)”* is independent ok, as can be
N seen from Eq(12). Such a condition can be satisfied only if
=W({x X DI g’ xHla(x) 1. (11) g(x) is a power law, sayy(x)=xP/p, wherep is an even
i=1 integer to ensure the regularity @ix) aroundx=0. The
As a result, the steady-state distributi({x}|E), for a  factor 1/p has been added for convenience, but is otherwise

9'(x)9" ()|, :
! P 'g(xJ-)’flg(xk)*fl
k

given valueE of the energy, is readily obtained as arbitrary. One then has
1 N N 9" (0]g() 7t = pt7Ix| (15)
— ’ 1 —
Ps({x}|E) = ZN(E)E_ [lg")lg(x) ™16 21 90x) - EJ, Accordingly, microreversibility is recovered fay=1/p. On

the contrary, fornp# 1/p, significant differences from the
(12) equilibrium behavior are expected. These differences may be

whereZ(E) is a normalization factor that may be called an V€N stronger ifi(x) is not a power law.
effective (microcanonical partition function:
N ( N ) 11l. NONEQUILIBRIUM TEMPERATURES

Z\(E) = ljl [dx|g’ (x)g(x) 716 % g(x) —E A. Statistical approach

(13) 1. Microcanonical equilibrium

In order to define a temperature in this model, one can try
to follow a procedure similar to that of the microcanonical
ensemble in equilibrium statistical physics. Indeed, one of

def'“'“of‘ of the model. Th|_s ganibe done insie d|fferentthe main motivations when building the present model was
ways. First, one could consider the case where the var|abIeE8 find a model in which a global quantitghe energy is

{x} take only positive values. Then one only needs to re-

h s in th . . ) conserved, so as to “mimic” in some sense a microcanonical
move the sunj o0, IN the transition rates given in EGD),  jryation. Yet, as mentioned above, the absence of micror-

and Eq.(12) is recovered, with this time;>0. Second, as  eyersibility should yield important differences with the latter
mentioned in Sec. Il A, the model can be generalized byase. For an equilibrium system in the microcanonical en-
assuming thag(x) is not an even function. This is particu- semple, temperature is introduced in the following way. Con-
Iarly useful if one wants to include an external field which Sidering a |arge Syste[ﬁ with fixed energy, one introduces a
breaks thet+/— symmetry—see Sec. lll B. Actually, §(X)  partition into two subsystems,; andsS,, with energyE, and
decreases fak<X,, and increases for>x,, the distribution  a numberN, of degrees of freedont¢=1,2). These two
given in Eq.(12) also holds subsystems are no longer isolated, since they can mutually
The function Zy(E) can be computed using a Laplace exchange energy; the only constraint is tigtE,=E is
transform. Indeed, it appears rather clearly from @), by fixed. The key quantity is then the numi@y, (E,) of acces-
making the change of variablg=g(x), thatZy(E) is actu-  sjple states with energl, in the subsystens,; in systems
with continuous degrees of freedafiike a classical gas for
UIn this case, it is necessary to introduce two different reciprocalnstance, y, (E) is the area of the hypersurface of energy
functions,g"X(y) which takes values i~ ,x,], andg;X(y) which E, in phase space. Assuming that both subsystems do not
takes values ifixo, +=). In the redistribution process, each of these interact except by exchanging energy, the number of states of
two intervals is chosen with equal probability. the systemS compatible with the partitiodE,,E,) of the

An important remark has to be made at this stage: Ed3.
and (13) remain formally valid if one slightly changes the
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energy is equal tély (E;)Qy (Ep). But sinceE; +E; is fixed, aIn P(E,|E)
the most probable valug, is found from the maximum, with B e =0 (21)
respect tog;, of QNl(El)QNZ(E—El). Taking a logarithmic 1
derivative, one finds the usual result which yields
dln Qy, alnQy, alnZy, aInzy,
= . (16) = = = . (22
1 e B, eg JB1 g By leg
Defining the microcanonical temperatuFe of subsystent So in close analogy with the equilibrium approach, we define
by the relation a temperaturd, fh for subsystens, through
1_ dInQy, 1 2 (23)
—= — (17) T TE e
T, JE, £ th [ 9

_ Then Eq.(22) implies thatT4=Ta.
one sees from Eq16) thatT,=T,, i.e., that the temperatures  at this stage, it is important to check that the common
are equal in both subsysterieroughout the paper, the Bolt- \41yeT,, of the temperature does not depend on the partition
zmann constarkg is set to unity. In addition, it can also be  chgsen. With this aim, we show th@, can be expressed as
shO\_/v_n that the common va_lu'é c_Joes not depe_nd on the 4 function of global quantities characterizing the whole sys-
partition chosen; as a resuli,is said to characterize the full tem, with no reference to the specific partition.
systems. Let us computeZy(E) as a function ofZy (E;) and
Zn.(Ey). SincefEdE,P(E;|E)=1, one has from Eq20
2. “Microcanonical” stationary state NZ( 2 JodE P 1| ) 420
E

Very interestingly, this microcanonical definition of tem- Z\(E) :f dE,Zy (E)Zy.(E-E)). (24)
perature can be generalized in a rather straightforward way 0 ! 2
to the present model. Still, it should be noticed first that ) )
microscopic configurations compatible with the given value'Ve assume the following general scaling form at lagdor
of the energy are no longer equiprobable, as seen from th%N((E«’f)-
distribution (12), so thatQ\(E) is no more relevant to the

P X o Zn (Ep) =A N 2

problem. But starting again from a partition into two sub- (B = Ac exiNeli(e)] (25)
systems as above, one can determine the most probable valy@h =,=E,/N, (the index¢=1,2 labels the subsystem
E, from the maximum of the conditional probabiliB(E;[E)  This scaling form is demonstrated explicitly in Sec. 1l A 3.
that subsystens; has energy, given that the total energy is Using a saddle-point calculation, one obtains ByE) a

E. Indeed, in the equilibrium cas®(E;|E) reads relation of the form(with e=E/N)
Oy (EDQy (E-Ey) . B
P(E4|E) = M : (18) Z\(E) = Zy (B Zy(E)N | dege Nbeer = 2™ (26)
QN(E) 0
which by derivation with respect t6;, yields precisely the Whereb(s)=~3[\,Z{(e7) +\of5(s=2)] and \=N,/N. Thus
same result as Eq16). In Z\(E) reads
To be more specific, the subsystems are defined in the 1
present model as a partition of the lattice, withsites inS; InZW(E)=InZy (E) +INZy (E-E}) - = Inb(e) +C
and N, sites inS,. The conditional distributiorP(E;|E) is ' 2 2
then given by (27)

N where C does not depend oB. Taking the derivative with
PEJE) = | T] dxiPst({xi}|E)5( > g(x) - El). (19)  respect tcE yields, using Eq(23),
i=1

ieSy N N
ainzy 106 1 JE\ 1,
Taking into account the last function, the first one can be — T . ET _<1 - o). (28
JE Ty dE Ty JE/) 2N

replaced bya(Eieszg(xi)—(E—El)), so thatP(E;|E) may be .
written in a compact form as In the limit N—o (with & fixed), the last term vanishes,

whereasTy, has a finite limit due to the scaling form Eg.

