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A consistent generalization of statistical mechanics is obtained by applying the maximum entropy principle
to a trace-form entropy and by requiring that physically motivated mathematical properties are preserved. The
emerging differential-functional equation yields a two-parameter class of generalized logarithms, from which
entropies and power-law distributions follow: these distributions could be relevant in many anomalous sys-
tems. Within the specified range of parameters, these entropies possess positivity, continuity, symmetry, ex-
pansibility, decisivity, maximality, concavity, and are Lesche stable. The Boltzmann-Shannon entropy and
some one-parameter generalized entropies already known belong to this class. These entropies and their
distribution functions are compared, and the corresponding deformed algebras are discussed.
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I. INTRODUCTION Landsberg and Vedrdll6], and recently by Kaniadakié«
_ _ entropy [17,18. For a historical outline see R4fL9].
In recent years the study of an increasing number of natu- Generalizations lead to abandoning part of the original

ral phenomena that appear to deviate from standard statistinathematical structure and properties. For instance, it is
cal distributions has kindled interest in alternative formula-known that the BGS entropy is of trace foifi20,21]

tions of statistical mechanics.
Among the large class of phenomena which show N
asymptotic power-law behaviors, we recall anomalous diffu- S=-> pA(p) = —(A(p)), (1.2
sion [1,2], turbulence[3,4], transverse-momentum distribu- i=1
tion of hadron jets ire*e™ collisions[5], thermalization of
heavy quarks in collisional proce$6], astrophysics with With A(p;)=In(p;); on the contrary the Rényi entropy, the
long-range interaction[7], and others[8,9]. Typically,  Landsberg-Vedral entropy, and the escort entropy are not of
anomalous systems have multifractal or hierarchical structrace form. The Rényi entropy and the Landsberg-Vedral en-
ture, long-time memory, and long-range interactia0,11]. tropy are concave only for€qg<1, while the escort entropy
The success of the Boltzmann-Gil&G) theory has sug- is concave only fog>1 [22].
gested that new formulations of statistical mechanics should A fundamental test for a statistical functior@(p) of the
preserve most of the mathematical and epistemological strugrobability distribution to be physically meaningful is given
ture of the classical theory, while reproducing the emergindy the Lesche stability conditiof23]: the relative variation
phenomenology of anomalous systems. To this end, new ef:O(p)-O(p’)]/sugO(p)]| should go to zero in the limit
tropic forms have been introduced, which would generalizehat the probabilitieg;— p/. This stability condition for a
the classical one introduced by Boltzmann and Gibbs andunctional is a necessary but not sufficient condition for the
successively, by Shannon in a different conté®GS en-  existence of an associated observable. Le$2Hé showed
tropy) that, adopting the measufie—p’|;==i|p;—p/| as estimator
of the closure of the two distributions, the BGS entropy is
N stable, while the Rényi entropy is unstaljlexcept for the
Sses=- 2 piInp. (1.1 limiting case g=1 corresponding to the BGS entropy
i=1 [25-27. Also the Landsberg-Vedral entropy and the escort
: _ . N entropy do not satisfy the Lesche criteri@g]. On the other
There is no systematic way of deriving the “right” entropy pand it is already known that the Abe entrof8g], the q

for a given dynamical system. Among the many generaliza-emropy[28], and thex entropy are stablg29].

tions of the BGS entropy, one can find the entropies consid- |, the present paper, a natural continuation of the work in

ered by .Rény[lz], by Tsallis(q entrop)) [13], by Abe[14], Ref.[20], we consider the trace-form entropy given by Eq.

by Tsallis, Mendes, and Plastirfescort entropy [15], by (1 2) whereA(x) is an arbitrary analytic function that repre-
sents a generalized version of the logarithm, while its inverse
function is the corresponding generalized exponential

*Electronic address: giorgio.kaniadakis@polito.it [30-33. A consistent framework is maintained with the use
"Electronic address: marcello.lissia@ca.infn.it of the maximum entropyMaxEnY principle. This approach
*Electronic address: antonio.scarfone@polito. it yields a two-parameter class of nonstandard entropies intro-
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duced a quarter of a century ago by Mitf&84] and Sharma B

and Taneja[35] and successively studied by Borges and pj=6¥5<— X(Ej_lf*)): (2.6

Roditi in Ref.[36]. It automatically unifies the entropies in-

troduced by Tsalli$13], Abe [14], and Kaniadaki$17,18|. wherea and\ are two arbitrary, real and positive constants,
The paper is organized as follows. In Sec. Il theand&(x) a still unspecified invertible function; we have in

differential-functional equation for the deformed logarithm mind that £(x) be a generalization of, and in some limit
A(x) proposed 18] is briefly reconsidered within the ca- reduce to, the exponential function.

nonical ensemble formalism. In Sec. Ill we solve this equa- Inverting Eq.(2.6) and plugging it into Eq.2.5, one
tion obtaining the more general explicit form &f(x). The finds

properties ofA(x), and the consequent constraints on the d

allowed range for the deformation parameters, are discussed —[pA(p)]= )\g-l<El>_ (2.7

in Sec. IV. The deformed algebra arising from the deformed dp a

logarithms and exponential is discussed in Sec. V. Section VL'Jp to this point,A(x) and £(x) are two unrelated functions

is reserved to studying specific members of this class: thﬁnd our onl :
i . : ; . y assumption has been that the entropy has trace
entropies considered by Tsallis, by Abe, and by Kamadaklsform_ Now if we require, by analogy with the relation be-

