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Exact kinetics of the sol-gel transition
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The formation of a gel in a disperse system wherein binary coagulation alone governs the temporal changes
of particle mass spectra is studied under the assumption that the coagulation kernel is proportional to the
product of masses of coalescing particles. This model is known to reveal the sol-gel transition, i.e., the
formation of one giant cluster with the mass comparable to the total mass of the whole system. This paper
reports on the exact solution of this model for a finite total mass of the coagulating system. The evolution
equation for the generating functional defining all properties of coagulating systems is solved exactly for this
particular kernel. The final output is the exact expression for the single-particle mass spectrum as a function of
time. The analysis of the spectrum in the thermodynamic limit shows that after a critical time a giant single
particle (the ge) appears. Although the concentration of this giant gel particle is zero in the thermodynamic
limit, it actively interacts with smaller particles “eating” them and thus growing in mass. Special attention is
given to the transition point, where the gel is appearing. It is demonstrated that the sol-gel transition reminds
the second-order phase transition. The time dependencies of the gel mass, the number concentration, and the
second moment of the particle mass spectrum are found.
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I. INTRODUCTION g-1 ®
dey _1
. . . ==2,K(g-1,)cy ¢ —c 2, K(g,l)g. 3)
Various phenomena having a quite different nature can be dt 22{ (@ )G % 9. (
often described as aggregation—fragmentation processes of

the type, Here the coagulation kerné&l(g,l) is the transition rate for
the processg) +(I) — (g+1). The first term on the right-hand

side(rh9) of Eq. (3) describes the gain in thggmer concen-

> (my = 2 (ny, (1) tration due to coalescence ¢§—1)- and |-mers while the

second one is responsible for the losseggahers due to
where the notatiofx) stands for ax-mer, a cluster compris- their sticking to all other particles.
ing a given numbex of elementary unitémonomers The [N what follows we use the dimensionless form of Eg),
numbers of terms in the sums are normally nonequal. ven-€- all concentratlons_ are measured_m un_lts of _the initial
onomer concentrationM/V and time in units of
{gl MK(1,1).
Already more than three decades ago | began to suspect

in th tem at imé It is mor mmon. however. t that the Smoluchowski equation can lead to some unpleasant
€ system a S more common, NOWEVET, 10 US€ .,nsequencegd]. In particular, if the coagulation kernel

the concentrationsy(t)=ny(t)/V, whereV is the volume of K(g,!) is a homogeneous function of the masgemd|, i.e.,
the system proportional tl, the total number of monomeric K(ag,al)=a*K(g, ), and\ > 1, the moments of particle mass
units. Of courseM conserves during the whole process, gpectrum behave reasonably only during a finite interval of
once there are neither sources nor sinksgafers in the  time. Moreover, there are not physical principles that would
system. This thermodynamic description silently assumegorhid the exponent to exceed unity and quite realistic
that the average occupation numbers are proportion®,to  coagulation kernels with > 1 are not raritiegsee Refs[1,2]
and if not, the respective concentrations are simply equal tand references therginOne of them is the kernel propor-
zero asM — . Normally this step does not lead to sometional to the product of masses of coagulating particles,
dramatic consequences and the respective kinetic equatiokgg,l) =gl describing the formation of needlelike aerosol
have found wide applications in many branches of science particles in external electric field$,6]. In this casex=2,
One of them is the famous Smoluchowski equation deand the Smoluchowski equation should work only during a
scribing the kinetics of the coagulation process, the simplesinite interval of time. Indeed, an attempt to calculate the
example of which is the evolution of a system of monomericsecond moment of the particle mass spectrug,
units that are able to forrg-mers resulting from a chain of :Eggzc(g) for K(g,)<gl leads to a strange resitee, e.g.,

many examples of such processes are listed in review articl
[1-3]. The kinetics of aggregation-fragmentation processes i
formulated in terms ofy(t), the average numbers gfmers

binary irreversible coalescence processes, [1])
(My) + (M) — (M +my). 2 bolt) = (4)
C
In the simplest case of spatially uniform systems this equawhere the critical time, depends on the initial mass spec-
tion claims trum, and this is not yet all. The total mass concentration
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removing very heavy particles with the masges G from

the system. In such systems the mass cannot conserve. Very
big particles form a deposit and do not contribute to the mass
balance. Of course, the total mass of the active partitles
deposit conserves. The time evolution of the spectrum of
active particles(with massesg<G) is described by the
Smoluchowski equation as before, with the limitin the

loss term being replaced with the cutoff m&sThe set of
kinetic equations then becomes finite and no catastrophe is
expected to come up. The exact analysis of R&%,25 had
shown that indeed, nothing wrong happens even for the co-
agulation kerneKecgl. The total mass concentration of ac-
tive particles drops down with time, as it should be, for the
largest particles settle out to deposit. But@s- < the total
mass concentration of active particles almost conserves at
<t. and only very shortly before the critical tim@.—t