ZNl(El)ZNZ(E_ El) (25), SO that
P(E4[E) = : (20)
Zn(E) dnzy 1

=—. (29
This result generalizes in a nice way the equilibrium distri- o Tin

bution Eq.(18), since in equilibriumZy(E) reduces precisely As a result,Ty, can be computed from the global quantity
to Qn(E). The most probable valug, satisfies Zy(E) instead ofzy, (E,) or Zy,(Ep), and is thus independent
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of the partition chosen. This temperature characterizes thdefinition is not only an analogy, but as we shall see, it can

statistical state of the whole system. From Edf), the equa- be associated with a time-dependent entropy which is maxi-

tion of state of the system is mized by the dynamics. To define the entropy, one needs first

_ to introduce the probability measuRg({x;},t) restricted to

E=7NTi. (30 the hypersurface of enerdy.

In the case of a quadratic energy, i@(.x):%xz, it has been N

shoi/vn a_bove the_lt the (_aqumbrlum behawo_r is recovered for PAx}t) = PE({Xi}.t)5(E g(x) - E). (34)

n=7. This result is confirmed by E¢30), which reduces for i=1

n=3 to the usurlall form of the energy equgrtltl_o_n. On the_l_hen the dynamical entropy is defined as

contrary, forp# 3, a generalized form of equipartition holds

in the sense that all the sites have the same average energy N Pe({x}t)

e=E/N (which is not surprising given the homogeneity of SE(t)=—f [T dxP({x},0in ik (39)

the syster but this average energy per degree of freedom is i=1 !

equal tmfl}h instead of%Tth. This point will be discussed in \here f({xi})EHi'\i1|g’(xi)|g(xi)’7"l_ Using the master equa-
more detail later on. _ ) __tion (5), it can be shown tha$:(t) is a nondecreasing func-

Up to now, we have considered only the “microcanonicalsion of time—see Appendix A. As a resul:(t) is maximal
(in a generalized sengdistribution Pg({x;}|E). Yet it would in the stationary state, and the corresponding V& is
be interesting to introduce also the analogous of the canonbiven by

cal distribution. To do so, we compute the distribution
P.ad{x}) associated with a smalbut still macroscopicsub- N 1
systems; of a large isolated systei. The degrees of free- SE)=- | [TdxP{x}|E)n 7.6
dom{x} with i=N;+1, ... N have to be integrated out since =1 N
they belong to the reservoir. One finds for the remaifi  which matches exactly the definition proposed above on the

=InZy(E) (36)

(i=1,... Ny) the following distribution: basis of Eq.(29).
N, Using Eq.(14), one can comput&(E) and check explic-
Poal(x}) = LH g’ (x)|g(x) ™2 itly that the entropy per sit&E)/N becomes in the thermo-
Z\(B)iz dynamic limit a well-defined functiodi(e) of the energy den-

N N sity e=E/N. The entropyS(E) reads
x| 11 [dKIQ’(Xi)Ig(Xi)”'l]5<E g(xi)—E>-
i=1

i=Ng+1 S(E) =N| In2I'(%) - % InT'(x)N)+»InE|. (37

(3D
Using InT"(x) =x In x—x for large x allows us to writeS(E
The above integral is nothing but the partition function:ng(ga wit(r)w() xanxex gex alows U writeS(E)

Z\,(E-29g(x)), with N,=N=N;, which can be expanded
to first order as e)=nIne+In2l(n) - y(In - 1). (38)

N1 On the other hand, the equilibrium thermodynamic for-

Ny
In ZN2<E_E Q(Xi)) =InZy(E) - T_E 9(x) (32 malism is most often formulated in terms of the canonical
=1 thi=1 ensemble. In the present model, since a canonical distribu-
assuming thattNig(x)<E, which is true as long al,; tion.has been derived, it_ may also be pos_sible to Qefine an
<N. The derivative of IZy (E) has been identified with equivalent of the canonical thermodynamic formalism. In-
1/T,, using Eq.(23), up to corrections that vanish in the limit d€€d, from Eq.(33), one can easily see that the average
N,/N— 0, sinceE is the total energy rather than the energy ®"Nergy(E) is given by
E, of the reservoir. Introducing this last result into £g1), 9ln Z<an
one finally finds (Ey=-—T
14 18 >
Peard{Xi}) = EH lg’ (x)|g(x) "t X exp| - => g(Xi)) Where,BETt'hl is the inverse temperature. A generalized free
Ny i=1 Tiniza energyF (T, is also naturally introduced through

(39)

(33 F(T) == T In Z3". (40)

whereZg"=Zy,,(E)/Zy(E)—note thatE is the energy of the The generalized partition functioES™” can be easily com-
global system which includes the reservoir. This “canonical’puted, as it is factorized:
distribution appears to be useful in order to compute the N

FDR, as discussed below in Sec. Il B. Z%an= {f dX|gr(X)|g(X)n—le—g(x)/Tth:| (41)
3. Entropy and thermodynamics -
can—

From Eq.(29), it is tempting to generalize the notion of which leads t&Z"=[2I'(5) T7]N. So the free energy is given
microcanonical entropy througB(E)=In Z\(E). Indeed, this by
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F=-NTy[In 2I'(n) + 7In Ty,]. (42) equal to 0. If the second derivatigg(0) does not vanishgy,

is given to leading order il by c,=h?/2g"(0). In order to
define the response function, one assumes that the system is
subjected to a fieldh+# 0 for t<0, and that it has reached a
steady state. Then at tinte0, the fieldh is switched off.