Other up-to-now oyerlooked cases are also discussed. Th@oon the exponential and the logarithm functions, #{aj
generalized entropies and distributions related to the d

%e the inverse function ofA(x), E(AX)=A(E(XX))=x, we

formed logarithms are studied in Sec. VII. In Sec. VIII we . . . . g )
. . . . obtain the following differential-functional equation for
show that this two-parametric entropy is stable according t?&(x)'

Lesche. We summarize the results in the final section IX.

d i
Il. CANONICAL FORMALISM dp,-[pJA(p')] - M( a)’ 28
Guided by the form of the BGS entropy Efl.1), we  previously introduced irj18]. A simple and important ex-
consider the following class of trace-form entropies: ample in this class of equations is obtained with the choice
A=1 anda=€e™L. In this case it is trivial to verify that the
N solution of Eq.(2.8) that satisfies the boundary conditions
S(p) == 2 piA(p), (2. A(1)=0 anddA(x)/dX=1=1 is A(p;)=In p; and the entropy
=1 Eq. (2.2) reduces to the BGS entropgg.1).
In this paper we will study the deformed logarithiigx)
that are solutions of EQq(2.8), the corresponding inverse
functions(deformed exponentiglsand the entropies that can
be expressed using these deformed logarithms through Eq.

with p={pi}iz; .~ @ discrete probability distribution; one
may think of A(x) as a generalization of the logarithm.
We introduce the entropic functional

N N (2.1).
Fp]=Sp) —B'(E pi- 1) —ﬁ(E Eipi - U> (2.2
i=1 i=1
A. A counterexample
with 8’ and 8 Lagrange multipliers. Imposing th&&[p] be Since EQq.(2.8) imposes a strict condition on the form of
stationary for variations o’ and g yields the functionA(x), it is natural to ask what happens if this

\ \ condition is relaxed and more general forms of deformed
logarithms are considered. It should be clear from the deri-

2p=1, 2Ep=U, (2.9 vation of Eq. (2.9 that, if such more general logarithms,

=1 =1 which do not satisfy Eq(2.8), are used to define the entropy

which fix the normalization and mean energy for the canoni—by means of Eq2.1), the corresponding distributions cannot

- . . g . be written as Eq(2.6) with the “exponential’&(x) the in-
cal ensemble. In addition, if{p] in Eg. (2.2) is stationary . . L
for variations of the probabilitiep,, verse ofA(x). Alternatively, if one wants that the distribution

be of the form in Eq(2.6) with the “exponential’€(x) the

5 inverse ofA(x), the entropy cannot be E@Q.1).

—Fpl=0, (2.9 For instance, let us consider the following family of gen-
op; eralized logarithms:

one finds N 5(X) = sgrix = D)|Ingq(x)|¢, (2.9
d where In,,(x) is the « logarithm[17], which we discuss in
d—m[ij(Dj)]:—ﬁ(EJ -, (2.9 sec. viC. This family depends on two real parameters
e (-1,1) andé>0. We observe that E¢2.9) is a solution of
whereu=-8'1/p. Eq. (2.8), for suitable constanta and \, only for the case
Without loss of generality, we can express the probabilityé=1, with In, 1)(x) =Ing,4(x).
distributionp; as The inverse function of E¢2.9) is
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eXPc.e)(X) = eXPLa[SgrX)|X|14]. (2.10 Ill. SOLUTIONS OF THIIEEQDlIJ;IfﬁgENTIAL-FUNCTIONAL
For ¢é=1 Eg. (2.10 reduces to thex exponential [17]
expq4(x), while it reduces to the stretched exponential for
x=0. Moreover, this family of logarithms and exponentials
inherits from thex logarithm and thec exponential the prop- d X\
erties I, (1/X)==In, - (x) and exp, 5(-X)exp »(x)=1. d_X[XA(X)] —AA o)~ 0. 3.1
Introducing the entropy

In this section we study the solutions of Eg.8), which
we rewrite in the following form:

We shall select the solutions of E(.1) that satisfy appro-
1 X priate boundary conditions and that keep those properties of
f In(KV§)<—)dx,
o

- the standard logarithms that we judge important even for a
o

N rp
SKyg(p):_)\E |n(K’§)<X>dX+7\
i=1J0

0 generalized logarithm.
(2.12) By performing the change of variable
the variational principle yields X= exp(i> (3.2
Ao '
pj=a exp(,{,8<— '{f(Ej - ,u)) : (2.12  and introducing the function
1
Equation(2.12 becomes the distribution[17] for £&=1 and AX) =—f(AalInx), (3.9
the stretched exponential distribution fa=0; correspond- X
ingly Eq. (2.11) reduces to thec entropy the homogeneous differential-functional equation of the first
N order shown in Eq(3.1) becomes
Sd(p) =- > pi Inga(p; 2.13 d f(t
) El P NG (p) (2.13 df[ ) _ft-19 =0, 3.4
in the §—1 limit [18], whereas in the<_—>0 limit (a=\" \ith to=AaIn a. The most general solution of E(3.4), a
=1) it reduces to the stretched exponential entrf@y,38 differential-difference equation belonging to the class of de-
N lay equationg40], can be written in the form
S(P=2T(A+&-Inp)-T(1+9, (214 i -
i=1 f(t)=2> > a(sy....s)ve, (3.5

i=1 j=0

where I'(«,X) is the incomplete gamma function of the ) . )

second kind andl'(x)=T'(x,0) is the gamma function where n is the number of independent solutiogsof the

[39]. Equation(2.14) demonstrates that the entro(g.11) characteristic equation

r;asEin Igem(ara)l a form different from Eq2.1): S, s-el=0, (3.6)
~2iPi NGk, 5 Pi)- . . .

