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A fully quantum treatment of Einstein’s Brownian motion is given, stressing in particular the role played by
the two original requirements of translational invariance and connection between dynamics of the Brownian
particle and atomic nature of the medium. The former leads to a clearcut relationship with a generator of
translation-covariant quantum-dynamical semigroups recently characterized by Holevo, the latter to a formu-
lation of the fluctuation-dissipation theorem in terms of the dynamic structure factor, a two-point correlation
function introduced in seminal work by Van Hove, directly related to density fluctuations in the medium and
therefore to its atomistic, discrete nature. A microphysical expression for the generally temperature dependent
friction coefficient is given in terms of the dynamic structure factor and of the interaction potential describing
the single collisions. A comparison with the Caldeira-Leggett model is drawn, especially in view of the
requirement of translational invariance, further characterizing general structures of reduced dynamics arising in
the presence of symmetry under translations.
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I. INTRODUCTION solubility given a certain phenomenological and&tl or on

A century has passed since Einstein published the first 0" axiomatic ap_pro_ach rermg on mathemaucal in8,7],
a series of papers on the theory of Brownian movemenf! N the exploitation of semiclassical correspondefitje
[1,2], a pioneering work attempting to provide a suitable & Will base our microscopic analysis on the two key fea-
theoretical framework for the description of a long-standingtUrés of Einstein’s Brownian motion: homogeneity of the
experimental puzzIg3]. Einstein’s investigation went much 2ackground medium, reflected in the property of transla-

beyond the explanation of an interesting experiment, proving"[;)naI invariance, and the atomic nature of matter responsible
a milestone in the understanding of statistical mechanics gfr density fluctuations, showing up in a suitable formulation
nonequilibrium processes, motivating and inspiring physican the fluctuation-dissipation relationship. Translational in-
and mathematical research on stochastic processes. By n%nance comes about because of the homogeneity of the

the term Brownian motion is ubiquitously found in the physi- id and the translational invariance of the interaction poten-
cal literature, at both the quantum and classical levels, usefi Petween test particle and elementary constituents of the

as a kind of keyword in a wealth of situations relying on a uid. Th‘? fundamental symmetry property Iead§ to impor-
}ant restrictions both on the expression for possible interac-

Sgﬁggptggé% tt?) rThSogé ??rzih:mit;ﬁql S%Lufrt]:rii Olrr;xr?z;)i/osrl::i ions and on the structure of the completely positive genera-
P PP 9 P or of a quantum-dynamical semigroup describing the

Emstgln’s Brownian motion. In this paper we addr.ess th%arkovian reduced dynamics. The first key point is therefore
question of a proper quantum description of Brownian Mo+, consider the proper type of translational-invariant interac-
tion in the sense of Einstein, i.e., the motion of a massive tegjoy |eading to Einstein’s Brownian motion, thus fixing the
particle in a homogeneous fluid made up of much lightefejevant correlation function appearing in the structure of the
particles. In doing so we actually go back to Einstein’s realgenerator of the dynamics, which turns out to be the so-
motivation in examining Brownian motion, i.e., to demon- called dynamic structure factor and provides the natural for-
strate the molecular, discrete nature of matter. His aim was ifyylation of the fluctuation-dissipation relationship for the
fact to give a decisive argument probing the correctness ofase of interest first put forward by Van Hove in an epochal
the molecular-kinetic Conception of heat, a question he Conpaper[g]_ Given that the dynamics can be fa|r|y assumed to
sidered most important, as stressed in the very last senteng@ Markovian, the second key point is the characterization of
of the paper, actually quite emphatic in the original Germanhe structure of generators of quantum-dynamical semi-
version: “Mdge es bald einem Forscher gelingen, die hiegroups covariant under a suitable symmetry group, in this
aufgeworfene, fir die Theorie der Wéarme wichtige Frage zlpaseR, i.e., translations, which has been recently given in
entscheiden![4]. most relevant work by Holevfl0].
In contrast with previous approaches and results, based The present paper partially builds on previous work
either on a modeling of the environment aiming at exac{11-13, putting it in a wider conceptual and theoretical
framework, providing the previously unexplored connection
to the fluctuation-dissipation theorem and a general micro-
*Electronic address: petruccione@ukzn.ac.za physical expression for the friction coefficient in terms of a
"Electronic address: bassano.vacchini@mi.infn.it suitable autocorrelation function. This kinetic approach to
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quantum dissipation is further compared with the one byFock space in which the fields referring to the test particle
Caldeira and Leggett, also in view of recent criticism on theare described. The interaction potential between test particle
realm of validity of the last approadi4,15, showing how and matter will have the general form

the Caldeira-Leggett model is recovered as the long-

wavelength limit of this kinetic approac_h. _In this way a dif- Vou =f d3x f a3y As()t(X — Y) Ay (Y), 2)
ferent approach to the quantum description of decoherence

and dissipation is put forward, which, though obviously nOtwheret(x) is aC-number, in the following applications short-

universally valid, could provide a direct connection between it " tential(x) andAy(y) f-adioint
a precise microphysical model and reduced dynamics for fange, nteraction potentiafe(X) andAy(y) are selt-adjomn

wide class of open quantum systems, characterized by suiPerators built in terms of the fields

able symmetries. While universality might often be a loose dp

word in such a complex framework, this precise microphysi- ©p(X) =f ———ell/px

cal modeling makes a close, quantitative comparison be- (2mh1)

tween presenfl6—19 and next generation experiments on dn .