JF The (time-dependentresponse is defined far>0 through
— ==N[7n(nTp+D+IN2I(p)]=-Ni(e) (43

In equilibrium, the entropys is related to the free enerdy
throughdF/dT=-S. This relation is also satisfied within the
present model:

dT N
where the last equality is obtained by using the equation of x(t) = ol <N2 Xi(t)> (48)
stateTy,=¢/ 5, and comparing with E¢(38). h=0 \ =t h
where the indexh on the brackets indicates that the average
B. Fluctuation-dissipation relations is taken over the dynamics in the presence of the fielthe
As recalled in the Introduction, temperatures are usuallyPbservablgNx(t)), can be computed as

the FDR, when this elation s fmear This approach has been 2 .
shown té be physically meaningful in the c?(?ntext of glassy <N§1 Xi(t)>h:J Ed)qui,G?({xi}HXil})

models in the aging regimis]. In this case, the long time
slope of the FDR gives an effective temperature which dif- 1

fers from the heat bath temperature. Still, for nonequilibrium X Pcan({xi,}ah)(ﬁz Xi) (49
steady-state systems which are not glassy, no justification has =1

been proposed to show that the inverse slope of the FD%hereG?({xi}\{xi’}) is the zero-field Green function, i.e., the

satisfies the basic properties expected for a temperature. FBFobabiIity for the system to be in a configuratibe at time

instance, one expects a temperature to take equal values EIngiven that it was in a configuratio{rxi’} at timet=0, in the

two subsystems of a large system, when the stationary sta : . . ;
has been reached. The present model thus allows us to tet% s_enct(; 0:; flc_ald.t_The frfhsportlse funcﬂ,@t@ IS %t])talned (,:3’
explicitly the validity of the FDR definition of temperature. axing the derivative of the above equation with respedt, to

A natural observable to consider in this model is ath=0:
N N
MO = 2 x(0. (44) x = | TT dxax Gl(xlixh
i=1

i=1
The steady-state correlation functi@{t) of the system is oo dInPeg, 1 N
then defined as the normalized autocorrelation of the observ- X Pead{; },0)—(9h ({x HD(N% Xi) . (50
able M(t) between timg=0 andt: .
1 The canonical distributiodP.,{{X;},h) in the presence of a
C(t) = =([M(t) = (M)][M(0) = (M)]) (45)  field takes the same form as E®3), simply replacingy(x)
N by g,(x). Thus one finds for the logarithmic derivative of

where the angular brackets -) denote an average over all Peard{xi},h)
possible trajectories of the system. Calculations are easier

using the canonical distributioR,{{x;}); since this distribu- dln Pcan({ ho= - dlnzZ3" . N X 1
tion is factorized, the random variablesandx; are indepen- oh S M Jho 22 \Tn 9'(%)
dent ifi # j, so thatC(t) reduces to
Xi
C(D) = ([x(1) = (YJX(0) = (x)]) (46) ~=Voso ) : (5

wherex stands for any of the variables—all sites have the .
same average values. Note thatdc,/dh=0 ath=0, due to the regularity of(x).

The aim of the FDR is to relate the correlation and re-1N€ derivative of the partition function yields
sponse of a given observable. One thus needs to introduce a can N N
perturbation which generates variations ofso that a re- dln Zy _ 1 Sx ) -{Sw (52)
sponse could be defined. A simple way to perturb the system h o T \io o
N N 1 X
En= 2, gn(X) = > g(X;) — hx + cp. (47) w=——+(p-1—".
" 59“ ' glg I o) 9(x)

is to add to the energy a linear term proportional to an ex-
ternal fieldh: one then replacek by E;, defined as where w; stands for

(53

Without loss of generality, the new functiap(x) is shifted Replacing the expressidisl) in Eq. (50), one finally finds,
by a constant;, so that the minimum value af,(x) remains  using the factorization of the canonical distribution,
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x(t) = TimC(t) =Xt = ®w(0) ()]}, (54

where indices are omitted just as in E46). Compared to

PHYSICAL REVIEW E 71, 046140(2005
X2

“@=<qu) mm>

From Egs.(59) and (60), it appears that the rati®dy,/ Trp

+(7-1) (60)

the usual form of the FDR, an additional term appears whiclgenerally depends oF, since the average:-) is done with

corresponds to the correlation of the variableand w. In

general, this new correlation function is not proportional to

C(t), so that a parametric plot of(t) versusC(t), usually

the one-site distribution which is a function of temperature.
Now in the particular case whemg(x) is a power law,
namely,g(x)=xP/p (with p an even integer Eqg. (59) actu-

referred to as a fluctuation-dissipation plot, would be nonlin-ally simplifies to

ear.
Yet, in the case wherg(x) is an even function ok, some

Tep=[2+p(7—1D)]Ty. (61)

important simplifications occur. On the one hand, the averNote that for 24p(»—1) <0, the above equation would lead

age values ok and w vanish. On the other hand, the corre-
lation x(t)w(0) becomes proportional to the “hopping corre-
lation function” ®(t), defined as

N
2= =3 0 (55

i=1
The variablesg;(t) are history-dependent random variables,
which are equal to 1 if no redistribution involving site
occurred between=0 andt, and are equal to O otherwise.
The proportionality of both correlation functions can be un-
derstood as follows. If there was a redistribution on site
between 0 and, x;(t) becomes fully decorrelated froma;,
due to the fact that the sign &f(t) is chosen at random, and
that the average valudg) and{w) vanish for an evemg(x).
On the contrary, if no redistribution occurred(t)w;(0)
=x;(0)w;(0). The same reasoning also holds €it), so that
one has

C(t) = (AP(1), (x(Bw(0) = (xw)D(1). (56)

to a negativelp, i.e., a negative respongét) to the pertur-
bationh, which is rather counterintuitive. Actually,(t) does
not become negative in this case but diverges and @& .is
no longer valid, indicating the breakdown of linear
response—the response is then nonlinear Wwithven forh
—0. This may be seen from the correlatiom), which can
be written

o

<Xw>:AfO

where the constanf depends orp and 7. If 1+p(7-1)
<-1 (i.e., the same condition as abgyvehe integral di-
verges at its lower bound, andt) becomes infinite. To keep
the susceptibility finite, one needs to consider values;of
such thatp>1-2/p. It is interesting to note that as soon as
p>2, the equilibrium valuen=1/p does not satisfy the
above inequality, so that the equilibrium response is nonlin-
ear in this case. This is somewhat reminiscent of the Landau
theory for phase transitions, in which the magnetizatioh

dx X +PrDeXpTn, (62

As a result, the FDR can be expressed, in the case of an ev@gcomes nonlinear with the magnetic field at the critical

functiong(x), as

(Xw)

o8 |C-

(57)

point, where the term inm? in the expansion of the free
energy vanishes.