R m; their multiplicity [s is a solution not only of Eq.3.6), but
also of its firstm—1 derivative$, anda; multiplicative co-
efficients that depend on the parametsrdn terms of the

The fact that the generalized logarithiix) is a solution original function and variable the general solution and the
of the differential equatiori2.8) is sufficient to calculate its Characteristic equation are

B. Integrals of the functions A(x) and £(x)

integral e
A(x) = i (S, .., SN al i\ @51
fxz A(x)dx= XpA(aXy) ;XlA(axl)_ (2.15 9 21 go a;j(sy, .-, a In(x)I'x
" n m-1 |
:2 > &k k) [INOO X, (3.7)

From the definition of the generalized exponenfi@d) as the

1 j=0
inverse of the generalized logarithi(x) it is also simple to J
calculate the integral of(x) with the change of variabla 1+k=Na™™, (3.9
=& Xs)=A(9), 4
wherex=\ as-1 andaj=(\ @)'g;.
) In the present work, we are interested in nonoscillatory
f EMX)dX=X,E(Xy) = X1E(X7) solutions for Eq.(3.4): this kind of solution maintains a
X closer relation with the standard logarithm. Therefore, we
E(x)A(aE(Xp)) = E(x)A(aE(%y)) consider only real solutions of E@3.6). There exist four
- N . different cases depending on the valuggpfa) for t,=0 we

have one solutiomp=1 andm=1; (b) for —1/e<t;<0, we
(2.16 have two nondegenerate solutioms;2 andm=1; (c) for
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to=—1/e we have two degenerate solutioms;1 andm=2; Finally, we consider the cagg). This case can also be

(d) for ty<<—1/e there exist no solutions. obtained as the limit of cadéw) when the two distinct solu-
We discuss in order the three cades (b), and(c) that tions s; and s, become degenerate. Wheg=-1/e, s=e

yield solutions of the delay equatid8.4) and, therefore, of verifies not only Eq.(3.6), but also its first derivative 1

the corresponding Ed3.1). +tgexp(-tgs)=0: this solution is twice degenerai®,=s,
The casda) is the least interesting: =e); Eq. (3.7) with the boundary condition$8.13 and(3.14
A(x) =ax” (3.9 becomes
is just a single power and cannot change sign as one would A =xInx, 3.19
require from a logarithm. o _ where the parameter=\ ae-1. The standard logarithm
In the caseb), we obtain a binomial solution: A(x)=In x is recovered for =0; the same standard logarithm
AX) = Aq(kp, k)X + Ag(Kg, Kp)X2, (3.10 is actually recovered from théc,r) logarithm in the limit

(k,r)—(0,0) independently of the direction.
whereA; andA, are the integration constants.

The characteristic equatidB.8) can be solved for the two

constantsy and\, IV. PROPERTIES OF DEFORMED FUNCTIONS
_(1l+k, Wirey=1ez) 311 The properties of the entrofg®.1), and of the correspond-
*=\1 + Ky ' (3.17) ing distribution (2.6), follow from the properties of the de-

formed logarithmA(x) =Iny, ,(x), which is used in its defi-
(1 + i)t/ (k17k2) nition. Naudts[30] gives a list of general properties that a
:W- (3.12 deformed logarithm must satisfy in order that the ensuing
L entropy and distribution function be physical. In this section
The two arbitrary coefficientd, and A, correspond to the we determine the region of parameter spaeg) where the
freedom of scalingx and A(x) in Eq. (3.1). We fix these logarithm (3.16) satisfies these properties and list the corre-
integration constants using the two boundary conditions  sponding properties of its inverse, the,r) exponential.

A(1)=0, (3.13
A. (k,r)-deformed logarithm
dAX =1. (3.14 The following properties for thgx,r) logarithm hold
dX |1 when k andr satisfy the corresponding limitations:
The first condition implieA; =—-A,= A while from the sec- Ing,.n(x) € C*(R"), (4.1)

ond one has\=1/(k;— ). Equation(3.10 assumes the fi-
nal expression

XK1 — k2 E |n{K r}(X) >0, _|K| srs |K|, (42)
A = , (3.19 dx
K1~ Kz
2
a two-parameter function which reduces to the standard loga- @ N ()< 0. —ll<r= 1 ‘ 1 4.3
fithm in the (x, k) — (0, 0) limit. g Mo <0, ~[d A
After introducing the notatiork (x)=In;, 1(x) and the two
auxiliary parametersc=(x;—x5)/2 andr=(k;+k,)/2, Eq. Ing,.(1) =0, (4.4
(3.15 becomes
XK — XK 1 1
I (X) =X ST X'INg4(x). (3.16) fo Ingp(X)dx=— Q=@ 1+r>|«|, (4.5
The constantsr and\ expressed in terms of andr 1 1 1
141 = g\ V2 f Ing,. (—)dxz—, 1-r>|«l. (4.6
a:( ' K) , (3.17) o “Mx (1-1)2-«? d
1+r+k
Equation(4.1) states that théx,r) logarithm is an analytical
(1 +r1 — k) (rHe)/2x function for allx=0 and for allx,r € R; Eq.(4.2) that it is a
= (141 + )02’ (3.18  strictly increasing function for kx| <r <|«|; Eq. (4.3 that it

