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A consistent generalization of statistical mechanics is obtained by applying the maximum entropy principle
to a trace-form entropy and by requiring that physically motivated mathematical properties are preserved. The
emerging differential-functional equation yields a two-parameter class of generalized logarithms, from which
entropies and power-law distributions follow: these distributions could be relevant in many anomalous sys-
tems. Within the specified range of parameters, these entropies possess positivity, continuity, symmetry, ex-
pansibility, decisivity, maximality, concavity, and are Lesche stable. The Boltzmann-Shannon entropy and
some one-parameter generalized entropies already known belong to this class. These entropies and their
distribution functions are compared, and the corresponding deformed algebras are discussed.
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I. INTRODUCTION

In recent years the study of an increasing number of natu-
ral phenomena that appear to deviate from standard statisti-
cal distributions has kindled interest in alternative formula-
tions of statistical mechanics.

Among the large class of phenomena which show
asymptotic power-law behaviors, we recall anomalous diffu-
sion f1,2g, turbulencef3,4g, transverse-momentum distribu-
tion of hadron jets ine+e− collisions f5g, thermalization of
heavy quarks in collisional processf6g, astrophysics with
long-range interactionf7g, and others f8,9g. Typically,
anomalous systems have multifractal or hierarchical struc-
ture, long-time memory, and long-range interactionf10,11g.

The success of the Boltzmann-GibbssBGd theory has sug-
gested that new formulations of statistical mechanics should
preserve most of the mathematical and epistemological struc-
ture of the classical theory, while reproducing the emerging
phenomenology of anomalous systems. To this end, new en-
tropic forms have been introduced, which would generalize
the classical one introduced by Boltzmann and Gibbs and,
successively, by Shannon in a different contextsBGS en-
tropyd

SBGS= − o
i=1

N

pi ln pi . s1.1d

There is no systematic way of deriving the “right” entropy
for a given dynamical system. Among the many generaliza-
tions of the BGS entropy, one can find the entropies consid-
ered by Rényif12g, by Tsallissq entropyd f13g, by Abe f14g,
by Tsallis, Mendes, and Plastinosescort entropyd f15g, by

Landsberg and Vedralf16g, and recently by Kaniadakissk
entropyd f17,18g. For a historical outline see Ref.f19g.

Generalizations lead to abandoning part of the original
mathematical structure and properties. For instance, it is
known that the BGS entropy is of trace formf20,21g

S= − o
i=1

N

piLspid = − kLspidl, s1.2d

with Lspid=lnspid; on the contrary the Rényi entropy, the
Landsberg-Vedral entropy, and the escort entropy are not of
trace form. The Rényi entropy and the Landsberg-Vedral en-
tropy are concave only for 0,q,1, while the escort entropy
is concave only forq.1 f22g.

A fundamental test for a statistical functionalOspd of the
probability distribution to be physically meaningful is given
by the Lesche stability conditionf23g: the relative variation
ufOspd−Osp8dg /supfOspdgu should go to zero in the limit
that the probabilitiespi →pi8. This stability condition for a
functional is a necessary but not sufficient condition for the
existence of an associated observable. Leschef24g showed
that, adopting the measureip−p8i1=oiupi −pi8u as estimator
of the closure of the two distributions, the BGS entropy is
stable, while the Rényi entropy is unstablesexcept for the
limiting case q=1 corresponding to the BGS entropyd
f25–27g. Also the Landsberg-Vedral entropy and the escort
entropy do not satisfy the Lesche criterionf22g. On the other
hand it is already known that the Abe entropyf23g, the q
entropyf28g, and thek entropy are stablef29g.

In the present paper, a natural continuation of the work in
Ref. f20g, we consider the trace-form entropy given by Eq.
s1.2d, whereLsxd is an arbitrary analytic function that repre-
sents a generalized version of the logarithm, while its inverse
function is the corresponding generalized exponential
f30–33g. A consistent framework is maintained with the use
of the maximum entropysMaxEntd principle. This approach
yields a two-parameter class of nonstandard entropies intro-
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duced a quarter of a century ago by Mittalf34g and Sharma
and Tanejaf35g and successively studied by Borges and
Roditi in Ref. f36g. It automatically unifies the entropies in-
troduced by Tsallisf13g, Abe f14g, and Kaniadakisf17,18g.

The paper is organized as follows. In Sec. II the
differential-functional equation for the deformed logarithm
Lsxd proposed inf18g is briefly reconsidered within the ca-
nonical ensemble formalism. In Sec. III we solve this equa-
tion obtaining the more general explicit form ofLsxd. The
properties ofLsxd, and the consequent constraints on the
allowed range for the deformation parameters, are discussed
in Sec. IV. The deformed algebra arising from the deformed
logarithms and exponential is discussed in Sec. V. Section VI
is reserved to studying specific members of this class: the
entropies considered by Tsallis, by Abe, and by Kaniadakis.
Other up-to-now overlooked cases are also discussed. The
generalized entropies and distributions related to the de-
formed logarithms are studied in Sec. VII. In Sec. VIII we
show that this two-parametric entropy is stable according to
Lesche. We summarize the results in the final section IX.

II. CANONICAL FORMALISM

Guided by the form of the BGS entropy Eq.s1.1d, we
consider the following class of trace-form entropies:

Sspd = − o
i=1

N

piLspid, s2.1d

with p;hpiji=1,…,N a discrete probability distribution; one
may think ofLsxd as a generalization of the logarithm.