Finally, considering the specific cageo:%x2 as in[26],
the above restriction disappears sinte2/p=0 for p=2.
The temperaturdp is then defined for ally>0.2 Using

So the FDR is indeed linear in this case, and one can defir@qs_(go) and(61), one can writeTep in a very simple form

an effective temperatur€-p from the inverse slope of this
relation. This yields

1 _1 G
Teo T (O

Still, as long as(xw) # 0, the temperatur@p differs from
the temperature Ty, defined above from statistical

(58)

which does not depend om
Tep = 2e,

wheree is the energy densit?z%(xz).

To sum up, several different cases have to be distin-
guished. For general regular functiagis) with g(x) ~ xP for
x— 0, wherep>2 is an even integer, the response is nonlin-

considerations—a more detailed discussion on this point igar with the fielch if »=<1-2/p. Otherwise, the response is

given below in Sec. Il C.

linear and the susceptibility(t) can be defined. In this case,

Even though the two temperatures are not equal, one cafle FDR (or equivalently, the fluctuation-dissipation plas
wonder whether they are proportional, in the sense that thgenerically nonlinear. Now, several additional assumptions

ratio Ty,/ Tep would be independent ofy,. From Eqg.(58),
one has

o))

where we have used the relatiofig=¢/7 and e=(g(x)).
The correlation{xw) can be written in a more explicit form
as

Tin _

= 59
Trp 59

on g(x) can be made: ifg(x) is even, the FDR is linear,
leading to the definition offp as the inverse slope of the
FDR; yet, Tp is a priori not proportional toTy, In addition,

2Actually, only the behavior ofy(x) in the vicinity of x=0 is
responsible for the divergence of the susceptibjit§). For an even
regular functiong(x) such thatg”(0)#0, one hasy(x)~x® for x
— 0, and the response remains lineahifor all positive value ofy.
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if g(x) is a power law(and if the response is lineathenTry ~ P(E;|E) as in Eq.(23). Considering again a partition of a

becomes proportional t®y,. The equalityTep=Ty, is recov-  large isolated system into two subsysteisand S,, one

ered only forp=2 and 77:%, i.e., when linear response and finds for the subsystersi,

microreversibility hold. —
¢ _ &« ( _ 5

Tth - U, TFD - 28(, (66)

C. Physical relevance of the different temperatures M

In the preceding sections, two different temperatures hav&/here(n) is the average of;; over the subsysterf:
been introduced: a first on@y,) from statistical consider- 1
ations, and a second oKi€:p) from a FDR. These two tem- (o= N > . (67)
peratures do not only have different definitions, but they also lieS

take different values, as seen from E§9). In this section, If one chooses the set of variablds;} such that(z)

we wish to compare the physical relevance of these two defi- Gl 2 e
nitions, and see whether or not both of them satisfy the basic 2 the equality Ty=Ty, which is true from the very

properties expected for a temperature. definition of Ti—see EQ.(22—implies &, #¢,. Conse-

quently, equipartition of energy breaks down, and from Eq.
(66) one hasT:, # T2, the fluctuation-dissipation tempera-
ture does not take equal values in the two subsys?ems.
Considering a homogeneous system as we have done up This last point is indeed reminiscent of recent numerical
to now, it is clear that ifTy, takes the same value in two results reported in the context of binary granular g486%
subsystems, so dodgp, since the two temperatures are re- where the temperature associated with each species of grains
lated through Eq(59). Indeed, ifg(x)=x"/p these two tem-  from a FDR does not equilibrate. These results indicate that
peratures are proportional according to E&fl), so that they for nonglassysystems, the temperature defined from the
may be considered to be identical up to a redefinition of thecDR does not satisfy the basic properties required for a tem-
temperature scale. As a result, it seems not to be possible fserature, such as the equality of the temperatures of sub-
discriminate between these two definitions within the presengystems when a steady state has been reached. On the con-
model. trary, the temperatureT,, defined from statistical
Actually, this apparent equivalence of both temperaturegonsiderations satisfies this property, and may thus be given
comes from the fact that the parameteris the same a more fundamental status.
throughout the system. So one could try to propose a gener- Finally, it should be noticed that the relatioh,=¢/ 7
alization of the model in whichy would not be constant, still indicates that the temperatufg, is not simply a measure of
keeping the model tractable. This can be realized in the folthe average energy, but also takes into account the fluctua-
lowing way. Introducing on each sitea parameter; >0, we  tions of energy. Indeed, a large valueptorresponds on the

1. Inhomogeneous version of the model

define on each linKj,k) a distributiony;(q) through one hand to a low value of the temperature, and on the other
(o + 7) hand to a sharp distributiogi{qg), which in turn leads to
idq) = I (m=1(q - gyt (64)  small energy fluctuations in the system, as can be seen for
L'(7)T () instance from the canonical distribution given in E8Q).