is concave for fx|<r=|«|, when |«|<1/2, and for 4«
are symmetric fork——« and satisfy the useful relations <r<1-|«|, when|x|=1/2; Eq. (4.4 states that théx,r)
(L+rtx)a™*=\, which is the characteristic equati¢8.8),  logarithm satisfies the boundary conditi13); Egs. (4.5
and 1A=In;, 1(1/a), which is the differential equatiof8.1) and (4.6) that it has at most integrable divergences for
atx=1. In the following, we call the solutiof8.16) the de- — 0" andx— +%. These two last condition@}.5) and(4.6)
formed logarithm or(«,r) logarithm. assure the normalization of the canonical ensembles distribu-
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FIG. 1. Parameter spade,r) for the logarithm(3.16. The
shaded region represents the constraints of(£q) on the param-
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function has a cutoff at finite energy, exp;(-1/2/«[)=0.
Analogously, the behavior of jp,(x) for large values of
X is

X|K|+r

In{K,r}(x) ~ , (412)

X—s+00 2| K|

which implies In, (+»)=+o for r>—|«|, while again, if
r=—|«|, then In,_j(+)=1/2«| and exp, .(1/2«|)=
+ o0,
The generalized logarithm verifies the following scaling
law
a In{K,r}(X) = In{K/a,r/a}(Xa)v (413)

of which Eq. (4.9 is a particular case foa=-1, and that
becomesa In x=In(x?) when (x,r)— (0,0).

eters. The four lines, dashed, dotted, solid, and dash-dotted, corre- In the following we give some useful relations. First the

spond to the Tsalli¢6.1), Abe (6.5), « (6.7), andy (6.12) logarithm,
respectively.

tion arising from entropy2.1). Conditions(4.2)—(4.6) select
the following region:
-lkl=r=<|x fO=<|x <2,
RZDR= 1
k| -1<r<1l-|« if;=<|«<1,
(4.7)

which is shown in Fig. 1: every point ifk selects a de-
formed logarithm that satisfies all properti@sl)—(4.6). This

region R include values of the parameters for which the

logarithm is finite in the limitx— 0 or x— +o0, Note that
points in region(4.7) always satisfy|x|<1, the condition
obtained in Ref[18] for the caser=0. In addition,x—0

implies r — 0. Following Ref.[30] we introduce the dual
logarithm

* 1
Ing n(x) =- |n{K,r}<;> : (4.8
which is related to the origindl,r) logarithm by
I} (0 = I (%) = X2 gy (X). (4.9

Note that this last result implies that E4.6) is equivalent to
Eqg. (4.5 on exchanging < -r. Let us define that a loga-
rithm is self-dual when

Ny (%) = g (). (4.10

Then Eq.(4.9) shows that If, ,1(x) is self-dual if and only if
r=0: this case coincides with thelogarithm[17,18.

The asymptotic behavior of Jp,(x) for x approaching
zero is

1 1
|n{K'r}(X) ~ (411)
X—

o 2
in particular it results that I ,(0%) =~ for r <|«|, while, if

r=[«l, Iny|;(0")=-1/2«| is finite. Consequently, its in-
verse exp.|.(X) goes to zero at finite: the distribution

relation

1 _ 1 _
Ingry(xy) = E(XHK + XTI (y) + E(YHK +y7INg, (%)

(4.14

is easily proved taking into account the definitic16). By

using the identityy™*=y™*-2«In;, 1(y), Eq. (4.14 be-
comes

|n{x,r}(XY) =X |n{x,r}(Y) + yr+K In{K,r}(X)

- 2K In{,(’,}(x)ln{,(’,}(y). (415)

Moreover, using

1
E(XHK + X7 == (1 +1)Ing, 5 (X) + N Ing y (X @),
(4.16
Eq. (4.14) can be rewritten as

Ing, y(Xy) = = 2(1 +1)Ing, (X INg, 1 (y)

y X
+\ |n{K,r}(X)|n{K,r}<;) +\ In{K,f}(Z) INger(Y)-

(4.17)

B. (x,r)-deformed exponential

The deformed logarithm is a strictly increasing function
for —|k| <r <|«|; therefore, it can be inverted fék,r) e R.
We call its inverse the deformed exponential gxjix),
whose analytical properties follow from those of the de-
formed logarithm:

exp,n(x) e C*(I), (4.18
d

dx exp,n(x) >0, (4.19
2

— eXp.(X) >0, (4.20

dx?
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exp,.1(0) =1, (4.2 o
e X0y = g lexpexpn®], (5.0
0
_ 1 which reduces, in théx,r 0,0 limit, to the ordinar
| ot s 22 e wen = 0.0 ’
sumx@y=x+y. Its definition implies that the deformed sum
0 dx 1 satisfies the following propertie&) it is associative(b) it is
f = . (4.23 commutativej(c) its neutral element is Ag) the opposite of
e XPe(=X) (L-1) =k X is Ing[1/€xp,(X)]. _
Equation (4.18 states that the deformed exponential If x andy are positive Eq(5.1) yields
exp,.r(X) is a continuous function for alke 1, wherel r
=R*, when x| <r<|«|, I=(-1/2«|,*), whenr=|«|, and N (Xy) = Ing ()@ Ing, 1 (y), (5.2

