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The formation of a gel in a disperse system wherein binary coagulation alone governs the temporal changes
of particle mass spectra is studied under the assumption that the coagulation kernel is proportional to the
product of masses of coalescing particles. This model is known to reveal the sol-gel transition, i.e., the
formation of one giant cluster with the mass comparable to the total mass of the whole system. This paper
reports on the exact solution of this model for a finite total mass of the coagulating system. The evolution
equation for the generating functional defining all properties of coagulating systems is solved exactly for this
particular kernel. The final output is the exact expression for the single-particle mass spectrum as a function of
time. The analysis of the spectrum in the thermodynamic limit shows that after a critical time a giant single
particle sthe geld appears. Although the concentration of this giant gel particle is zero in the thermodynamic
limit, it actively interacts with smaller particles “eating” them and thus growing in mass. Special attention is
given to the transition point, where the gel is appearing. It is demonstrated that the sol-gel transition reminds
the second-order phase transition. The time dependencies of the gel mass, the number concentration, and the
second moment of the particle mass spectrum are found.
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I. INTRODUCTION

Various phenomena having a quite different nature can be
often described as aggregation–fragmentation processes of
the type,

o smkd�o snkd, s1d

where the notationsxd stands for anx-mer, a cluster compris-
ing a given numberx of elementary unitssmonomersd. The
numbers of terms in the sums are normally nonequal. Very
many examples of such processes are listed in review articles
f1–3g. The kinetics of aggregation-fragmentation processes is
formulated in terms ofn̄gstd, the average numbers ofg-mers
in the system at timet. It is more common, however, to use
the concentrationscgstd= n̄gstd /V, whereV is the volume of
the system proportional toM, the total number of monomeric
units. Of course,M conserves during the whole process,
once there are neither sources nor sinks ofg-mers in the
system. This thermodynamic description silently assumes
that the average occupation numbers are proportional toM,
and if not, the respective concentrations are simply equal to
zero asM→`. Normally this step does not lead to some
dramatic consequences and the respective kinetic equations
have found wide applications in many branches of science.

One of them is the famous Smoluchowski equation de-
scribing the kinetics of the coagulation process, the simplest
example of which is the evolution of a system of monomeric
units that are able to formg-mers resulting from a chain of
binary irreversible coalescence processes,

sm1d + sm2d → sm1 + m2d. s2d

In the simplest case of spatially uniform systems this equa-
tion claims

dcg

dt
=

1

2o
l=1

g−1

Ksg − l,ldcg−lcl − cgo
l=1

`

Ksg,ldcl . s3d

Here the coagulation kernelKsg, ld is the transition rate for
the processsgd+sld→ sg+ ld. The first term on the right-hand
sidesrhsd of Eq. s3d describes the gain in theg-mer concen-
tration due to coalescence ofsg− ld- and l-mers while the
second one is responsible for the losses ofg-mers due to
their sticking to all other particles.

In what follows we use the dimensionless form of Eq.s3d,
i.e., all concentrations are measured in units of the initial
monomer concentrationM /V and time in units of
V/MKs1,1d.

Already more than three decades ago I began to suspect
that the Smoluchowski equation can lead to some unpleasant
consequencesf4g. In particular, if the coagulation kernel
Ksg, ld is a homogeneous function of the massesg andl, i.e.,
Ksag,ald=alKsg, ld, andl.1, the moments of particle mass
spectrum behave reasonably only during a finite interval of
time. Moreover, there are not physical principles that would
forbid the exponentl to exceed unity and quite realistic
coagulation kernels withl.1 are not raritiesssee Refs.f1,2g
and references thereind. One of them is the kernel propor-
tional to the product of masses of coagulating particles,
Ksg, ld~gl describing the formation of needlelike aerosol
particles in external electric fieldsf5,6g. In this casel=2,
and the Smoluchowski equation should work only during a
finite interval of time. Indeed, an attempt to calculate the
second moment of the particle mass spectrum,f2
=ogg

2csgd for Ksg, ld~gl leads to a strange resultssee, e.g.,
f1gd

f2std ~
1

tc − t
, s4d

where the critical timetc depends on the initial mass spec-
trum, and this is not yet all. The total mass concentration
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mstd=oggcgstd conserves only untilt= tc. After the critical
moment t= tc the mass concentration exponentially drops
down with time, although according to Eq.s3d sand common
sensed it should remain constant. Next, att. tc the particle
number concentrationnstd=ogcgstd crosses thet axis and
becomes negativessee Fig. 1d.

Of course, these unusual features of the solution to Eq.s3d
did not remain unnoticed and a considerable literature exists,
where this problem had been considered in detailf1,3,7–16g.
Many authors have attempted to answer the question, what is
going on at the critical point and after. Most of these at-
tempts relied upon the use of the Smoluchowski equation
ssee especially review articlesf1–3gd. The loss of the mass
was attributed to the appearance of agel.