The redistribution rules are assumed to keep the same form
as in Eq.(4). Yet the links(j,k) now need to be oriented _ .
since () is no longer symmetric, so that the fractiqris Once a temperature has been formally defined in a sys-
attributed to sitgj, whereas 14 is attributed to sité, pre- €M, a Very important issue is to be able to measure it, at
cisely as in Eq(4). least within a conceptual experiment. This question is in gen-

Note, however, that even though the redistribution proces§ral highly nontrivial for out-of-equilibrium systems. In the
is locally biased ify; # 7, there is no global energy flux in context of_glassy systems for_mstance, it has been proposed
the system since the fori64) has been chosen to preserve [0 Us€ @ simple harmonic oscillator connected to the system
the detailed balance relation. As a result, the steady-sta®® athermom_etés]_ Still, in order to measure a temperature
distribution can be computed exactly for any set of variable@Ssociated with a given time scate(assumed to be large

{n}. To simplify the discussion, we restrict the results pre-With respect to the microscopic time scafg, one must use
sented here to the simple cag(eo—lxz but generalization a harmonic oscillator with a characteristic time scale of the
=%,

to other functiongy(x) is rather straightforward. In this case, order of  (see[28] for a numerical realizationIn this case,

the “microcanonical” distributioP({x;}| E) takes essentially Tthm%?gﬁur?S'fhng;Zdetr;(riﬁ:?i: éhnzrusuoa;l t:zla:ﬁ?”a_
the same form as previously: “2h €osc g gy

tor. For glassy systems, this temperature has also been shown
1 N 1N to identify with the temperature defined from the FID83.
PUx}E) = I |x[*7%6| =2 %*-E|. (65 Interestingly, in the present model which is not glassy, a
2i=1 somewhat analogous procedure would be to connect a new

2. How to define a thermometer?

ZN(E) i=1

Following the same reasoning as above, one can define both
Ty, and Tgp in this generalized model. In particular, the tem- 3The same conclusions hold for more general functigix3, but

perature T;, is defined from the conditional probability the results then take a less concise form.
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site to the system, and make it interact with the other sites WS 7 1
using the current kinetic rules of the model; this new site

would play the role of a thermometer. Assuming agg(r)

:éxz, the temperature read off from the average energy of 1
the thermometer is preciselyp. At first sight, this seems to

be in contradiction with the above discussion in which we g o $ TotapapaattD
argued thafl, was the physically relevant temperature. The i —

. R 0.5 H a--4 sine law _
paradox comes from the fact that we used without justifying i oo square box law
it the relatione,s=5T to define the temperatur€ of the i ¢ :ﬁﬁi}:&’;ﬁ:;
thermometer as a function of the measurable quamtity / :
Accordingly, such a definition does not ensure thas the 0p—=2* (f4 — o8 1z T 1%
temperature of the system. g,

One of the most important properties ©f, is precisely
that it takes equal values within subsystems in contact. Ac- FIG. 1. RatioR(e,) of forward and backward probabilities of a
tually, to obtainT, one needs to know the equation of Statetrqns_itior_l pathR(ey) # 1 indicates a b_reaki_ng _of o_IetaiIed balance.
of the thermometer, which relates measurable quantities likistributions 4(q) used are the sinelike distributiof\) and the
the average energyps. to the temperaturdy, Indeed, the Sduare box oné<¢ )—see text for details. Results fgr Iayvs Q)
fact that it is necessary to know the equation of state of th&ith #7=1 (©) and 2(+) are also presented for comparison, show-
thermometer in order to measure the temperature is not gg as _expected that detailed balance is satisfied for these
specificity of nonequilibrium states, but is also true in equi- istributions.
librium situations, in which one must know for instance the
relation between the height of a liquid in a vertical pipe anddoes not exist. As a result, it appears useful to test numeri-
the temperature of this liquid. In the same way, the relatiorfally the existence of nonzero probability fluxes in the
£os= 3T invoked above is not obvious in itself, but results Steady-state regime. o
from equilibrium statistical mechanics. As a result, there is AS discussed in Sec. Il C, the steady-state distribution can
no clear reason why this last relation should hold for generi@€ fully determined in terms of the dynamics of the local
nonequilibrium situations. energye;=g(x;). In the following, we thus use these vari-

Yet an important point must be mentioned at this stage@blese; as the dynamical variables. The dynamics;af the
One of the specificities of nonequilibrium states is that theresame as that of the variables if one considers the case
is not a unique way to define a thermal contact between tw8(X)=X;, restrictingx; to be positive. The detailed balance
systems. In equilibrium, it is usually enough to consider theProperty is checked by measuring with numerical simula-
weak interaction limit in which the energy associated withtions the probability,,(e,, ep, J¢) to observe on a given site
the interaction process is very small compared to the othera direct transition from a value; € [e,,e,+ d¢] to a new
energies involved. On the contrary, for nonequilibrium sys-value &/ e[ep, eyt de], as well as the reverse probability
tems, the conservation of energy is not sufficient, since th@,,(ep,c4, 52) to go from the interval ey, e,+ S¢] to the in-
dynamics can be much richer, as illustrated by the presenderval[e,,e,+ de]. These probabilities are actually obtained
of the paramete#; in the present model. Above, we assumedby averaging over all siteis One then computes the ratio
that the new site used as a thermometer was driven by the
same dynamical rules as the system it is in contact with. Yet, ( 5)
in a practical situation, one would rather use a thermometer — Pabla:Ep, 08)
with a known equation of state to measure the temperature of Pba(ep: €a 5€)
another system for which the equation of stateimgnown
As a consequence, the dynamics of the thermometer is exvhich becomes independent &f in the limit of smallde. In
pected in general to be different from that of the systemaddition, a simple parametrization is to sgte,+A, and to
Determining the properties that a thermometer has to satisfgomputeR as a function ok, for a fixed value ofA. Figure
in order to measure correctly the temperature thus remains an presents the numerical results obtained Ros,) with A
open question. =g, using distributions/(q) which differ significantly from
B laws such as the sinelike distributiony(q)
=(m/2)|sin(27q)|, and the “square box” oné(q)=2 for %
<q<%, and (q)=0, otherwise8 laws are also shown for
A. Breaking of detailed balance comparison. As expectedR(e,)=1 for B laws, whereas
R(e,) # 1 for other distributions, thus giving further evidence
Hpat detailed balance is broken in this cése.