[=(-o0,1/2«|), whenr=-|«|. Equations(4.19—(4.23 state _
that exp,(x) is a strictly increasing and convex function, which, when(x,r)—(0,0), reduces to the well-known prop-
normalized according to Ed4.21), and which goes to zero erty logxy)=logx+logy.

fast enough to be integrable far— . In the same way, let us introduce the deformed product
Introducing the dual of the exponential function between positivex andy:
exp () = , (4.24) Xf’f)’ = exp e nlIng (X +Ing, 1 (y)], (5.3
eXP (= X)
Eq. (4.9) implies which redu.ces, fo(K,r)—.>(Q,0), to the Qrdinary prqduc'x
. ®y=xy. This product satisfies the following propertié¢a). it
X (X) = XR ) (%), (429 o0 o o .
_ is associative(b) it is commutativejc) its neutral element is
which means 1; (d) the inverse element of is ex, [ —Ing,(X)].
eXPyry ()X (~X) = 1. (4.26) According to Eq.(5.3) we have

Only whenr =0 does this relation reproduce that of the stan- eXP (X +Y) = expen(X) @ exp . (y), (5.9
dard exponentig]18]. r

The asymptotic behavior&t.1) and (4.19 of Ini1(X)  \hich reproduces in théc,r)— (0,0) limit the well-known

imply property of the exponential expexply)=expx+y).
— U(r£|«]). KT
eXR‘“}(X)XHiw'ZKX' ' (4.27 Note that the algebraic structurels=(R,®) and A,
) ) =(R*, ®) are two Abelian groups. The deformed sii5nl)
in particular o
exp (-2 =0 forr < x|, (4.28 and prorduct(5.3) are not distributive and the structufg
=(R*,®,®) is not an Abelian field. In any case, following
GXRKI}(+ w)=+0 forr>- |K|, (4.29 r
. K,I
while Ref.[18] it is possible to define a deformed produttand
_ = -+ = K,r
eXPn)(~ 1/2x]) =07 whenr =|«, (4.30 sum & which are distributive with respect to and ®, re-
exp,n(+ 1/2k|) = + whenr=-[«. (4.30) ! o e

spectively, so that the structure$;=(R*,®,®) and A,
=(R*,®,®) are Abelian.

e a=g a 4.3 K KT
(xR (0T = EXRariay(@X) (4.32 Finally, from Egs.(4.17 and(5.2), we obtain

Finally, the scaling law

reduces to Eq(4.26) for a=-1 and reproduces the property

[exp(x)|[2P=expax) in the (k,r)—(0,0) limit. xéy: X[eXPc (1)1 + ylexp .y (17 = 26xy.

V. DEFORMED ALGEBRA (5.5

Using the definition of the deformed logarithm and its . . . . . .
drom the practical point of view this last expression, like all

the expressions involving thec,r) exponentials, are more

K,I

deformed sunxéy and produck®y. useful for those particular values ofand « for which an
o explicit closed form of théx,r) exponential can be given. In
Let us define the deformed sum: the next section we shall see some examples.
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VI. EXAMPLES OF ONE-PARAMETER DEFORMED C. k logarithm

LOGARITHMS Our third example is obtained with the constrairtO.

The two-parameter class of deformed logarith(8sl6)  Introducing the notation lp.(x) =In;, (x) from Eq. (3.16)
includes an infinity of one-parameter deformed logarithmswe obtain thex logarithm and consequently its inverse func-
that can be specified by selecting a relation betweandr.  tion, namely, thex exponential introduced if7,18:

In this section we discuss a few specific one-parameter loga-

rithms that are already known in the literature and have been X=X
used to define entropies in the context of generalizations of Ingq(x) = 2k (6.7
statistical mechanics and thermodynamics: we show that

they are in fact members of the same two-parameter class; R

we also introduce a few different examples of one-parameter expg(X) = (V1 + k2% + k), (6.8
logarithms.

with k€ (-1,2). We remind the reader that, because of prop-
erty (4.9), the « logarithm is the only member of the family

A. Tsallis logarithm that is self-dual,
The first example is obtained with the choice-« for 1
-1/2<k<1/2. After introducing the parameter=1+2« |n{K}(x):—|n{K}(—>. (6.9
[0<g<2] we obtain the Tsallis logarithm lfx) X
=IN(q-1121-q2(X) and the Tsallis exponential exp) as The function expy(x) increases at the same rate that the
follows: function exp,(-x) decreases,
1-q _ 1
Ing(x) = 1-q (6.1 expg(x)expg(-=x) = 1. (6.10
The k deformed sum is obtained from the more general
exp(x) =[1+(1- q)x]H-a), (6.2 Eqg. (5.1) by settingr=0:
The relation(4.9) reads K /
L XY =XV1 + kY% + yV1 + k2, (6.11
Ing(x) =~ Inz“*(})’ (6.3 which reduces to the ordinary sum far—0. The opposite
_ approach, i.e., starting from the deformed sum(6.11) to
while Eq. (4.19 becomes obtain thex logarithm andkx exponential has been taken in

_ Refs.[17,18, where it is shown that the deformed sum is
Ing(Xy) = Iny(X) + In +(1-q)ng(x)Iny(y). (6.4 ==

a(xY) = Ing(3) +Ing(y) + (1 = Ding(ing(y).  (6.4) the additivity law of relativistic momenta.
The g-deformed algebra already discussed in Rp4.,47
results as a particular case witkk—«x=(1-q)/2 of the de-

) - D. Other examples
formed algebra discussed in Sec. V.

