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A fully quantum treatment of Einstein’s Brownian motion is given, stressing in particular the role played by
the two original requirements of translational invariance and connection between dynamics of the Brownian
particle and atomic nature of the medium. The former leads to a clearcut relationship with a generator of
translation-covariant quantum-dynamical semigroups recently characterized by Holevo, the latter to a formu-
lation of the fluctuation-dissipation theorem in terms of the dynamic structure factor, a two-point correlation
function introduced in seminal work by Van Hove, directly related to density fluctuations in the medium and
therefore to its atomistic, discrete nature. A microphysical expression for the generally temperature dependent
friction coefficient is given in terms of the dynamic structure factor and of the interaction potential describing
the single collisions. A comparison with the Caldeira-Leggett model is drawn, especially in view of the
requirement of translational invariance, further characterizing general structures of reduced dynamics arising in
the presence of symmetry under translations.
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I. INTRODUCTION

A century has passed since Einstein published the first of
a series of papers on the theory of Brownian movement
f1,2g, a pioneering work attempting to provide a suitable
theoretical framework for the description of a long-standing
experimental puzzlef3g. Einstein’s investigation went much
beyond the explanation of an interesting experiment, proving
a milestone in the understanding of statistical mechanics of
nonequilibrium processes, motivating and inspiring physical
and mathematical research on stochastic processes. By now
the term Brownian motion is ubiquitously found in the physi-
cal literature, at both the quantum and classical levels, used
as a kind of keyword in a wealth of situations relying on a
description in terms of mathematical structures or physical
concepts akin to those first appearing in the explanation of
Einstein’s Brownian motion. In this paper we address the
question of a proper quantum description of Brownian mo-
tion in the sense of Einstein, i.e., the motion of a massive test
particle in a homogeneous fluid made up of much lighter
particles. In doing so we actually go back to Einstein’s real
motivation in examining Brownian motion, i.e., to demon-
strate the molecular, discrete nature of matter. His aim was in
fact to give a decisive argument probing the correctness of
the molecular-kinetic conception of heat, a question he con-
sidered most important, as stressed in the very last sentence
of the paper, actually quite emphatic in the original German
version: “Möge es bald einem Forscher gelingen, die hier
aufgeworfene, für die Theorie der Wärme wichtige Frage zu
entscheiden!”f4g.

In contrast with previous approaches and results, based
either on a modeling of the environment aiming at exact

solubility given a certain phenomenological ansatzf5g, or on
an axiomatic approach relying on mathematical inputf6,7g,
or on the exploitation of semiclassical correspondencef8g,
we will base our microscopic analysis on the two key fea-
tures of Einstein’s Brownian motion: homogeneity of the
background medium, reflected in the property of transla-
tional invariance, and the atomic nature of matter responsible
for density fluctuations, showing up in a suitable formulation
of the fluctuation-dissipation relationship. Translational in-
variance comes about because of the homogeneity of the
fluid and the translational invariance of the interaction poten-
tial between test particle and elementary constituents of the
fluid. This fundamental symmetry property leads to impor-
tant restrictions both on the expression for possible interac-
tions and on the structure of the completely positive genera-
tor of a quantum-dynamical semigroup describing the
Markovian reduced dynamics. The first key point is therefore
to consider the proper type of translational-invariant interac-
tion leading to Einstein’s Brownian motion, thus fixing the
relevant correlation function appearing in the structure of the
generator of the dynamics, which turns out to be the so-
called dynamic structure factor and provides the natural for-
mulation of the fluctuation-dissipation relationship for the
case of interest first put forward by Van Hove in an epochal
paperf9g. Given that the dynamics can be fairly assumed to
be Markovian, the second key point is the characterization of
the structure of generators of quantum-dynamical semi-
groups covariant under a suitable symmetry group, in this
caseR, i.e., translations, which has been recently given in
most relevant work by Holevof10g.

The present paper partially builds on previous work
f11–13g, putting it in a wider conceptual and theoretical
framework, providing the previously unexplored connection
to the fluctuation-dissipation theorem and a general micro-
physical expression for the friction coefficient in terms of a
suitable autocorrelation function. This kinetic approach to
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quantum dissipation is further compared with the one by
Caldeira and Leggett, also in view of recent criticism on the
realm of validity of the last approachf14,15g, showing how
the Caldeira-Leggett model is recovered as the long-
wavelength limit of this kinetic approach. In this way a dif-
ferent approach to the quantum description of decoherence
and dissipation is put forward, which, though obviously not
universally valid, could provide a direct connection between
a precise microphysical model and reduced dynamics for a
wide class of open quantum systems, characterized by suit-
able symmetries. While universality might often be a loose
word in such a complex framework, this precise microphysi-
cal modeling makes a close, quantitative comparison be-
tween presentf16–19g and next generation experiments on
decoherence and dissipation in principle feasible.

The paper is organized as follows: In Sec. II we introduce
the basic possible translationally invariant interactions, put-
ting into evidence their effect on the structure of the reduced
dynamics, also in comparison with previous models in the
literature. In Sec. III we point out the relevant interaction for
the description of Einstein’s quantum Brownian motion,
showing the related expression of the fluctuation-dissipation
theorem. In Sec. IV we come to the formulation of Einstein’s
quantum Brownian motion putting into evidence the general
microphysical expression for the friction coefficient in terms
of a suitable autocorrelation function. In Sec. V we finally
comment on our results and discuss possible future develop-
ments.

