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We propose a money-based model for the power law distributionsPLDd of wealth in an economically
interacting population. It is introduced as a modification of the Equíluz and ZimmermannsEZd model for
crowding and information transmission in financial markets. Still, it must be stressed that in the EZ model a
PLD without exponential correction is obtained only for a particular parameter, while our pattern will give the
exact PLD within a wide range. The PLD exponent depends on the model parameters in a nontrivial way and
is exactly calculated in this paper. The numerical results are in excellent agreement with the analytic prediction,
and also comparable with empirical data of wealth distribution.
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I. INTRODUCTION

Many real life distributions, including wealth allocation in
individuals, sizes of human settlements, website popularity,
and words ranked by frequency in a random corpus of text,
observe the Zipf law. Empirical evidence of the Zipf distri-
bution of wealthf1–9g has recently attracted a lot of interest
of economists and physicists. To understand the micro-
mechanism of this challenging problem, various models have
been proposed. One type is based on a so-called multiplica-
tive random processf10–21g. In this approach, individual
wealth is updated multiplicatively by a random and indepen-
dent factor. A very nice power law is given; however, this
approach essentially does not contain interactions among in-
dividuals, which are also responsible for the economic struc-
ture and aggregate behavior. Another pattern takes into ac-
count an interaction between two individuals that results in a
redistribution of their assetsf22–25g. Unfortunately, some
attempts only give a Boltzmann-Gibbs distribution of assets
f24,25g, while some othersf23g, though exhibiting power
law distributions, fail to provide a stationary state.

In this paper, we shall introduce a different perspective to
understand this problem. Our model is based on the follow-
ing observations.sid In order to minimize costs and maxi-
mize profits, two corporations or economic entities may
combine into one. This phenomenon occurs frequently in the
real economic world. Simply fixing our attention on money
movements, we can equally say that two amounts of capital
combine into one.sii d The dissociation of an economic entity
into many small fractions is commonplace, too. The bank-
ruptcy of a corporation, for instance, can be effectively clas-
sified into this category. Allocating a fraction of assets for the
employee’s salary also serves as a good example. Under
some appropriate assumptions, we shall establish a simple
money-based model which is essentially a modification of
the Eguíluz and ZimmermannsEZd model for crowding and
information transmission in financial marketsf26,27g. The
size of a cluster there is now identified as the wealth of an

economic entity here. However, the analytical results will
show that our model is quite different from EZ’sf27g. The
EZ model gives a power law distributionsPLDd with an
exponential cutoff that vanishes only for a particular param-
eter. Here, a PLD of wealth is obtained within a wide range
and without exponential correction. The PLD exponent can
be analytically calculated and is found to have a nontrivial
dependence on our model parameters.

It may be beneficial to notice that only two types of
money movements among economic entities are discussed in
the above paragraph, i.e., money aggregation due to the com-
bination of two entities and money dispersion due to the
dissociation of an entity. These two types of money move-
ment have not been considered in the previous literature
f10–25g. On the other hand, there are other important money
movements in real economic activities. For instance, Refs.
f14–16g discussed the money fluctuations of an individual as
a result of the interaction between the individual and the
environment. Also, Refs.f22–25g discussed the money ex-
change between two individuals. These two types of money
movement are of course important too. However, we do not
attempt to include all types of money movement in the
present model. Instead, we shall only concentrate on the
money aggregation and dispersion mentioned in the last
paragraph. We are most interested in what type of distribu-
tion of wealth could emerge if these two opposite move-
ments of money are considered together.

This paper is organized as follows. Section II describes
the money-based model in detail. In Sec. III, we shall pro-
vide the master equation ofns and present our analytical
calculation of the PLD exponent. Next, we give numerical
studies for the master equation, which are in excellent agree-
ment with the analytic prediction. In Sec. V, the relevance of
our model to the real world is mainly discussed.