If we define the parametev=r/|«|, we observe that when

w=0,+1/3,+1/2,+1,+5/3,+2,+3,+5, and 7, the in-
B. Abe logarithm verse function of the deformed logarithm can be found by
As a second example we consider the constréintl)? solving an e_llgebraic equation of degree not Iarge_r than 4; @he
=1+«2 and definequ=r+«+1. Then the two-parameter corresponding deformed exponential can be written explic-

logarithm in Eq.(3.16 becomes the logarithm associated itly. In particular, the cases/=0 and +1 correspond, respec-

: ; tively, to the « logarithm and to the logarithm; the remain-
with the entropy introduced by Abjd 4], ing cases are different. Among these additional logarithms
x(GAD-1 _ yaa-1 and corresponding exponentials, only the cages1/3 and
Ing,(X)=————, (6.5  +1/2 satisfy all the requirements discussed in Sec. IV.
A~ Oa We consider explicitly the cage= +|«|/3. Introducing the

which reduces to the standard logarithm épr— 1. The in-  parametety=+2|«|/3, Eq.(3.16 defines a generalized loga-
variance of Eq.(3.16 for k— -« results in IraA(x) being  rithm

invariant forgy— 1/q,. In this case the inverse function of

the Abe logarithm(6.5), which exists because qlAr(x) is log,(x) =
monotonic for 1/2< g, <2, cannot be expressed in terms of 7 3y

elementary functions, since E(6.5) is not invertible alge-

braically. We remark that Eq4.15) in the present case reads Which reduces to the standard ones in the-0 limit. This
logarithm is an analytical, concave, and increasing function

X27 -X7

: (6.12

Ing, (xy) = X%t Ing, (y) + y=* Ing, (%) for all x=0, when -1/2< y<1/2.
_ If v is positive the asymptotic behaviors fer—0 andx
+ (0 - ga)Ing, () Ing, (). 6.6 oo ymp
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XY x27 the sense tha$, (p®)=0 wherep@=(0,...,1,...,0) is a
In,(x) T T3y In,(x) ~ 3y (6.13  completely ordered statéf) maximal, which means that en-
X0 4 sy tropy reaches its maximal value when the distribution is uni-
Since the logarithm(6.12 satisfies the duality relation form, maxS(p)] for p=p'Y), with p¥ = (1/N,...,1/N); and,
In,(x)=-In_,(1/x), the asymptotic behaviors for—0" and finally, (g) concave. Moreover, it will be shown in the next
x—o0 in Eq. (6.13 are exchanged whep<O0. section that the whole family of entropi€8.1) satisfies the
The corresponding’ exponential is Lesche inequality. 0
R —_— We observe that for a uniform distributi , the en-
R R R e ol d tropy (7.1) assumes the expression
exp,(x) = > + T ,

1
(614) SK,r(p(U)) == ln{K,f}(N) ’ (72)

which is an analytic, monotonic, and convex function for all

xe R when -1/2<y<1/2, and reduces to the standard ex—and only for the case=0, according to Eq(4.9), does it

ponential in the limity— 0. The asymptotic power-law be- become
haviors fory positive are S(p™Y) = Ingy(N), (7.3
exp(X) ~ (Byx)™,  exp(x) ~ (3%, which is the generalization of the well-known Boltzmann
X——00 X—+00

formula and gives the entropy of a nonextensive microca-
(6.19 nonical system as the deformed logarithm of the number of

where it is clear that the asymptotic behaviors for +o accessible states of the system. If the alternative form

andx— —o0 are exchanged whep changes sign, coherently 1
with the property exgx)exp.,(-x)=1. Finally the deformed Ser(p) = 2 pi |n{K,r}<f> (7.9
sum given by Eq(5.1) becomes : b
y 1+ \m 1/3 is adopted, the entropy of a uniform distribution reduces to
X®Y = — 3yxy + X Eg. (7.3 for any values of and«.
2 From a mathematical point of view, the properties of the
(1 _ \’TW)UBT {(1 +\,rm>1/3 entropy(?.l). follow from those of In, 1(x) in the rangex
| —— +y| |\ —————— €[0,1], while the properties of the entrop’.4) follow
2 2 from those of Ip, ,(x) in the rangex e [1, +o°). This justifies

1-1-433\3|? our study of the properties of Jfy,(x) in the whole range
|l (6.16) ’
2 e [0, +=].
. Regarding the relationship between the entropy of a sys-
and reduces to the ordinary sum fp#- 0. tem and the entropies of its subsystems, additivity and exten-
sivity do not hold, in general. However, it is possible to show
VIl. ENTROPIES AND DISTRIBUTIONS that any entropy belonging to the family.l) satisfies an

extended version of the additive and extensive prodéy.
Having obtained the deformed logarithm as a solution of In fact Eq.(7.1) can be written as
the differential equationi3.1), the corresponding generalized _
entropy follows from Eq(2.1): Ser(P) == <INy, (), (7.5

which expresses the entrofg,(p) as the mean value of
Ser(p) =- 2 Pi INgery(pi) = — 2 pHH—— P~ p' . (7.0 Ingn(p). Given two systemd#\ and B, with probability dis-
tributionspf* andp? A we can define a joint systefU B with