II. TRANSLATIONAL INVARIANCE

As a first step we characterize the general structure of
microscopic Hamiltonians leading to a translationally invari-
ant reduced dynamics for the test particle. Due to transla-
tional invariance the test particle has to be free apart from the
interaction with the fluid, subject at most to a potential lin-
early depending on position, e.g., a constant gravitational
field, so that in particular it has a continuous spectrum. The
fluid is supposed to be stationary and homogeneous, and for
simplicity, without loss of generality, possessing inversion
symmetry, so that energy, momentum, and parity are con-
stants of the motion.

A. Translationally invariant interactions

1. Characterization of translationally invariant interactions

The microscopic Hamiltonian may be written in the form

HPM = HP + HM + VPM, s1d

where the subscripts P and M stand for particle and matter
respectively, whileHP and HM satisfy the aforementioned
constraints. The key point is the characterization of a suitable
translationally invariant interaction potential, which we put
forward in the formalism of second quantization. This non-
relativistic field theoretical approach is the natural one in
order to account for statistics and more generally many-
particle features of the background macroscopic system, also
proving useful in microphysical calculationsf20g and allow-
ing us to deal not only with the one-particle sector of the

Fock space in which the fields referring to the test particle
are described. The interaction potential between test particle
and matter will have the general form

VPM =E d3xE d3y APsxdtsx − ydAMsyd, s2d

wheretsxd is aC-number, in the following applications short-
range, interaction potential;APsxd andAMsyd are self-adjoint
operators built in terms of the fields

wPsxd =E d3p

s2p"d3/2esi/"dp·xap and

wMsyd =E d3h

s2p"d3/2esi/"dh·ybh, s3d

respectively, satisfying canonical commutation or anticom-
mutation relations. Equations2d can be most meaningfully
rewritten in terms of the Fourier transform of the interaction
potential

t̃sqd =E d3x

s2p"d3esi/"dq·xtsxd, s4d

where the continuous parameterq, to be seen as a momen-
tum transfer, has a natural group theoretical meaning as the
label of the irreducible unitary representations of the group
of translations, as to be stressed later on, thus coming to the
equivalent expression

VPM =E d3q t̃sqdAPsqdAM
† sqd, s5d

where the operatorsAPsqd and AMsqd are defined according
to

AP/Msqd =E d3xe−si/"dq·xAP/Msxd. s6d

Translational invariance of the interaction, leading to the in-
variance ofVPM under a global translation, is obvious in Eq.
s2d because the coupling through the potential depends only
on the relative positions of the two local operator densities,
and comes about in Eq.s5d because the operators in Eq.s6d
simply transform by a phase expfsi /"dq·ag under a transla-
tion of stepa.

We will now consider two general types of physically
meaningful translationally invariant couplings, correspond-
ing to quite distinct situations. The first is a density-density
coupling, which as argued in the next sections is the one
relevant for the quantum description of Einstein’s Brownian
motion, given by the identifications

AP/Msxd = wP/M
† sxdwP/Msxd ; NP/Msxd, s7d

which, introducing theq component of the number-density
operatorrq f21,22g

rq ;E d3x e−si/"dq·xNMsxd =E d3h

s2p"d3bh
†bh+q, s8d

can be written
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VPM =E d3q t̃sqdAPsqdrq
†sqd. s9d

Note that an interaction of the forms9d, besides being trans-
lationally invariant, commutes with the number operatorsNP
andNM, so that the elementary interaction events do bring in
exchanges of momentum between the test particle and the
environment, but the number of particles or quanta in both
systems is independently conserved, thus typically describ-
ing an interaction in terms of collisions.

The other type of interaction we shall consider is a
density-displacement coupling, corresponding to the expres-
sionsAPsxd=NPsxd, as above for the particle, and

AMsxd =E d3h

s2p"d3sbh + b−h
† desi/"dh·x ; usxd s10d

for the macroscopic system, whereusxd is often called the
displacement operatorf23,24g, thus leading in terms of the
Fourier transformed quantities to

VPM =E d3q t̃sqdAPsqdu†sqd, s11d

with

usqd = bq + b−q
† . s12d

Contrary tos9d, the interaction considered ins11d does not
preserve the number of quanta of the macroscopic system
and rather than a collisional interaction describes, e.g., a
Fröhlich-type interaction between electron and phononf25g.

2. Comparison with the Caldeira-Leggett model

Before showing the relationship between the above intro-
duced translationally invariant interactions and correspond-
ing structures of the master equation in the Markovian,
weak-coupling limit, we briefly discuss the connection with
the most famous Caldeira-Leggett model for the quantum
description of dissipation and decoherence. Despite, or
equivalently because of, its widespread use and relevance in
applications, it is well worth trying to elucidate the basic
physics behind the model, at least restricted to specific situ-
ations. In the standard formulation of the Caldeira-Leggett
model ssee for examplef26–28gd the Hamiltonian for the
environment is given in first quantization by the expression

HM = o
i=1

N S pi
2

2mi
+

1

2
mivi

2xi
2D , s13d

which should describe a set of independent harmonic oscil-
lators, while the interaction term is given byshere and in the
following we denote one-particle operators referring to the
test particle with a caretd