=« G™1?) the deposit begins to form and the mass drops down
with time. After the critical time the total mass of active
particles diminishes as reciprocal time. The mass spectrum

FIG. 1. The total number and total mass concentrations of soPf the deposit had been found in Re[f24,25. It is clear that
particles are shown as the functions of tiftémensionless unijs

After the critical timet=t.=0.5 the mass concentration decreases

the deposit is entirely identical to the gel of workis7—23.
The second scenario considers the coagulation process in

with time because a massive gel particle forms and begins to cora system of a finite numbevl of monomers enclosed in a

sume the mass of the sol. On the other hand, the number concefinite volumeV. In this case any losses of mass are excluded
tration does not feel the loss of ofethough very biggel particle.
Still the postcritical behavior of the curve differs from that pre- massg comparable to the total mas4 of the whole system.
dicted by the Smoluchowski equati¢n(t)=1-t, dashed ling

m(t)=249¢(t) conserves only untit=t.. After the critical
momentt=t, the mass concentration exponentially drops
down with time, although according to E@®) (and common
sensg it should remain constant. Next, &t t; the particle
number concentratiom(t)=2C4(t) crosses the axis and
becomes negativesee Fig. L
Of course, these unusual features of the solution tq&q.
did not remain unnoticed and a considerable literature exist§orward asymptotic analysis of the result. The main goal of
where this problem had been considered in d¢ia8,7-14.
Many authors have attempted to answer the question, what Rarticle mass spectrum in the finite coagulating system with
going on at the critical point and after. Most of these at-the kernelK(g,l)=2gl.
tempts relied upon the use of the Smoluchowski equation From the first sight, the coagulation process cannot lead to
(see especially review articl¢d—3]). The loss of the mass something wrong. Indeed, let us considefirate system of
was attributed to the appearance ajel
Two scenarios of the sol-gel transition had been proposetide, and coalesce on colliding, the coagulation process, after
(see, e.qg.[1-3,9,13). The first one(and the most wide-
spreadl assumes that after the critical time the coagulatiortion of thisM-mer is smallcy, o 1/M. Better to say, it is zero
process instantly transfers large particles to a gel state, the the thermodynamic limi¥/, M — c, M/V=m<. In other
latter being defined as an infinite clusfdr7—23. This gel
can be either passiv@ does not interact with the coagulat- ficiently long time.
ing particles or active(coagulating particles can stick to the
gel. In the latter case the gel should be taken into account ionsider the thermodynamic limit? The answer is simple,
the mass balance and no paradox with the loss of the totallthough in no way apparer®]. In contrast to “normal”
mass comes ufsee Ref[22]).
Still neither this definition nor the postgel solutions to the with M, a giant object with the mass of the ordemdfforms
Smoluchowski equation give a clear answer to the questiorguring afinite (independent oV and M) time t.. After t=t,
what is this, the gel?
The situation had become more clear after the paperand as gel in modern literatyractively begins to “eat” the
[24,25, where a class of so-called truncated models hagmaller particles. Although the probability for any two par-
been considered. In these models a cutoff particle n@ass ticles to meet is generally smdhK(g,l)/V], in the case of
was introduced. The truncation was treated as an instant sirtke superparticle this smallness is compensated by the large

“by definition.” The gel appears assingle giant particle of
Although this scenario is also of rather vulnerable age, very
few works[9-14] appeared attempting to analyze the kinet-
ics of sol formation in finite systems.

The consideration of finite systems calls for an alternative
approach. Such an approach based on the scheme developed
in Ref.[26] had been proposed in R¢€] and applied in this
work to the modeK(g-1)«gl. Although the solution to the
evolution equation foK =gl had been found, it contained a
recurrence procedure that did not open a gate for a straight-