decoherence and dissipation in principle feasible. em(y) Zf 2?2 b, 3)
The paper is organized as follows: In Sec. Il we introduce

the basic possible translationally invariant interactions, putfespectively, satisfying canonical commutation or anticom-

ting into evidence their effect on the structure of the reducednutation relations. Equatiof?) can be most meaningfully

dynamics, also in comparison with previous models in therewritten in terms of the Fourier transform of the interaction

literature. In Sec. Il we point out the relevant interaction for potential

the description of Einstein’s quantum Brownian motion, 3

showing the related expression of the fluctuation-dissipation H(q) :f d°x

theorem. In Sec. IV we come to the formulation of Einstein’s (27h)3

quantum Brownian motion putting into evidence the general

microphysical expression for the friction coefficient in termsWhere the continuous parametgrto be seen as a momen-
phy P . . X tum transfer, has a natural group theoretical meaning as the
of a suitable autocorrelation function. In Sec. V we finally

. ) label of the irreducible unitary representations of the group
comment on our results and discuss possible future develops . .
ments of translations, as to be stressed later on, thus coming to the

equivalent expression

a, and

e(i/h)q-xt(x) , (4)

Il. TRANSLATIONAL INVARIANCE Vor = J dBQT(q)Ap(q)ATM(q), 5)
As a first step we characterize the general structure of

microscopic Hamiltonians leading to a translationally invari-where the operatorss(q) and Ay (q) are defined according
ant reduced dynamics for the test particle. Due to translag
tional invariance the test particle has to be free apart from the
interaction with the fluid, subject at most to a potential lin-
early depending on position, e.g., a constant gravitational
field, so that in particular it has a continuous spectrum. The ) ) ) ] ) ) )
fluid is supposed to be stationary and homogeneous, and fdfanslational invariance of the interaction, leading to the in-
simplicity, without loss of generality, possessing inversionvariance ofVpy under a global translation, is obvious in Eg.

symmetry, so that energy, momentum, and parity are cont?) because the coupling through the potential depends only
stants of the motion. on the relative positions of the two local operator densities,
and comes about in E@5) because the operators in E§)
simply transform by a phase €Xjp/%)q-a] under a transla-
tion of stepa.
1. Characterization of translationally invariant interactions We will now consider two general types of physically
The microscopic Hamiltonian may be written in the form _meaningf_ul trgn.slatio.nally invariant _couplings, cqrrespon_d-
ing to quite distinct situations. The first is a density-density
Hpy = Hp+ Hy + Ve, (1) coupling, which as argued in the next sections is the one

, ) relevant for the quantum description of Einstein’s Brownian
where the subscripts P and M stand for particle and matter,tion given by the identifications

respectively, whileHp, and Hy, satisfy the aforementioned

constraints. The key point is the characterization of a suitable Apm(x) = qoé,M(x)@p,M(x) = Npm(X), (7)
translationally invariant interaction potential, which we put
forward in the formalism of second quantization. This non-
relativistic field theoretical approach is the natural one in
order to account for statistics and more generally many- A

particle features of the background macroscopic system, also Pq= J d®x e (MaXNy, (x) = f
proving useful in microphysical calculatiof20] and allow-

ing us to deal not only with the one-particle sector of thecan be written

Apm(a) = f d*xe M Agy(x). (6)

A. Translationally invariant interactions

which, introducing theg component of the number-density
operatorp, [21,22

d3y
(27h)*

b pya,  (8)
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~ physical frequencies of the dynamics of the microsystem,
VPMZI d*qT (@A)l (). (9)  given for example by a Brownian patrticle. In the absence of
an external potential for the test particle it is also observed
Note that an interaction of the for(®), besides being trans- that translational invariance, explicitly broken by E¢&3)
lationally invariant, commutes with the number operafdgs  and (14), can be recovered by suitably fixing the otherwise
andNy, so that the elementary interaction events do bring imarbitrary coupling constants to be given byci=mia)i2 [27],
exchanges of momentum between the test particle and thehich should not affect the relevant results which actually
environment, but the number of particles or quanta in bottdepend only on the so-called spectral density
systems is independently conserved, thus typically describ-

ing an interaction in terms of collisions. ! ¢

The other type of interaction we shall consider is a Jw) = E Mo Sw = ), (15
density-displacement coupling, corresponding to the expres- =
sionsAp(x) =Np(x), as above for the particle, and which as a matter of fact is phenomenologically fixed. Since

3 the original idea behind the model is to give an effective

Ay(X) =J M(b +bl )elMrx=y(x) (100  description of quantum dissipation in which the phenomeno-

(2mh)> " logical quantities are to be fixed by comparison with the

classical model, thus working in a semiclassical spirit, recov-
ery of quantum Brownian motion in the sense of Einstein in
the case of a test particle in a homogeneous medium is a
natural requirement, and in fact the master equation obtained

~ from the Caldeira-Leggett model with the Ohmic prescrip-

prva d*qT(g)As(q)u’(q), (1) tion for Eq.(15) is considered as the standard quantum de-

scription of Brownian motion. Nonetheless, as stressed in

with [14], despite the aforementionead hoc adjustments the

B t Caldeira-Leggett model does not comply with one of the

u(q) =g +b_g. (12) basic features of Brownian motion, i.e., translational invari-