VPM = − x̂o
i=1

N

cixi + x̂2o
i=1

N
ci

2

2mivi
2 , s14d

typically focusing on a one-dimensional system, where the
first term is a position-position coupling and the second one
is justified as a counterterm necessary in order to restore the

physical frequencies of the dynamics of the microsystem,
given for example by a Brownian particle. In the absence of
an external potential for the test particle it is also observed
that translational invariance, explicitly broken by Eqs.s13d
and s14d, can be recovered by suitably fixing the otherwise
arbitrary coupling constantsci to be given byci =mivi

2 f27g,
which should not affect the relevant results which actually
depend only on the so-called spectral density

Jsvd = o
i=1

N
ci

2

2mivi
dsv − vid, s15d

which as a matter of fact is phenomenologically fixed. Since
the original idea behind the model is to give an effective
description of quantum dissipation in which the phenomeno-
logical quantities are to be fixed by comparison with the
classical model, thus working in a semiclassical spirit, recov-
ery of quantum Brownian motion in the sense of Einstein in
the case of a test particle in a homogeneous medium is a
natural requirement, and in fact the master equation obtained
from the Caldeira-Leggett model with the Ohmic prescrip-
tion for Eq. s15d is considered as the standard quantum de-
scription of Brownian motion. Nonetheless, as stressed in
f14g, despite the aforementionedad hoc adjustments the
Caldeira-Leggett model does not comply with one of the
basic features of Brownian motion, i.e., translational invari-
ance, and in fact also previous work has focused on how to
recover translational invariance in the quantum description
of dissipationf29g. In their analysis the authors off14g try to
recover a modified, translationally invariant version of the
Caldeira-Leggett model by exploiting a suitable limit of an
interaction of the density-displacement type considered
above in Eq.s11d. While this model might be the correct one
for other physical systems, we claim that Einstein’s quantum
Brownian motion corresponds to a density-density coupling
and we now see how the Caldeira-Leggett model is related to
the long-wavelength limit of a density-density coupling.

Let us in fact consider Eq.s9d, restricting the expressions
to the one-particle sector for the test particle and to the
N-particle sector for the macroscopic system, thus obtaining,
using a first quantization formalism as in the Caldeira-
Leggett model,

VPM = o
i=1

N

tsx̂ − xid =E d3q t̃sqdo
i=1

N

e−si/"dq·sx̂−xid. s16d

Considering only small momentum transfers and thus taking
the long-wavelength limit of the expression, corresponding
to a collective response of the macroscopic medium, one
obtains up to second order

VPM <
LWL

NE d3q t̃sqd −
1

2"2 E d3q t̃sqdo
i=1

N

fq · sx̂ − xidg2

+ Osq4d, s17d

where the term linear inq has dropped out because of inver-
sion symmetry. Further exploiting isotropy, so thatt̃sqd
= t̃sqd, one has
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VPM <
LWL

Nts0d −
1

3
D2ts0dx̂ ·o

i=1

N

xi +
1

6
D2ts0do

i=1

N

xi
2

+
N

6
D2ts0dx̂2 + Osq4d. s18d

Here one easily recognizes the Caldeira-Leggett model,
though with some constraints and modifications. First of all,
as evident from Eq.s16d and also stressed inf14g, transla-
tional invariance is preserved in the long-wavelength limit
only provided that all terms up to a given order inq are
consistently kept, and this also applies to any calculation put
forward by means of Eq.s18d. This explains the appearance
of the so-called counterterm in Eq.s14d, as well as the rela-
tionship ci =mivi

2 required in order to apparently restore
translational invariance. The symmetry requirement thus
strictly fixes the relationship between coefficients. However,
a position-position coupling such as the one appearing in Eq.
s18d is the common feature of the long-wavelength limit of a
density-density coupling with a generic, not necessarily har-
monic, potential. In the case in which the potential is har-
monic, tsxd= 1

2mv2x2, one obtains from Eq.s18d

VPM <
LWL 1

2
mv2o

i=1

N

sxi
2 + x̂2d − mv2x̂ ·o

i=1

N

xi s19d

as in f27g. Let us note how in Eq.s18d the test particle
couples to the collective coordinate

X = o
i=1

N

xi s20d

of the macroscopic system, proportional to its center of mass.
In a truly quantum picture of Einstein’s Brownian motion,
the gas has to be described by identical particlessor mixtures
thereofd, so that one cannot introduce different masses and
different coupling constants. According to Eq.s9d or s16d in
a density-density interaction the test particle is differently
coupled to the variousq components of the number-density
operator for the macroscopic systemrq, depending on the
specific expression of the interaction potentialtsxd. Of course
this is no longer relevant when interpreting the harmonic
oscillators as representatives of possible modes of the mac-
roscopic system. Here and in the following we are not aim-
ing at a general critique of the Caldeira-Leggett model,
which obviously has big merits, let alone its historical mean-
ing as a pioneering work in research on quantum dissipation.
Rather, focusing on the particular and at the same time para-
digmatic example of the quantum description of Einstein’s
Brownian motion, we want to put into evidence the possible
detailed microscopic physics behind the model, especially in
view of natural symmetry requirements, thus also opening
the way for alternative ways to look at and cope with dissi-
pation and decoherence in quantum mechanics, especially
overcoming the limitation to Gaussian statistics inherent in
the Caldeira-Leggett model. The relevance that the micro-
physical coupling actually has in determining which physical
phenomena can be correctly described by a given model has
also been stressed inf15g, where an analysis is made of pure

decoherence without dissipation, indicating that a full
density-density coupling rather than a position-position cou-
pling as in the Caldeira-Leggett modelsin the paper correctly
formalized in terms of a Bose fieldd should provide the
proper way to describe pure, recoiless decoherence.