Two scenarios of the sol-gel transition had been proposed
ssee, e.g.,f1–3,9,13gd. The first onesand the most wide-
spreadd assumes that after the critical time the coagulation
process instantly transfers large particles to a gel state, the
latter being defined as an infinite clusterf17–23g. This gel
can be either passivesit does not interact with the coagulat-
ing particlesd or activescoagulating particles can stick to the
geld. In the latter case the gel should be taken into account in
the mass balance and no paradox with the loss of the total
mass comes upssee Ref.f22gd.

Still neither this definition nor the postgel solutions to the
Smoluchowski equation give a clear answer to the question,
what is this, the gel?

The situation had become more clear after the papers
f24,25g, where a class of so-called truncated models had
been considered. In these models a cutoff particle massG
was introduced. The truncation was treated as an instant sink

removing very heavy particles with the massesg.G from
the system. In such systems the mass cannot conserve. Very
big particles form a deposit and do not contribute to the mass
balance. Of course, the total mass of the active particles1
deposit conserves. The time evolution of the spectrum of
active particlesswith massesg,Gd is described by the
Smoluchowski equation as before, with the limit` in the
loss term being replaced with the cutoff massG. The set of
kinetic equations then becomes finite and no catastrophe is
expected to come up. The exact analysis of Refs.f24,25g had
shown that indeed, nothing wrong happens even for the co-
agulation kernelK~gl. The total mass concentration of ac-
tive particles drops down with time, as it should be, for the
largest particles settle out to deposit. But asG→` the total
mass concentration of active particles almost conserves att
, tc and only very shortly before the critical timestc− t
~G−1/2d the deposit begins to form and the mass drops down
with time. After the critical time the total mass of active
particles diminishes as reciprocal time. The mass spectrum
of the deposit had been found in Refs.f24,25g. It is clear that
the deposit is entirely identical to the gel of worksf17–23g.

The second scenario considers the coagulation process in
a system of a finite numberM of monomers enclosed in a
finite volumeV. In this case any losses of mass are excluded
“by definition.” The gel appears as asinglegiant particle of
massg comparable to the total massM of the whole system.
Although this scenario is also of rather vulnerable age, very
few works f9–14g appeared attempting to analyze the kinet-
ics of sol formation in finite systems.

The consideration of finite systems calls for an alternative
approach. Such an approach based on the scheme developed
in Ref. f26g had been proposed in Ref.f9g and applied in this
work to the modelKsg·ld~gl. Although the solution to the
evolution equation forK~gl had been found, it contained a
recurrence procedure that did not open a gate for a straight-
forward asymptotic analysis of the result. The main goal of
this paper is to find the exact analytical expression for the
particle mass spectrum in the finite coagulating system with
the kernelKsg, ld=2gl.

From the first sight, the coagulation process cannot lead to
something wrong. Indeed, let us consider afinite system of
M monomers in the volumeV. If the monomers move, col-
lide, and coalesce on colliding, the coagulation process, after
all, forms one giant particle of the massM. The concentra-
tion of thisM-mer is small,cM ~1/M. Better to say, it is zero
in the thermodynamic limitV, M→`, M /V=m,`. In other
words, no particles exist in coagulating systems after a suf-
ficiently long time.

What happens then in the system withKsg, ld~gl if we
consider the thermodynamic limit? The answer is simple,
although in no way apparentf9g. In contrast to “normal”
systems, where the time of formation of a large object grows
with M, a giant object with the mass of the order ofM forms
during afinite sindependent ofV andMd time tc. After t= tc
this giant particlesreferred to as “superparticle” in Ref.f9g
and as gel in modern literatured actively begins to “eat” the
smaller particles. Although the probability for any two par-
ticles to meet is generally smallf~Ksg, ld /Vg, in the case of
the superparticle this smallness is compensated by the large

FIG. 1. The total number and total mass concentrations of sol
particles are shown as the functions of timesdimensionless unitsd.
After the critical timet= tc=0.5 the mass concentration decreases
with time because a massive gel particle forms and begins to con-
sume the mass of the sol. On the other hand, the number concen-
tration does not feel the loss of onesalthough very bigd gel particle.
Still the postcritical behavior of the curve differs from that pre-
dicted by the Smoluchowski equationfnstd=1−t, dashed lineg.
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value of the coagulation kernel proportional to the particle
massM, which is, in turn, proportional toV. Hence the su-
perparticle whose concentration is zero in the thermody-
namic limit can play a considerable role in the evolution of
the whole system. The structure of the kernel is also the
reason why only one superparticle can form. The point is that
the time for the processsld+smd→ sl +md is short for l, m
~M: t~V/Ksl ,md~V/M2~1/V→0 in the thermodynamic
limit. Of course, the Smoluchowski equation is not able to
detect the particles with zero concentration. An alternative
approach should be used.

Such an approach had been proposed by Marcusf26g and
then by several authorsf27,28g. However, this approach did
not find wide recognition because of its complexity and the
absence of the areas of application. In short, its application
was considered as a tool for constructing practical numerical
recipes for Monte Carlo modelingf11,28g.