Contrary to(9), the interaction considered if11) does not ~a@nce, and in fact also previous work has focused on how to
preserve the number of quanta of the macroscopic systef§cover translational invariance in the quantum description
and rather than a collisional interaction describes, e.g., &f dissipation29]. In their analysis the authors ff4] try to

Caldeira-Leggett model by exploiting a suitable limit of an

2. Comparison with the Caldeira-Leggett model interaction of the density-displacement type considered

Before showing the relationship between the above intro?bovf1 in Er?(l,l)' IWh'Ie this mOd?I,m'gr?t be.the pqrrect one
duced translationally invariant interactions and correspond!©" Other physical systems, we claim that Einstein's qguantum
ing structures of the master equation in the Markovian,Brownlan motion corresponds to a densﬂy-denery coupling
weak-coupling limit, we briefly discuss the connection with &1d We now see how the Caldeira-Leggett model is related to

the most famous Caldeira-Leggett model for the quantunil® long-wavelength limit of a density-density coupling.
description of dissipation and decoherence. Despite, or Let us in fact consider E(9), restricting the expressions

equivalently because of, its widespread use and relevance [ €. cl)ne-particfle SﬁCtor for the test particlﬁ anc;J to the
applications, it is well worth trying to elucidate the basic \-Particle sector for the macroscopic system, thus obtaining,

physics behind the model, at least restricted to specific sitdSiNg @ firzt lquantization formalism as in the Caldeira-
ations. In the standard formulation of the Caldeira-Leggett-€99€tt model,

for the macroscopic system, wheuéx) is often called the
displacement operatd®3,24], thus leading in terms of the
Fourier transformed quantities to

model (see for exampld26-28) the Hamiltonian for the N N
environment is given in first quantization by the expression Voy= 2tk —x) = | dqi(q)> e imatx)  (16)
N 2 i=1 i=1
H,, = E P + = 2y2 (13) . .
M~ . “\ 2m Zmi“’i Xi | Considering only small momentum transfers and thus taking
i=

the long-wavelength limit of the expression, corresponding
which should describe a set of independent harmonic oscito a collective response of the macroscopic medium, one
lators, while the interaction term is given liyere and in the obtains up to second order

following we denote one-particle operators referring to the

test particle with a cargt LWL - 1 . .
P Vew = N | i@ - = | #qT@X [q- R-x)P?
N N2 2h i1
IS N i
VPM = Xz CiX; + X z iwiz, (14) + O(q4), (17)

typically focusing on a one-dimensional system, where thevhere the term linear i has dropped out because of inver-
first term is a position-position coupling and the second ongion symmetry. Further exploiting isotropy, so theg)
is justified as a counterterm necessary in order to restore thet(q), one has
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LWL 1 N 1 N decoherence without dissipation, indicating that a full
Vem = Nt(0) = ZAt(0)KX - X, x; + =At(0) >, xi2 density-density coupling rather than a position-position cou-
3 i=1 6 i=1 pling as in the Caldeira-Leggett mod@i the paper correctly
N formalized in terms of a Bose fieldshould provide the
+ EAzt(O)>‘<2+ o(q?). (18)  proper way to describe pure, recoiless decoherence.

B. Structure of translation-covariant quantum-dynamical

Here one easily recognizes the Caldeira-Leggett model, _
semigroups

though with some constraints and modifications. First of all,
as evident from Eq(16) and also stressed iri4], transla- We now come back to the translationally invariant inter-
tional invariance is preserved in the long-wavelength limitactions given by Eqs(9) and (11), showing the possible
only provided that all terms up to a given order gnare  master equations they lead to in the Markovian, weak-
consistently kept, and this also applies to any calculation pugoupling limit. To do this we first observe that because of
forward by means of Eq.18). This explains the appearance homogeneity of the underlying medium and translational in-
of the so-called counterterm in E(L4), as well as the rela- Vvariance of the interaction potential, the reduced dynamics of
tionship ¢;=mw? required in order to apparently restore the test particle must also be invariant under translations.
translational invariance. The symmetry requirement thus his symmetry requirement has to be reflected in the actual
strictly fixes the relationship between coefficients. Howeverstructure of the master equation, i.e., the generator of the
a position-position coupling such as the one appearing in Eqrreversible dynamics. The natural way to comply with this
(18) is the common feature of the long-wavelength limit of asymmetry requirement is to ask the generator of the
density-density coupling with a generic, not necessarily harquantum-dynamical semigroup driving the dynamics of the
monic, potential. In the case in which the potential is har-test particle to be covariant under translations, i.e., that its

monic,t(x):%mwzxz, one obtains from Eq18) action on the statistical (_)perator comm_utes with the action_ of
the unitary representation of translations. A more precise
LWL 1 N N statement of covariance can be given as follows. Given the

~ 2 2,02 25 ~
Vem ~ 5me gl (" +X%) ~maX zxi (19) unitary representatiotd(a)=exg—(i/%)a-p], ac R3, of the
group of translationgt® in the test particle Hilbert space, a
as in [27]. Let us note how in Eq(18) the test particle mappingL acting on the statistical operators in this space is
couples to the collective coordinate said to be translation covariant if it commutes with the action