B. Structure of translation-covariant quantum-dynamical
semigroups

We now come back to the translationally invariant inter-
actions given by Eqs.s9d and s11d, showing the possible
master equations they lead to in the Markovian, weak-
coupling limit. To do this we first observe that because of
homogeneity of the underlying medium and translational in-
variance of the interaction potential, the reduced dynamics of
the test particle must also be invariant under translations.
This symmetry requirement has to be reflected in the actual
structure of the master equation, i.e., the generator of the
irreversible dynamics. The natural way to comply with this
symmetry requirement is to ask the generator of the
quantum-dynamical semigroup driving the dynamics of the
test particle to be covariant under translations, i.e., that its
action on the statistical operator commutes with the action of
the unitary representation of translations. A more precise
statement of covariance can be given as follows. Given the

unitary representationÛsad=expf−si /"da·p̂g, aPR3, of the
group of translationsR3 in the test particle Hilbert space, a
mappingL acting on the statistical operators in this space is
said to be translation covariant if it commutes with the action
of the unitary representation, i.e.,

LfÛsad%̂Û†sadg = ÛsadLf%̂gÛ†sad, s21d

for any statistical operator%̂ and any translationa. Needless
to say, the notion of covariance under a given symmetry
group has proved very powerful in characterizing not only
mappings such as quantum-dynamical semigroups and op-
erations, but also observables, especially in the generalized
sense of positive-operator-valued measuresf30,31g. As has
been shown in recent, seminal work by Holevof10,32–34g, it
turns out that the requirement of translation covariance puts
very stringent constraints on the general possible structure of
generators of quantum-dynamical semigroups. These results,
while obviously fitting in the general framework set by the
famous Lindblad resultf35,36g, go beyond it, giving much
more detailed information on the possible choice of opera-
tors appearing in the Lindblad form, information conveyed
by the symmetry requirements and relying on a quantum
generalization of the Lévy-Khintchine formula. They there-
fore also provide a valuable starting point for phenomeno-
logical approaches exploiting relevant physical symmetries.

Referring to the papers by Holevo for the related math-
ematical detailsssee alsof37g for a brief resumed, the main
structure of the generator can be expressed as

Lf%̂g = −
i

"
fHsp̂d,%̂g + LGf%̂g + LPf%̂g, s22d

with Hsp̂d a self-adjoint operator which is a function of only
the momentum of the test particle. The so-called Gaussian
part LG is given by
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LGf%̂g = −
i

"
fŷ0 + Heffsx̂,p̂d,%̂g + o

k=1

r FKk%̂Kk
† −

1

2
hKk

†Kk,%̂jG ,

s23d

where

Kk = ŷk + Lksp̂d,

ŷk = o
i=1

3

akix̂i, k = 0, . . . ,r ø 3, aki P R,

Heffsx̂,p̂d =
"

2i
o
k=1

r

fŷkLksp̂d − Lk
†sp̂dŷkg,

while the remaining Poisson part takes the form

LPf%̂g =E dmsqdo
j=1

` Fesi/"dq·x̂Ljsq,p̂d%̂Lj
†sq,p̂de−si/"dq·x̂

−
1

2
hLj

†sq,p̂dLjsq,p̂d,%̂jG , s24d

with dmsqd a positive measure, andx̂ and p̂ position and
momentum operators for the test particle respectively. The
names Gaussian and Poisson arise in connection with the
different parts related to the homonymous stochastic pro-
cesses in the classical Lévy-Khintchine formula. In the
Gaussian part theŷk are linear combinations of the position
operators of the test particle, which thus appear at most lin-
early in the commutator term, and bilinearly in the rest of the
expression. The generally complex functionsLksp̂d have an
imaginary part describing friction, typically given by a linear
contribution, corresponding to a friction term proportional to
velocity. In the Poisson part a continuous indexq appears,
together with the usual sum over a discrete indexj . The
expression is characterized by the appearance of the unitary
operators expfsi /"dq·x̂g, acting as generators of boosts or
momentum translations, and of the functionsLjsq,p̂d, opera-
tor valued in that they depend on the momentum operators of
the test particlep̂, i.e., the generators of translations.

As can be seen the characterization is quite powerful, so
that the only freedom left is in the choice of a few coeffi-
cients and functions of the momentum operators of the test
particle p̂. These can be fixed by either referring to micro-
physical calculations, or relying on a suitably guessed phe-
nomenological ansatz. In this kind of reduced dynamics the
information on the macroscopic system the test particle is
interacting with is essentially encoded in a suitable, possibly
operator-valued, two-point correlation function of the macro-
scopic system appearing in the Lindblad structure. The key
physical point is then the identification of the relevant two-
point correlation function, depending both on the coupling
between test particle and reservoir, and on a characterization
of the equilibrium state of the reservoir.

C. Physical examples

Building on the results of Secs. II A and II B we will now
give two examples of physical realization of the previously

outlined structures, corresponding to the couplingss9d and
s11d. In this way we show how apparently very different
results obtained in the literature can be put in a unified
framework, putting into evidence the common root due to
translational invariance and thus suggesting how to handle
similar situations characterized by the same symmetry group.