However, later this approach was reformulated in Ref.f9g
in a more compact form. The idea to replace the Master
equation by the equation for the generating functional had
opened the gate for analyzing a class of so-called linear mod-
els with the kernels

Ksg,ld = gfsld + l f sgd. s5d

Here fsxd is an arbitrarysbut still a reasonabled function. The
modelKsg, ld=2gl belongs to this class. The analysis of Ref.
f9g allowed the answers to many questions, but the real exact
solution had not yet been found. This step is completed after
more than a quarter of a century in this paperssee also Ref.
f29,30gd. It became possible after a fairly recent paperf31g,
where a key identity so necessary for solving the present task
had been derived.

Below the exact solution of the model of the coagulating
system with the kernelK=2gl is presented and analyzed in
the thermodynamic limit. This solution is of great impor-
tance not only because it describes a phase transition but
admits an exact analysis. The coagulating system withK
=2gl is a very rare example of exactly soluble model that
refers to a realistic process. In this case this is the aerosol-
aerogel transition observed in several laboratoriesf5,6,32g.

The reminder of the paper is organized as follows. The
next section outlines the basics of the approach and formu-
lates the equation describing the time evolution of coagulat-
ing systems. The solution of the evolution equation for the
kernel Ksg, ld=2gl is given in Sec. III. Section IV contains
the asymptotic analysis of the postgel behavior of the particle
number and mass concentration. An exact expression is de-
rived for the second moment of the particle mass spectrum.
The thermodynamic limit of the particle mass spectrum is
also restored in this section. A summary of the results and
some additional comments are presented in concluding Sec.
V. Some important properties of the polynomials entering the
expression for the exact mass spectrumfEq. s35dg are given
in Appendixes A and B.

II. APPROACH AND BASIC EQUATION

The description of the coagulation process in terms of
occupation numberssnumbers ofg-mers considered as ran-

dom variablesd had been first introduced by Marcusf26g.
This approach had been then reformulated by mef9g in a
form strongly resembling the second quantization. Here I
outline this approach and introduce some useful extensions.

A. Free coagulation

Let there beM monomers in a volumeV. The monomers
move, coalesce, produce dimers, trimers, etc., along the
schemes2d. Let then

Q = hn1,n2, . . . ,ng, . . . j s6d

be the state of the system given by the set of integersng, the
numbers of particles of massg, with g being the number of
monomeric units in ag-mer. A single coagulation actsthe
collision of two particles1 their coalescenced changes a pre-
ceding state

Q− = hn1, . . . ,nl + 1, . . . ,nm + 1, . . . ,ng − 1, . . .j s7d

if l Þm and

Q− = hn1, . . . ,nl + 2, . . . . . . ,ng − 1, . . .j s8d

if l =m, 2l =g to the stateQ by coalescing the particles with
massesl andm to one particle with massg. In its turn, a next
coagulation act transfers the stateQ to the stateQ+ according
to the scheme

Q− → Q → Q+, sQ+d− = Q. s9d

The probability per unit time for two particles to collide and
coalesce isKsl ,md /V, whereKsl ,md is the coagulation ker-
nel sthe efficiency of the coagulation processd. The rate of
the processs2d is then

AsQ,Q−d =
Ksl,md

2V
nlsQ−dfnmsQ−d − dl,mg. s10d

Here da,b stands for the Kroneker delta. The combinatorial
multiplier here is just the number of ways to get a success-
fully coalescing pair ofl- andm-mers.

Next, we introduce the probabilityWsQ,td to find the sys-
tem in the stateQ at time t. We can write down the Master
equation for the probabilityWsQ,td. It is

dWsQ,td
dt

= o
Q−

AsQ,Q−dWsQ−,td − o
Q+

AsQ+,QdWsQ,td.

s11d

Technically it is much more convenient to deal with the
generating functional

CsX,td = o
Q

WsQ,tdXQ s12d

rather than with the probabilityWsQ,td. Here X stands for
the setx1,x2, . . . andXQ=x1

n1sQdx2
n2sQd

¯.
Of course,

CsX = 1,td = 1, s13d

which corresponds to the normalization ofWsQ,td to unity,
i.e., oQWsQ,td=1.
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The equation forC is readily derived from Eq.s11d. In-
deed, noticing that

xl+m
]2

]xl]xm
XQ = fnlsQdnmsQd − dl,mnmsQdgXQ+

and

xlxm
]2

]xl]xm
XQ = fnlsQdnmsQd − dl,mnmsQdgXQ

we find instead of Eq.s11d,

V
]C

]t
= L̂C, s14d

where the evolution operatorL is defined as

L̂ = L̂0 =
1

2o
l,m

Ksl,mdsxl+m − xlxmd
]2

]xl]xm
. s15d

At this step we introduce the operators of occupation
numbers, total particle number, and total particle mass. They
are

n̂j = xl
]

]xl
, N̂ = o

l

n̂l, M̂ = o
l

ln̂l . s16d

Any average value of interest can be expressed in terms of
C. For example, the average mass spectrumn̄gstd
=oQngsQdWsQ,td is

n̄gstd = un̂gCsX,tduX=1. s17d

It can be readily checked thatM̂ commutes with the evolu-
tion operator,

fL̂,M̂g = 0, s18d

which means the total mass conservation.
The analogy with the second quantization is now clearly

seen: the operator]x acts as an annihilation operator andx as
a creation operator. Their commutator]xx−x]x=1. Hence the
first term on the rhs of Eq.s15d replaces two particles with
massesl andm by one with the mass equall +m. The second
term written asn̂ln̂m− n̂ldm,l removes the pair of particles
with massesl and m from a given state of the coagulating
system. The rate of both these processes isKsl ,md.