II. THE MODEL

The money-based model containsN units of money,
whereN is conserved. Then the total wealth is allocated toM
economic entitiessor corporationsd, whereM is variable. For
simplicity, we may choose the initial state containing justN*Electronic address: bhwang@ustc.edu.cn
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corporations, each with one unit of money. The state of this
system is mainly described byns, which denotes the number
of cooperations ownings units of money. At each time step,
we randomly select a unit of money from the wealth pool.
Since it must belong to a certain corporation, we in this way
select an economic entity too. Corporations with more
wealth are of course chosen with a larger possibility; and this
could be interpreted as the fact that larger companies have
more chances for economic activities. The evolution of the
system is under the following rules.

s1d With probability 1−a, another unit of money is ran-
domly selected. If the two selected units are occupied by
different corporations, then the two corporations with all
their money combine into one entity; otherwise, no combi-
nation. Thus, 1−a in our model is a factor reflecting the
incorporation possibility of economic entities at a macro-
scopic level.

s2d With probability ag /s, the economic entity that owns
the selected money is dissociated; heres is the amount of
capital owned by this corporation, andag reflects the disso-
ciative sbankruptcyd possibility of any economic entity. After
disassociation, theses units of money are simply assumed to
be redistributed tos new companies, each with just one unit.

s3d With probability as1−g /sd, nothing is changed. This
can control the frequency of economic occurrences.

This model is like an investing game, where the total
wealth involved in this game is supposed to be conserved.
Each entity should have a minimal requirement of wealth
ss=1d to play the game. Hence, the game participants may
increase or decline. They can combine to maximize their
profits, and all entities confront the risk of bankruptcy. Thus,
it is a money-exchange model. Analysis of some extreme
cases may be helpful to understand it. One may find that asa
is close to 1 andg is not smallsi.e., bankruptcy is prevail-
ingd, wealth is hard to aggregate and a financial oligarch
could hardly emerge in the model evolution. Whena is
slightly above zerosi.e., combination is prevailingd, all the
capital is inclined to converge. Therefore, our model can
generate a broad range of economic cases, by concentrating
on two typical kinds of money movement.

One may relate our model to other types of stochastic
process models. For instance in the zero range process model
f28g, the diffusion mechanism, which describes the combina-
tion of ki particles on sitei with kj particles on sitej , is
similar to the combination of two corporations in our model.
However, the dissociation process in our model has no cor-
respondence in the zero range process model. Indeed, a
power law distribution of particle number is observed only at
a critical number density in the zero range process model. In
contrast, a PLD of wealth can be obtained for a wide range
of parameters in our model.

III. ANALYTIC RESULTS

Following Refs.f27,29,30g in the case ofN@1, we give
the master equation forns:

]ns

]t
=

1 − a

N
o
r=1

s−1

rnrss− rdns−r − 2s1 − adsns − asns
g

s
s1d

for s.1 and

]n1

]t
= − 2s1 − adn1 + ao

s=2

`

s2ns
g

s
= − 2s1 − adn1 + agsN − n1d

s2d

where the identity

o
s=1

`

sns = N s3d

has been used. It may be helpful to explain the physical
meaning of the three terms at the right hand side of Eq.s1d.
The first term represents the net gain ofns from a combina-
tion of economic entities with sizesr and s−r. The second
term represents the net loss ofns due to the combination of
an entity of sizes with another entity. The third term repre-
sents the net loss ofns due to the dissociation of an entity of
size s. Equations2d has a similar physical explanation. The
first term represents the net loss ofn1 due to the combination
of an entity of size 1 with another entity. The second term
represents the net gain ofn1 coming from dissociation of the
entities with sizes.1. Notice that the validity of this master
equation is based on the mean field approximation which can
be justified as in Ref.f30g for the EZ model. In Appendix A,
we explicitly show the validity of Eqs.s1d ands2d by assum-
ing that the mean field approximation is correct. We must
point out that Eq.s1d is almost the same as the master equa-
tion derived in Ref.f27g for the EZ model. The only differ-
ence is the third term on the right hand side of Eq.s1d and
the second term in Eq.s2d. The third term of the EZ model is
−asns, while the third term of our model is −asnsg /s. The
factor g /s in our model greatly reduces the frequency of
disintegration for larges entities. Without this reduction, the
frequency of disintegration for larges entities would be too
high, which is unreasonable in the real economic worldssee
Sec. Vd. It must be stressed that the mathematical structure of
our model is completely different from that of the EZ model.

For facility of the analytical discussion, we introducea
=ag /2s1−ad andhs=sns/N, which indicates the ratio of the
wealth owned by economic entities in ranks to the total
wealth. Then, one can give the equations for the stationary
state in a terse form:

hs =
s

2ss+ ador=1

s−1

hrhs−r s4d

and

h1 =
a

1 + a
. s5d

According to the definition ofhs, it should satisfy the nor-
malization condition Eq.s3d:

o
s=1

`

hs = 1. s6d

When a is less than a critical valueac=4 which will be
determined numerically in Sec. IV, one can show that Eqs.
s4d and s5d does not satisfy the normalization condition Eq.
s3d. This inconsistency implies that whena,ac the state
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with one agent who has allN units of money becomes im-
portant f29,30g. In this case, the finite-size effect and the
fluctuation effect become nontrivial and the master equations
s1d–s3d are no longer applicable to describe the system
f29,30g. In this paper, we shall restrict our discussion to the
casea.ac.