this paper is to find the exact analytical expression for the

M monomers in the volum¥. If the monomers move, col-

all, forms one giant particle of the masé. The concentra-

words, no particles exist in coagulating systems after a suf-

What happens then in the system wilg,l) gl if we

systems, where the time of formation of a large object grows

this giant particle(referred to as “superparticle” in Ref9]
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value of the coagulation kernel proportional to the particledom variables had been first introduced by Marc(i26].
massM, which is, in turn, proportional t&/. Hence the su- This approach had been then reformulated by [8lein a
perparticle whose concentration is zero in the thermodyform strongly resembling the second quantization. Here |
namic limit can play a considerable role in the evolution ofoutline this approach and introduce some useful extensions.
the whole system. The structure of the kernel is also the
reason why only one superparticle can form. The point is that
the time for the procesfl)+(m)— (I+m) is short forl, m Let there beM monomers in a volum¥. The monomers
aM: 7 V/K(l,m) «V/M?=x1/V—0 in the thermodynamic move, coalesce, produce dimers, trimers, etc., along the
limit. Of course, the Smoluchowski equation is not able toscheme2). Let then
detect the particles with zero concentration. An alternative
approach should be used. Q={nyNz, ... .Ng, ...} (6)
Such an approach had been proposed by Mdi26lsand  pe the state of the system given by the set of integgrthe
then by several authof27,28. However, this approach did nymbers of particles of masg with g being the number of
not find wide recognition because of its complexity and themonomeric units in ay-mer. A single coagulation adthe

absence of the areas of application. In short, its applicatiogo|lision of two particles+ their coalescengehanges a pre-
was considered as a tool for constructing practical numericaleding state

recipes for Monte Carlo modeling.1,2§.

However, later this approach was reformulated in R&¥. Q ={ny, ....m+1, ... np+1,...ng=1, ...} ()
in a more compact form. The idea to replace the Mastey
equation by the equation for the generating functional had
opened the gate for analyzing a class of so-called linear mod- Q ={n,...n+2,...... ng—1,...} (8)
els with the kernels

A. Free coagulation

| #m and

if I=m, 2I=g to the stateQ by coalescing the particles with
K(g,l) =gf(l) +1f(g). (5) masse$ andmto one particle with masg. In its turn, a next
coagulation act transfers the st&eo the stateQ* according

Heref(x) is an arbitrary(but still a reasonabjeunction. The to the scheme

modelK(g,|)=2gl belongs to this class. The analysis of Ref.
[9] allowed the answers to many questions, but the real exact Q—-0—0Q" () =0. (9
solution had not yet been found. This step is completed aft
more than a quarter of a century in this papsre also Ref.
[29,30). It became possible after a fairly recent pafi&t],
where a key identity so necessary for solving the present ta
had been derived.
Below the exact solution of the model of the coagulating _ K(I,m) B B
system with the kernegk=2gl is presented and analyzed in AQQ)= TI’M(Q NW(Q7) = Gl (10)
the thermodynamic limit. This solution is of great impor-
tance not only because it describes a phase transition bttere 8,, stands for the Kroneker delta. The combinatorial
admits an exact analysis. The coagulating system With multiplier here is just the number of ways to get a success-
=29l is a very rare example of exactly soluble model thatfully coalescing pair of- andm-mers.
refers to a realistic process. In this case this is the aerosol- Next, we introduce the probability/(Q,t) to find the sys-
aerogel transition observed in several laboratdes,32. tem in the state) at timet. We can write down the Master
The reminder of the paper is organized as follows. Thesquation for the probability\(Q,1). It is
next section outlines the basics of the approach and formu-
lates the equation describing the time evolution of coagulat- dWQ,t) S AQ,QOWQY - S AQT,QW(Q.1)

ef’he probability per unit time for two particles to collide and
coalesce iK(l,m)/V, whereK(l,m) is the coagulation ker-
Sr&el (the efficiency of the coagulation proceés$he rate of
the process2) is then

ing systems. The solution of the evolution equation for the dt
kernelK(g,l)=2gl is given in Sec. Ill. Section IV contains

the asymptotic analysis of the postgel behavior of the particle (11
number and mass concentration. An exact expression is de- Technically it is much more convenient to deal with the
rived for the second moment of the particle mass spectrunyenerating functional

The thermodynamic limit of the particle mass spectrum is

also restored in this section. A summary of the results and W(X,1) = > WQ,HX? (12
some additional comments are presented in concluding Sec. Q

V. Some important properties of the polynomials entering ther . -
i i ather than with the probability/(Q,t). Here X stands for
expression for the exact mass spectilifg. (35)] are given
Xpress A pectili. (35)] are given setxy, %o, ... andXQ=x1 Q2. ..

in A ixes A B.
in Appendixes A and Of course,

Q Q

Il. APPROACH AND BASIC EQUATION T(X=1t) =1, (13

The description of the coagulation process in terms ofwvhich corresponds to the normalization \WM{(Q,t) to unity,
occupation numberénumbers ofg-mers considered as ran- i.e., SoW(Q,t)=1.
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The equation forV is readily derived from Eq(11). In-  n,—1I-mers and the second one gives the number of ways to

deed, noticing that leave the state with a given occupation number.
) Similarly we can introduce the sink proportional to the
Xl+m$XQ = [N(QNn(Q) = & Q) IXY number ofl-mers. The respective evolution operator is
192m
N J
and Ly=2 ML -x)——. (20)
| X
XX XQ=[n(QINK(Q) = & mNm(Q)IXR Here\, is the rate of sinks.
&X|(9Xm '
we find instead of Eq(11), C. Fragmentation
o - Let B(g|l,m) be the rate of the fragmentation process
V— =LV, (14 (99— ()+(m). The transition goes from the stat®*
an =(...m=1,... Ny, . Ngeq,...)  to the state Q
where the evolution operatat is defined as =(....M, ... ,Ny, ... Ng, ...). The operator
L=Lg= 12 K (1, ) (X n = XX . (15 Fo= S BUOl M) 04— Xpo) — (21)
2 I,m &X|&Xm g,l,m (?X|+m