B. Source and sink

The spatially uniform external sources of particles can
substantially change the kinetics of the coagulation process.
Let the source produceg-mers with the rateIsld /V. Then the
processes changing the numbers ofg-mers by one should be
taken into account in the evolution equation. The respective
evolution operator is

L̂I = o
l

Isldsxl − 1d. s19d

The structure of this operator is absolutely transparent: the
first term adds anl-mer from any preceding state containing

nl −1 l-mers and the second one gives the number of ways to
leave the state with a given occupation number.

Similarly we can introduce the sink proportional to the
number ofl-mers. The respective evolution operator is

L̂l = o
l

lls1 − xld
]

]xl
. s20d

Herell is the rate of sinks.

C. Fragmentation

Let Bsgu l ,md be the rate of the fragmentation process
sgd→ sld+smd. The transition goes from the stateQ+

=s. . . ,nl −1, . . . ,nm−1, . . . ,ng+1, . . .d to the state Q
=s. . . ,nl , . . . ,nm, . . . ,ng, . . .d. The operator

L̂ f = o
g,l,m

Bsgul,mdsxlxm − xl+md
]

]xl+m
s21d

then introduces the fragmentation process.
If we want to take into account all the processes alto-

gether we must useL̂=oL̂s in Eq. s14d.

III. EXACT SOLUTION

Considerable simplifications of Eq.s14d arise for the ker-
nels given by Eq.s5d. In particular, forfsxd=x one findsssee
also Ref.f9gd,

L̂ = o
l,m

lmxl+m
]2

]xl]xm
+ o

l

l2n̂l − M̂2. s22d

If we work with the functionals belonging to a given mass
M, i.e.,

M̂CM = MCM , s23d

then the operatorM̂ in Eq. s22d can be replaced byc-number
M.

The functionalCMsX,td can be now constructed in the
form

CM =
M!

2pi
R dz

zM+1 expFo
g=1

`

zgagstdxgG . s24d

The integration contour in Eq.s24d surrounds the origin of
coordinates in the complex planez.

It is easy to check that
s1d the functionalCM corresponds to initially monodis-

perse solCMsXd=x1
M if ags0d=dg,1;

s2d the functionalCM meets Eq.s23d;
s3d the functionalCM is the solution to Eq.s14d with L̂

given by Eq. s22d if the coefficientsagstd are determined
from the set of equations,

V
dag

dt
= o

l=1

g−1

lsg − ldalag−l − Mgag + g2ag; s25d

s4d the functionalCM satisfies the normalization condi-
tion CMs1,td=1.
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Let us introduce the generating functionGsz,td for agstd,

Gsz,td = o
g=1

`

agstdzg. s26d

On multiplying both sides of Eq.s25d by zg and summing
over all g give the closed equation forGsz,td,

V
]G

]t
= Sz

]G

]z
D2

− Mz
]G

]z
+ z

]

]z
z
]G

]z
. s27d

The substitution

Gsz,td = ln Dsze−Mt/V,td s28d

allows Eq.s27d to be cast into the linear equation forDsz,td,

V
]D

]t
= z

]

]z
z
]D

]z
. s29d

According to Eqs.s17d and s24d the average occupation
numbers are expressed as

n̄gstd =
M!

2pi
agstd R dz

zM−g+1eGsz,td. s30d

It is convenient to introduce the variable

t =
t

V
. s31d

The solution to Eq.s29d is then readily found as aformal
seriesssee Refs.f33,34g and references thereind,

Dsz,td = o
g=0

`
zg

g!
eg2t. s32d

Here z is a formal variable whose powerg just defines the
coefficient beforezg. It is admissible to perform exact opera-
tions with such functions as with the normal one. For ex-
ample, -fszddz where fszd=oagz

g is defined as-fszddz
=2pia−1 irrespective of what thisag is. Such objects are
successfully used in combinatorial analysis for deriving com-
binatorial identitiesf33,34g.

We thus can find the integral entering Eq.s30d. It is

1

2pi
R dz

zM−g+1eGsz,td =
1

2pi
R dz

zM−g+1Dsze−Mt,td

=
1

sM − gd!
esg2−Mgdt. s33d

In order to restoreagstd we use the identityf31g,

ln Dsz,td = o
g=1

`
zgeMgt

g!
se2t − 1dg−1Fg−1se2td, s34d

whereFgsxd are the Mallows-Riordan polynomials discussed
in Refs. f35,36g. sThe derivation of this identity is given in
Appendix Ad.