Whena.ac, one can show thatssee Appendix Bd

hs → A/sh s7d

for sufficiently larges with

h =
a

or=1

`
rhr

. s8d

Notice that this equation is consistent only whenh.2 be-
cause otherwise the sumor=1

` rhr would be divergent, and
thushs→A/sh would become an inconsistent formula.

or=1
` rhr can be further evaluated. Introducing the generat-

ing function

Gsxd = o
r=1

`

xrhr s9d

one can rewrite Eq.s4d as

xsG8 − h1d + asG − h1xd = xG8 + asG − xd = xG8G

or

G8xsG − 1d = asG − xd s10d

with the initial condition

Gs0d = 0. s11d

Sincehs→A/sh as s→`, G is defined only in the interval
uxuø1. From Eq.s6d, we also haveGs1d=1. What we need to
calculate is just

G8s1d = o
r=1

`

rhr .

Since the left and the right hand sides of Eq.s10d are both
zero atx=1, we differentiate both sides byx and obtain

G9xs1 − Gd + G8s1 − Gd − xG82 = as1 − G8d.

Let x→1 and one finds thatG9s1−Gd vanishes in this limit
providedh.2; thus

G82s1d − aG8s1d + a = 0. s12d

One immediately obtains that

o
r=1

`

rhr =
a − Îa2 − 4a

2
s13d

and the exponent

h =
2

1 −Î1 − 4/a
s14d

which is a positive real number foraù4. Notice that when
a=4, the exponenth=2. This implies that our calculation is

self-consistent, provided Eq.s6d is satisfied. In summary, we
find from the master equation thaths obeys a PLD whens is
sufficiently large anda.4. It may be important to point out
that whens is small,hs also approximately obeys the PLD,
and the restrictiona.4, introduced for the sake of discuss-
ing the master equation, can be actually relaxed. This argu-
ment has been tested by a simulator investigation, which
supplies the gap in analytical tools and verifies the analytical
outcome.

IV. NUMERICAL RESULTS

We have numerically calculated the number

H = o
r=1

`

hr

based on the recursion formula Eq.s4d with the initial con-
dition Eq. s5d. Table I lists the results ofH for various value
of a. From Table I, one immediately finds that the normal-
ization condition is satisfied fora.ac=4, which, again, in-
dicates the consistency of the related equations.

Figures 1 and 2 showhs as a function ofs in a log-log
scale fora=10 and 4.5, respectively. From Fig. 1, one can

TABLE I. The results ofH for various values ofa. When a
.4.2, H=1.

a H

3.0 0.9940886

3.5 0.9997818

3.6 0.9999214

3.7 0.9999743

3.8 0.9999922

3.9 0.9999977

4.0 0.9999995

4.1 0.9999999

FIG. 1. The dependence ofhs on s in a log-log scale fora
=10.
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see thaths conforms to a PLD fors@1 with the exponenth
given by Eq.s15d. Figure 2 indicates thaths observes the
PLD for nearly alls with h=3.0.

The fitted exponents for various values ofa are plotted in
Fig. 3. They are given by

lnsh900/h1000d
lns1000/900d

.

Figure 3 also exhibits the analytic results from Eq.s15d. The
analytic outcome fits the exponents calculated from recursion
quite well for a.4.2. However, whena→4.0, a discrep-
ancy is obvious, since the convergence ofhs to the correct
power law is then very slow. We have also performed a com-
puter simulation, which gives excellent agreement with the-
oretical results derived from Eqs.s4d and s5d for a=8 and
sø10, ssee Fig. 4d.