(68)

IV. RENORMALIZATION APPROACH

If ¥(q) is different from aB law, no simple detailed bal-
ance relation has been found in this model. In the absence
such a relation, it is rather hopeless to find the stationary
distribution Pg({x;}| E), even though some sophisticated al- “Note, however, that this is not a strict test of the absence of
gebraic methods have proven to be efficient in some caseftailed balance. Such a test would require one to compute the
[29,30. Yet, the fact that we were not able to find a detailedprobability of observing transitions betwedhsite configurations
balance relation in the model is not a proof that the relatione;} and{e/}, which is hard to measure numerically.
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B. Numerical renormalization procedure 5

Even though detailed balance is broken microscopically
wheny(q) is different from a8 law, one can wonder whether
the macroscopic properties of the model differ significantly

anl ol anll ol o
L 1 T

or not from those in the presence of detailed balance. Indeed, = 3

some studie$19,2Q have shown that a weak breaking of =0

detailed balance does not influence the critical properties of 2

particular classes of spin models. In the present model, nu-

merical simulations suggest that even for distributigiig) 1

with a behavior far fromg laws, no spatial correlations ap-

pear within two-point functions. Note that this result is also 08 d

consistent with the vanishing of two-point correlations in the
g model for granular mattei31], which presents some for-
mal similarities(although in a different spirit but also im- ~ FIG. 2. Renormalized distributior (q) for increasing sizeg,
portant differences, with the present model. In particular, thd" dimensiond=1. Full lines correspond to one-parameter fits with
g model is static, and the role played by time here correﬁ dlﬁtrlbutlons. Inset: parametey from_the_flt plotted as_a functlo_n
sponds to the vertical space direction. In addition, the dy2f L for d=1 (+) and 2(O); dashed line is the mean-field predic-
namics of theg model is equivalent to a synchronous dynam-tlon given in Eq.(87).
ics, and the conserved quantity is linear since it represents
the vertical component of forces between grains. tained when running the microscopic dynamics is recorded,
In order to test whether macroscopic properties are influwhich gives the renormalized distributiaf (q). One would
enced or not by the breaking of detailed balance at the milike to test if for large values of, detailed balance is recov-
croscopic level, one can try to use a renormalization grougred, which would mean that the distributiaf (q) con-
approach. Even though such an approach might not seemgerges(in some sense to be specifiedward ag law. As
natural in a context where no diverging length scale appearsisual with renormalization procedures, the correct way to
this is actually a standard way to compute the effective dy-obtain large block sizes is not to consider large blocks from
namics at a coarse-grained level. Since no analytical solutiothe beginning, but instead to start from small blocks and to
is available fory(q) different from a8 law, one has to resort iterate the procedure until the desired size is reached.
to numerical simulations. As a result, we started from cells of sikte=2 and com-
With this aim, the following renormalization procedure is puted successively,(q), ¥4(q), ¥5(q), etc., by applying re-
introduced. Thel-dimensional lattice is divided into celisr ~ cursively the same procedure with a microscopic dynamics
blocks of linear sizel, and the effective dynamics between defined by the renormalized, (q) obtained at the step be-
cells is measured from numerical simulations of the microfore. Numerical results obtained starting from an initial dis-
scopic dynamics. To be more specific, when running the mitribution ¢(q)=(7/2)|sin(2mq)| are shown on Fig. 2, for
croscopic dynamics, one has to choose at random a link afpace dimensiond=1 and 2. FoiL =4, the resulting distri-
the lattice at each time step, and to redistribute the energlutionsy; (q) can be very well fitted by laws, i.e., by a test
over the link. If both sites of this link belong to the same distribution ¢..(q) of the form
block, then the redistribution is only an intrablock dynamics,
and corresponds precisely to the degrees of freedom that

have to be integrated out by the renormalization procedure. Vres(Q) = F(zm)[q(l —q]nt (70)
As a result, nothing is recorded during this particular pro- es [(m)?
cess.

On the contrary, if the chosen link lies between two dif- . :
ferent cells, then the process is considered as a redistributid’r‘ﬁ'th on_Iy one frge paramepem. This param.eternL 'S an
between blocks, and the effective fractiqa of energy re- ncréasing function ofL, which can be easily understood
distributed is computed. Having chosen an orientation of thd©™ the fact that increasing the size of the blocks reduces
lattice, one can label for instance by 1 and 2 the two blockd® fluctuations of energydensity from one block to an-
involved in the process. Clearly, the total energy of these twé’ther' So if one lets the sidego to. infinity, _the distribution
blocks is conserved during this process. One thus computé/ét(?) eventually converges to a Diratfunction centered on
the energyEL’ andE?’ of each block after the repartitioning, d=2- This means that thg laws found from fitting the data

and defines the effective redistributed fractipnas the ratio: @ré to be understood as preasymptotic distributions rather
than as true limit distributions.

Eé' Very interestingly, the fitting parametey; is found to be
El’ N E2r' (69) linear with LY, as seen in the inset of Fig. 2. This behavior
b b can be interpreted in the following way, assuming that the
To obtain the renormalized energy, one should actually diinitial distribution ¢(q) is a 8 law with parameter;. As seen
vide E, by the size of the blockso that the energy density is from the calculations done in Sec. Il C, the local distribution
conserveyl but this is not essential here since we consideiof the energy;=g(x) is given by ay law of exponent; and
only energy ratios. The histogram of the valuesggfob-  scale parameteB=1/T,,:

Or=
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B 1 erage value(E,)=7./B., and a variance V&E,)=7./57,
p(ei) = () s’ e, (7D with var(Ey) =(E—(Ey)?. As a result,y,_is given by
The g;'s are independent random variables, so that the block (Ep)?
energiesE,, defined as = m- (77)
By = ie%mksi’ (72) If the initial distribution p(g;) is factorized, the block ener-

giesE, are sums of independent random variables—see Eq.

are distributed according t@ laws with exponentsL?,  (72). So the average value and the varianc&gére simply
whereL9 is the number of sites within a block. Then taking the sums of the average and variance of the variables
the ratiogg=E}/ (EL+E2), one obtains fogg a A distribution
of parameterLY, as is well known from the properties of (Epy ={(e)LY, vanE,) = var(e)LC. (78)
laws.

So starting from a8 law for ¢(q), the above analytical From Eq.(77), the effective exponentz=7_/L" is thus
argument shows tha8 laws are again obtained from the found to be
renormalization procedure, with a parametgrlinear in LY. 5
Interestingly, the coefficient of proportionality is precisely Vo= & (79
the parametey; of the microscopic law/(q). So when start- var(e)
ing from an arbitrary distribution(q), it is natural to define

an effective parametes, from the fitting parameter, as So if we know the two first moments of the distributiptx),

we are able to computg,.
To obtain these moments for an arbitrafq), we use the
following steady-state master equation for the distribution

€):
One can then interpref, as the parameter of the micro- p(e)
scopic 8 law which would give the same macroscopic be- % o0 1
havior of the system as the initial distributiaf{(q). p(e) =f dslp(sl)J d82p(82)f dq ()
0 0 0

_

=1d (73

e

C. Mean-field predictions X &(e —q(er +82)). (80)

In this section, we aim to predict within a mean-field This equation can be considered as describing the redistribu-
framework the effective exponeny, introduced above, for tion process over an isolated single link. Yet, it can also be
an arbitrary distributiony(q). In a mean-field description, derived from a mean-field version of the model, in which
one assumes that the two-site steady-state distributioredistributions can occur over any pair of sites of the
P,(x1,%,) can be factorized as a product of one-site distribu-system—see Appendix B. Introducing the Laplace transform
tions: p(s) defined asp(s)= [yde €*p(e), one can rewrite Eq.