Combining this result with Eqs.s30d and s33d we finally
find the exact particle mass spectrum,

n̄gstd = CM
g esg2−2Mg+gdtse2t − 1dg−1Fg−1se2td. s35d

The recurrence Eq.sA12d proves that the spectrum Eq.s35d
conserves the total mass, i.e.,oggn̄gstd=M. Indeed, let us
apply Eq.sA12d to g=M −1 and use the notationx=e2t. We
have,

1 = o
g=0

M−1

CM−1
g sx − 1dgFgsxdxsg+1dsg−2M+2d/2

= o
g=1

M

CM−1
g−1 sx − 1dg−1Fg−1sxdxgsg−2M+1d/2

= M−1o
g=1

M

gCM
g sx − 1dg−1Fg−1sxdxgsg−2M+1d/2.

This is exactly what we wanted.

IV. THERMODYNAMIC LIMIT

The sol-gel transition happens at finitet. Therefore it is
important to explore the asymptotic behavior of the mass
spectrum given by Eq.s35d at finite t and V, M→`, M /V
=m,` sthe thermodynamic limitd. At largeV the argument
of Fg−1 in Eq. s35d approaches unity. So we are trying to
analyze Eq.s35d at t~M−1!1.

A. The Smoluchowski spectrum

We begin the analysis by considering the limit of finiteg
and M, V→`. Here and below we putm=M /V=1. The
replacementt→mt restores the dependence of the results on
m.

As is knownf31,35,36g

Fgs1d = sg + 1dg−1. s36d

We thus can write down the mass spectrum atg!M,

n̄gstd < n̄g
ssdstd = M

gg−2

g!
e−2gts2tdg−1. s37d

The notation n̄g
ssdstd stands for the exact solution to the

Smoluchowski equations3d. It is seen that we can introduce
concentrationscgstd= n̄g

ssdstd /V which are independent ofM.
No traces of the catastrophe att= tc are yet seen. All func-
tions n̄g

ssdstd are well defined at allt. However, as we will see
below, the total mass of the spectrumn̄g

ssdstd does not con-
serve att. tc.

B. Mass concentration

Here we find the time dependence of the mass concentra-
tion mstd=Mstd /V and the particle number concentration
nstd=Nstd /V. To this end we introduce the generating func-
tion for the spectrumcgstd,

Qsz,td =
1

M
o
g=1

`

zgngstd = e−2tE
0

z

yosj · 2te−2tddj. s38d

Here yossd is the exponential generating function forFgs1d
f31,35,36g,
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ln yossd = syossd. s39d

The total mass concentration is readily expressed in terms
of yo as follows:

mstd = e−2tyos2te−2td = 1 −mcstd, s40d

where the functionmcstd describes the deficit of the mass
concentration after the critical timetc. From Eqs.s39d and
s40d we find,

2t =
1

mcstd
ln

1

1 − mcstd
. s41d

This equation has only one rootmcstd=0 at t, tc and two
roots att. tc. It is clear why we should choose the positive
nonzero root after the critical time. The point is that the
spectrum Eq.s37d shrinksafter the critical time, so its mass
cannot remain constant.

C. Number concentration

The total particle number concentration can also be ex-
pressed in terms of the functionyossd,

nstd =
Nstd
M

= e−2tE
0

t

yosj2te−2tddj =
1

2t
E

0

2te−2t

yossdds.

The integration on the rhs of this equation can be readily
performed. Replacing the variables→yo=y gives

nstd =
1

2t
E

0

2te−2t

yssdds

=
1

2t
E

0

y0

y
1 − ln y

y2 dy

=
1

2t
Sln y0 −

1

2
ln2 y0D = mstd − tm2std, s42d

where we usedy0std=yos2te−2td=e2tmstd.

D. Gel comes up

Now let us calculate the derivativeṅ.

ṅ = ṁstd − m2std − 2tmstdṁstd = ṁstdf1 − 2tmstdg − m2std.

But, as follows from Eq.s41d,

ṁstd =
2mcstdmstd
1 − 2mstdt

and

ṅ = 2mcstdmstd − m2std = − 1 +mc
2std. s43d

On the other hand, we can derive the equation forNstd
from Eqs.s14d, s16d, s17d, ands22d. On applying the operator

N̂ to both sides of Eq.s14d one finds

V
dN

dt
= − M2 + w2, s44d

wherew2 is the second moment of the particle mass spec-
trum,

w2std = o
g=1

`

g2n̄gstd.

Comparing this with Eq.s43d yields

lim
w2

V2 = mc
2std. s45d

Equations45d can hold only if att. tc the mass spectrum
n̄gstd has a narrow peak atg=Mmcstd. This result gives evi-
dence in favor of the following facts.

s1d A giant particle with massgstd=mcstdM forms after
the critical timetc.

s2d In the limit M→` the peak in the particle mass dis-
tribution has the zeroth widthsthe squared gel mass is equal
to the second moment of the particle mass distributiond.