The case of density-density coupling given by Eq.s9d,
when the reservoir is a free quantum gas, has been dealt with
in f11–13g, and the relevant test particle correlation function
turns out to be the so-called dynamic structure factorf21,22g

Ssq,Ed =
1

2p"

1

N
E dtesi/"dEtkrq

†rqstdl, s25d

which can be written in an equivalent way as

Ssq,Ed =
1

N
o
mn

e−bEn

Z zkmurqunlz2dsE + Em − End, s26d

where contrary to the usual conventions, momentum and en-
ergy are considered to be positive when transferred to the test
particle, on which we are now focusing our attention, rather
than on the macroscopic system. The master equation then
takes the form

d%̂

dt
= −

i

"
fĤ0,%̂g +

2p

"
s2p"d3nE d3qut̃sqdu2

3Fesi/"dq·x̂ÎS„q,Esq,p̂d…%̂ÎS„q,Esq,p̂d…

3e−si/"dq·x̂ −
1

2
hS„q,Esq,p̂d…,%̂jG , s27d

whereĤ0 is the free particle Hamiltonian,n is the density of
the homogeneous gas, and the dynamic structure factor ap-
pears operator valued: in fact the energy transfer in each
collision, which is given by

Esq,pd =
sp + qd2

2M
−

p2

2M
, s28d

with M the mass of the test particle, is turned into an opera-
tor by replacingp with p̂. For the case of a free gas of
particles obeying Maxwell-Boltzmann statistics the dynamic
structure factor takes the explicit form

SMBsq,Ed =Îbm

2p

1

q
e−sb/8mds2mE+ q2d2/q2

s29d

with b the inverse temperature andm the mass of the gas
particles.

A density-displacement type of coupling as in Eq.s11d has
been dealt with inf38,39g, considering an environment es-
sentially given by a phonon bath. The relevant test particle
correlation function in this kind of model is given by the
following spectral functionf21,24g:

Ssq,Ed =
1

2p"
E dt esi/"dEtku†sqdusq,tdl, s30d

given by a linear combination of correlation functions of the
form
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Asq,Ed =
1

2p"
E dt esi/"dEtkbq

†bqstdl, s31d

which can also be writtenf40g

Asq,Ed = o
mn

e−bEn

Z zkmubqunlz2dsE + Em − End. s32d

Contrary to the smooth expression of the dynamic structure
factor for a free quantum gas given in Eq.s29d, the spectral
function s31d has the highly singular structure

Ssq,Ed = f1 + Nbs"vqdgdsE + "vqd + Nbs"vqddsE − "vqd,

s33d

with Nbs"vqd=1/seb"vq−1d, where the exact frequencies
"vq of the phonon appear. The smooth energy dependence of
the test particle correlation function used in the derivation of
Eq. s27d, allowing an exact treatment in the case of a free gas
of Maxwell-Boltzmann particles, here no longer applies, and
in fact the master equation has only been worked out for the
diagonal matrix elements of the statistical operator in the
momentum representation. Setting%spd;kpu%̂upl one has

d%

dt
spd =E d3qut̃sqdu2fS„q,Esq,p − qd…%sp − qd

− S„q,Esq,pd…%spdg, s34d

using the notation introduced in Eq.s28d. One immediately
sees that boths27d ands34d fit in the general expressions24d
for the Poisson part of the generator of a translation-
covariant quantum-dynamical semigroup given by Holevo,
with the uLjsq,p̂du2 operators replaced by the spectral func-
tions s25d and s30d, respectively, the integration measure
dmsqd corresponding to the Lebesgue measure with a weight
given by the square modulus of the Fourier transform of the
interaction potential. It is here already apparent that the pre-
sented resultss27d and s34d, pertaining to the Poisson part
s24d of the general structure of the generator of a translation-
covariant quantum-dynamical semigroups22d, go beyond the
limitation to Gaussian statistics typical of the Caldeira-
Leggett model.

The relevant correlation function for these translation-
covariant master equations thus appears to be given by the
Fourier transform with respect to energy of the time-
dependent autocorrelation function of the operator of the
macroscopic system appearing in the interaction potential
VPM when written in the forms5d, i.e.,

Ssq,Ed =
1

2p"
E dt esi/"dEtkAM

† sqdAMsq,tdl. s35d

The parameterq one integrates over in Eq.s24d, with a
weight given by the square modulus of the Fourier transform
of the interaction potential appearing in Eq.s5d, is to be seen
as an element of the translation group, physically corre-
sponding to the possible momentum transfers in the single
collisions. The key difference between the two models lies in
the physical meaning of the different correlation functions.
The dynamic structure factors25d is linked to the so-called

density fluctuations spectrum, accounting for particle number
conservation of the macroscopic system. This connection to
density fluctuations brings into play the other key feature of
Einstein’s Brownian motion, i.e., the molecular, discrete na-
ture of matter. As we shall see shortly, the smooth correlation
function arising in connection with this density-density cou-
pling allows us to take a diffusive limit of the reduced dy-
namics, thus obtaining the quantum description of Einstein’s
Brownian motion. On the contrary in Eq.s30d the typically
quantized spectrum of a harmonic oscillator appears, thus
leading to the singular functions33d, so that as stressed in
f39g rather than a diffusion equation one necessarily has a
jump process.