At this step we introduce the operators of occupationthen introduces the fragmentation process.
numbers, total particle number, and total particle mass. They If we want to take into account all the processes alto-

are gether we must usé‘:EZS in Eq. (14).

R J - R ~ R
f; :X|g, N=> A, M=2IA. (16) ll. EXACT SOLUTION
|
| I Considerable simplifications of E¢lL4) arise for the ker-
Any average value of interest can be expressed in terms afels given by Eq(5). In particular, forf(x)=x one finds(see

¥. For example, the average mass spectru@(t) also Ref[9)),
=Zong(QW(Q,1) is

R P -

_ R — 28 _ "2

iglt) = AW (X,Dlxca. (17 L=2imi e oo+ 2R-M2 (22
It can be readily checked thdd commutes with the evolu- |f we work with the functionals belonging to a given mass
tion operator, M, i.e.,

[£,M]=0, (18) MPy, =MWy, (23
which means the total mass conservation. then the operata¥l in Eq. (22) can be replaced bg-number
The analogy with the second quantization is now clearlyy;

seen: the operatak, acts as an annihilation operator ands The functionalWy(X,t) can be now constructed in the

a creation operator. Their commutatk—xd,=1. Hence the
first term on the rhs of Eq.15) replaces two particles with
masses$ andm by one with the mass equitm. The second M! fﬁ

form

term written asnn,—N &, removes the pair of particles M :2_77i
with massed and m from a given state of the coagulating

system. The rate of both these processds(ism). The integration contour in Eq24) surrounds the origin of
coordinates in the complex plaze
It is easy to check that

(1) the functional¥, corresponds to initially monodis-
The spatially uniform external sources of particles canperse sonM(X):le if ay(0)=dy1;

substantially change the kinetics of the coagulation process. (2) the functional¥,, meets Eq(23);
Let the source produag-mers with the raté(l)/V. Then the (3) the functional¥,, is the solution to Eq(14) with 7

processes changing the number:goﬁers by one should be. iven by Eq.(22) if the coefficientsag(t) are determined
taken into account in the evolution equation. The respectm?rom the set of equations

evolution operator is

z

d oo
M—fl exp[ > zgag(t)xg} . (29
g=1

B. Source and sink

- da.
£.=2 1((x = 1). (19) Vf:E I(g - Dajag ~ Mgay + gag; (25)
=1

The structure of this operator is absolutely transparent: the (4) the functionalV,, satisfies the normalization condi-
first term adds afrmer from any preceding state containing tion ¥,,(1,t)=1.
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Let us introduce the generating functi@iz,t) for ay(t),

G(zt) = X a,() 2. (26)
g=1

On multiplying both sides of Eq(25) by 22 and summing
over allg give the closed equation fdB(z,t),

G G \? G 9 dG
V—=\z—| ~Mz— +z2—z2—. (27)
ot dz 0z 0z 0z
The substitution
G(z,t) = In D(ze MV 1) (29)

allows EQq.(27) to be cast into the linear equation fo(z,t),

oD d dD
—=z—z—. (29
ot 0z 0z

According to Egs.(17) and (24) the average occupation
numbers are expressed as

_ M! dz
_ G(z,
ng(t) = o ag(t)jg ZM—g+le (z (30)
It is convenient to introduce the variable
t
T=—. (31

V

The solution to Eq(29) is then readily found as formal
series(see Refs[33,34 and references thergin

D(zt) =D Z (32)
g=0 g-l

Here z is a formal variable whose power just defines the
coefficient befored. It is admissible to perform exact opera-

tions with such functions as with the normal one. For ex-

ample, $f(z)dz where f(z)=Za,2% is defined as¢$f(z)dz
=2mia_; irrespective of what this is. Such objects are

successfully used in combinatorial analysis for deriving com-The notation

binatorial identitied33,34.
We thus can find the integral entering Eg0). It is

1 dz 1 dz Mr
%Sg ZM—g+1eG<ZY ) = % WD(Ze M7 7)
. (39
(M -g)!
In order to restoreg(t) we use the identity31],
* AeMar
IND(z7)=2 g & VT RRE), (Y
=1 &

whereF4(x) are the Mallows-Riordan polynomials discussed
in Refs.[35,36. (The derivation of this identity is given in
Appendix A.

