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Network reachability of real-world contact sequences
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We use real-world contact sequences, time-ordered lists of contacts from one person to another, to study how
fast information or disease can spread across network of contacts. Specifically we measeaehhbility
time—the average shortest time for a series of contacts to spread information between a reachable pair of
vertices(a pair where a chain of contacts exists leading from one person to thg-etmet thereachability
ratio—the fraction of reachable vertex pairs. These measures are studied using conditional uniform graph tests.
We conclude, among other things, that the network reachability depends much on a core where the path lengths
are short and communication frequent, that clustering of the contacts of an edge in time tends to decrease the
reachability, and that the order of the contacts really does make sense for dynamical spreading processes.
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I. INTRODUCTION the vertex(person i to the vertexj at timet [or along the

The advent of modern database technology has great§dge(i.j) at timet]. For simplicity we set the first time o2
vitalized the statistical study of networks. The vastness of th& zero, so the times d belongs to the intervdD, ty;l. We
available data sets makes this field apt for the techniques dét L denote number of contacts amdl the number of di-
statistical physic§1-3]. One particular example that has rected edges. Theontac) network is a set oN verticesV,
been extensively studied is the contact networks of individutogether with a set oM directed edge& such that a pair
als[4-8]. The vertices in this kind of networks are individu- (i,j) of vertices is a member dE if and only if there is a
als, and an edge between two people means that there h@se t such that(i,j,t) e C. We letk denote the degree of a
been a contact between these persons. Typical data sets f@irtex (the number adjacent edgeSince the edges are di-
this kind of networks are lists of messages through someected, it is sensible to distinguish between in and out de-
electronic medium, like e-mailg6—8] or instant messenger grees. We let denote the number of contacts along a par-

applications[5]. In many cases, the times of the contactsjc,jar edge. Following Ref13] we call a list of contacts of
may also be available, which makes the data set much more

informative than the corresponding contact network. Some
studies of the temporal statistics of such data sets have been
made[9-11], but how the contact dynamics affects the pic-

ture from the network topology is yet, in many respects, 3,4,7 02,8 3.4.7
obscure. In this paper we study some aspects of the temporal 7 7
contact pattern in a the framework of networks: How fast can 1 1
information, or disease, spread across an empirical contact 5.9
’ 11
%1\0 6
@240

t=0 t=3

network? How much of the network can be reached from one
vertex through a series of contacts? These are properties that 1, 2
depends not only on the number of neighbors of a vertex or
the number of contacts along an edge, but also the time or-
dering of the contactgl2,13. In Fig. 1 we give an illustra-
tion of such spreading processes.

We call a network where information can spread between
most pairs of vertices through a series of contacts and where
the spreading is comparatively fast, a network with high
reachability We quantify and measure reachability for four
data sets from e-mail exchange and contacts within an Inter-
net community. The results are analyzed by a systematic use
of conditional uniform graph tests. The reachability scaling
in the large-time limit is also discussed. We use the metaphor
of information, or rumor, spreading, but the results applies to
a range of dynamical processes.

Il. PRELIMINARIES FIG. 1. (Color online) An illustration of optimal spreading pro-
cesses through a contact sequence. The information tratibter
contact$ occurs in the direction of the arrows at the times marked

By a contact sequence/e mean a set of ordered triples on the edges. The vertices that can have the information and the
C={(i,],t)}, where the triple is referred to ascantactfrom  time respecting paths are shown in darker color.

A. Definitions
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TABLE I. The number of verticed\, edgesM, and contactd,, as well as the total sampling tintg; for
our four data sets.

N M L tior (days
pussokram.com 29341 174662 536276 512.0
Ebelet al. 57194 103083 447543 112.0
Eckmannet al. 3188 39256 309125 81.7
Enron 78592 308147 1119874 2551.0
increasing times &me respecting pathJust “path” will refer  j in the contact sequence. The disadvantage of the Enron data

to a path, in general, in the contact network. We note that nget, compared with the other e-mail data sets, is that some of
other sets of contacts, other than time respecting paths, cahe e-mails that really were sent to, or received by, the per-
transfer information, disease, or commodity from one vertexsons has been deleted, either by the individuals themselves
to another in a contact sequence. Weétj,t) denote the  or during the preparation of the data set for the sake of pro-
shortest time to reach starting fromi at timet and 7(i,j)  tecting privacy. The sizes of the data sets can be found in
denote the corresponding time-averaged quantity. One probraple I. The time resolution is one second for all data sets.
lem is that there is not always a time-respecting path from T get a feeling for the data, we plot the average number
one vertex to another. We deal with this by both looking atyf girected edges per vertex and the average number of con-
the reachability timer— 7 averaged over all pairs such that 5ctg per directed edge in Fig. 2. We note that the four data
there exist a time-respecting path connecting them—andes differ much, both in the actual valuesMN andL/M
reachability ratio f—the fraction of the vertex pairs that does - the shape of the curves. We note that the Enron curves in