III. FLUCTUATION-DISSIPATION THEOREM

In the previous section we have tried to point out and
analyze the typical structures for the quantum description of
dissipation and decoherence in the Markovian case that come
into play when the first of the two key features of Einstein’s
Brownian motion mentioned in Sec. I is taken into account,
i.e., translational invariance. We now focus on the second
key feature, i.e., the connection with the discrete nature of
matter, which Einstein actually wanted to demonstrate. As
already hinted at the end of Sec.s2d, in the present paper we
substantiate the claim that the correct description of Ein-
stein’s Brownian motion is obtained considering a density-
density coupling. As we shall see in detail in Sec. IV this
happens thanks to the fact that the two-point correlation
function appearing in the master equation in this case is the
dynamic structure factors25d, where the Fourier transform of
the number-density operatorrq, as given in Eq.s8d, appears.
This function is in fact directly related to the density fluctua-
tions in the medium, as can be seen in writing it, rather than
in the form s25d, relevant for the comparison between the
different types of translational invariance interactions and re-
lated master equations, in the following wayf21g:

Ssq,Ed =
1

2p"
E dtE d3x ei/"sEt−q·xdGsx,td, s36d

i.e., as the Fourier transform with respect to energy and mo-
mentum transfer of the time-dependent density correlation
function

Gsx,td =
1

N
E d3ykNMsydNMsx + y,tdl. s37d

Here the connection with density fluctuations and therefore
the discrete nature of matter is manifest. Introducing the real
correlation functions

f−sq,td =
i

"N
kfrqstd,rq

†gl,

f+sq,td =
1

"N
khrqstd,rq

†jl, s38d

where h , j denotes the anticommutator, the fluctuation-
dissipation theorem can be formulated in terms of the dy-
namic structure factor as follows:
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f−sq,td = −
2

"
E

−`

0

dEsinSE

"
tDs1 − ebEdSsq,Ed,

f+sq,td = −
2

"
E

−`

0

dEcosSE

"
tDcothSb

2
EDs1 − ebEdSsq,Ed.

s39d

We stress once again that contrary to the usual perspective in
linear response theory, we are here concerned with the re-
duced dynamics of the test particle, so that we take as posi-
tive the momentum and energy transferred to the particle.
The dynamic structure factor can also be directly related to
the dynamic response functionx9sq,Ed f22g, according to

Ssq,Ed =
1

2p
F1 − cothSb

2
EDGx9sq,Ed =

1

p

1

1 − ebEx9sq,Ed,

s40d

the relationship leading to the important fact that while the
dynamic response function is an odd function of energy, the
dynamic structure factor obeys the so-called detailed balance
condition

Ssq,Ed = e−bESs− q,− Ed, s41d

a property granting the existence of a stationary state for the
master equations27d, as shown inf13g. In terms of the dy-
namic response function the fluctuation-dissipation theorem
can also be written

f−sq,td = −
2

p"
E

−`

0

dEsinSE

"
tDx9sq,Ed,

f+sq,td = −
2p

"
E

−`

0

dEcosSE

"
tDcothSb

2
EDx9sq,Ed,

s42d

a formulation that will prove useful for later comparison with
the Caldeira-Leggett model. The most significant formula-
tion of the so-called fluctuation-dissipation theorem for the
physics we are considering is, however, neithers39d nor s42d,
but is to be traced back to a seminal paper by Van Hove
f9,24g. In fact he showed that the scattering cross section of
a microscopic probe off a macroscopic sample can be written
in Born approximation in the following way:

d2s

dVp8dEp8
spd = s2p"d6S M

2p"2D2p8

p
ut̃sqdu2Ssq,Ed, s43d

where a particle of massM changes its momentum fromp to
p8=p+q scattering off a medium with dynamic structure fac-
tor Ssq,Ed. This is the most pregnant formulation of the
fluctuation-dissipation relationship for the case of a test par-
ticle interacting through collisions with a macroscopic fluid.
The energy and momentum transfer to the particle, charac-
terized by the expression of the scattering cross section on
the left-hand sidesLHSd of Eq. s43d are related to the density
fluctuations of the macroscopic fluid appearing through the
dynamic structure factor on the RHS of Eq.s43d. One of the

basic ideas of Einstein’s Brownian motion, i.e., the discrete
nature of matter, once again appears in the formulations43d
of the fluctuation-dissipation relationship. From the compari-
son between Eqs.s43d and s27d one sees that the reduced
dynamics is actually driven by the collisional scattering cross
section; in particular the last term of Eq.s27d can also be
written

−
n

2M
hup̂ussp̂d,%̂j, s44d

wheresspd is the total macroscopic scattering cross section
obtained from the differential expressions43d for a test par-
ticle with incoming momentump. The terms44d can be seen
quite naturally as a loss term in a kinetic equation, and in fact
Eq. s27d is actually to be seen as a quantum version of the
linear Boltzmann equationf41g. Besides this, from the direct
relation s43d between the scattering cross section and dy-
namic structure factor one sees on physical grounds the posi-
tivity of the correlation function, a property exploited ins27d
in order to take the square root.