AUB
We observe that this class of entropies coincides with the ongdistributionp —p, ® pl , where the deformed produ&t IS

introduced by Mitta[34] and Sharma and Tan€ja5] (MST) . . .
and successively derived by Borges and Rodi in Ref] discussed in Sec. V. From Eq$.2) and(7.5) it follows that

by using an approach based on a biparametric generalization Sc(AUB) =S, (A) +S,,(B). (7.6)

of the Jackson derivative. . lot f . lonai
Since the entropy is defined in terms of the deformed In Fig. 2 we plot four one-parameter entropies belonging

to the family of the MST entropy as functions pffor sys-
logarithm(3.16), the prop.er.t|e$4 DH4.6) of Inj,, () gssure. tem with two states of probabilitiep and 1-p. (a) is the
that the entropy(7.1) satisfies many of the properties satis- Tsallis entro
fied by the standard BGS entrof.1). In particular, it is(a) Py
positive definiteS, ,(p)=0 for p € [0, 1]; (b) continuousjc) pq P
symmetric, S (p)=S., (@ with p=(py,...,py) and g S(p) = 2 . (7.7)
=(Px1), -+ Pxn) Whereris any permutation from 1 tdN;
(d) expansible, which means thé&, ,(p)=S.,(q) for p  Notice that the entropy7.7) is expressed in terms of the
=(py,...,pn) @nd q=(py,...,pn,0,...,0); (e) decisive, in  Tsallis logarithm ass,(p)=2;p; Inq(1/p;), which is different

046128-8



TWO-PARAMETER DEFORMATIONS OF LOGARITHM,.

P Ay

-
——

I
- -
- .
- -
L—
..~

10" |

Mex

Sq

s,/

T
- -
.-
-
-

—
—
- .
=
-
-

Max
s.(/S}

1072 s T

PHYSICAL REVIEW E 71, 046128(2005

Max
S,0/8S,

FIG. 2. Four one-parameter entropies for several values of the deformed parameter as a functioa ofvo-level system(a) Tsallis
entropy Eq.(7.7); (b) Abe entropy Eq(7.8); (c) k entropy Eq.7.9); and(d) y entropy Eq.(7.10. Broken curves with the same style show
entropies whose corresponding distributions have the same power-law asymptotie deeayl ,4/3, 2, and 4rom top to bottom; the solid

curves show the Shannon entropy.

from our choice(2.1). The property Ig(x):—lnz_q(;l() shows
that our choiceS,(p)=-2ip; Ing(pi) ==ip; IN,—(1/p;) corre-
sponds to a different labeling of the entrogy-2-q.

(b) is the Abe entropy

p (qA
S, (p) = E (7.9
i=1 Oa~ QA
(c) is the k entropy
N 1+k 1-k
P 0
S(p=-2 " (7.9
i=1 K

Notice that the entropy7.9) due to the property (1/x)
=-In;4(x) can be written in the forng,(p)=2;p; In;(1/p;)
=-3ip; In;4(py) like the Boltzmann-Shannon entropy.

(d) is the y entropy

N 1+2y

2p| p

3y

S,(p) = (7.10

The distribution that optimizes the entrofy.1) with the
constraints of the canonical ensemb(2s3) is, by construc-
tion,

pi:anRK,r}<— /Xg(Ei—M)>, (7.11
where we recall that the deformed exponential gxfx) is
defined as the inverse of the deformed logarithm, which ex-
ists since I, () is @ monotonic function. The paramejer
is determined by;p;=1

In the (k,r)—(0,0) limit, A\=1 anda=€%, and Eq.(7.11)
reduces to the well-known Gibbs distribution

=Z(B) *exp- BE), (7.12

where the partition function is given b¥(B8)=exp1-Bu)
=2, exp(—BE;). The quantity exp-BE) is named the Boltz-
mann factor. Analogously we can call exp(-BE/\) the
generalized Boltzmann factor.

We observe that the distributioi¥.11) cannot be factor-
ized as in Eq(7.12): the normalization constraint is satisfied

Entropies with the same broken-curve style yield distribu-by fixing w in the generalized Boltzmann factor.

tions with the same-power asymptotic behaviorx'td

Figure 3 shows the generalized Boltzmann factors corre-

=1,4/3, 2, and 4rom top to bottom; the solid curve shows sponding to the four one-parameter entropies of Fig. 2.

the Shannon entropy.

Curves with the same style have the same asymptotic behav-
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FIG. 3. The generalized Boltzmann factors that correspond to entropies in Fig. 2.

ior. Given this constraint and the normalization, the main
difference between the distributions is in the middle region
which joins the linear regioiix<1) and the Zip-Pareto re-

gion (x>1).

VIIl. LESCHE INEQUALITY

N

=-\Y piA

i=1

N ~-\A(pi/a)

i=1 J-\A(0")

2

where in the second equality we have used Bdl), in the
last equality we have made the change of varialdes

(8.1

An important issue is whether the entropies of the family_)‘A(X/a)' and A(0") =lim,¢+A(x). For the moment we

e the notatiom\(x) and £(x), since we do not need the

under consideration are stable under small changes of tHee : )
distribution [23,24,29,31: we want to demonstrate that, if SPecific form of the_?eformed logarithm and exponential.
the two distributions are sufficiently close, the corresponding”Sing the fact that\™(x)=£(x) for the class of entropies
relative difference of entropies can be made as small as origder scrutiny, one finds

wishes. To this end, we rewrite the entrof@/1):