We introduce the entropic functional

Ffpg = Sspd − b8So
i=1

N

pi − 1D − bSo
i=1

N

Eipi − UD s2.2d

with b8 andb Lagrange multipliers. Imposing thatFfpg be
stationary for variations ofb8 andb yields

o
i=1

N

pi = 1, o
i=1

N

Eipi = U, s2.3d

which fix the normalization and mean energy for the canoni-
cal ensemble. In addition, ifFfpg in Eq. s2.2d is stationary
for variations of the probabilitiespj,

d

dpj
Ffpg = 0, s2.4d

one finds

d

dpj
fpjLspjdg = − bsEj − md, s2.5d

wherem=−b8 /b.
Without loss of generality, we can express the probability

distributionpj as

pj = aES−
b

l
sEj − mdD , s2.6d

wherea andl are two arbitrary, real and positive constants,
and Esxd a still unspecified invertible function; we have in
mind that Esxd be a generalization of, and in some limit
reduce to, the exponential function.

Inverting Eq. s2.6d and plugging it into Eq.s2.5d, one
finds

d

dpj
fpjLspjdg = lE−1Spj

a
D . s2.7d

Up to this point,Lsxd andEsxd are two unrelated functions
and our only assumption has been that the entropy has trace
form. Now if we require, by analogy with the relation be-
tween the exponential and the logarithm functions, thatEsxd
be the inverse function ofLsxd, E(Lsxd)=L(Esxd)=x, we
obtain the following differential-functional equation for
Lsxd:

d

dpj
fpjLspjdg = lLSpj

a
D , s2.8d

previously introduced inf18g. A simple and important ex-
ample in this class of equations is obtained with the choice
l=1 anda=e−1. In this case it is trivial to verify that the
solution of Eq.s2.8d that satisfies the boundary conditions
Ls1d=0 anddLsxd /dxux=1=1 is Lspjd=ln pj and the entropy
Eq. s2.1d reduces to the BGS entropys1.1d.

In this paper we will study the deformed logarithmsLsxd
that are solutions of Eq.s2.8d, the corresponding inverse
functionssdeformed exponentialsd, and the entropies that can
be expressed using these deformed logarithms through Eq.
s2.1d.

A. A counterexample

Since Eq.s2.8d imposes a strict condition on the form of
the functionLsxd, it is natural to ask what happens if this
condition is relaxed and more general forms of deformed
logarithms are considered. It should be clear from the deri-
vation of Eq. s2.8d that, if such more general logarithms,
which do not satisfy Eq.s2.8d, are used to define the entropy
by means of Eq.s2.1d, the corresponding distributions cannot
be written as Eq.s2.6d with the “exponential”Esxd the in-
verse ofLsxd. Alternatively, if one wants that the distribution
be of the form in Eq.s2.6d with the “exponential”Esxd the
inverse ofLsxd, the entropy cannot be Eq.s2.1d.

For instance, let us consider the following family of gen-
eralized logarithms:

lnsk,jdsxd = sgnsx − 1dulnhkjsxduj, s2.9d

where lnhkjsxd is the k logarithm f17g, which we discuss in
Sec. VI C. This family depends on two real parametersk
P s−1,1d andj.0. We observe that Eq.s2.9d is a solution of
Eq. s2.8d, for suitable constantsa and l, only for the case
j=1, with lnsk,1dsxd; lnhkjsxd.

The inverse function of Eq.s2.9d is
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expsk,jdsxd = exphkjfsgnsxduxu1/jg. s2.10d

For j=1 Eq. s2.10d reduces to thek exponential f17g
exphkjsxd, while it reduces to the stretched exponential for
k=0. Moreover, this family of logarithms and exponentials
inherits from thek logarithm and thek exponential the prop-
erties lnsk,jds1/xd=−lnsk,jdsxd and expsk,jds−xdexpsk,jdsxd=1.

Introducing the entropy

Sk,jspd = − lo
i=1

N E
0

pi

lnsk,jdS x

a
Ddx+ lE

0

1

lnsk,jdS x

a
Ddx,

s2.11d

the variational principle yields

pj = a expsk,jdS−
b

l
sEj − mdD . s2.12d

Equations2.12d becomes thek distributionf17g for j=1 and
the stretched exponential distribution fork=0; correspond-
ingly Eq. s2.11d reduces to thek entropy

Skspd = − o
i=1

N

pi lnhkjspid s2.13d

in the j→1 limit f18g, whereas in thek→0 limit sa=l
=1d it reduces to the stretched exponential entropyf37,38g

Sjspd = o
i=1

N

Gs1 + j,− ln pid − Gs1 + jd, s2.14d

where Gsm ,xd is the incomplete gamma function of the
second kind andGsmd=Gsm ,0d is the gamma function
f39g. Equations2.14d demonstrates that the entropys2.11d
has in general a form different from Eq.s2.1d: Sk,j
Þ−oipi lnsk,jdspid.

B. Integrals of the functions L„x… and E„x…
The fact that the generalized logarithmLsxd is a solution

of the differential equations2.8d is sufficient to calculate its
integral

E
x1

x2

Lsxddx=
x2Lsax2d − x1Lsax1d

l
. s2.15d

From the definition of the generalized exponentialEsxd as the
inverse of the generalized logarithmLsxd it is also simple to
calculate the integral ofEsxd with the change of variablex
=E−1ssd=Lssd,

E
x1

x2

Esxddx= x2Esx2d − x1Esx1d

−
Esx2dL„aEsx2d… − Esx1dL„aEsx1d…

l
.

s2.16d

III. SOLUTIONS OF THE DIFFERENTIAL-FUNCTIONAL
EQUATION

In this section we study the solutions of Eq.s2.8d, which
we rewrite in the following form:

d

dx
fxLsxdg − lLS x

a
D = 0. s3.1d

We shall select the solutions of Eq.s3.1d that satisfy appro-
priate boundary conditions and that keep those properties of
the standard logarithms that we judge important even for a
generalized logarithm.