We now compare the above formulations of the
fluctuation-dissipation theorem with the ones encountered in
the long-wavelength limit of the density-density coupling
type of translationally invariant interaction, which as shown
in Sec. II A 2 is strongly related to the Caldeira-Leggett
model. In the long-wavelength limit theq component of the
number-density operator becomes

rq <
LWL

N −
i

"
q ·o

i=1

N

xi + Osq2d, s45d

and once again the collective coordinateX=oi=1
N xi intro-

duced in Eq.s20d is put into evidence. The relevant correla-
tion functions then become

fi j
−std =

i

"N
kfXistd,X jgl,

fi j
+std =

1

"N
khXistd,X jjl, s46d

the indexesi and j here denoting Cartesian components of
the collective coordinates20d. Introducing accordingly the
spectral function

SijsEd =
1

2p"

1

N
E dt esi/"dEtkX jXistdl, s47d

the fluctuation-dissipation theorem reads

fi j
−std = −

2

"
E

−`

0

dEsinSE

"
tDs1 − ebEdSijsEd,

fi j
+std = −

2

"
E

−`

0

dEcosSE

"
tDcothSb

2
EDs1 − ebEdSijsEd.

s48d

With the help of the response functionxi j9 sEd
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SijsEd =
1

p

1

1 − ebExi j9 sEd, s49d

the relationss48d can also be written as

fi j
−std = −

2

p"
E

−`

0

dEsinSE

"
tDxi j9 sEd,

fi j
+std = −

2

p"
E

−`

0

dEcosSE

"
tDcothSb

2
EDxi j9 sEd. s50d

While a formulation of the fluctuation-dissipation theorem
like the Van Hove relations43d is missing in this long-
wavelength limit, the relationss50d, involving expectation
values of the commutator and anticommutator of the compo-
nents of the collective coordinates, are the ones to be com-
pared with the typical relations used in order to introduce the
so-called spectral densitys15d in the Caldeira-Leggett model.
In fact if all coupling constantsci are put equal toc, as
should be enforced in the case of Einstein’s quantum Brown-
ian motion, in which the particle interacts through collisions
with a collection of identical, indistinguishable particles, the
spectral density, when expressed in terms of energyE rather
than frequencyv, will be related to the response function
x9sEd for a one-dimensional system according to

JsEd =
c2

p
x9sEd. s51d

The relations51d, first intuitively guessed inf42g, actually
shows how in the friction coefficient, usually phenomeno-
logically introduced through the spectral density, features of
both the single interaction events and the reservoir do appear.
In Sec. IV we will give a microscopic expression for the
friction coefficient in the case of Einstein’s quantum Brown-
ian motion, in which both features do appear: the coupling
through the Fourier components of the interaction potential,
and the reservoir through certain values of the dynamic
structure factor.

IV. QUANTUM DESCRIPTION OF EINSTEIN’S
BROWNIAN MOTION

Relying on the premises of Secs. II and III we now come
to the master equation for the quantum description of Ein-
stein’s Brownian motion. The requirement of translational
invariance has been settled in Sec. II, while the connection
between the reduced dynamics of the test particle and density
fluctuations in the medium, coming about because of its dis-
crete nature, has been taken into account in Sec. III, consid-
ering a density-density coupling and thus coming to Eq.s27d.
The last step to be taken is to consider the test particle much
more massive than the particles making up the gas, i.e., the
Brownian limit m/M !1, which in turn implies considering
energy and momentum transfers that are both small, simi-
larly to the classical casef43g. We therefore start from Eq.
s27d and consider a free gas of Maxwell-Boltzmann particles,
so that taking the limiting expression ofs29d when the ratio
between the masses is much smaller than 1, or equivalently
considering small energy transfers, i.e.,

SMB
` sq,Ed =Îbm

2p

1

q
e−sb/8mdq2

e−sb/2dE, s52d

one obtains the master equationf11–13g

d%̂

dt
= −

i

"
fĤ0,%̂g +

2p

"
s2p"d3nÎbm

2p
E d3q

ut̃sqdu2

q

3e−sb/8mds1+2m/Mdq2Fesi/"dq·x̂e−sb/4Mdq·p̂%̂e−sb/4Mdq·p̂

3e−si/"dq·x̂ −
1

2
he−sb/2Mdq·p̂,%̂jG , s53d

which in the limit of small momentum transfer leads, of ne-
cessity as can be seen from the Gaussian contribution in
Holevo’s results23d but also from previous workf6,7g, to a
Caldeira-Leggett type of master equation, but without the
shortcomings related to the lack of preservation of positivity
of the statistical operator. The master equation takes the form

d%̂

dt
= −

i

"
fĤ0,%̂g −

i

"

h

2o
i=1

3

fx̂i,hp̂i,%̂jg −
Dpp

"2 o
i=1

3

†x̂i,fx̂i,%̂g‡

−
Dxx

"2 o
i=1

3

†p̂i,fp̂i,%̂g‡, s54d

with

Dpp =
M

b
h and Dxx =

b"2

16M
h. s55d

The friction coefficienth is uniquely determined on the basis
of the microscopic information on the interaction potential
and correlation function of the macroscopic system, accord-
ing to

h =
b

2M

2p

"
s2p"d3nE d3qut̃sqdu2

q2

3
Ssq,E = 0d, s56d

the factor 3 being related to the space dimensions, or equiva-
lently

h =
b

2M

2p

"
s2p"d2nE d3qut̃sqdu2

q2

3

1

N
E dtkrq

†rqstdl,

s57d

thus proving in a specific physical case of interest the so-
called standard wisdom expecting the decoherence and dis-
sipation rate to be connected with the value at zero energy of
some suitable spectral functionf15g. Introducing the Fourier
transform of the gradient of the number-density operator,
which we indicate by=rq

=rq ; qrq = − i"E d3x e−si/"dq·x = NMsxd, s58d
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the friction coefficient can also be written in terms of the
time-dependent autocorrelation function of=rq according to

h =
b

6M

2p

"
s2p"d2nE d3qut̃sqdu2

1

N
E dtk=rq

† · = rqstdl.

s59d

To the best of our knowledge these general expressions have
been introduced here for the first time, providing a micro-
physical estimate of the friction coefficienth in terms of
suitable correlation functions, through the two equivalent
and both telling expressionss56d and s59d.