V. DISCUSSIONS

In this paper, we have introduced a money-based model to
mimic and study the wealth allocation process. We find for a
wide range of model parameters the wealth distributionns
,A/sh+1 with h given by Eq.s14d for sufficiently larges.
The major difference between our model and the EZ model
is that the dissociative probabilityGd of an economic entity,
after being chosen, is proportional to 1/s in our model. How-
ever, the corresponding probability in the EZ model is sim-
ply proportional to 1. This difference gives rise to distinct
behaviors ofns. In the EZ model,ns,A/s2.5 exps−bsd for
large s f27g. Specifically, the corresponding Eq.s4d can be
written as

hs = Do
r=1

s−1

hrhs−r s15d

in the EZ model. In fact, Eq.s15d is much easier to solve
than Eq.s4d. Whenns is interpreted as the number of corpo-
rations that owns units of money, the choice ofGd
,Os1/sd is reasonable and sound. Actually, because at the
first step we randomly choose one unit of money, the entity
with s units is picked out with a probability proportional tos.
According to observation in real economic life, large compa-
nies or rich men are not more fragile than small or poor ones
when they confront the same economic impact and fierce
competition. If Gd,Os1d, the overall disassociation fre-
quency would be proportional tos, implying that larger com-
panies or richer men would be much weaker.

It may be interesting to compare our theoretical results
with empirical data. For instance, Dragulescu and Yak-
ovenko discussed the wealth distribution in the United King-
dom f5g. They found that for the top 10% of the population
the wealth distribution observes a power lawsthe PLD ex-
ponent is 1.9d, but for the bottom 90% the distribution is
exponential. Meanwhile the exponent predicted in our model
is greater than 2f31g. The agreement for the top 10% would
be good if one chose the parametera,4. Nevertheless, our
model does not explain the wealth distribution for the bottom

FIG. 2. The dependence ofhs on s in a log-log scale fora
=4.5.

FIG. 3. The calculated exponenth for different values ofa.
Black squares represent the numerical results forh obtained fromhs

using the extrapolation methodssee textd. The solid line represents
the analytic result Eq.s14d.

FIG. 4. hs for a=8 from both numerical calculation and com-
puter simulation. Black stars represent the outcome of a computer
simulation forN=2.53105, g=2, anda=0.888 89. A total 23106

time steps were run and the final 53105 time steps were used to
count ns statistically. The circles represent the theoretical results
derived from Eqs.s4d and s5d.
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90%. This indicates that our model is only applicable to eco-
nomic entities with wealth above a certain threshold, which
can be justs=1 in our model. For those under the threshold,
their economic activities cannot be described by the present
model. Some other ingredients must be integrated into con-
sideration then. In Fig. 5, the empirical data taken from Ref.
f5g are compared with the numerical results obtained from
our model fora=4 with the cutoff s=1 corresponding to
100 k£. From the figure, one may find that the agreement
between the empirical data and our model is not very bad
when the net capital is greater than 100 k£. Still, the agree-
ment is not excellent, indicating the relevance of other pos-
sible mechanismsf14–16,22–25g in the explanation of the
empirical data. It is still interesting to discuss the wealth
distribution of the bottom 90% of people, though our model
is no longer applicable in this regime. This distribution can-
not follow an exact power law because otherwise the cumu-
lative percent of people would not be convergent to 100%
when the wealth approaches zero. The explanation of the
exponential law found for the bottom 90% of people in the
empirical dataf5g requires different money exchange mecha-
nisms.

In a real economic environment, capitals and corporations
behave similarly at some point. For instance, they both con-
stantly display integration and disintegration phenomena,

driven by the motivation to maximize profits and efficiency.
This mechanism updates the system every time, and gives
rise to clusters and herd behaviors. Furthermore, in an agent-
based model, it is usually indispensable to consider the indi-
vidual diversity that is all too often impossible to deal with.
When it comes to the money-based model, this microcom-
plexity may be considerably simplified. Finally, the concep-
tual movement and interaction among capitals is not as re-
stricted by space and time as between agents. Therefore,
when econophysics is much more interested in the behaviors
of money than that of agents, it is recommended to adopt
such a money-based perspective. The methodology to fix our
attention on capital movement, instead of interactions among
individuals, will bring a lot of facility for analysis; moreover,
using such random variables asg and a to represent the
macroscopic level of the micromechanism also help us find a
possible bridge between the evolution of the system and the
protean behaviors of individuals. Whether the bridge is
steady or not can only be tested by further investigation.
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APPENDIX A: DERIVATION OF EQS. (1) and (2) FROM
MEAN FIELD APPROXIMATION