have a time-respecting path between them. A way to chara(]::- d) are very flat for earlv and late sampling times: thi
terize the network reachability with only one number would.; 'g. 20) very y sampiing fimes; this

. X L . is because quite few mails are dated to these intervals. It
be to consider the harmonic mean-fwhich is well defined would be reasonable to preprocess the data by discarding the
even if there are unreachable vertex paivgée do not do that prep y 9

since it is not a very intuitive quantity in that it is not the early and late Enron e-mails or removing the spam mails

time average of some actual process in the system. causing the jagged appearance of the curves in Kig, But
this would require a more detailed knowledge of the data.

B. Data sets

=

We use four real-world contact sequences all derived from ; ; =
communication over the Internet. One of the data sets is (@) 4 (b) o
based on contacts within the Swedish Internet community, I e
pussokram.com, primarily intended for romantic interactions =
[4]. In this data set the edges can represent messages ci _______________ 5l |
e-mail type, but they can also represent writing in guest 32-5 e 15V

books that are visible to the rest of the community. The other M/N K/__/_
three contact sequences are complied from e-mail exchange --- M
The data set of Ebett al. [6] and Eckmanret al. [9] are 0
constructed from log files of e-mail servers at two universi-

ties. In the data set of Ebel al. at least one vertex of each
contact is a student or employee of the university. The net- (©
work of the outer verticeéthe ones not corresponding to a 10
e-mail account hosted by the universitg not mapped. For
the data of Eckmanat al. no outer vertices are present. The
fourth data set is constructed from the e-mail directories of
150 top executives of the Enron corporation. This data set L
was released to public during the legal investigation concern-

ing the Enron corporation(available at http://www- 0
2.cs.cmu.edténron). The contact sequence was constructed

by parsing the e-mail headers and adding contacts frimn

if the addressi appears in the “From” field of the same g, 2. (Color online) The average number of edges per vertex
e-mail where the addregss present in the “To” fieldwe do  (or the average in or out degiesnd the average number of contacts
not include addresses in the “Cc” and “Bcc” field&s @ per edge for our four data setéa) the Swedish Internet dating
result this data set contains contacts between outer nodes;démmunity, pussokram.contb) the e-mail data of Ebeét al, (c)

the e-mail is from an outer vertéxand some other recipient the e-mail data of Eckmanet al, and(d) the e-mail data of Enron
j is also an outer vertex, then there will be a contact fitdm  executives.

N, L/M
N

200 400 0 50 100
sampling time (days) sampling time (days)

0 25 50 75 0 0 1000 2000
sampling time (days) sampling time (days)
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TABLE Il. The reachability time7 in days and the reachability ratfofor the different networks. The one-standard-deviation errors are
of the order of the fourth nonzero digits.is plotted againsf in Fig. 3.

Reachability timer Reachability ratiof

Real PT RT RC RE AR real PT RT RC RE AR

pussokram.com 219 173 213 192 233 316 0.289 0.471 0.512 0.597 0.236 0.878
Ebeletal. 74.7 71.7 70.1 61.6 70.4 83.1 0.0199 0.0380 0.0381 0.123 0.0162  0.00504

Eckmannet al. 22.8 21.0 20.5 10.1 23.9 7.61 0.538 0.593 0.592 0.657 0.545 1.00
Enron 1274 1196 1103 926 1290 1932 0.0544 0.0839 0.0724 0.0973  0.0596 0.338

Instead we simulate the data sets as they are and assume thaeraged over contact sequences with the time€ o&n-
the conclusions will be qualitatively correct due to the muchdomly permuted. The five conditional uniform test en-
larger amounts of good datéSome effects of strange com- sembles we use, all having the same number of vertices and
munication will be discussed explicitly belowkrom Fig. 2 edges, and number of contacts@sare the following.
we can also conclude that all properties of contact sequences Permuted times (PT)The set of contact sequences with
from computer mediated communication are not general—he times randomly permuted—i.e., the edges—and the num-
different settings of the data collection can record differentoer of occurrences of a particular edgedns unchanged, as
contact patterns. This is nothing special for this kind of datajs the set of times; only the times of the communication
but it indicates that generalizations must be made with caualong a particular edge are randomized.
tion. Random times (RT)'he ensemble with the same edges
and the same number of them@sbut the times are chosen