N of the unitary representation, i.e.,
X=2x% (20 0@e0@l=0@cel0@, (@1

of the macroscopic system, proportional to its center of masdOr @ny statistical operataz and any translation. Needless

In a truly quantum picture of Einstein’s Brownian motion, [© Say, the notion of covariance under a given symmetry
the gas has to be described by identical partittesnixtures ~ 970Up has proved very powerful in characterizing not only
thereof, so that one cannot introduce different masses ang'@Ppings such as quantum-dynamical semigroups and op-
different coupling constants. According to E) or (16) in erations, but _a_lso observables, especially in the generalized
a density-density interaction the test particle is differentlySense of positive-operator-valued measy@31. As has
coupled to the varioug components of the number-density Peen shown in recent, seminal work by Holg0,32-34, it
operator for the macroscopic systesp depending on the turns out that the requirement of translation covariance puts
specific expression of the interaction potentia). Of course ~ VerY stringent constraints on th_e genergl possible structure of
this is no longer relevant when interpreting the harmonic,\gener""torf5 of quz_:m_tum_-dynamlcal semigroups. These results,
oscillators as representatives of possible modes of the mallile obv!ogz:ydflttmg Im the genelrjal fragngwo_rk_ set by Lhe
roscopic system. Here and in the following we are not aimiamous Lindblad resulf35,36, go beyond it, giving muc

ing at a general critique of the Caldeira-Leggett model More detailed information on the possible choice of opera-

which obviously has big merits, let alone its historical mean-1°'S @ppearing in the Lindblad form, information conveyed

ing as a pioneering work in research on quantum dissipatior?y the symmetry requirements and relying on a quantum
g P g . P eneralization of the Lévy-Khintchine formula. They there-

Rather, focusing on the particular and at the same time par I i luabl . it f h
digmatic example of the quantum description of Einstein’s ore also provide a valuable starting point for phenomeno-
Brownian motion, we want to put into evidence the possible®9ical approaches exploiting relevant physical symmetries.

detailed microscopic physics behind the model, especially in Referrmg to the papers by Hole\{o for the related math—
view of natural symmetry requirements, thus also openingmatical detailgsee alsd37] for a brief resumg the main

the way for alternative ways to look at and cope with dissi-Structure of the generator can be expressed as

pation and decoherence in quantum mechanics, especially ~ i . ~ ~

overcoming the limitation to Gaussian statistics inherent in Lle]=- %[H(p),Q] +Lglo]+ Lole], (22

the Caldeira-Leggett model. The relevance that the micro-

physical coupling actually has in determining which physicalwith H(p) a self-adjoint operator which is a function of only
phenomena can be correctly described by a given model hake momentum of the test particle. The so-called Gaussian
also been stressed [fh5], where an analysis is made of pure part L is given by
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1 outlined structures, corresponding to the couplif@sand
Ldo]=- [yo+ Her(X,P), Q]+E K©OK! - Z{KIK,0} |,  (11). In this way we show how apparently very different
k=1 2 results obtained in the literature can be put in a unified
(23 framework, putting into evidence the common root due to
translational invariance and thus suggesting how to handle
similar situations characterized by the same symmetry group.
Ky = 91+ Li(P), The case of density-density coupling given by K@),
when the reservoir is a free quantum gas, has been dealt with
3 in [11-13, and the relevant test particle correlation function
9= > ak, k=0,...r<3, ageR, turns out to be the so-called dynamic structure faf2ar22]
i=1

where

SaB=; ot [ae ), @9

na D A A A
He(X,P) = EE[YkLk(P) - Li()9id, which can be written in an equivalent way as

_ﬁEn
Nz KmlpMIPSE +En-E,), (26)
mn

while the remaining Poisson part takes the form S(q,E) = 12 €
Le[0]= f du(g) > {e(”")q'f‘Lj(q,f))@LjT(q,ﬁ)e‘(”ﬁ)q'* where contrary to the usual conventions, momentum and en-
i= ergy are considered to be positive when transferred to the test
1 particle, on which we are now focusing our attention, rather
- —{Lf(q,ﬁ)Lj(q,ﬁ),é}}, (24 than on the macroscopic system. The master equation then
2 takes the form
with du(g) a positive measure, ankl and p position and do P o
momentum operators for the test particle respectively. The —=-—[Hy,0]+ —(2nﬁ)3nf d3qft(q)[?
names Gaussian and Poisson arise in connection with the dt h h
different parts related to the homonymous stochastic pro- N — _
cesses in the classical Lévy-Khintchine formula. In the x| eMa*\s(q,E(q,p))0VS(a,E(a,P))
Gaussian part thg, are linear combinations of the position
operators of the test particle, which thus appear at most lin- _ Ay A
early in the commutator term, and bilinearly in the rest of the X e~ E{S(q,E(q,p)),Q}], (27
expression. The generally complex functidngp) have an
imaginary part describing friction, typically given by a linear WhereHo is the free particle Hamiltoniam is the density of
contribution, corresponding to a friction term proportional tothe homogeneous gas, and the dynamic structure factor ap-
velocity. In the Poisson part a continuous indgxappears, pears operator valued: in fact the energy transfer in each
together with the usual sum over a discrete ingexthe  collision, which is given by
expression is characterized by the appearance of the unitary (p+a? p
operators exi/#)q-X], acting as generators of boosts or E(qp=-—"—"-—,
momentum translations, and of the functidgég,p), opera- 2M 2M

tor valued in that they depend on the momentum operators afith M the mass of the test particle, is turned into an opera-
the test particled, i.e., the generators of translations. tor by replacingp with p. For the case of a free gas of