Combining this result with Eq930) and (33) we finally
find the exact particle mass spectrum,

PHYSICAL REVIEW E1, 046129(2005

ng(n) = CYeld M09 - 1)9IF (&), (35)

The recurrence EqA12) proves that the spectrum E@5)
conserves the total mass, i.Qggﬁg(r):M. Indeed, let us
apply Eqg.(A12) to g=M -1 and use the notatiox=e*". We
have,
M-1
1= C¥_,(x- 1)9F 4(x)x(9*D(@-2M+2)/72
g=0

M
=> CHL(x-1)9F g_l(x)xg(g—ZMﬂ)/Z
g=1

M

=M™ gC(x- 1)9‘1Fg_l(x)xg<g—2M+1)/2_
g=1

This is exactly what we wanted.

IV. THERMODYNAMIC LIMIT

The sol-gel transition happens at fintteTherefore it is
important to explore the asymptotic behavior of the mass
spectrum given by Eq35) at finitet andV, M —«, M/V
=m< e (the thermodynamic limjt At large V the argument
of Fy1 in Eq. (35 approaches unity. So we are trying to
analyze Eq(35) at 7« M™1<1.

A. The Smoluchowski spectrum

We begin the analysis by considering the limit of finge
and M, V—oo, Here and below we pun=M/V=1. The
replacement— mt restores the dependence of the results on
m.

As is known[31,35,34

Fo(1)=(g+ 1) (36)
We thus can write down the mass spectrung &M,
_ 992
ny(0) =130 = M- 2)e . (37)

ﬁfs)(t) stands for the exact solution to the
Smoluchowski equatiofB). It is seen that we can introduce
concentrations,(t) :ﬁgS)(t)/v which are independent d¥l.
No traces of the catastrophe tatt. are yet seen. All func-
tionsﬁgs)(t) are well defined at all. However, as we will see
below, the total mass of the spectrtfrgsf)(t) does not con-

serve att>t..

B. Mass concentration

Here we find the time dependence of the mass concentra-
tion m(t)=M(t)/V and the particle number concentration
n(t)=N(t)/V. To this end we introduce the generating func-
tion for the spectruncy(t),

O(zt) = 32 Zngt)=e? f Yo(€- 26 d¢.  (38)
M g=1 0

Here y,(s) is the exponential generating function fBg(1)
[31,35,34,
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In yo(S) = sY,(S). (39

The total mass concentration is readily expressed in terms
of y, as follows:

m(t) = e 2y (2te™) = 1 — u (), (40)

e2(t) = 2, g7Ng(0).
g=1
Comparing this with Eq(43) yields

where the functionu.(t) describes the deficit of the mass lim % = pA(t). (45)
concentration after the critical timg. From Eqgs.(39) and Vv

(40) we find, Equation(45 can hold only if att>t; the mass spectrum

1 1 ng(t) has a narrow peak @=M uc(t). This result gives evi-

2t= 0 In - (41)  dence in favor of the following facts.

He He (1) A giant particle with masg)(t)=u(t)M forms after
This equation has only one rogi,(t)=0 att<t, and two the critical timet,.
roots att>t.. It is clear why we should choose the positive  (2) In the limit M — o the peak in the particle mass dis-
nonzero root after the critical time. The point is that thetribution has the zeroth widtfthe squared gel mass is equal
spectrum Eq(37) shrinksafter the critical time, so its mass to the second moment of the particle mass distribytion
cannot remain constant.

C. Number concentration E. Particle mass spectrum

The total particle number concentration can also be ex- At large (but finite) M and finitet (t/M <1) it is more

pressed in terms of the function(s), convenient to replace the polynomiasy(x) by Pgy(d)
= +6). As follows from Eq. =2t/M. In order to
. a Fg(l d). As foll f Eq.(35 6=2t/M. | d
N 1 [2E investigate the particle mass spectrum we need to know the
nm = Mo C 0y°(§2te )dé= 2tJ, Yo(s)ds. asymptotical behavior dPy(8) asg— o, 5—0, andgs< .