Following Ref. f29g, we describe the dynamics of our
model by considering the partition ofN units of money
fl1, l2, . . . ,lNg. Here ls is the number of entities that owns
units of money. It follows that

o
i=1

N

il i = N. sA1d

Since any state of our model can be characterized by a par-
tition fl1, . . . ,lNg, the system can be described by the prob-
ability function Pfl1, . . . ,lNg. The time evolution of
Pfl1, . . . ,lNg is governed by the dynamics for entity combi-
nation and dissociation as follows:

dPfl1,l2, . . . ,lNg
dt

= −
1 − a

NsN − 1dSo
i=1

N

il iisl i − 1d + o
i, j

2il i jl jDPfl1,l2, . . . ,lNg

+
1 − a

NsN − 1dSo
i=1

N

isl i + 2disl i + 1dPf. . .,l i + 2, . . . ,l2i − 1, . . .g

+ o
i, j

2isl i + 1d jsl j + 1dPf. . .,l i + 1, . . . ,l j + 1, . . . ,l i+j − 1, . . .gD
−

ag

N
o
i=2

N

liPfl1, . . . ,lNg +
ag

N
o
i=2

N

sl i + 1dPfl1 − i, . . . ,l i + 1, . . . ,lNg. sA2d

FIG. 5. The cumulative probability distribution of people as
function of total net capitalswealthd in United Kingdom. The
squares are the empirical data for 1996f5g. The open circles are the
numerical results fora=4. We have assumed thats=1 corresponds
to the net capital 100 k£.
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The first four terms on the right hand side of the above equa-
tion describe the combination of entities. The first term de-
scribes the reduction inPfl1, . . . ,lNg due to the change from
the partition f. . . ,l i , . . . ,l2i , . . .g to the partition f. . . ,l i
−2, . . . ,l2i +1, . . .g when two different entities that own the
same amount of moneyi are combined to form a larger entity
that owns the money 2i. The factoril iisl i −1d /NsN−1d is the
probability of selecting two units of money belonging to two
different entities that own the same amount of moneyi.
Similarly, the second term describes the change from the
partition f. . . ,l i , . . . ,l j , . . . ,l i+j , . . .g to the partition f. . . ,l i
−1, . . . ,l j −1, . . . ,l i+j +1, . . .g when an entity that ownsi units
of money combines with an entity that ownsj units of
money to form an entity that ownsi + j units of money. The
factor 2il i jl j /NsN−1d is the probability of selecting a unit of
money from an entity that ownsi units of money and another
unit of money from an entity that ownsj units of money. The
third term describes the increase inPfl1, . . . ,lNg due to the
change from the partitionf. . . ,l i +2, . . . ,l2i −1, . . .g to
f. . . ,l i , . . . ,l2i , . . .g. Similarly, the fourth term describes the
change from the partition f. . . ,l i +1, . . . ,l j +1, . . . ,l i+j

−1, . . .g to f. . . ,l i , . . . ,l j , . . . ,l i+j , . . .g. The last two terms de-
scribe the change inPfl1, . . . ,lNg due to dissociations of en-
tities. The fifth term describes the change from the partition
fl1, . . . ,l i , . . .g to fl1+ i , . . . ,l i −1, . . .g when an entity that
owns i units of money dissolves. The factoril i /N3ag / i
comes from two facts in our model: the factoril i /N is the
probability of selecting a unit of money from an entity that

owns i units of money, while the factorag / i represents the
probability that the entity dissolves. The last term describes
the change from the partitionfl1− i , . . . ,l i , . . .g to
fl1, . . . ,l i , . . .g.

Since d/dtofl1,. . .,lNgPfl1, . . . ,lNg=0, a normalization con-
dition can be introduced as

o
fl1,. . .,lNg

Pfl1, . . . ,lNg = 1. sA3d

In the stationary state,

d

dt
Pfl1, . . . ,lNg = 0.

Now, introducing

kn1
m1

¯ ni
mi
¯ l = o

fl1,. . .,lNg
Pfl1, . . . ,lNgl1

m1
¯ l i

mi
¯ .

sA4d

From Eq.sA1d, one obtains that

o
i=1

N

ikniWl = NkWl sA5d

where W=n1
m1
¯nN

mN. Multiplying Eq. sA2d by l1
m1
¯ l i

mi
¯

and summing over all possible partitionsfl1, . . . ,lNg, one ob-
tains the following exact equations:

1 − a

N − 1
S− o

i=1

N

i2k¯nisni − 1dni
mi
¯ n2i

m2i
¯ l + o

i=1

N

i2k¯nisni − 1dsni − 2dmi
¯ sn2i + 1dm2i

¯ l

− o
i, j

2i j k¯nini
mi
¯ njnj

mj
¯ ni+j

mi+j
¯ l + o

i, j

2i j k¯nisni − 1dmi
¯ njsnj − 1dmj

¯ 3 ¯ sni+j + 1dmi+j
¯ lD

− ago
i=2

N

kn1
m1

¯ ni
mi+1

¯ l + ago
i=2

N

ksn1 + idm1
¯ nisni − 1dmi

¯ l = 0 sA6d

for the stationary state. Now let us consider the limitN@1. Wheni is finite, knil,N@1. Assuming the mean field approxi-
mation is correct, one has

kn1
m1

¯ ni
mi
¯ l = kn1lm1

¯ knilmi
¯ , Noimi sA7d

whenmi is nonzero only for finitei. From the above equation, one obtains ifoimi8.oimi,

k¯ni
mi8

¯ l @ k¯ni
mi
¯ l sA8d

wheremi8 and mi are nonzero only for finitei. Expanding Eq.sA6d and keeping the leading term and usingN−1,N, one
obtains
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1 − a

N
S− 2o

i=1

N

i2mik¯ni
mi+1

¯ n2i
m2i

¯ l + o
i=1

N

i2m2ik¯ni
mi+2

¯ n2i
m2i−1

¯ l − 2o
i, j

i j fmik¯ni
mi
¯ nj

mj+1
¯ ni+j

mi+j
¯ l

+ mjk¯ni
mi+1

¯ nj
mj
¯ ni+j

mi+j
¯ lg + 2o

i, j

i jmi+jk¯ni
mi+1

¯ nj
mj+1

¯ ni+j
mi+j−1

¯ lD
+ agS− o

i=2

N

mikn1
m1

¯ ni
mi
¯ l + o

i=2

N

im1kn1
m1−1

¯ ni
mi+1

¯ lD = 0. sA9d

Using the identity Eq.sA5d, one can rewrite the above equa-
tion as

S2s1 − ado
i=1

N

imi + ago
i=2

N

miDk¯nj
mj
¯ l

=
1 − a

N
o
s=2

N

mso
r=1

s−1

rss− rd

3 k¯nr
mr+1

¯ ns−r
ms−r+1

¯ ns
ms−1

¯ l

+ ago
i=2

N

m1ikn1
m1−1

¯ ni
mi+1

¯ l. sA10d

Now, takingm1=0 andmi =dis for s.1 and using the mean
field approximationknrns−rl=knrlkns−rl, one obtains the mas-
ter equations1d for the stationary state. Takingm1=1 and
mi =0 for i .1, one obtains the master equations2d for the
stationary state.

APPENDIX B: MORE DETAILS ABOUT EQ. (7)

We shall first assume that

hs < Afssd/sh sB1d

whereA is a constant. Whens@1, we first assume thatfssd
is a smooth function ofs and fssdø1, andh.2. Choosing

1 . d .
h + 2

2h

for sufficiently larges one can rewrite Eq.s4d as

hs =
s

2ss+ ad
S2o

r=1

sd

hrhs−rD + B1 sB2d

where

B1 =
s

2ss+ ad o
r=sd+1

s−sd−1

hs−rhr ø A2 s

s2dh !
1

sh+1 ,
hs

s
. sB3d

Using Taylor series,hs−r can be expanded arounds as

hs−r = hs − rhs8 + ¯ .

We shall assumehs9!hs8!hs and neglect the higher order
terms in the above expansion. The validness of this assump-

tion is based on the slow variance ofhs whens is large. This
assumption will be justified when the asympotic behavior of
hs is obtained. Then

hs =
s

s+ a
o
r=1

sd

hrshs − rhs8d + B1. sB4d

From Eq.s6d, we have

o
r=1

sd

hr = 1 − o
r=sd+1

`

hr = 1 −b2, sB5d

o
r=1

sd

rhr = o
r=1

`

rhr − o
r=sd+1

`

rhr = C − b3, sB6d

with

C = o
r=1

`

rhr . sB7d

It is easy to find that

b2 ø
2A

h − 1

1

sdsh−1d !
1

s
,

b3 ø
2A

h − 2

1

sdsh−2d ! 1.

Therefore,

hs =
s

s+ a
fhss1 − b2d − hs8sC − b3dg + B1. sB8d

From the asympotic behavior ofB1, b2, andb3, one knows
that their contributions can be neglected whens is large.
Accordingly, we have

hs =
s

s+ a
shs − Chs8d sB9d

and

hs8 = − ahs/C sB10d

and Eqs.s7d and s8d are obtained. Notice that the solution
Eq. s7d indicates fssd=1 and all assumptions used in this
appendix are justified providedh.2.
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