E. Particle mass spectrum

At large sbut finited M and finite t st /M !1d it is more
convenient to replace the polynomialsFgsxd by Pgsdd
=Fgs1+dd. As follows from Eq.s35d d=2t /M. In order to
investigate the particle mass spectrum we need to know the
asymptotical behavior ofPgsdd asg→`, d→0, andgd,`.
The respective asymptotical analysis is extremely complex
ssee Refs.f29,35gd and is able only to give a hint on possible
functional form ofPgsdd at largeg and smalld f29g. It is,

Pgsdd ~ ggfgsgdd. s46d

The functionfsxd has been found in Ref.f29g for x!1. Be-
low the function fsxd is restored in full by using very re-
stricted information on the location of the gel peak in the
particle mass distribution Eq.s41d.

Let us introducem=g/M and exponentiate the exact mass
spectrum Eq.s35d,

n̄gstd = eMFsm,td. s47d

In the limit of finite m andM→` we can write,

Fsm,td = − s1 − mdlns1 − md + sm2 − 2mdt + m ln 2t + mcsmtd,

s48d

where csxd=ln fs2xd. In deriving this expression the
asymptotic formula for the binomial coefficients has been
used,

CM
g ~ e−Mfm ln m+s1−mdlns1−mdg.

We have not yet specified the functionc and will do this
even not resorting to the definition of the polynomials. It is
enough to know that the gel particle produces a maximum in
the particle mass distribution and the position of this maxi-
mum is given by Eq.s41d. The derivativeFm8 smcd=0 or

lns1 − mcd + 1 + s2mc − 2dt + ln 2t + csmctd + mctc8smctd = 0,

where the prime stands for the differentiation over full argu-
ment. On introducingx=mcstdt gives instead of Eq.s41d,
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tsxd =
x

1 − e−2x ,

and we come to the ordinary linear differential equation for
csxd,

1 −
2x

1 − e−2x + ln
2x

1 − e−2x + xc8 + c = 0.

The solution to this equation is

csxd = ln
1 − e−2x

2x
+ x. s49d

The functionfsxd from Eq. s46d thus has the form

fsxd =
sinhsx/2d

x/2

and the exponential asymptotic formula for the polynomial
Pgsdd is

Pgsdd ~
sinhgsgd/2d

sd/2dg . s50d

Another derivation of this asymptotic formula is given in the
end of Appendix B.

At small x this expression gives

csxd <
x2

6
. s51d

These results had been reported in Refs.f29,30g.
The functionF, an analog of the free energy is statistical

mechanics, has the form

Fsm,td = − s1 − mdlns1 − md − m ln m + 2sm2 − mdt

+ m lns1 − e−2mtd. s52d

Now let us find the second derivative ofF determining
the width of the gel peak. Atm=mc we have,

F9smc,td = −
1

1 − mc
−

1

mc
+

4t

mc
s1 − te−2mctd. s53d

At small e, m=4e, t=1/2+e. Hence

F9smctd = −
mc

1 − mc
−

4e2

mc
+ 4e2 < − e. s54d

At large t we can approximate 1/s1−mcd<e2mct<e2t and
find F9smctd=−e2t.

The functionFsmc,td=0 sarbitrary t. tcd.

F. Transition point

In the vicinity of the transition point we expandFsm ,td
fEq. s52dg in powers ofm ande= tc− t. The result is

Fsm,ed < −
msm − 4ed2

8
. s55d

Next, we will follow the route adopted from theory of phase
transitions, with the functionsFsm ,ed playing the role of

free energy. It is easy to see thatFsm ,td has a maximum at
mm=4e /3 and a minimum atmc=4e. It is important to notice
that F1smc,td=0.

The mass distribution in the variablesg,e has the form
ssee also Ref.f29gd,

n̄gstd = Csg,edexpS−
g3

8M2 + e
g2

M
− 2ge2D . s56d

Unfortunately, our asymptotic analysis does not allow for
restoring the normalization factorCsg,ed. Still some conclu-
sions on its form can be retrieved from the mass conserva-
tion,

Csg,ed =
M

Î2pg5
+

Îeused
Î2pM

, s57d

with used being the Heaviside step-function. Indeed, below
the transition point the total mass conserves and the
asymptotic mass spectrum is known. Equationss56d ands57d
reproduce the latter atg!M. Above the transition point the
second term normalizes the peak appearing atg=mcM to
unity.