As can be seen the characterization is quite powerful, sparticles obeying Maxwell-Boltzmann statistics the dynamic
that the only freedom left is in the choice of a few coeffi- structure factor takes the explicit form

cients and functions of the momentum operators of the test

particle p. These can be fixed by either referring to micro- Sus(a,E) = 3 /’B_m}e—(BISm)(ZmE+q2)2/q2
physical calculations, or relying on a suitably guessed phe- B 27

nomenological ansatz. In this kind of reduced dynamics the .

information on the macroscopic system the test particle iéN'th B the inverse temperature amd the mass of the gas

. : e : - . : ticles.
interacting with is essentially encoded in a suitable, pOSSIb|)Par . . .
operator-valued, two-point correlation function of the macro- A density-displacement type of coupling as in Etfl) has

scopic system appearing in the Lindblad structure. The kelgeep ﬁeau W'thb"{%ﬁq' CO%S'?r?”_'I’_]E an lenwr?r;m?nt ef'l
physical point is then the identification of the relevant two- entially given by a phonon bath. The relevant test particie

point correlation function, depending both on the coupl|ngCO””EBI‘."‘tIon funtctllo? |nt_th|szll<|gd.of model is given by the
between test particle and reservoir, and on a charactenzatlcm owing spectral functiorj21,24)
of the equilibrium state of the reservoir.

2
(28

(29)

SGE)=5 - f dtdEGT(Qui,), (30

C. Physical examples

Building on the results of Secs. Il A and Il B we will now given by a linear combination of correlation functions of the
give two examples of physical realization of the previouslyform
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1 _ density fluctuations spectrum, accounting for particle number

A(gq,E) = ot J dt B blby(1), (31)  conservation of the macroscopic system. This connection to

density fluctuations brings into play the other key feature of

which can also be writte40] Einstein’s Brownian motion, i.e., the molecular, discrete na-

ture of matter. As we shall see shortly, the smooth correlation
[(mlbW|?S(E+Epn-Ey).  (32) function arising in connection with this density-density cou-
pling allows us to take a diffusive limit of the reduced dy-

) ) namics, thus obtaining the quantum description of Einstein’s
Contrary to the smooth expression c_)f the dynamic structurgy,,\nian motion. On the contrary in E30) the typically
factor for a free quantum gas given in EQ9), the spectral 4 antized spectrum of a harmonic oscillator appears, thus

e PEn
Z

AQ,E) =2

function (31) has the highly singular structure leading to the singular functiof83), so that as stressed in
S(Q,E) =[1 + N(fiwg) |O(E + fwy) + Ng(fiwg) S E — frewy), [39] rather than a diffusion equation one necessarily has a
peTa a pra (233) jump process.

. . Il. FLUCTUATION-DISSIPATION THEOREM
with Nﬁ(hwq):ll(eﬂ"wq—l), where the exact frequencies

fiwy of the phonon appear. The smooth energy dependence of In the previous section we have tried to point out and
the test particle correlation function used in the derivation ofanalyze the typical structures for the quantum description of
Eq. (27), allowing an exact treatment in the case of a free gaslissipation and decoherence in the Markovian case that come
of Maxwell-Boltzmann patrticles, here no longer applies, andnto play when the first of the two key features of Einstein’s
in fact the master equation has only been worked out for th8rownian motion mentioned in Sec. | is taken into account,
diagonal matrix elements of the statistical operator in thd.e., translational invariance. We now focus on the second
momentum representation. Settin@p) =(p|o|p) one has key feature, i.e., the connection with the discrete nature of
matter, which Einstein actually wanted to demonstrate. As

do . _ 3 2 _ B already hinted at the end of Sd@), in the present paper we
dt(p) _fd At {S(a.E@.p-aDe(p-a) substantiate the claim that the correct description of Ein-
stein’s Brownian motion is obtained considering a density-
~S(@.E@p)epl, (34) density coupling. As we shall see in detail in Sec. IV this

using the notation introduced in E(8). One immediately happens thanks to the fact that the two-point correlation
sees that bott27) and(34) fit in the general expressid24) functlo_n appearing in the master equation in this case is the
for the Poisson part of the generator of a translationdynamic structure factd5), where the Fourier transform of
covariant quantum-dynamical semigroup given by Holevothe number-density operatpy, as given in Eq(8), appears.
with the ||_J.(q,,3)|2 operators replaced by the spectral funC_Th|s fyncuon is in fact directly related_to th_e_der_lsny fluctua-
tions (25) and (30), respectively, the integration measure Flons in the medium, as can be seen in wrmng it, rather than
du(qg) corresponding to the Lebesgue measure with a weighf! the form (25), relevant for the comparison between the
given by the square modulus of the Fourier transform of th&ifferent types of tra_mslat_lonal invariance interactions and re-
interaction potential. It is here already apparent that the pre@t€d master equations, in the following wegAJ:

sented result$27) and (34), pertaining to the Poisson part 1 _

(24) of the general structure of the generator of a translation- S(q,E)= — f dt f d®x emECaNG(x t),  (36)
covariant quantum-dynamical semigroi®®), go beyond the 2mh

limitation to Gaussian statistics typiCﬁ' of the Caldeira—i_e_’ as the Fourier transform with respect to energy and mo-