By performing the change of variable

x = expS t

la
D s3.2d

and introducing the function

Lsxd =
1

x
fsla ln xd, s3.3d

the homogeneous differential-functional equation of the first
order shown in Eq.s3.1d becomes

d fstd
dt

− fst − t0d = 0, s3.4d

with t0=la ln a. The most general solution of Eq.s3.4d, a
differential-difference equation belonging to the class of de-
lay equationsf40g, can be written in the form

fstd = o
i=1

n

o
j=0

mi−1

aijss1,…,sndtjesit, s3.5d

where n is the number of independent solutionssi of the
characteristic equation

si − e−t0si = 0, s3.6d

mi their multiplicity fsi is a solution not only of Eq.s3.6d, but
also of its firstmi −1 derivativesg, andaij multiplicative co-
efficients that depend on the parameterssi. In terms of the
original function and variable the general solution and the
characteristic equation are

Lsxd = o
i=1

n

o
j=0

mi−1

aijss1,…,sndfl a lnsxdg jxl a si−1

= o
i=1

n

o
j=0

mi−1

aij8 sk1,…,kndflnsxdg jxki , s3.7d

1 + ki = l a−ki , s3.8d

whereki =l a si −1 andaij8 =sl ad jaij .
In the present work, we are interested in nonoscillatory

solutions for Eq.s3.4d: this kind of solution maintains a
closer relation with the standard logarithm. Therefore, we
consider only real solutions of Eq.s3.6d. There exist four
different cases depending on the value oft0: sad for t0ù0 we
have one solution,n=1 andm=1; sbd for −1/e, t0,0, we
have two nondegenerate solutions,n=2 andmi =1; scd for
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t0=−1/e we have two degenerate solutions,n=1 andm=2;
sdd for t0,−1/e there exist no solutions.

We discuss in order the three casessad, sbd, and scd that
yield solutions of the delay equations3.4d and, therefore, of
the corresponding Eq.s3.1d.

The casesad is the least interesting:

Lsxd = axk s3.9d

is just a single power and cannot change sign as one would
require from a logarithm.

In the casesbd, we obtain a binomial solution:

Lsxd = A1sk1,k2dxk1 + A2sk1,k2dxk2, s3.10d

whereA1 andA2 are the integration constants.
The characteristic equations3.8d can be solved for the two

constantsa andl,

a = S1 + k2

1 + k1
D1/sk1−k2d

, s3.11d

l =
s1 + k2dk1/sk1−k2d

s1 + k1dk2/sk1−k2d . s3.12d

The two arbitrary coefficientsA1 and A2 correspond to the
freedom of scalingx and Lsxd in Eq. s3.1d. We fix these
integration constants using the two boundary conditions

Ls1d = 0, s3.13d

Ud Lsxd
d x

U
x=1

= 1. s3.14d

The first condition impliesA1=−A2;A while from the sec-
ond one hasA=1/sk1−k2d. Equations3.10d assumes the fi-
nal expression

Lsxd =
xk1 − xk2

k1 − k2
, s3.15d

a two-parameter function which reduces to the standard loga-
rithm in the sk1,k2d→ s0,0d limit.

After introducing the notationLsxd=lnhk,rjsxd and the two
auxiliary parametersk=sk1−k2d /2 and r =sk1+k2d /2, Eq.
s3.15d becomes

lnhk,rjsxd = xr x
k − x−k

2 k
= xrlnhkjsxd. s3.16d

The constantsa andl expressed in terms ofk and r

a = S1 + r − k

1 + r + k
D1/2k

, s3.17d

l =
s1 + r − kdsr+kd/2k

s1 + r + kdsr−kd/2k , s3.18d

are symmetric fork↔−k and satisfy the useful relations
s1+r ±kdar±k=l, which is the characteristic equations3.8d,
and 1/l=lnhk,rjs1/ad, which is the differential equations3.1d
at x=1. In the following, we call the solutions3.16d the de-
formed logarithm orsk ,rd logarithm.

Finally, we consider the casescd. This case can also be
obtained as the limit of casesbd when the two distinct solu-
tions s1 and s2 become degenerate. Whent0=−1/e, s=e
verifies not only Eq.s3.6d, but also its first derivative 1
+ t0exps−t0sd=0: this solution is twice degeneratess1=s2

=ed; Eq. s3.7d with the boundary conditionss3.13d ands3.14d
becomes

Lsxd = xr ln x, s3.19d

where the parameterr =l a e−1. The standard logarithm
Lsxd=ln x is recovered forr =0; the same standard logarithm
is actually recovered from thesk ,rd logarithm in the limit
sk ,rd→ s0,0d independently of the direction.

IV. PROPERTIES OF DEFORMED FUNCTIONS

The properties of the entropys2.1d, and of the correspond-
ing distribution s2.6d, follow from the properties of the de-
formed logarithmLsxd; lnhk,rjsxd, which is used in its defi-
nition. Naudtsf30g gives a list of general properties that a
deformed logarithm must satisfy in order that the ensuing
entropy and distribution function be physical. In this section
we determine the region of parameter spacesk ,rd where the
logarithm s3.16d satisfies these properties and list the corre-
sponding properties of its inverse, thesk ,rd exponential.

A. „k ,r…-deformed logarithm

The following properties for thesk ,rd logarithm hold
whenk and r satisfy the corresponding limitations:

lnhk,rjsxd P C`sR+d, s4.1d

d

dx
lnhk,rjsxd . 0, − uku ø r ø uku, s4.2d

d2

dx2 lnhk,rjsxd , 0, − uku ø r ø
1

2
− U1

2
− ukuU , s4.3d

lnhk,rjs1d = 0, s4.4d

E
0

1

lnhk,rjsxddx= −
1

s1 + rd2 − k2, 1 + r . uku, s4.5d

E
0

1

lnhk,rjS1

x
Ddx=

1

s1 − rd2 − k2, 1 − r . uku. s4.6d

Equations4.1d states that thesk ,rd logarithm is an analytical
function for allxù0 and for allk ,r PR; Eq. s4.2d that it is a
strictly increasing function for −ukuø r ø uku; Eq. s4.3d that it
is concave for −ukuø r ø uku, when uku,1/2, and for −uku
ø r ,1−uku, when ukuù1/2; Eq. s4.4d states that thesk ,rd
logarithm satisfies the boundary conditions3.13d; Eqs.s4.5d
and s4.6d that it has at most integrable divergences forx
→0+ andx→ +`. These two last conditionss4.5d and s4.6d
assure the normalization of the canonical ensembles distribu-
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tion arising from entropys2.1d. Conditionss4.2d–s4.6d select
the following region:

R2 . R =H− uku ø r ø uku if 0 ø uku ,
1
2 ,

uku − 1 , r , 1 − uku if 1
2 ø uku , 1,

J
s4.7d

which is shown in Fig. 1: every point inR selects a de-
formed logarithm that satisfies all propertiess4.1d–s4.6d. This
region R include values of the parameters for which the
logarithm is finite in the limitx→0 or x→ +`. Note that
points in regions4.7d always satisfyuku,1, the condition
obtained in Ref.f18g for the caser =0. In addition,k→0
implies r →0. Following Ref. f30g we introduce the dual
logarithm

lnhk,rj
* sxd = − lnhk,rjS1

x
D , s4.8d

which is related to the originalsk ,rd logarithm by

lnhk,rj
* sxd = lnhk,−rjsxd = x−2r lnhk,rjsxd. s4.9d

Note that this last result implies that Eq.s4.6d is equivalent to
Eq. s4.5d on exchangingr ↔−r. Let us define that a loga-
rithm is self-dual when

lnhk,rjsxd = lnhk,rj
* sxd. s4.10d

Then Eq.s4.9d shows that lnhk,rjsxd is self-dual if and only if
r =0: this case coincides with thek logarithm f17,18g.

The asymptotic behavior of lnhk,rjsxd for x approaching
zero is

lnhk,rjsxd ,
x→0+

−
1

2uku
1

xuku−r ; s4.11d

in particular it results that lnhk,rjs0+d=−` for r , uku, while, if
r = uku, lnhk,ukujs0+d=−1/2uku is finite. Consequently, its in-
verse exphk,ukujsxd goes to zero at finitex: the distribution

function has a cutoff at finite energy, exphk,ukujs−1/2ukud=0.
Analogously, the behavior of lnhk,rjsxd for large values of

x is

lnhk,rjsxd ,
x→+`

xuku+r

2uku
, s4.12d

which implies lnhk,rjs+`d= +` for r .−uku, while again, if
r =−uku, then lnhk,−ukujs+`d=1/2uku and exphk,−ukujs1/2ukud=
+`.

The generalized logarithm verifies the following scaling
law

a lnhk,rjsxd = lnhk/a,r/ajsxad, s4.13d

of which Eq. s4.9d is a particular case fora=−1, and that
becomesa ln x=lnsxad when sk ,rd→ s0,0d.

In the following we give some useful relations. First the
relation

lnhk,rjsxyd =
1

2
sxr+k + xr−kdlnhk,rjsyd +

1

2
syr+k + yr−kdlnhk,rjsxd

s4.14d

is easily proved taking into account the definitions3.16d. By
using the identityyr−k=yr+k−2k lnhk,rjsyd, Eq. s4.14d be-
comes

lnhk,rjsxyd = xr+k lnhk,rjsyd + yr+k lnhk,rjsxd

− 2k lnhk,rjsxdlnhk,rjsyd. s4.15d

Moreover, using

1

2
sxr+k + xr−kd = − s1 + rdlnhk,rjsxd + l lnhk,rjsx/ad,

s4.16d

Eq. s4.14d can be rewritten as

lnhk,rjsxyd = − 2s1 + rdlnhk,rjsxdlnhk,rjsyd

+ l lnhk,rjsxdlnhk,rjS y

a
D + l lnhk,rjS x

a
Dlnhk,rjsyd.

s4.17d

B. „k ,r…-deformed exponential

The deformed logarithm is a strictly increasing function
for −ukuø r ø uku; therefore, it can be inverted forsk ,rdPR.
We call its inverse the deformed exponential exphk,rjsxd,
whose analytical properties follow from those of the de-
formed logarithm:

exphk,rjsxd P C`sId, s4.18d

d

dx
exphk,rjsxd . 0, s4.19d

d2

dx2 exphk,rjsxd . 0, s4.20d

FIG. 1. Parameter spacesk ,rd for the logarithms3.16d. The
shaded region represents the constraints of Eq.s4.7d on the param-
eters. The four lines, dashed, dotted, solid, and dash-dotted, corre-
spond to the Tsalliss6.1d, Abe s6.5d, k s6.7d, andg s6.12d logarithm,
respectively.

TWO-PARAMETER DEFORMATIONS OF LOGARITHM,… PHYSICAL REVIEW E 71, 046128s2005d

046128-5



exphk,rjs0d = 1, s4.21d

E
−`

0

exphk,rjsxddx=
1

s1 + rd2 − k2 , s4.22d

E
−`

0 dx

exphk,rjs− xd
=

1

s1 − rd2 − k2 . s4.23d

Equation s4.18d states that the deformed exponential
exphk,rjsxd is a continuous function for allxP I, where I
=R+, when −uku, r , uku, I=s−1/2uku ,`d, when r = uku, and
I=s−` ,1 /2ukud, when r =−uku. Equationss4.19d–s4.23d state
that exphk,rjsxd is a strictly increasing and convex function,
normalized according to Eq.s4.21d, and which goes to zero
fast enough to be integrable forx→ ±`.

Introducing the dual of the exponential function

exphk,rj
* sxd =

1

exphk,rjs− xd
, s4.24d

Eq. s4.9d implies

exphk,rj
* sxd = exphk,−rjsxd, s4.25d

which means

exphk,rjsxdexphk,−rjs− xd = 1. s4.26d

Only whenr =0 does this relation reproduce that of the stan-
dard exponentialf18g.