Now it becomes possible to describe what is going on.
Below the transition pointsat e,0d the mass spectrum ex-
ponentially drops down in increasingg. The terms containing
the massM in the denominatorsfsee Eq.s56dg play a role
only atg~M. At these masses the particle concentrations are
exponentially small. In short, in the thermodynamic limit and
at e,0 the first two terms in the exponent on the rhs of Eq.
s56d can be ignored. The spectrum reduces to the well-known
form

n̄gstd =
M

Î2pg5
e−2ge2

. s58d

FIG. 2. The distributions of the particle massesgn̄gst− tcd overg
are shown att, tc, t= tc, and t. tc. Right after the critical timet
= tc the gel peak begins to form and to move to the right along the
g axis. All variables are dimensionless.
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At the critical pointst= tc or e=0d the spectrum acquires
the form

n̄gstd =
M

Î2pg5
e−g3/8M2

. s59d

Although the expression in the exponent containsM in the
denominator we have no right to ignore it, for this exponen-
tial factor provides the convergence of the integral for the
second momentf2=M−1og2n̄g in the limit M→`. We thus
have

f2stcd =
1

Î2p
E

0

M e−g3/8M2
dg

Îg
<

1

3Îp
Gs1/6dM1/3. s60d

HereGsxd is the Euler gamma function.
It is seen thatf2stcd does not diverge anymore. It remains

finite, but now it contains the factorM1/3 fcompare with Eq.
s4dg.

Above the transition point the situation drastically
changes. Figure 2 clearly demonstrates what is going on.
Right after the critical time the particle mass distribution
splits into two parts: the thermodynamically populated one
whose behavior is described by the Smoluchowski equation
at g!M and a narrow peak with the mass exactly equal to
the differenceMmcstd=M −Mmsstd, wheremsstd is the mass
of the thermodynamically populated fraction. This peak can
be now referred to as gel. The gel peak has the Gaussian
form. Indeed, atm~mc Eq. s56d gives

n̄g =
Îe

Î2pM
e−Mesm − mcd2/2. s61d

The width of the gel peak is thusG~1/ÎMe. This peak is
well separated from the rest of the mass spectrum when its

width greatly exceedsgc, This happens after a very short
time e~1/M. Thus born gel actively “eats” smaller particles
and grows.

In Fig. 3 the near–critical behavior of the second moment
is displayed. On reaching the critical valuefeq. s60dg it in-
stantlysfor the timese~M−1d reaches the value of the order
of M2 and continues to grow as the gel peak moves to the
right along the particle mass axis.

V. CONCLUDING REMARKS

The main results of this paper are the exact mass spectrum
in a gelling system, Eq.s35d, and the analysis of the sol-gel
transition given in Secs. IV E and IV F. We can see explicitly
how the gel peak appears from nothing in a coagulating sys-
tem ssee also my preliminary communicationf29gd.

It is clear that gelation is not a property of this particular
coagulating system alone. As has been mentioned in the In-
troduction there are many other coagulating systems under
suspicion. Among them are the coagulating systems with the
homogeneous kernelsKsag,ald=alKsg, ld with l.1 ssee
Refs.f2,4gd. At present time there are neither clear ideas on
the nature of the sol-gel transition in such systems nor regu-
lar methods for the study of this remarkable phenomenon. I
hope that the exact model considered above will help to
crack this hard nut.

APPENDIX A: POLYNOMIALS Fg

Here we pass the route from Eq.s32d to Eq. s34d. To this
end we, following Ref.f31g, introduce the function

Wsz,xd = o
n=0

`
zn

n!
xnsn−1d/2. sA1d

Then Eq.s32d yields

Dsz,td = Wszet,e2td. sA2d

It is evident that

]zWsz,xd = Wsxz,xd. sA3d

Let us introducewsz,xd as

Wsz,xd = ewsz,xd. sA4d

Using Eqs.sA3d and sA4d yields

]zwsz,xd = ewsxz,xd−wsz,xd. sA5d

Let us now define the functionFsz,xd by the equality

]zwsz,xd = F„zsx − 1d,x…. sA6d

Then we have from Eq.sA5d

F„zsx − 1d,x… = ewsxz,xd−wsz,xd. sA7d

On substituting herezsx−1d=j gives

Fsj,xd = expFwS xj

x − 1
,xD − wS j

x − 1
,xDG . sA8d

Differentiating this equation overj and using Eq.sA6d give
the functional equation forFsj ,xd f36g,

FIG. 3. The near-critical behavior of the second moment
f2sed /f2s0d, se= t− tcd at the pre- and postcritical stages. On reach-
ing the valuef2~M1/3 at t= tc sor e=0d the second moment con-
tinues to grow solely because the gel actively eats smaller particles
and grows. The cusps on the curves ate=0 signal the begining of
the gel formation. All variables are dimensionless.
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Fj8sj,xd = Fsj,xdSxFsxj,xd − Fsj,xd
x − 1

D . sA9d

Equation sA9d defines the exponential generating function
for the polynomialsFnsxd