C. Numerical procedures uniformly randomly in the same interval as the timesCof
. . Random contacts (RCyVith the same set of edges @s
The size of the data sets has consequences for hows€.9.j,,t the numbers of contacts per edges are chosen at random

is to be calculated in practice. If the data set is small, one Cafk, it can be zero The times are chosen at randomais
computer(i,j,t) for each vertex pair an every time occurring time span

in C—for any't that is not inC we have Randomized edges (REJhe ensemble of contact se-

Hi,j,H =i, jt) +t—t', (1) quences with the_ same set of degrees as the network gener-
ated byC. The time list is the same &S, so that thenth
wheret’ is the largest time irC that is smaller than. Our  contact of the randomized sequence represents a contact be-
data sets are too large for such a procedatethe time of  tween vertices of the same degrees a€ iand occurs at the
writing). Instead we sample 100 times randomly over a in-same time as thath contact ofC.
terval[0,1t,,] and calculater(i, j,t) for each vertex pair. To Al random (AR) The contacts are completely random, as
use av less than 1 will give longer time-respecting paths  are the times; only the sizés M, N, andt,, are common to
time-respecting paths originating from individuals only the original network. Thus the corresponding graph is a Pois-
present in the end of the data set are omjttedince the son random grapfl5].
fraction of O(N) paths will decrease with the sampling time,  We note that the principles behind conditional uniform
the choice ofv matters less the larger the contact sequence igest are rather similar to those behind exponential random
and the choice ofv does not alter any qualitative conclu- graph model$16]. Such models, as usual in statistical phys-
sions. We use=0.3 throughout the study. The actual calcu-ics, are based on the assumption that when the constraints of
lation of (i, ,t) can be done i©O(L) time by initially mark-  a model are much fewer than the degrees of freedom, the
ing i by t and every other vertex “unvisited,” then running best choice of model is the one that maximizes the entropy
through C in the order of increasing times, and for every [17]. The difference is that conditional uniform graph tests
triple (i,j,t’) markingj with t’ if and only if j is marked usually haveO(N) constraints, whereas exponential random
“unvisited” andi is marked with a time tag. graphs typically havé(1) constraints.
We sample 100 randomized contact sequences for each
D. Conditional uniform graph tests conditional uniform graph test.

To put the observed into perspective and understand
how it results from the temporal contact pattern and the net- Il RESULTS
work topology, we compare the measured values with values '
averaged over ensembles of randomized contact sequences inln this section we give, using conditional uniform tests, a
“conditional uniform tests14]. By systematically integrat- thorough discussion about what structures of the data that
ing (or, rather, averagingut different types of structure one govern the reachability. After that follows two short sections
can see how these types of structure are contributing to then the how the reachability is influenced by the traits of the
measured result. For example, if we want to assess the instart and finish vertex of a time-respecting path and extrapo-
pact of the order of the contacts, we comparef C with = lation of the results to the limit of large times.
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& over a directed edge (i.e., the probability that an observéds
Eta .
ol— . . : . equal to or larger than the value on the absgissthdata sets show
1o 15% 20 % koo 1%500 2000 right-skewed and broad distributions lof

are more evenly spread out in tinfthe effect of the PT
randomizatiol, the waiting time between the contacts will
against the average reachability time for reachable vertex gajrs. decrease and so will the reachability time. If the message
shows results for the pussokram.com déarepresents the e-mail exchange along particular edges were not clustered in time,
data of Ebelet al, (c) is the results of the e-mail data of Eckmann the spread of information would thus probably be much
et al, and(d) the e-mail data of Enron executives. The actual valuesfaster. One may think of real-world processes that increases

FIG. 3. (Color online) The fraction of reachable vertex pairs
(vertex pairs between which a time-respecting path exptsted

are tablelized in Table II.

A. Reachability times and reachability ratio

means low values of and high values of. Thus points in

the reachability—there may exist waves of large-scale mes-
sage relaying, but apparently the dialog effect overshadows

the impact of such events. Already from this comparison we

see that one loses much information from the contact se-
The values forr and f are given in Table Il and plotted quence if one only consider the network it defines, no matter
against each other in Fig. 3. Good network reachabilityif the network is weighted18] or not.