(80) as
P2(X1,X2) = P1(X1) P1(X5) . (74)

) . 3 . . . 1 0 ©
This assumption is valid if)(q) is a 8 Igw, as can be.sgen A(s) :f dq #’f(Q)J d81p(81)f de,p(e,)esdertes)
from Eq. (33). For more generali(q), it remainsa priori 0 0 0

only an approximation. In order to deal with the renormal- (81)
ization procedure, it is more convenient to work with the

distribution p(e;) of the local energy;=g(x), rather than  The integrals ovet,; ande, can be factorized into a product
with Py(x;). In terms of the variablee;}, the redistribution  of Laplace transforms:

rules read

1
e/ =q(ej+ey), e =(1-0g)(e;+8y. (79 p(s) = f dg y(a)p(gs)®. (82)
Numerical simulations show that after a sufficient coarse- °

graining by the renormalization procedure, the renormalizegtrom the last equation, the successive momenis(of can

distribution ¢ (q) becomes ag law with parametern. — pe obtained, since they are given by the derivative(sfin
=LY The associated renormalized distribution of the blockg=:

energieskE, is then ay law with exponents and scale pa-

rameterg, : de d2p
. @=- | . A= 5 (6
pED = L Ep s, (76) - B
I'(m) Note also that by definitiorp(0)=1. Taking the first deriva-

The exponenty_can be determined from the first and secondtive of Eq. (82) in s=0, one recovers thdw:%- More in-
moments of the distributiop, (E,). Indeed, one finds an av- terestingly, the second derivative of H§2) yields
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d2p B Jl [( dp )2 d’p } Replacing Eq(88) into Eq.(90) and expanding up to first
e ;0_2 . dg f¢(q) ds| . t 42 N order in\, one has
(84) (s = M (E)M_laﬁ<3> (91)
1S =P m M)

In terms of moments, the last equation reads
IteratingK times the renormalization procedure, one gets

(69 = A=) + (3], (85 .
- M-1
To computer,., we only need the ratige)?/(¢%), which is SDx(s) = MK@(%)H ﬁyn(%) (92
easily found from the preceding equation: M®/ s AMET
(e 2 The renormalized distributionp,, ,(s) obtained aften itera-
(&2 1-2P)° (88) tions is given by
. . :; . — \-yM"
Taking into account thatg)=3, 7. is found to be B9 = (1 N Ssn) . 93
11 ’ ™
e = 8var(q) T (87) Then EQq.(92) can then be rewritten
_ A & \TMMeD /g
D. Analytical arguments () = MK(l + MK> op NIA (94)
To conclude this section dedicated to renormalization . g
group approaches, we wish to give a heuristic analytical arUsing the relation
gument that may help to understand the numerical results — \ —pMK-1)
presented on Fig. 2. As explained above, the renormalization lim (1 + se ) —e® (95)
can be worked out exactly in the case whetg) is ag law. K—oo MK

The numerical procedure shows that other distributigfty
converge toB laws under renormalization. From an analyti-
cal point of view, it is more convenient to work with the
distributionp(e) of the local energy, rather than witi{(q). A

one ends up withdpx(s) =MKXe s sp(s/MK). Expanding
5p(s) in powers ofs for s— 0, one hasdp(s)=g,*+0(s%),
since the terms of order 0 and 1 vanish due to [B§). This

B law y(q) is associated with a law for p(e) so that it yields
would be interesting to check analytically whether an arbi- A g,

S &S
trary p(e) converges to & law under renormalization. Note Mk(s) =€ & (96)
that an implicit assumption here is that thesite energy ' N
distribution is factorized, in a mean-field spirit. which goes to 0 whelK — o as expected. Yet, this is not

A general calculation for an arbitrary initial distribution enough to show thap(e) andp,(e) converge “in the same
p(e) is in fact highly nontrivial. We thus restrict the follow- way” toward the distributionS(e —¢). To do so, one has to
ing calculations to an initiap(e) which differs only slightly ~ show thatspk(s) goes to 0 more rapidly than the “distance”
from a y law: betweenp, «(s) and the infiniteK limit p,,..(s)=€". A way

to quantify this “distance” is to introduce the quantit
p(e) = Py (&) + \op(e) (8g ~'©auantly quantity

where\ <1 is an arbitrarily small parameter, apg(e) is a Dy :f dgp,k(S) = Py(9)], (97)
v distribution similar to that used in Ed71). Since the 0

renormahzart]lon Cr? nserves the aver:FgJe enemt)) and  \hich can be shown easily to take the asymptotic f@m
p,(e) must have the same average vaiuso as to become _q;(-:\K) The convergence criterion can be written as
equivalent after renormalization. Taking also into account the

normalization conditiongp(e) has to satisfy im pk(s) _ 0 (99
K—oo DK '

focds op(e) =0, des eop(e) =0. (89)
0 0

This requires thag,=0 in the expansion oBpy(s), which

implies that the distributiong(e) and p,(e) have the same

LetM= L be the number of sites in a block. The renormal-y arianceqs?= 2. Such a condition is actually natural, as the
ized energyeg is given by sg=Ep/M. The distribution of /31jance becoyrnesﬁ=02/MK under renormalization. If the
pi(er) is more easily obtained using a Laplace transform: y, gistributions take the same form after renormalization,
Py(s) = PIM)M. (90)  they should have in particular the same variange o2y,
_ and one recovers®=g’.
Obviously, a fixed point for this equation fs) =e™>*, which Obviously, the above arguments are not fully rigorous,
leads top(s) = &(s —&). The aim of the present calculation is and remain somehow at a heuristic level, but they already
to see whethep(e) andp, (&) converge “in the same way” or give some insights on the mechanisms leading to the conver-
not toward thes distribution. gence process observed numerically.
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V. CONCLUSION time. Taking the derivative d&:(t) with respect to time, one