The asymptotic behaviorss4.11d and s4.12d of lnhk,rjsxd
imply

exphk,rjsxd ,
x→±`

u2kxu1/sr±ukud; s4.27d

in particular

exphk,rjs− `d = 0+ for r , uku, s4.28d

exphk,rjs+ `d = + ` for r . − uku, s4.29d

while

exphk,rjs− 1/2ukud = 0+ whenr = uku, s4.30d

exphk,rjs+ 1/2ukud = + ` whenr = − uku. s4.31d

Finally, the scaling law

fexphk,rjsxdga = exphk/a,r/ajsaxd s4.32d

reduces to Eq.s4.26d for a=−1 and reproduces the property
fexpsxdga=expsaxd in the sk ,rd→ s0,0d limit.

V. DEFORMED ALGEBRA

Using the definition of the deformed logarithm and its
inverse function, we can introduce two composition laws, the

deformed sumx%

k,r

y and productx^

k,r

y.

Let us define the deformed sum:

x%

k,r

y = lnhk,rjfexphk,rjsxdexphk,rjsydg, s5.1d

which reduces, in thesk ,rd→ s0,0d limit, to the ordinary

sumx%

0,0

y=x+y. Its definition implies that the deformed sum
satisfies the following properties:sad it is associative;sbd it is
commutative;scd its neutral element is 0;sdd the opposite of
x is lnhk,rjf1/exphk,rjsxdg.

If x andy are positive Eq.s5.1d yields

lnhk,rjsxyd = lnhk,rjsxd%

k,r

lnhk,rjsyd, s5.2d

which, whensk ,rd→ s0,0d, reduces to the well-known prop-
erty logsxyd=log x+log y.

In the same way, let us introduce the deformed product
between positivex andy:

x^
k,r

y = exphk,rjflnhk,rjsxd + lnhk,rjsydg, s5.3d

which reduces, forsk ,rd→ s0,0d, to the ordinary productx
^

0,0

y=xy. This product satisfies the following properties:sad it

is associative;sbd it is commutative;scd its neutral element is
1; sdd the inverse element ofx is exphk,rjf−lnhk,rjsxdg.

According to Eq.s5.3d we have

exphk,rjsx + yd = exphk,rjsxd^
k,r

exphk,rjsyd, s5.4d

which reproduces in thesk ,rd→ s0,0d limit the well-known
property of the exponential expsxdexpsyd=expsx+yd.

Note that the algebraic structuresA1;sR , %

k,r

d and A2

;sR+, ^

k,r

d are two Abelian groups. The deformed sums5.1d

and products5.3d are not distributive and the structureA3

;sR+, %

k,r

, ^

k,r

d is not an Abelian field. In any case, following

Ref. f18g it is possible to define a deformed product^

k,r

and

sum %

k,r

which are distributive with respect to%
k,r

and ^

k,r

, re-

spectively, so that the structuresA1;sR+, %

k,r

, ^

k,r

d and A2

;sR+, %

k,r

, ^

k,r

d are Abelian.

Finally, from Eqs.s4.17d and s5.2d, we obtain

x%

k,r

y = xfexphk,rjsydgr+k + yfexphk,rjsxdgr+k − 2kxy.

s5.5d

From the practical point of view this last expression, like all
the expressions involving thesk ,rd exponentials, are more
useful for those particular values ofr and k for which an
explicit closed form of thesk ,rd exponential can be given. In
the next section we shall see some examples.
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VI. EXAMPLES OF ONE-PARAMETER DEFORMED
LOGARITHMS

The two-parameter class of deformed logarithmss3.16d
includes an infinity of one-parameter deformed logarithms
that can be specified by selecting a relation betweenk andr.
In this section we discuss a few specific one-parameter loga-
rithms that are already known in the literature and have been
used to define entropies in the context of generalizations of
statistical mechanics and thermodynamics: we show that
they are in fact members of the same two-parameter class;
we also introduce a few different examples of one-parameter
logarithms.

A. Tsallis logarithm

The first example is obtained with the choicer =−k for
−1/2,k,1/2. After introducing the parameterq=1+2k
f0,q,2g we obtain the Tsallis logarithm lnqsxd
; lnhsq−1d/2,s1−qd/2jsxd and the Tsallis exponential expqsxd as
follows:

lnqsxd =
x1−q − 1

1 − q
, s6.1d

expqsxd = f1 + s1 − qdxg1/s1−qd. s6.2d

The relations4.9d reads

lnqsxd = − ln2−qS1

x
D , s6.3d

while Eq. s4.15d becomes

lnqsxyd = lnqsxd + lnqsyd + s1 − qdlnqsxdlnqsyd. s6.4d

The q-deformed algebra already discussed in Refs.f41,42g
results as a particular case withr =−k=s1−qd /2 of the de-
formed algebra discussed in Sec. V.

B. Abe logarithm

As a second example we consider the constraintsr +1d2

=1+k2 and defineqA=r +k+1. Then the two-parameter
logarithm in Eq. s3.16d becomes the logarithm associated
with the entropy introduced by Abef14g,

lnqA
sxd =

xsqA
−1d−1 − xqA−1

qA
−1 − qA

, s6.5d

which reduces to the standard logarithm forqA→1. The in-
variance of Eq.s3.16d for k→−k results in lnqA

sxd being
invariant forqA→1/qA. In this case the inverse function of
the Abe logarithms6.5d, which exists because lnqA

sxd is
monotonic for 1/2,qA,2, cannot be expressed in terms of
elementary functions, since Eq.s6.5d is not invertible alge-
braically. We remark that Eq.s4.15d in the present case reads

lnqA
sxyd = xqA−1 lnqA

syd + yqA−1 lnqA
sxd

+ sqA
−1 − qAdlnqA

sxdlnqA
syd. s6.6d

C. k logarithm

Our third example is obtained with the constraintr =0.
Introducing the notation lnhkjsxd; lnhk,0jsxd from Eq. s3.16d
we obtain thek logarithm and consequently its inverse func-
tion, namely, thek exponential introduced inf17,18g:

lnhkjsxd =
xk − x−k

2k
, s6.7d

exphkjsxd = sÎ1 + k2x2 + kxd1/k, s6.8d

with kP s−1,1d. We remind the reader that, because of prop-
erty s4.9d, thek logarithm is the only member of the family
that is self-dual,

lnhkjsxd = − lnhkjS1

x
D . s6.9d

The function exphkjsxd increases at the same rate that the
function exphkjs−xd decreases,

exphkjsxdexphkjs− xd = 1. s6.10d

The k deformed sum is obtained from the more general
Eq. s5.1d by settingr =0:

x%

k

y = xÎ1 + k2y2 + yÎ1 + k2x2, s6.11d

which reduces to the ordinary sum fork→0. The opposite
approach, i.e., starting from thek deformed sums6.11d to
obtain thek logarithm andk exponential has been taken in
Refs.f17,18g, where it is shown that thek deformed sum is
the additivity law of relativistic momenta.

D. Other examples

If we define the parameterw=r / uku, we observe that when
w=0, ±1/3, ±1/2, ±1, ±5/3, ±2, ±3, ±5, and ±7, the in-
verse function of the deformed logarithm can be found by
solving an algebraic equation of degree not larger than 4; the
corresponding deformed exponential can be written explic-
itly. In particular, the casesw=0 and ±1 correspond, respec-
tively, to thek logarithm and to theq logarithm; the remain-
ing cases are different. Among these additional logarithms
and corresponding exponentials, only the casesw= ±1/3 and
±1/2 satisfy all the requirements discussed in Sec. IV.

We consider explicitly the caser = ± uku /3. Introducing the
parameterg= ±2uku /3, Eq.s3.16d defines a generalized loga-
rithm

loggsxd =
x2g − x−g

3g
, s6.12d

which reduces to the standard ones in theg→0 limit. This
logarithm is an analytical, concave, and increasing function
for all xù0, when −1/2,g,1/2.

If g is positive the asymptotic behaviors forx→0 andx
→` are
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lngsxd ,
x→0+

−
x−g

3g
, lngsxd ,

x→+`

x2g

3g
. s6.13d

Since the logarithms6.12d satisfies the duality relation
lngsxd=−ln−gs1/xd, the asymptotic behaviors forx→0+ and
x→` in Eq. s6.13d are exchanged wheng,0.

The correspondingg exponential is

expgsxd = FS1 +Î1 − 4g3x3

2
D1/3

+ S1 −Î1 − 4g3x3

2
D1/3G1/g

,

s6.14d

which is an analytic, monotonic, and convex function for all
xPR when −1/2,g,1/2, and reduces to the standard ex-
ponential in the limitg→0. The asymptotic power-law be-
haviors forg positive are

expgsxd ,
x→−`

s3guxud−1/g, expgsxd ,
x→+`

s3gxd1/2g,

s6.15d

where it is clear that the asymptotic behaviors forx→ +`
andx→−` are exchanged wheng changes sign, coherently
with the property expgsxdexp−gs−xd=1. Finally the deformed
sum given by Eq.s5.1d becomes

x%

g

y = − 3gxy+ xFS1 +Î1 − 4g3y3

2
D1/3

+ S1 −Î1 − 4g3y3

2
D1/3G2

+ yFS1 +Î1 − 4g3x3

2
D1/3

+ S1 −Î1 − 4g3x3

2
D1/3G2

s6.16d

and reduces to the ordinary sum forg→0.

VII. ENTROPIES AND DISTRIBUTIONS

Having obtained the deformed logarithm as a solution of
the differential equations3.1d, the corresponding generalized
entropy follows from Eq.s2.1d:

Sk,rspd = − o
i=1

N

pi lnhk,rjspid = − o
i=1

N

pi
1+r pi

k − pi
−k

2k
. s7.1d

We observe that this class of entropies coincides with the one
introduced by Mittalf34g and Sharma and Tanejaf35g sMSTd
and successively derived by Borges and Roditi in Ref.f36g
by using an approach based on a biparametric generalization
of the Jackson derivative.

Since the entropy is defined in terms of the deformed
logarithms3.16d, the propertiess4.1d–s4.6d of lnhk,rjsxd assure
that the entropys7.1d satisfies many of the properties satis-
fied by the standard BGS entropys1.1d. In particular, it issad
positive definite,Sk,rspdù0 for pP f0,1g; sbd continuous;scd
symmetric, Sk,rspd=Sk,rsqd with p;sp1,… ,pNd and q
;spts1d ,… ,ptsNdd wheret is any permutation from 1 toN;
sdd expansible, which means thatSk,rspd=Sk,rsqd for p
;sp1,… ,pNd and q;sp1,… ,pN,0 ,… ,0d; sed decisive, in

the sense thatSk,rsps0dd=0 whereps0d;s0,… ,1 ,… ,0d is a
completely ordered state;sfd maximal, which means that en-
tropy reaches its maximal value when the distribution is uni-
form, maxfSspdg for p=psUd, with psUd;s1/N,… ,1 /Nd; and,
finally, sgd concave. Moreover, it will be shown in the next
section that the whole family of entropiess7.1d satisfies the
Lesche inequality.

We observe that for a uniform distributionpsUd, the en-
tropy s7.1d assumes the expression

Sk,rspsUdd = − lnhk,rjS 1

N
D , s7.2d

and only for the caser =0, according to Eq.s4.9d, does it
become

SkspsUdd = lnhkjsNd, s7.3d

which is the generalization of the well-known Boltzmann
formula and gives the entropy of a nonextensive microca-
nonical system as the deformed logarithm of the number of
accessible states of the system. If the alternative form

Sk,rspd = o
i

pi lnhk,rjS 1

pi
D s7.4d

is adopted, the entropy of a uniform distribution reduces to
Eq. s7.3d for any values ofr andk.