The RT test generates slightly more randomized contact

the the upper left corner of the plots in Fig. 3 represent higlsequences than PT. In this case the times do not follow the
reachability, while the lower right corner mean low reach-daily routines of people—the probability of response after a
ability. Which of 7 andf is the more important may vary: If certain time has peaks at multiples of déf, e.g., the data
one is interested in how soon information can reach a certaiim Ref.[6] there is even a larger peak after one weaHlect-
small number of people, thenis the more relevant. If one is ing peoples’ daily(and weekly routines[10,11,19,20 As
interested in how many eventually will receive the informa-seen in Table Il the differences between the PT and RT ran-

tion, thenf is the more relevant.

The actual values ofr and f for the real-world data

Enron data, has the largesand that the smallest data gef

either.

engage in dialog with each othg-11] for a while; thus, the

domizations are not very big. This is maybe not very surpris-
ing since the sampling time is much larger than the men-
present few surprises. The largéss observed for the dens- tioned daily and weekly routine&vhich gives a structure

est e-mail data of Eckmaret al, which is natural since the that is removed by RT and could make a difference to. RT

size of the largest connected component is known to increassructural bias that would favor reachability in the RT ran-
with average degree. We also note that the sparsestafata domized sequences is that, in real data, some edges and ver-
Ebel et al) has the smallest. That the largest data set, the tices are created or ceas@fl. Ref.[10]) during the sampling
procedure which makes them inaccessible, in a time-
Eckmannet al) has the smallest is of course no surprise respecting sense, for early or late times, respectively. Evi-
dently, this has no major impact on the reachability.

For the conditional uniform tests we begin comparing the The RC randomization outputs contact sequences with yet
original networks with the one randomized according to theess structural constraints than the RT scheme. As it turns
PT constraints. PT, only involving permuting the times of theout—see Fig. 4—the distribution of contacts along a particu-
contacts, is the test giving the smallest change to the origindar edgel is skewed for all the data sets with broad tails. This
contact sequences. The reachability ratio of the rewired netehavior was observed for scientific collaboration and airline
works are consistently larger and the reachability timenetworks in Ref[18]; models of this behavior are given in
smaller. A natural explanation for this is that people tend toRefs.[21,22. These broad tails are replaced by a Poisson
distribution for the RC randomized networks. The more fre-
contacts along one edge tend to be clustered in time. For thguent contacts along the edges having few contacts in reality
reachability this means that the first contact of such a dialogncreases the network reachability, in terms both of the
will carry most of the time respecting paths. If the contactsreachability ratio and reachability timall RC points in Fig.
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3 lie above and to the left of the corresponding RT poirAs TABLE lll. The correlation coefficientr; for the number of
closer look at Fig. 4 shows that the largestlues for some contacts for adjacent edges—edges forming a directed path of
of the data sets are probably unrealistically big for a commulength two.rﬁ*E gives the reference value for ensembles of networks
nication in the normal sense. Some identical contacts ar¥ith the same degree sequence as the origials consistently
present in the data sets of Eheilal. (i.e., e-mails with the bigger thanr for_all_ networks. The digit i_n _parentheses gives the
same sender and recipient sent the same s¢cBhese pos- _one_—standard-dewatlon error of the last digit. Here 50 RE random-
sibly come from the same e-mail being addressed to th¥ations are used.

same receiver multiple times. If such multiple contacts were

filtered away, the reachability would be unaltered for the real M i

networks, but Iarg_er for the randomized netwotgmce they pussokram.com 0.0656 0.00GB

would be denser in C(_)ntaa_tsOne can also argue that such Ebel et al. 0.00188 0.000B)

events should be retained in some cases as spathother

one-to-many messagesn theory, can be read and spread Eckmannetal. —0.00626 ~0.0009)
information. We conclude that one needs to keep the pres- Enron 0.0251 —0.00G2)

ence of such abnormal edges in mind in the evaluation of

contacts sequences. domized networks. One possible explanation for the lower

Another way to extend RT to a more random ensembleER reachability is that the ER randomization removes a posi-
other than to choose random times for the contacts along thiéve | correlation between adjacent edges. Supposing the
edges such as in RC, is to randomize the edges, but keep theoadl distribution of Fig. 4 to some extent is due to some
set of degrees and the set of contacts per edge fixed. Thigersons being more active communicators than others; it is
approach, common for static networ&3], results in unani- likely that a large number of edges with many contacts lead
mously longer reachability times and smaller reachability rato and from such an individual, thus creating such an corre-
tios than for RT. The structure lost by ER randomizationlation. That there really is a positivel correlation for adja-
(with respect to RT is the degree-degree correlations andcent edges is shown in Table Ill. This positive correlation
clustering(a heightened probability for short circuit§hese  means that the passage—i.e., a paths of lendi @nsid-
networks have close to neutral degree-degree correlatioreyable distance since these are all small-world networks with
[10] and a slightly increased clustering compared to ER ranvery short average distangesthrough such a highly active