The class of models studied in the present paper is a verf3'/nOIS

interesting example in which one can define a meaningful

temperatureTy, from the conditional energy distribution of ds: NP

two subsystems, a procedure similar to the one used in the T H dXiE({Xi}:t)ln
equilibrium microcanonical ensemble. These models exhibit i=1

a rich behavior which includes linear as well as nonlinear

response to a perturbation, and linear or nonlineasince the integral of the time derivative of the logarithm
fluctuation-dissipation relations when the response is lineaganishes. One can then use the master equation to express
Our major result is that the temperatufg, deduced from  sp/4t as a function ofP({x},t) and of the transition rates.

the (linean FDR does not coincide with the statistical tem- The obtained expression can be symmetrized by permuting
peratureTy, and thatTep does not take equal values in two the integration variableg andx’. Using the detailed balance

subsystems when one considers an inhomogenous version @iation Eq.(12), one can writedS/dt in the following way:
the model. This suggests that FDRs are not necessarily the

relevant way to define a temperature in the context of non- N

glassy out-of-equilibrium steady-state systems. ds 1 , , Pe({x},t)
In addition, a numerical renormalization procedure sug- dt 2 deidxi W({Xi}HXi})f({Xi})[ f({x})

gests that detailed balance is generically restored on a

coarse-grained level when it is not satisfied by the micro- Pe({x'},t) Pe({Xi},1) Pe({x},1)

scopic dynamics. This renormalization procedure yields a pa- - f({x'}) f({x}) -n f({x'})

rameters, describing the deviation from equilibrium, which

can be analytically computed within a mean-field approxima-

tion. This leads to a macroscopic description of the system

with two parameters, namely,, and 7,. In this form, it is clear that the time derivative of the entropy
Finally, from a more general point of view, the presentis always positive. It vanishes only for the steady-state dis-

work raises important questions concerning the way to extribution Pg({x})=f({x})/Zy(E), and the corresponding

tend the concepts of statistical mechanics and thermodynammaximum value of the entropy is equal $E)=In Z(E).

ics to out-of-equilibrium systems. On the one hand, the very

definition of thermometers in nonequilibrium systems ap-

pears to be a highly nontrivial issue, as the way to couple the APPENDIX B: MEAN-FIELD MASTER EQUATION

thermometer to the system is not unique. Thus one may need

to impose some—still unknown—prescriptions on the cou- In Sec. IV C, a simple steady-state master equation was

pling to get a well-defined measurement. On the other handptroduced to describe the one-site distributjafs;) of the

the present work may be of some relevance for the descrienergye; =g(x;)—see Eq.(80)—in the case of an arbitrary

tion of nonequilibrium systems in which a global quantity is distribution {(q). We show here how this simple equation

conserved. For instance, one may think of the two-can be derived from the master equation associated with an

dimensional turbulence where the vorticity is globally con-N-site model with infinite range interactions. Introducing

served[32-34, or of dense granular matter in a container such long range interactions is a usual way to build a mean-

with fixed volume, in which the sum of the local free vol- field version of a model. To be more specific, we generalize

umes would also be conserved. Indeed, the present modehe model introduced in Ed4) in order to allow redistribu-

for which the probability distribution is generically nonuni- tions over any pair of siteg,k), and not only on the links of

form over the mutually accessible states., states with the the lattice. As a result, the lattice becomes useless in this

same value of the energy or volume, gtmay allow one in  version of the model.

particular to go beyond the so-called Edwards’ hypotheses The transition rates read

[9,35,36, according to which all accessible blocked states

have the same probability to be occupied.

PE({Xi}f t)

iy A

(A2)

! 1 ! ! !
Wi Hieh = 1 [_H o —so]axs,- +ef= 8-y
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In this appendix, we show that the time-dependent en- The stationary distributioy,=({g;}) satisfies the follow-
tropy S:(t) defined in Eq(35) is a nondecreasing function of ing master equation:

APPENDIX A: TIME-DEPENDENT ENTROPY
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N
Pur({&}) | 11 de/W({e/}{&i})
i=1

N
= | I1de/W(ei}[{e/ P Pue(e] D). (B2)
i=1

The first integral is the total exit rate from configuratigs},

and is equal tqN-1)/2 from Eq.(B1). So the last equation
can be rewritten in a more explicit form:

2 o] (e
P, ({s})=—EJ ds-’J de, 8(e! +e,—&i—gp)
ME NIN-1) 5 Jo ' KRR T

1
X J dq {(q) &(s; - q(e] +&}))
0

XPyie(e], e {eitizjw- (B3)

In order to go further, one has to assume that the distributio

Pue({ei}) factorizes:

N
Pue({ei}) = H p(ei), (B4)
i=1

where p(e) is the one-site distribution. This assumption is

justified in the limit of largeN. Integrating over all variables
excepte,, one gets

N-1 N 2 N 0
pen= S X (i | Tl T pte | e
Xfoc degpley) X S + e~ &)~ &)
01
Xfo dq (a) 8(ej — a(e] + &) (B5)

PHYSICAL REVIEW E71, 046140(2009

The right-hand sidéRHS) can then be decomposed into two
terms, one corresponding te1 and the other one to>1,
which are called, respectivelf®; and R, in the following:
p(e1)=R;+R,. The first termR; is associated with redistri-
butions involving sitg =1 as well as another arbitrary ske

It is actually independent d&, so thatR; is the sum of(N
—1) identical terms. Integrating ovey, removes the’ distri-
bution &(e;+&,—&1-¢), and one finds

2
Rlz_

0 o) 1
2 f delp(e]) J de}p(e}) f da ¥(a)
0 0

0

X &(e1~qle1 +&3)). (B6)

Qn the other hand, the second teRy is the contribution
from all the redistributions involving siteg=2, ... N, but
not sitej=1. There argN-1)(N-2)/2 such pairs of links,
which all give the same contribution t8,. S0 R, can be
written

N—2 foo] oo
Ro= M Zpten) | et | etptel
0 0

1 o0
X fo dq¥(q) fo de,d(s2 - ey +€3)).  (B7)

All the integrals in the RHS of the above equation give a
contribution equal to 1, so th&,=(1-2/N)p(e,); one thus
recovers Eq(80).
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