Leggett model. . _ ~ mentum transfer of the time-dependent density correlation
The relevant correlation function for these translation-fynction

covariant master equations thus appears to be given by the
Fourier transform with respect to energy of the time- _1
dependent autocorrelation function of the operator of the Gx,t) = N ABy(Nw (Y) Ny (X +y,1)). (37)

macroscopic system appearing in the interaction potential ) _ ) )
Vpy When written in the forn(s), i.e., Here the connection with density fluctuations and therefore

the discrete nature of matter is manifest. Introducing the real

S(q,E):ﬁfdt e(”ﬁ)Et(AI,l(q)AM(q,t)). (35) correlation functions
_ | +

The parameter] one integrates over in Eq24), with a ¢ @y ﬁN<[pq(t)’pq]>'

weight given by the square modulus of the Fourier transform

of the interaction potential appearing in E§), is to be seen 1

as an element of the translation group, physically corre- ¢+(q,t)=m<{Pq(t),Pg}>, (38)

sponding to the possible momentum transfers in the single

collisions. The key difference between the two models lies invhere {, } denotes the anticommutator, the fluctuation-

the physical meaning of the different correlation functions.dissipation theorem can be formulated in terms of the dy-

The dynamic structure factdR5) is linked to the so-called namic structure factor as follows:
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2 (© E basic ideas of Einstein’s Brownian motion, i.e., the discrete
¢ (q,t) =~ %J dEsin(?)(l -e)9(q,E), nature of matter, once again appears in the formulatd@
w of the fluctuation-dissipation relationship. From the compari-
son between Eq943) and (27) one sees that the reduced

2 (° E B dynamics is actually driven by the collisional scatteri
i 2 E B g ynamics is actually driven by the collisional scattering cross
¢ay= ﬁf_xdEcos<ﬁt)cot?-<2E>(l e™)S(.E). section; in particular the last term of ER7) can also be
written
(39
We stress once again that contrary to the usual perspective in - ﬁ{lﬁlo@),é}, (44)

linear response theory, we are here concerned with the re-

duced dynamics of the test particle, so that we take as poSjihere +(p) is the total macroscopic scattering cross section
tive the momentum and energy transferreq to the particleyained from the differential expressiond) for a test par-
The dynamic structure factor can also be directly related t

: . ) Qicle with incoming momentunp. The term(44) can be seen
the dynamic response functigrt(q, E) [22], according to quite naturally as a loss term in a kinetic equation, and in fact

1 B 1 1 Eqg. (27) is actually to be seen as a quantum version of the
S(,E) = > 1- COt"(EE> X'(q,E) = -1 _eﬁEX"(CI,E), linear Boltzmann equatiof#1]. Besides this, from the direct
& & relation (43) between the scattering cross section and dy-
(40) namic structure factor one sees on physical grounds the posi-

the relationship leading to the important fact that while thellVIty of the correlation function, a property exploited (@7)
n order to take the square root.

dynamic response function is an odd function of energy, thé Wi th b ¢ lati f th
dynamic structure factor obeys the so-called detailed balanc € now compareé ihe above formulations o e
uctuation-dissipation theorem with the ones encountered in

condition o . . .
the long-wavelength limit of the density-density coupling
S(q,E) =e#ES(- q,- E), (41) type of translationally invariant interaction, which as shown

. . . in Sec. 1A 2 is strongly related to the Caldeira-Leggett
a property granting the existence of a stationary state for thﬁwodel. In the long-wavelength limit the component of the

master equationf27), as shown |r[13]._ln terms of_ the dy- number-density operator becomes
namic response function the fluctuation-dissipation theorem

can also be written LWL | N
pg = N= 70 2 x+0(e?), (45)
i=1

0

2 E
¢ (an=-—] dE Sin( ;f)x"(q, E),
‘°° and once again the collective coordinate==[,x; intro-

o (0 duced in Eq(20) is put into evidence. The relevant correla-
E . .
Q) =- ;j dEcos< t)cotl-(?E)X”(q,E), tion functions then become

N .
_ [
(42) & (0 = qui(t),xj]%

a formulation that will prove useful for later comparison with
the Caldeira-Leggett model. The most significant formula- . 1

tion of the so-called fluctuation-dissipation theorem for the b;(0) = ﬁ“xi(t)’xj})' (46)
physics we are considering is, however, neitt3) nor (42),

but is to be traced back to a seminal paper by Van Hovéhe indexes andj here denoting Cartesian components of
[9,24]. In fact he showed that the scattering cross section ofhe collective coordinaté20). Introducing accordingly the
a microscopic probe off a macroscopic sample can be writtegpectral function

in Born approximation in the following way:

sj(E):ﬁ% f dt d/MENX X (1)), (47)

2 A7
M )%ﬁ(q)ﬁ&q,a, 43

d’a _ 6(
——(p) =(27h) Py

dQ, dE, , L
the fluctuation-dissipation theorem reads

where a particle of madd changes its momentum fromto 5 (0 E

p’ =p+(q scattering off a medium with dynamic structure fac- -1 =_ = A E _ P\,

tor S(g,E). This is the most pregnant formulation of the i hJ_deSIn(ﬁt>(1 ¢)5i(B).