~

FIG. 5. The number of con-
tacts per edgeé plotted against the
out degree of the from vertgxe.,

p " the first argument of the directed
to from to from edge kqom and the in degree of
the to vertexkqom. The plots are
for the data of@) pussokram.com,
(b) Ebelet al,, (c) Eckmannet al.,
and (d) Enron, respectively. The
abscissae are logarithmically
binned.

~

to from to from
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1000 FIG. 6. (Color online) The
reachability ratiof as a function
of the out degree of the start ver-
tex of the time respecting path
Kstart@nd the in degree of the final

Kot K it vertex of the path verteXrger

The horizontal axes are logarith-

mically binned.(a) shows the re-

sult for the Internet community,

pussokram.com(b), (c), and (d)

show the e-mail exchange se-

quences of the data of Ebet al,

Eckmannet al, and the Enron,

respectively.

1000

target start

1000

k
target start k
g target start

communicator is very rapid. A perhaps even more significaninterval as the original contact sequences. For the three
correlation removed by RE is the increased communicatiomlenser(in k andl) data sets—the data of pussokram.com,
rates for edges connecting vertices of high degree. This iEckmannet al, and the Enron—the AR scheme gives the
described for airline networks and networks of scientific col-highest reachability ratio. For the very sparse data of Ebel
laborations in Ref[18] but holds for our networks too, as al. AR lower f considerably. The effect must partly have a
shown in Fig. 5. Since our networks are directed, we plst  dynamic explanation as this data set is above the threshold
a function of the out degree of the from vertéke edge’s for a giant strongly connected componéit=N) [25].
first argumentand in degree of the to vertdthe out degree
is related to the outward contact activity of the from vertex
and is therefore be the relevant degré#e see very high
communication along edges connecting the vertices with
highest degree for all our networKszor the data of Ebedt So far we have dealt with average reachability properties.
al. in Fig. 5(b) the highest value is so high;~1000, that we In this section we will take a brief look on how the reach-
truncate the plot to be able to see the rest of the structure arability depends on the characteristics of the individuals. In
to be able to compare with the other networks. This is probFig. 6 we plotf as a function of the out degrdg,, of the
ably related to the edges with unrealistically high communi-first vertex of a time-respecting path and the in ded¢gge:
cation rates discussed abolédges between vertices of of the last vertex of the path. The reason to look at the out
high degree are known to carry many shortest pgd this  degree of the start vertex and the in degree of the target
correlation means that the shortest paths, in the real data se¥®rtex is similar as for the to and from vertices in the context
are possible to utilize in time-respecting paths. Clearly theof Fig. 5—these are the relevant degrees for the number of
removal of this structure by RE randomization will decreasepaths leading to and from the vertices. We see that for all
the reachability. data sets thé for medium-degree vertices is almost as high
The AR randomized networks are Poisson random graphas for the vertices of highest degree; only the low-degree
with the sameN andM as the original networks, and thhe vertices have significantly lower reachability ratios—on the
contacts spread out with uniform probability over the sameother hand, the low-degree vertices are, by far, the most fre-

B. Reachability and the characteristics of individual vertices
and edges
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- - - — such as how the contact patterns affect the network reach-
2001 @ 1 ) & % ability (discussed in the previous two sectiprasd short-