. ) ) . _ The respective asymptotical analysis is extremely complex
The integration on the rhs of this equation can be readilysee Refs[29,35) and is able only to give a hint on possible

performed. Replacing the variabde-y,=y gives functional form ofPy(8) at largeg and smalls [29]. It is,
2te”2
n(t) = % f y(s)ds Py(8) = g9%(go). (46)
0
Ny The functionf(x) has been found in Ref29] for x< 1. Be-
_1 °y1— lnydy low the functionf(x) is restored in full by using very re-
2tJ, y? stricted information on the location of the gel peak in the
particle mass distribution E¢41).
- l(ln Vo 1 In2 y0> = m(t) — tmA(t), (42) Let us introduceu=g/M and exponentiate the exact mass
2t 2 spectrum Eq(35),

where we used,(t) =y, (2te”?)=em(t). (1) = MO, (47)

D. Gel comes up In the limit of finite x andM — o we can write,

Now let us calculate the derivative
n=m(t) - mA(t) — 2tm(t)m(t) = m(t)[1 - 2am(t)] — mA(t).
But, as follows from Eq(41),

D(p,t) == (L= w)In(l =) + (u2 = 2wt + wIn 2t + put),
(48)

where ¢(x)=Inf(2x). In deriving this expression the

() = 2u(t)m(t) asymptotic formula for the binomial coefficients has been
1-2m()t used,
and C,%’A o @ Mlu In p+(1-p)in(1-p)]
N=2pua(OM(D) — (1) = = 1+ (). (43)

We have not yet specified the functiahand will do this
On the other hand, we can derive the equationN@ even not resorting to the definition of the polynomials. It is
from Egs.(14), (16), (17), and(22). On applying the operator enough to know that the gel particle produces a maximum in
N to both sides of Eq(14) one finds the particle mass distribution and the position of this maxi-
iN mum is given by Eq(41). The derivatived)l’L(,uc):O or

V_:_M2+(P2v (44)

dt IN(1 = pe) + 1 +Q2uc— 2t +In 2t + gl uc) + utyy (uct) =0,

where ¢, is the second moment of the particle mass specwhere the prime stands for the differentiation over full argu-
trum, ment. On introducing= u(t)t gives instead of Eq41l),
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t(X)=m,

and we come to the ordinary linear differential equation for
P(x),

2X
C1-e

2X
n =
1-¢€

1 +1

= TXY +=0.

The solution to this equation is
—2X

1-e
= +X. 49
(x)=1In X (49)
The functionf(x) from Eq. (46) thus has the form
sinh(x/2)
fx)=———
(x) 2

and the exponential asymptotic formula for the polynomial

Py(9) is

sintf(ga/2)
(812)9

Another derivation of this asymptotic formula is given in the

end of Appendix B.
At small x this expression gives

Py(d) = (50)

2

o~

These results had been reported in REZ9,30.
The function®, an analog of the free energy is statistical
mechanics, has the form
D) == (1= wIn(L - p) = pln pw+2(u? - wt
+un(l —e 24,

(51

(52

Now let us find the second derivative &f determining
the width of the gel peak. At.=pu. we have,

1 1 4t
D" (ue,t) == -—+—(1-te?). (53
1-pe pe me
At small €, u=4e€, t=1/2+e. Hence
4¢
D)= - - s~ e (54)
1-pe M

At large t we can approximate 11-u.)=~e**!~¢e? and
find " (pt) =—€.
The function®(u,t)=0 (arbitraryt>t.).

F. Transition point

In the vicinity of the transition point we expardl(u,t)
[Eq. (52)] in powers ofu and e=t.—t. The result is

- 4e)?

D(u,€) = 8

(55)

Next, we will follow the route adopted from theory of phase
transitions, with the function$(u,e€) playing the role of

PHYSICAL REVIEW E1, 046129(2005

t-1,=0
t-1,=0.05
t-1,=0.10

DISTRIBUTION OF PARTICLE MASSES

T T T
200 300 400

PARTICLE MASS

T
100

FIG. 2. The distributions of the particle mas:gi_xa(t—tc) overg
are shown at<t,, t=t., andt>t.. Right after the critical time&
=t. the gel peak begins to form and to move to the right along the
g axis. All variables are dimensionless.

free energy. It is easy to see thhtu,t) has a maximum at
Mm=4€/3 and a minimum af.=4e. It is important to notice
that ®;(u.,t)=0.
The mass distribution in the variablgse has the form
(see also Ref.29]),
3 2
_9 L9

YRRV dez)_ (56)

ny(t) = C(g, e)exp<

Unfortunately, our asymptotic analysis does not allow for
restoring the normalization fact@(g, €). Still some conclu-
sions on its form can be retrieved from the mass conserva-
tion,

\;0( €)
\s"27TM ,

M
\5'21795

+

C(g.e) = (57)

with 6(e) being the Heaviside step-function. Indeed, below
the transition point the total mass conserves and the
asymptotic mass spectrum is known. Equatit® and(57)
reproduce the latter <M. Above the transition point the
second term normalizes the peak appearing=ai.M to
unity.