So) % -\A(0") [ g( S)}d AAGY)
= — i —al| - — S—
_ % b i=1 J -\A(pi/a) P A
S(p) =~ = PiA(p:) N Ao
I= S
-3 [pi—aé’(— )] ds— MA(0Y)
i=1 J -1 N s

N ! d
—El . d—x[xA(x)]dx

-\A(0")
= J [1-A(p,s)]ds-1, (8.2
N P X -1
=-\X A()dx
i=1Jo a
N B N p where in the second equality we useégp,=1, a&(1/\)
=-2\> XA <X> +AD, Xd[A<X)]dX = af(-s/\)>p; for —1<s<-NA(p;/ ), and the definitions
i=1 allo i;do dx[ \a [x],=maxx,0) and
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(8.3

wwa-§lo-(3)].

i=1 A

From now on we revert to the notation gxp(x) and
In;.r1(x). We remark that the upper limit of the integrsy,
=-\A(0*) in Eq. (8.2 is spy=+ for r#|«| and s,
=(1/2||) for r=|«|; see Eq(4.11).

The definition ofA(p,s), Eq. (8.3), implies that[28]

N

|Na$—A®5ﬂ<§ym—qFﬂm—mh, (8.4

and, for values o6=-\ Iny, ,(1/N),

el 3o-rom (2]

N
<>p= (8.5
i=1
from which it follows that
s
|A(p,s) — A(q,9)| < Na exqm<— X) . (8.6)

From Eq.(8.2 the absolute difference of the entropies of |.

two different distributionsp={p;};
satisfies

-1,..n and g={g}i=1

Sm
Ser(P) = Ser(@)| = ‘ f [A(p,s) —A(q,s)]ds
-1
Sm
SJ |A(p!S)_A(q!S)|dS
-1
{
:f |A(p,s) - A(g,s)|ds
-1

Sm
+J |A(p,s) - A(g,9)[ds.  (8.7)
4

Choosing A Ing, 1 (1/N)< € <sy, by using Eq(8.4) in the

first integral and Eq(8.6) in the second integral of E¢8.7),
we obtain

Ser(P) = Ser(@)| < llp—qlly(€ + 1)

Sm s
+ Naj erK,r}<— X)ds. (8.8
¢

In particular Eq.(8.8) holds for that valug that minimizes

the right-hand side of E(8.8),

Femni [205)

as long ag=-\ Ing,r1(1/N), which is true when

(8.9

PHYSICAL REVIEW E 71, 046128(2005

lp—qll; < a, (8.10

i.e., for sufficiently close distributions, according to the met-
ric [I---1l;. Introducing Eqs(8.9) and(8.10 in Eqg. (8.8 and
performing the integration using the res(@t16), we obtain

[Ser(P) - ,r(Q)|$|lp—ql|1{ ln{Kr}(”qu”l)]
(8.11)

and the relative difference of entropies can be written as

‘ Ser(P) = Ser(0)

8.1
Sthax (612

= FK,r(” p- q”l’ N) ’

with

lp—qlly B lp—qlly
In{K,-r}(N>[1 '%}( N )]

(8.13

Fer(lp=ally,N) =

becauses, .= Ing, - (N).

This result demonstrates that if the two distributions are
sufficiently close the corresponding absolute difference of
entropies can be made as small as one wishes, sindd.By.
implies that lim_,o+x Ing, ,(x)=0.

In particular, the Lesche inequality for the family of en-
tropies under scrutiny is valid also in the thermodynamic
limit N— oo

lim  lim F,, (o - all,N) = 0.
lp-p’||-0" N-—==

(8.19

This last result is not trivial, since the thermodynamical limit
introduces nonanalytical behaviors that could produce finite
entropy differences between probability distributions infini-
tesimally close. We conclude this section by noting that
Lesche stability of théx,r) family of entropies follows also
from the general proof given if81].

IX. CONCLUSIONS

In order to unify several entropic forms, the canonical
MaxEnt principle has been applied to a generic trace-form
entropy obtaining the differential-functional equati¢.g)
for the corresponding generalized logarithm, when the ensu-
ing distribution function is required to be expressed in terms
of the generalized exponential through the natural relation
(2.6).

The solution of this equation yields the biparametric fam-
ily of logarithms

| XX 1
M (00 =X = CEY
the corresponding entrod®4-34 is

Selp)=- Epl”p' f 9.2

This entropy is a mathematically and physically sound en-
tropy when the parameterg and r belong to the region

046128-11



KANIADAKIS, LISSIA, AND SCARFONE PHYSICAL REVIEW E71, 046128(2005

shown in Fig. 1 and, therefore, tlie,r) logarithm satisfies

the set of propertie&t.1)—(4.6). In particular these entropies There remains the question of the relevance of each math-

satisfy the Lesche stability condition. ematically sound entropy to specific physical situations. In
Distribution functions obtained by extremizing the en-fact a wide class of deformed logarithms satisfy a set of

tropy (9.2) have power-law asymptotic behaviors: such be-reasonable mathematical properties and physical constraints,

haviors could be relevant for describing anomalous systemsn particular concavity, related to thermodynamic stability,

a comparison between several one-parameter distributioand the Lesche inequality, related to the experimental robust-

can be explicitly given by algebraic methods.

functions is shown in Fig. 3.

ness.

In addition, we have shown that several important one-

parameter generalized entropi€Bsallis entropy, Abe en-

tropy, andx entropy are specific cases of this family; when
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