fluctuation-dissipation relationship for the case of a test par-

ticle interacting through collisions with a macroscopic fluid. 5 (0 E B

The energy and momentum transfer to the particle, charac- ¢E(t) =— —J dE Cog<—t)cotr<—|5>(1 —eBE)SJ—(E).

terized by the expression of the scattering cross section on h) . h 2

the left-hand sidéLHS) of Eq. (43) are related to the density (48)

fluctuations of the macroscopic fluid appearing through the

dynamic structure factor on the RHS of H43). One of the  With the help of the response functiqrﬁ(E)
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S](E) ]_ 1eﬁEX'l(E) (49) ST/IB(q!E) = A lg—r:ée—(ﬁlfim)qze—(B/Z)E' (52)

the relationg48) can also be written as one obtains the master equatiii-13

E
& (1) = f dEsm( )X. (E), N . 2
T i o i~ .. 27w s [BM [ 5 Q)
- — =——[Hg, 0]+ — (271 — | d
g = plHoel+—=(@mh)’n [ | d q
#i(t) = —i dEcos(—t)cotk(B ) E|xj(E). (50) ><e—<,8/8m><1+2nvm>q2[e<im>qx (BIAM)TD 5 g (BlAM)a D
While a formulation of t_he quct_uatio_n—dissipation theorem A% _ }{e_(ﬁ,zwq_,g @} (53)
like the Van Hove relation(43) is missing in this long- ' '

wavelength limit, the relation$50), involving expectation

values of the commutator and anticommutator of the compowhich in the limit of small momentum transfer leads, of ne-
nents of the collective coordinates, are the ones to be contessity as can be seen from the Gaussian contribution in
pared with the typical relations used in order to introduce theHolevo’s result(23) but also from previous work,7], to a
so-called spectral densitg5) in the Caldeira-Leggett model. Caldeira-Leggett type of master equation, but without the
In fact if all coupling constantss; are put equal tac, as  shortcomings related to the lack of preservation of positivity

should be enforced in the case of Einstein’s quantum Brownof the statistical operator. The master equation takes the form
ian motion, in which the particle interacts through collisions
with a collection of identical, indistinguishable particles, the do i i3 D
spectral density, when expressed in terms of en&rggther —=-—[Hy,0]- —172 [Xi,{Di,0}] - _%92 [%;.[%.0]1]
than frequencyw, will be related to the response function h 232 he 32

X" (E) for a one-dimensional system according to D3
c? - ﬁ—ZXE [:.[pi. 011, (54)
JE)=—X'(E). (51 i=1
a
with

The relation(51), first intuitively guessed if42], actually
shows how in the friction coefficient, usually phenomeno- 5
logically introduced through the spectral density, features of _M _ B
b ) : . . Dpp=—77n and Dy= 7. (55)

oth the single interaction events and the reservoir do appear. B 16M
In Sec. IV we will give a microscopic expression for the
friction coefficient in the case of Einstein’s quantum Brown- The friction coefficienty is uniquely determined on the basis
ian motion, in which both features do appear: the couplingof the microscopic information on the interaction potential
through the Fourier components of the interaction potentialand correlation function of the macroscopic system, accord-
and the reservoir through certain values of the dynamidng to
structure factor.

2
IV. QUANTUM DESCRIPTION OF EINSTEIN'S 7= £—(27141)3 f d3qﬁ(q)|2q§5(q,E: 0, (56)

BROWNIAN MOTION 2M %

Relying on the premises of Secs. Il and Il we now comethe factor 3 being related to the space dimensions, or equiva-
to the master equation for the quantum description of Ein{ently
stein’s Brownian motion. The requirement of translational
invariance has been settled in Sec. Il, while the connection B 2
between the reduced dynamics of the test particle and density 7= m?(%’ﬁ)z f d3qr(Q)|2—— f dt(plpq(D),
fluctuations in the medium, coming about because of its dis-
crete nature, has been taken into account in Sec. lll, consid- (57)
ering a density-density coupling and thus coming to 2@).
The last step to be taken is to consider the test particle muctius proving in a specific physical case of interest the so-
more massive than the particles making up the gas, i.e., thealled standard wisdom expecting the decoherence and dis-
Brownian limit m/M <1, which in turn implies considering sipation rate to be connected with the value at zero energy of
energy and momentum transfers that are both small, simsome suitable spectral functi¢h5]. Introducing the Fourier
larly to the classical casgt3]. We therefore start from Eq. transform of the gradient of the number-density operator,
(27) and consider a free gas of Maxwell-Boltzmann particleswhich we indicate by p,
so that taking the limiting expression (19) when the ratio
between the masses is much smaller than 1, or equivalently B . 3 ()X
considering small energy transfers, i.e., Vg =apg=-ih f d*x eIV Ny (x), (58
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the friction coefficient can also be written in terms of the considering a massive test particle interacting through colli-
time-dependent autocorrelation function¥f, according to  sions with a background of much lighter ones, has been pre-
52 . sented. The two cardinal requirements determining the quan-
_ m 2 3 2 t tum description of the reduced dynamics are translational
U_G_MX(ZM) nf daft(a)| Nfdt(VpQ' V pq(t))- invariance pand the connection wi%/h the discrete, atomistic
(59) nature of the medium, along the lines of Einstein’s original
confrontation with the problem. The former implies the
To the best of our knowledge these general expressions hagéoice of a translationally invariant interaction potential and
been introduced here for the first time, providing a micro-leads to the requirement of translation covariance for the
physical estimate of the friction coefficient in terms of —guantum-dynamical semigroup giving the time evolution, a

suitable correlation functions, through the two equivalentYP€ Of semigroup that has been fully characterized by
and both telling expressior(86) and (59). Holevo[10] as seen in Sec. Il; the latter relates the dynamics