It is worth noticing how, contrary to the usual Caldeira-
Leggett model, the friction coefficient will generally exhibit
an explicit temperature dependence, being related both to the
expectation value of the operatorsrq and to the interaction
potential. No energy cutoff needs to be introduced, since all
quantities appearing in the calculations remain finite, being
directly linked to the relevant physical properties of the mac-
roscopic system the test particle is interacting with. Note
further that introducing the thermal momentum spreadDpth

2

=M /b and the square thermal wavelengthDxth
2 =b"2/4M

satisfying the minimum uncertainty relation

DpthDxth =
"

2
, s60d

the coefficients given in Eq.s55d can also be expressed in the
form

Dpp = hDpth
2 and Dxx =

h

4
Dxth

2 . s61d

The main difference between Eq.s54d and the master
equation introduced by Caldeira and Leggett for the descrip-
tion of quantum Brownian motion, apart from the micro-
physical expression for the appearing coefficients, lies in the
appearance of the last contribution, given by a double com-
mutator with the momentum operator of the Brownian par-
ticle, and corresponding to position diffusion. This term,
which here appears in the expansion for small energy and
momentum transfer of the dynamic structure factor, is di-
rectly linked to preservation of positivity of the statistical
operator, and in fact in the past many different amendments
of the Caldeira-Leggett master equation have been proposed
in the literature introducing a term of this kindf11,44,45g,
even though it is not obvious how to actually experimentally
check the relevance of this term, essentially quantum in ori-
gin, as can also be seen from Eqs.s60d and s61d. In recent
work f41g it has been shown how this contribution might
lead in the strong friction limit to a typically quantum cor-
rection to Einstein’s diffusion coefficient, only relevant at
low temperatures, thus opening the way to the conception of
future experiments in which to possibly check the correction,
as considered inf46g.

V. CONCLUSIONS AND OUTLOOK

In the present paper a fully quantum approach to the de-
scription of Brownian motion in the sense of Einstein, i.e.,

considering a massive test particle interacting through colli-
sions with a background of much lighter ones, has been pre-
sented. The two cardinal requirements determining the quan-
tum description of the reduced dynamics are translational
invariance and the connection with the discrete, atomistic
nature of the medium, along the lines of Einstein’s original
confrontation with the problem. The former implies the
choice of a translationally invariant interaction potential and
leads to the requirement of translation covariance for the
quantum-dynamical semigroup giving the time evolution, a
type of semigroup that has been fully characterized by
Holevo f10g as seen in Sec. II; the latter relates the dynamics
to the density fluctuations in the fluid, expressed in terms of
the dynamic structure factor, first introduced by Van Hove
f9g, and ensuring the physically most telling formulation of
the fluctuation-dissipation theorem for the considered case,
as seen in Sec. III. A quantum master equation for the de-
scription of Einstein’s Brownian motion, obtained in a ki-
netic approach complying with the abovementioned charac-
teristics, has been given in Sec. IV, showing in particular
how Einstein’s quantum Brownian motion arises in the pres-
ence of a density-density coupling. This type of coupling
fixes the relevant correlation function appearing in the mi-
crophysical expression obtained for the friction coefficient,
given in Eq.s56d or equivalently Eq.s59d.

A comparison has been drawn whenever possible between
the present approach and the famous Caldeira-Leggett model
for the treatment of decoherence and dissipation in quantum
mechanics, showing how the Caldeira-Leggett model may
arise as the long-wavelength limit of a density-density cou-
pling preserving translational invariance. This accounts in
particular for the limitation to Gaussian statistics inherent in
the Caldeira-Leggett model or variants thereof. At variance
with the Caldeira-Leggett model, a microphysical expression
for the friction coefficient has been given, relating it to the
Fourier transform of the interaction potential and a suitable
autocorrelation function as seen in Sec. IV. No need of renor-
malizations or energy cutoffs appears in the treatment. Fur-
thermore, physical realizations of the Poisson component of
the general structure of generator of a translation-covariant
quantum-dynamical semigroups22d has been presented, go-
ing beyond the typical restriction to Gaussian statistics.

Even though focusing on the specific issue of Einstein’s
quantum Brownian motion, the results presented in Secs. II
and III are quite general. They provide a clearcut connection
between the expression of the translationally invariant inter-
action and precise structure of the associated reduced Mar-
kovian dynamics, satisfying the natural and physically com-
pelling requirement of translation covariance. They further
clarify the relevant correlation function of the environment
for the reduced dynamics and its connection to the
fluctuation-dissipation theorem, thus providing a general
framework for a microphysical description of dissipation and
decoherence in quantum mechanics. Now that experimental
quantitative tests of decoherence begin to be within reach
ssee for examplef16,47–49g or f26,50g for more general ref-
erencesd, the next challenge for the theoretical analysis is in
fact no longer an effective, phenomenological description of
the phenomenon, but rather a full-fledged microphysical
analysis, in which both the phenomena of dissipation and
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decoherence can be correctly described.
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