Fsj,xd = o
n=0

`

Fnsxd
jn

n!
. sA10d

EquationssA10d andsA4d allow one to derive a simple set of
linear recurrence relations for the polynomialsFnsxd. On dif-
ferentiating both sides of Eq.sA4d over z gives
wz8sz,xdWsz,xd=Wz8sz,xd. Let us substitute here Eqs.sA1d
andsA10d and equalize the coefficients at equal powers ofz.
We then obtain the recurrence,

xgsg+1d/2 = o
m=0

g

Cg
mFg−msxdsx − 1dg−mxmsm−1d/2. sA11d

After a simple algebra this recurrence can be rewritten as

o
m=0

g

Cg
mFmsxdsx − 1dmxsm+1dsm−2gd/2 = 1. sA12d

If we introduceAgsxd=sx−1dgFgsxd, we find a more elegant
recurrence forAgsxd,

Agsxd = xgsg+1d/2 − o
m=0

g−1

Cg
mAmsxdxsg−mdsg−m−1d/2, sA13d

with A0sxd=1. From this equation we see thatAgsxd is a
polynomial of degreegsg+1d /2, while Fgsxd has degree
gsg−1d /2.

Another recurrence is cited in Refs.f31,35,36g

Fnsxd = o
l=1

n

Cn−1
l−1 s1 + x + ¯ + xl−1dFl−1sxdFn−lsxd.

sA14d

The first four polynomials areF0sxd=F1sxd=1, and

F2sxd = x + 2, F3sxd = x3 + 3x2 + 6x + 6,

F4sxd = x6 + 4x5 + 10x4 + 20x3 + 30x2 + 36x + 24.

Let us return toag. The generating functionG fEq. s26dg
is expressed in terms ofw as follows:

Gsz,td = ln Dsze−Mt,td = ln Wsze−sM−1dt,e2td

= wsze−sM−1dt,e2td. sA15d

The following chain of equalities restoresagstd:

agstd =
1

2pi
R dz

zg+1wsze−sM−1dt,e2td

=
1

2pi
e−gsM−1dtR dz

zg+1wsz,e2td

=
1

2pig
e−gsM−1dtR dz

zg wz8sz,e
2td

=
1

2pig
e−gsM−1dtR dz

zg Ffzse2t − 1d,e2tg.

Hence

agstd = e−gsM−1dt 1

g!
se2t − 1dg−1Fg−1se2td. sA16d

APPENDIX B: POLYNOMIALS Pg

Sometimes it is more convenient to use the polynomials
Pgsdd defined as

Pgsdd = Fgs1 + dd. sB1d

The first four of them are

P2sdd = 3 +d, P3sdd = 16 + 15d + 6d2 + d3,

P4sdd = 125 + 222d + 205d2 + 120d3 + 45d4 + 10d5 + d6.

We also introduce their exponential generating function,

ysj,dd = o
n=0

`
jn

n!
Pnsdd. sB2d

The integral equation fory follows from Eq. sA9d after a
single integration,

ln ysj,dd = jE
0

1

y„js1 + udd,d…du. sB3d

At d=0

ln yo = jyo, sB4d

where we introducedyosjd=ysj ,0d. This result allows us to
find Pgs0d ssee Refs.f31,35,36gd,

Pgs0d = Fgs1d = sg + 1dg−1. sB5d

Let us now expandysj ,dd in the powers ofd,

ysj,dd = o
k=0

`
dk

k!
yd

skdsj,0d. sB6d

EquationsB3d allows us to derive the recurrence for deter-
mining the derivativesyd

skdsj ,0d

U ]n ln ysj,dd
]dn U

d=0
= o

m=0

n
jm+1

m+ 1
Cn

m ]m

]jm

]n−m

]dn−muysj,ddud=0.

sB7d

It is important to notice that if we know thenth derivative
overd then it is possible to find then+mth mixed derivative
over d sn timesd and j sm timesd. It is easy to find first
several derivativesyd

skd and to discover that they have singu-
larity of the typef1−ln ysj ,0dgs and that the maximal power
s=3k−1.

Now we show how the asymptotic formula Eq.s50d can
be derived directly from Eq.sA12d. The idea is very simple.
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The maximal value of each term in the sum on the rhs of Eq.
sA12d should be of the order of unity. If we represent each
term in the exponential forme−gF and introducem=m/g,
a=gd, andC=lnfdmPmsddg we find that

F = m ln m + s1 − mdlns1 − md − mCsmad −
a

2
msm − 2d = 0

sB8d

andFm8 =0,

ln m − lns1 − md − maC8smad − Csmad − asm − 1d = 0.

sB9d

We introduce the variablex=ma and two unknown func-
tions,msxd andCsxd. Then we have two equations for deter-
mining these functions

m ln m + s1 − mdlns1 − md − mCsxd −
x

2
sm − 2d = 0

sB10d

and

ln m − lns1 − md − fxCsxdg8 − xs1 − 1/md = 0. sB11d

It is easy to find that

msxd = 1 −e−x, Csxd = lnf2 sinhsx/2dg. sB12d

The direct substitution trivially shows that the solution Eq.
sB12d is correct. EquationsB12d is equivalent to Eq.s50d.

It is important to notice that if we return to the variables
m ,t, then there are two solutions for the mass,m=0 sfor all td
and m=1−e2mt supper rootd for m.1/2. This fact is quite
remarkable.
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