Now it becomes possible to describe what is going on.
Below the transition pointat e<0) the mass spectrum ex-
ponentially drops down in increasing The terms containing
the massM in the denominatorsee Eq.(56)] play a role
only atge M. At these masses the particle concentrations are
exponentially small. In short, in the thermodynamic limit and
at e<0 the first two terms in the exponent on the rhs of Eqg.
(56) can be ignored. The spectrum reduces to the well-known
form

— e

\27g

29 &

ny(t) = (58)
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width greatly exceeds)., This happens after a very short
time e 1/M. Thus born gel actively “eats” smaller particles
and grows.

In Fig. 3 the near—critical behavior of the second moment
is displayed. On reaching the critical val{eq. (60)] it in-
stantly (for the timesexM™) reaches the value of the order
of M? and continues to grow as the gel peak moves to the
right along the particle mass axis.

V. CONCLUDING REMARKS

The main results of this paper are the exact mass spectrum
in a gelling system, Eq35), and the analysis of the sol-gel
transition given in Secs. IV E and IV F. We can see explicitly
how the gel peak appears from nothing in a coagulating sys-
tem (see also my preliminary communicatip29]).

It is clear that gelation is not a property of this particular
coagulating system alone. As has been mentioned in the In-
troduction there are many other coagulating systems under

FIG. 3. The near-critical behavior of the second momentSuspicion. Among them are the coagulating systems with the

do(e)] p(0), (e=t-t.) at the pre- and postcritical stages. On reach-

ing the valueg,= M3 at t=t, (or e=0) the second moment con-

homogeneous kernel(ag,al)=a*K(g,l) with A\>1 (see
Refs.[2,4]). At present time there are neither clear ideas on

tinues to grow solely because the gel actively eats smaller particlehe nature of the sol-gel transition in such systems nor regu-

and grows. The cusps on the curvesal signal the begining of
the gel formation. All variables are dimensionless.

At the critical point(t=t. or e=0) the spectrum acquires
the form
—g3/8M2_

ny(t) = ﬁM e
g \"277'95

(59)

lar methods for the study of this remarkable phenomenon. |
hope that the exact model considered above will help to
crack this hard nut.

APPENDIX A: POLYNOMIALS  F4

Here we pass the route from E@2) to Eq.(34). To this
end we, following Ref[31], introduce the function

W(z,x) = >, —lx“(“‘l)’z.

Although the expression in the exponent contdihsn the (A1)
denominator we have no right to ignore it, for this exponen- n=0 "
tial factor provides the convergence of the integral for th .
second momen#,=M~1Xg?ny in the limit M — . We thus “Then Eq.(32) yields
have D(z,7) = W(z€,€%"). (A2)
1 (Med4g 1 is evi
$alte) = — _ 9_ _T(U/6MY. (60) It is evident that
v2mlo - Ng v I W(z,X) = W(XZ,X). (A3)
HereI'(x) is the Euler gamma function. Let us introducen(z,x) as
It is seen thatp,(t.) does not diverge anymore. It remains
finite, but now it contains the factv'/® [compare with Eq. W(z,x) = e"®¥. (A4)
@]. i i
Above the transition point the situation drastically Using Eqs.(A3) and(A4) yields
changes. Figure 2 clearly demonstrates what is going on. A W(z,x) = @VO@)~WzX) (A5)

Right after the critical time the particle mass distribution

splits into two parts: the thermodynamically populated one-€t Us now define the functiohi(z,x) by the equality

whose behavior is described by the Smoluchowski equation

at g<M and a narrow peak with the mass exactly equal to

the differenceM u.(t)=M —M u4(t), where ug(t) is the mass

of the thermodynamically populated fraction. This peak can
be now referred to as gel. The gel peak has the Gaussian

form. Indeed, aju o u. Eq. (56) gives

~
_ e
V27M

The width of the gel peak is thuBec1/\Me. This peak is

Ny e Meln — po)12.

(61)

IW(Z,X) = F(z(x - 1),X). (AB)
Then we have from EqA5)
F(z(x — 1),x) = @VX@0-wzx) (A7)
On substituting here(x—1) =¢ gives
F(&x) = exp[w(xxfgl,x) _W(ngl’Xﬂ' (A8)

Differentiating this equation ovef and using Eq(A6) give

well separated from the rest of the mass spectrum when itthe functional equation foF(&,x) [36],

046129-8
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XF(x&,X) — F(&,x
(sg (£ »_ (A9)

FU&X) = F(&x)( —

PHYSICAL REVIEW E1, 046129(2005

Equation (A9) defines the exponential generating functionHence

for the polynomialg=,(x)

£

. (A10)
n!