From a mathematical point of view, the properties of the
entropy s7.1d follow from those of lnhk,rjsxd in the rangex
P f0,1g, while the properties of the entropys7.4d follow
from those of lnhk,rjsxd in the rangexP f1, +`d. This justifies
our study of the properties of lnhk,rjsxd in the whole rangex
P f0, +`g.

Regarding the relationship between the entropy of a sys-
tem and the entropies of its subsystems, additivity and exten-
sivity do not hold, in general. However, it is possible to show
that any entropy belonging to the familys7.1d satisfies an
extended version of the additive and extensive propertyf18g.

In fact Eq.s7.1d can be written as

Sk,rspd = − klnhk,rjspdl, s7.5d

which expresses the entropySk,rspd as the mean value of
lnhk,rjspd. Given two systemsA andB, with probability dis-
tributionspi

A andpi
B, we can define a joint systemAøB with

distributionpij
AøB=pi

A
^

k,r

pj
B, where the deformed product̂

k,r

is

discussed in Sec. V. From Eqs.s5.2d ands7.5d it follows that

Sk,rsA ø Bd = Sk,rsAd + Sk,rsBd. s7.6d

In Fig. 2 we plot four one-parameter entropies belonging
to the family of the MST entropy as functions ofp for sys-
tem with two states of probabilitiesp and 1−p. sad is the
Tsallis entropy

Sqspd = o
i=1

N
pi

q − pi

1 − q
. s7.7d

Notice that the entropys7.7d is expressed in terms of the
Tsallis logarithm asSqspd=Sipi lnqs1/pid, which is different
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from our choices2.1d. The property lnqsxd=−ln2−qs 1
x

d shows
that our choiceSqspd=−Sipi lnqspid=Sipi ln2−qs1/pid corre-
sponds to a different labeling of the entropyq→2−q.

sbd is the Abe entropy

SqA
spd = − o

i=1

N
pi

qA − pi
sqA

−1d

qA − qA
−1 . s7.8d

scd is thek entropy

Skspd = − o
i=1

N
pi

1+k − pi
1−k

2k
. s7.9d

Notice that the entropys7.9d due to the property lnhkjs1/xd
=−lnhkjsxd can be written in the formSkspd=oipi lnhkjs1/pid
=−oipi lnhkjspid like the Boltzmann-Shannon entropy.

sdd is theg entropy

Sgspd = − o
i=1

N
pi

1+2g − pi
1−g

3g
. s7.10d

Entropies with the same broken-curve style yield distribu-
tions with the same-power asymptotic behavior 1/xn :n
=1,4/3, 2, and 4from top to bottom; the solid curve shows
the Shannon entropy.

The distribution that optimizes the entropys7.1d with the
constraints of the canonical ensembless2.3d is, by construc-
tion,

pi = a exphk,rjS−
b

l
sEi − mdD , s7.11d

where we recall that the deformed exponential exphk,rjsxd is
defined as the inverse of the deformed logarithm, which ex-
ists since lnhk,rjsxd is a monotonic function. The parameterm

is determined byoipi =1.
In thesk ,rd→ s0,0d limit, l=1 anda=e−1, and Eq.s7.11d

reduces to the well-known Gibbs distribution

pi = Zsbd−1exps− bEd, s7.12d

where the partition function is given byZsbd=exps1−bmd
=oi exps−bEid. The quantity exps−bEd is named the Boltz-
mann factor. Analogously we can call exphk,rjs−bE/ld the
generalized Boltzmann factor.

We observe that the distributions7.11d cannot be factor-
ized as in Eq.s7.12d: the normalization constraint is satisfied
by fixing m in the generalized Boltzmann factor.

Figure 3 shows the generalized Boltzmann factors corre-
sponding to the four one-parameter entropies of Fig. 2.
Curves with the same style have the same asymptotic behav-

FIG. 2. Four one-parameter entropies for several values of the deformed parameter as a function ofp in a two-level system:sad Tsallis
entropy Eq.s7.7d; sbd Abe entropy Eq.s7.8d; scd k entropy Eq.s7.9d; andsdd g entropy Eq.s7.10d. Broken curves with the same style show
entropies whose corresponding distributions have the same power-law asymptotic decayx−n, n=1,4/3, 2, and 4from top to bottom; the solid
curves show the Shannon entropy.
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ior. Given this constraint and the normalization, the main
difference between the distributions is in the middle region
which joins the linear regionsx!1d and the Zip-Pareto re-
gion sx@1d.

VIII. LESCHE INEQUALITY

An important issue is whether the entropies of the family
under consideration are stable under small changes of the
distribution f23,24,29,31g: we want to demonstrate that, if
the two distributions are sufficiently close, the corresponding
relative difference of entropies can be made as small as one
wishes. To this end, we rewrite the entropys2.1d:

Sspd = − o
i=1

N

piLspid

= − o
i=1

N E
0

pi d

dx
fxLsxdgdx

= − lo
i=1

N E
0

pi

LS x

a
Ddx

= − lo
i=1

N

xLUS x

a
DU

0

pi

+ lo
i=1

N E
0

pi

x
d

dx
FLS x

a
DGdx

= − lo
i=1

N

piLSpi

a
D − o

i=1

N E
−lLs0+d

−lLspi/ad

aL−1S−
s

l
Dds,

s8.1d

where in the second equality we have used Eq.s3.1d, in the
last equality we have made the change of variabless=
−lLsx/ad, and Ls0+d; limx→0+Lsxd. For the moment we
use the notationLsxd and Esxd, since we do not need the
specific form of the deformed logarithm and exponential.
Using the fact thatL−1sxd=Esxd for the class of entropies
under scrutiny, one finds