5. o | time dynamic processes. That thecurve of Enron data is
o smooth and of the same shape as the other curves indicates
*100L , 4 <o that the artificially low communication rates for early and
25t @ ] late sampling timegsee Sec. Il Bdo not affect our conclu-
sions qualitatively(Indeed, moderate truncations of the sam-

o pling interval do not change, e.g., the surfaces of Figs. 5 and

0 L I 0 . ; .
0 250 500 0 5 100 6 much eithej.

Tiot Tiot
- o ] ' o IV. SUMMARY AND DISCUSSION
o o
© & i 1000 (@) o ¢ | We have studied how fast information can spread among
o < people involved in electronic communication. Four data
T o B 1= ° sets—one from communication within an Internet commu-
5 or - 1 nity and three e-mail data sets—are used. We find that these
° data sets can be characterized by a core with short path
3 lengths and frequent contacts and a periphery to which infor-
% 25 50 75 % 1000 2000 mation is relatively unlikely to reach. We note that the dis-
tiot Liot tribution of contacts per edge is highly skewed, and if this
were not the case, the dynamics would be much faster. The
FIG. 7. (Color online) The convergence Gfas a function of the  fact that people engage in dialogs with others tends to slow
number sampling time of subsets of the contact sequences. Thgown the dynamicgcompared to if the sending times were
panes correspond to the different data(seth the same labeling as independent of earlier communicatjoihis implies that the
Fig. 2. The error bars are smaller than the symbol size except for iy qer of the contacts matters much and one loses the full
(d) where they are of about the same size as the symbols. picture by converting contact sequences to weighted net-
works. We discuss finite-size scaling by truncating the sam-
quent in the data sets. Plots DBgainstky,; andkige:give  pling interval and conclude that it is very useful method, but
the same picture—reachability in this sense is also stricthonly for processes of the same time scale, or faster, as the
increasing with the degree of the start and target verticessampling time.
The picture emerging is that the contact sequences have a In the discussion of the data sets, we mention the e-mail
core[26,27 of not only a very small diameter but al¢of.  data sets are incomplete with respect to outer verticesi-
Fig. 5 very fast dynamics. ces not belonging to the sampled e-mail server for the data of
Ebel et al. and Eckmannet al) or not belonging to the
sampled e-mail directorigghe Enron data E-mails between
outer vertices are not recorded in the data of HEiedl. and
Statistical physics traditionally deals with the limit of only partially present in the Enron data whereas the data of
large size. In this section we discuss the relevance of thigckmanret al.do not include messages to outer vertices. We
limit and how it can be studied through finite-size scaling.note that, while these different sampling procedures certainly
An intuitive method is to average truncated intervalsaffects many quantitieésee Fig. 2, the conclusions above
[tétare tetopl C [tstar tstopl O increasing length. In Fig. 7 we about how different structures affect the reachability remain
plot 7 for our four data sets as a function of the samplingintact.
time averaged over 100 intervals of every length. The curves Not all messages contain information of the kind that
are increasing with a convex shape, suggesting either a copeople would relay to others. Technically, considering also
vergence to a nonzero value or a divergence towards infinitghe finite size of the sampling intervals, we obtain lower
We note that thé— o limits of both 7 andf are nontrivial—  bounds on the reachability time and upper bounds on the
there can of course be time-respecting paths of the order @tachability fraction. On the other hand, we believe that our
the sampling time, but the fraction of such long paths will qualitative conclusions would be unaltered for the averages
decrease. Thus the concavity of thi) curves is quite ex- of f and 7 in real information spreading.
pected. There are many time scales present in the data: So far, the spreading processes we have mentioned has
Above we mention days and weeks that separate recurringeen the diffusion of rumors and similar information. Our
routines. The average duration of an edge was studied in Refesults may also apply to computer virus epidemiology.
[10]. Furthermore, the average time between contacts perhere is, presumably, a big difference between the contact
vertex and the lifetime of vertices both define time scalessequences of viral and regular emails as the former often are
The finite-size scaling method discussed above is useful fasent to many recipients in a short time period, but only once
processes affected by time scales similar to, or shorter thaper recipien{8]. The methods we use, however, are be per-
the sampling time. It is hard to use it to deduce the  fectly applicable to a sequence of computer virus transmis-
limits of 7 andf. So in the absence of data sets with consid-sions.
erably longer sampling times, we have to focus on questions There are many ways to extend this work. For example

C. Extrapolations to the large-time limit
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not only are the shortest time-respecting paths relevant fasystems of, e.g., epidemiology are affected by by dynamical
spreading the dynamics of different kinds—information properties of the contact patterns.

might spread by a longer time-respecting path. A sensible
extension of this study would therefore to include these
longer paths in the picturécf. Ref. [28]). Much work re- We thank Holger Ebel and Jean-Pierre Eckmann for help

mains to get a full statistical characterization of contact sewith the data acquisition and Michael Gastner, Mark New-
quences, not to mention the understanding of how dynamicahan, and Juyong Park for comments.
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