F(£X) =2 Fr(0)
n=0

EquationgA10) and(A4) allow one to derive a simple set of
linear recurrence relations for the polynomi&lgx). On dif-
ferentiating both sides of Eq.(A4) over z gives
w,(z,x)W(z,x)=W,(z,x). Let us substitute here EqéAl)
and(A10) and equalize the coefficients at equal powers. of
We then obtain the recurrence,

g
x9(0+1)/2 = E ng:g_m(x) (x— 1)g—mxm(m—1)/2_

m=0

(A11)

After a simple algebra this recurrence can be rewritten as

9
> CPF () (x = ™ EZ = g,

m=0

(A12)

If we introduceAy(x) =(x—1)%F4(x), we find a more elegant
recurrence forAy(x),

g-1
Ag(X) = x9(@+D/2 _ E CgAm(X)X(g_m)(g_W1)/2, (A13)
m=0

with Ao(x)=1. From this equation we see thay(x) is a
polynomial of degreeg(g+1)/2, while Fy(x) has degree

g(g-1)/2.
Another recurrence is cited in Ref81,35,36

Fr(¥) = > ChA (L +x+ - + X DF L (0F (%)
=1

(A14)
The first four polynomials ar€&y(x)=F;(x)=1, and

Fo(X) =x+2, Fa(x)=x3+3x?+6x+6,

Fu(x) =x8+ 4x%+ 10x* + 203 + 30x% + 36x + 24.

Let us return toa,. The generating functiofs [Eq. (26)]
is expressed in terms of as follows:

G(z,7) = InD(ze M7, 7) = In W(ze M-V, &27)
=w(ze MV e27),
The following chain of equalities restoreg(t):

1§
27

Pk
1

= —.e‘g(M‘l)Tﬂg %W(Z, e

2l

(A15)

ay(m) = w(ze M-D7 &27)

1 dz
= %e_w_l”fﬁ (2

ag(7) = e‘g(M‘D’g—l!(ezf— 19 Fg,(€).  (AL6)

APPENDIX B: POLYNOMIALS Py

Sometimes it is more convenient to use the polynomials
Py(9) defined as
Py(6) =F4(1+9). (B1)
The first four of them are

Py(8)=3+68, Py(8)=16+15+65+ 5,

P,(8) =125+ 225+ 2055° + 1205% + 456* + 108° + &°.

We also introduce their exponential generating function,

vEd=3 Ep o) (62
n=0"'"

The integral equation foy follows from Eq. (A9) after a
single integration,

1
Iny(&,6) :gf y(&(1 +ud), s)du. (B3)
0

At 6=0

Ny, = &Yo, (B4)

where we introduced,(£)=y(¢,0). This result allows us to
find Py4(0) (see Refs[31,35,36),

Py(0) =Fy(1) =(g+ 19", (B5)
Let us now expang(¢, d) in the powers of5,
o &
Y(£8) =2 Y (£0). (B6)

ko K!
Equation(B3) allows us to derive the recurrence for deter-
mining the derivatives/g‘)(g,O)

n

=2

5=0 m=0

AMIny(& o)
A"

l —
§m+ m&_m (?n m
m+1 " gEM g™

Y(&,0)5=0.

(B7)

It is important to notice that if we know theth derivative
over d then it is possible to find the+mth mixed derivative
over 6 (n times and £ (m times. It is easy to find first
several derivativeyg‘) and to discover that they have singu-
larity of the type[1-Iny(¢,0)]° and that the maximal power
s=3k-1.

Now we show how the asymptotic formula E&QO) can
be derived directly from EqA12). The idea is very simple.
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The maximal value of each term in the sum on the rhs of Eq.
(A12) should be of the order of unity. If we represent each

term in the exponential forne 9® and introduceu=m/g,
a=gé, and ¥V =In[ 5"P,(5)] we find that
o
O=plnp+(1-win(l-w) - p¥(pa) _EM(M_Z) =0
(B8)
and®; =0,

Inu=In(1-u) - pa¥ (ua) - Vipa) - a(p-1)=0.
(B9)

We introduce the variable=u« and two unknown func-

PHYSICAL REVIEW E 71, 046129(2009

MlnM+(1-M)ln(l—,u)-,u‘I’(X)-)—2((M-2)=0

(B10)
and
Inpw—=In(1-w) - [x¥(x)] -x(1-1u)=0. (B11)
It is easy to find that
ux)=1-¢e* ¥(x)=In[2sinx/2)]. (B12)

The direct substitution trivially shows that the solution Eg.

(B12) is correct. EquatioriB12) is equivalent to Eq(50).
It is important to notice that if we return to the variables
.1, then there are two solutions for the mags;0 (for all t)

tions, u(x) and¥(x). Then we have two equations for deter- and u=1-e** (upper root for u>1/2. This fact is quite

mining these functions

remarkable.
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