Sspd = − o
i=1

N E
−lLspi/ad

−lLs0+d Fpi − aES−
s

l
DGds− lLs0+d

= − o
i=1

N E
−1

−lLs0+d Fpi − aES−
s

l
DG

+
ds− lLs0+d

=E
−1

−lLs0+d
f1 − Asp,sdgds− 1, s8.2d

where in the second equality we usedoipi =1, aEs1/ld
ùaEs−s/ld.pi for −1øs,−lLspi /ad, and the definitions
fxg+;maxsx,0d and

FIG. 3. The generalized Boltzmann factors that correspond to entropies in Fig. 2.
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Asp,sd ; o
i=1

N Fpi − aES−
s

l
DG

+
. s8.3d

From now on we revert to the notation exphk,rjsxd and
lnhk,rjsxd. We remark that the upper limit of the integralsm

;−lLs0+d in Eq. s8.2d is sm= +` for r Þ uku and sm

=s1/2ukud for r = uku; see Eq.s4.11d.
The definition ofAsp,sd, Eq. s8.3d, implies thatf28g

uAsp,sd − Asq,sdu ø o
i=1

N

upi − qiu ; ip − qi1, s8.4d

and, for values ofsù−l lnhk,rjs1/Nd,

1 − Na exphk,rjS−
s

l
D = Fo

i=1

N Spi − a exphk,rjS−
s

l
DDG

+

, o
i=1

N

pi = 1, s8.5d

from which it follows that

uAsp,sd − Asq,sdu , Na exphk,rjS−
s

l
D . s8.6d

From Eq.s8.2d the absolute difference of the entropies of
two different distributionsp;hpiji=1,…,N and q;hqiji=1,…,N

satisfies

uSk,rspd − Sk,rsqdu = UE
−1

sm

fAsp,sd − Asq,sdgdsU
ø E

−1

sm

uAsp,sd − Asq,sduds

=E
−1

,

uAsp,sd − Asq,sduds

+E
,

sm

uAsp,sd − Asq,sduds. s8.7d

Choosing −l lnhk,rjs1/Ndø,,sm, by using Eqs8.4d in the
first integral and Eq.s8.6d in the second integral of Eq.s8.7d,
we obtain

uSk,rspd − Sk,rsqdu ø ip − qi1s, + 1d

+ NaE
,

sm

exphk,rjS−
s

l
Dds. s8.8d

In particular Eq.s8.8d holds for that value,̄ that minimizes
the right-hand side of Eq.s8.8d,

,̄ = − l lnhk,rjS ip − qi1

aN
D , s8.9d

as long as,̄ù−l lnhk,rjs1/Nd, which is true when

ip − qi1 ø a, s8.10d

i.e., for sufficiently close distributions, according to the met-
ric i¯ i1. Introducing Eqs.s8.9d and s8.10d in Eq. s8.8d and
performing the integration using the results2.16d, we obtain

uSk,rspd − Sk,rsqdu ø ip − qi1F1 − lnhk,rjS ip − qi1

N
DG ,

s8.11d

and the relative difference of entropies can be written as

USk,rspd − Sk,rsqd
Smax

U ø Fk,rsip − qi1,Nd, s8.12d

with

Fk,rsip − qi1,Nd =
ip − qi1

lnhk,−rjsNdF1 − lnhk,rjS ip − qi1

N
DG ,

s8.13d

becauseSmax; lnhk,−rjsNd.
This result demonstrates that if the two distributions are

sufficiently close the corresponding absolute difference of
entropies can be made as small as one wishes, since Eq.s4.5d
implies that limx→0+x lnhk,rjsxd=0.

In particular, the Lesche inequality for the family of en-
tropies under scrutiny is valid also in the thermodynamic
limit N→`

lim
ip−p8i→0+

lim
N→`

Fk,rsip − qi1,Nd = 0. s8.14d

This last result is not trivial, since the thermodynamical limit
introduces nonanalytical behaviors that could produce finite
entropy differences between probability distributions infini-
tesimally close. We conclude this section by noting that
Lesche stability of thesk ,rd family of entropies follows also
from the general proof given inf31g.

IX. CONCLUSIONS

In order to unify several entropic forms, the canonical
MaxEnt principle has been applied to a generic trace-form
entropy obtaining the differential-functional equations2.8d
for the corresponding generalized logarithm, when the ensu-
ing distribution function is required to be expressed in terms
of the generalized exponential through the natural relation
s2.6d.

The solution of this equation yields the biparametric fam-
ily of logarithms

lnhk,rjsxd = xr x
k − x−k

2 k
; s9.1d

the corresponding entropyf34–36g is

Sk,rspd = − o
i=1

N

pi
1+r pi

k − pi
−k

2 k
. s9.2d

This entropy is a mathematically and physically sound en-
tropy when the parametersk and r belong to the region
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shown in Fig. 1 and, therefore, thesk ,rd logarithm satisfies
the set of propertiess4.1d–s4.6d. In particular these entropies
satisfy the Lesche stability condition.

Distribution functions obtained by extremizing the en-
tropy s9.2d have power-law asymptotic behaviors: such be-
haviors could be relevant for describing anomalous systems;
a comparison between several one-parameter distribution
functions is shown in Fig. 3.

In addition, we have shown that several important one-
parameter generalized entropiessTsallis entropy, Abe en-
tropy, andk entropyd are specific cases of this family; when
the deformation parameters vanish, the family collapses to
the Shannon entropy.

Our approach yielded also new one-parameter logarithms
belonging to this family, whose corresponding exponentials

can be explicitly given by algebraic methods.
There remains the question of the relevance of each math-

ematically sound entropy to specific physical situations. In
fact a wide class of deformed logarithms satisfy a set of
reasonable mathematical properties and physical constraints,
in particular concavity, related to thermodynamic stability,
and the Lesche inequality, related to the experimental robust-
ness.
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