It is worth noticing how, contrary to the usual Caldeira- to the density fluctuations in the fluid, expressed in terms of
Leggett model, the friction coefficient will generally exhibit the dynamic structure factor, first introduced by Van Hove

- : |, and ensuring the physically most telling formulation of
22 i’;rigﬁg;e\r,gﬁféagfjrﬁ,gefegrgfnceéﬁ??c? trrséa;[r?tde gz:ttri]otr?t e fluctuation-dissipation theorem for the considered case,
pect peratosg . . s seen in Sec. lll. A quantum master equation for the de-
potential. No energy cutoff needs to be introduced, since a

o 9" . A .“Scription of Einstein’s Brownian motion, obtained in a ki-
quantities appearing in the calculations remain finite, be'nghetic approach complying with the abovementioned charac-

directly linked to the relevant physical properties of the MaCaristics. has been given in Sec. IV, showing in particular

roscopic system the test particle is interacting with. Note,,, Einstein's quantum Brownian motion arises in the pres-
f_urtk)er tha(‘jt n;ltroducmg thhe therlmal mcl)mentlénl szr}em ence of a density-density coupling. This type of coupling
=M/p and the square thermal wavelengix,=51°/4M e the relevant correlation function appearing in the mi-

satisfying the minimum uncertainty relation crophysical expression obtained for the friction coefficient,
4 given in Eq.(56) or equivalently Eq(59).

ApAXin = PY (60) A comparison has been drawn whenever possible between

the present approach and the famous Caldeira-Leggett model

the coefficients given in Eq55) can also be expressed in the for the treatment of decoherence and dissipation in quantum
form mechanics, showing how the Caldeira-Leggett model may
arise as the long-wavelength limit of a density-density cou-
(61) pling preserving translational invariance. This accounts in
particular for the limitation to Gaussian statistics inherent in
the Caldeira-Leggett model or variants thereof. At variance

Tht_e m_altn glﬁergr;)cecbelzéw_een Edclﬁidf) ant? fthethmzster_ with the Caldeira-Leggett model, a microphysical expression
equation introduced by t-aldeira and Leggett for In€ desCrpg, - e friction coefficient has been given, relating it to the
tion of quantum Brownian motion, apart from the micro-

) . . . L Fourier transform of the interaction potential and a suitable
physical expression for the appearing coefficients, lies in the“autocorrelation function as seen in Sec. V. No need of renor-

appearance of the last contribution, given by a double COMalizations or energy cutoffs appears in the treatment. Fur-

mutator with the momentum operator of the Brownian par'thermore, physical realizations of the Poisson component of

t|cl_e, and correspondmg to position diffusion. This term,t e general structure of generator of a translation-covariant
which here appears in the éxpansion for small energy ané-‘uantum-dynamical semigrouy@2) has been presented, go-
ggweﬂ;irg dtrt?)nsizrsg:vgt]i% nd){)rf]an(])lgitis\/ti:ucgj‘r?h;agttgr[,islt?cgll_mg beyond the typical restriction to Gaussian statistics.
oper)ailtor and ingact in the past Pnany di¥ferent amendment Even though .focusin.g on the specific issue of Einstein’s
' antum Brownian motion, the results presented in Secs. Il

of the Caldeira-Leggett master equation have been propos : - :
in the literature introducing a term of this kifd1,44,43, %hd Il are quite general. They provide a clearcut connection

L . . between the expression of the translationally invariant inter-
even though it is not obvious how to actually experlmentallyaction and precise structure of the associated reduced Mar-

check the relevance of this term, essentially quantum in Ofig ovian dynamics, satisfying the natural and physically com-
gin, as can also be seen from E80) and (61). In recent pelling requirement of translation covariance. They further

Work_[41] it has begn_sho_vvn how th's. contribution might clarify the relevant correlation function of the environment
lead in the strong friction limit to a typically quantum cor- for the reduced dynamics and its connection to the

rection to Einstein’s diffusion coefficient, only relevant at qffr

low t ¢ h ing th o th i uctuation-dissipation theorem, thus providing a general
ow temperatures, thus opening the way 1o the conceplion q, ey ok for a microphysical description of dissipation and
future experiments in which to possibly check the correction

. i decoherence in quantum mechanics. Now that experimental
as considered if6]. gquantitative tests of decoherence begin to be within reach
(see for exampl€l6,47—49 or [26,50 for more general ref-

V. CONCLUSIONS AND OUTLOOK erencey the next challenge for the theoretical analysis is in

fact no longer an effective, phenomenological description of

In the present paper a fully quantum approach to the dethe phenomenon, but rather a full-fledged microphysical
scription of Brownian motion in the sense of Einstein, i.e.,analysis, in which both the phenomena of dissipation and

7
Dpp= 7Aps and DxeZAthh-
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