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We use real-world contact sequences, time-ordered lists of contacts from one person to another, to study how
fast information or disease can spread across network of contacts. Specifically we measure thereachability
time—the average shortest time for a series of contacts to spread information between a reachable pair of
verticessa pair where a chain of contacts exists leading from one person to the otherd—and thereachability
ratio—the fraction of reachable vertex pairs. These measures are studied using conditional uniform graph tests.
We conclude, among other things, that the network reachability depends much on a core where the path lengths
are short and communication frequent, that clustering of the contacts of an edge in time tends to decrease the
reachability, and that the order of the contacts really does make sense for dynamical spreading processes.
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I. INTRODUCTION

The advent of modern database technology has greatly
vitalized the statistical study of networks. The vastness of the
available data sets makes this field apt for the techniques of
statistical physicsf1–3g. One particular example that has
been extensively studied is the contact networks of individu-
als f4–8g. The vertices in this kind of networks are individu-
als, and an edge between two people means that there has
been a contact between these persons. Typical data sets for
this kind of networks are lists of messages through some
electronic medium, like e-mailsf6–8g or instant messenger
applicationsf5g. In many cases, the times of the contacts
may also be available, which makes the data set much more
informative than the corresponding contact network. Some
studies of the temporal statistics of such data sets have been
madef9–11g, but how the contact dynamics affects the pic-
ture from the network topology is yet, in many respects,
obscure. In this paper we study some aspects of the temporal
contact pattern in a the framework of networks: How fast can
information, or disease, spread across an empirical contact
network? How much of the network can be reached from one
vertex through a series of contacts? These are properties that
depends not only on the number of neighbors of a vertex or
the number of contacts along an edge, but also the time or-
dering of the contactsf12,13g. In Fig. 1 we give an illustra-
tion of such spreading processes.

We call a network where information can spread between
most pairs of vertices through a series of contacts and where
the spreading is comparatively fast, a network with high
reachability. We quantify and measure reachability for four
data sets from e-mail exchange and contacts within an Inter-
net community. The results are analyzed by a systematic use
of conditional uniform graph tests. The reachability scaling
in the large-time limit is also discussed. We use the metaphor
of information, or rumor, spreading, but the results applies to
a range of dynamical processes.

II. PRELIMINARIES

A. Definitions

By a contact sequencewe mean a set of ordered triples
C=hsi , j ,tdj, where the triple is referred to as acontactfrom

the vertexspersond i to the vertexj at time t for along the
edgesi , jd at timetg. For simplicity we set the first time ofC
to zero, so the times ofC belongs to the intervalf0,tstopg. We
let L denote number of contacts andM the number of di-
rected edges. Thescontactd network is a set ofN verticesV,
together with a set ofM directed edgesE such that a pair
si , jd of vertices is a member ofE if and only if there is a
time t such thatsi , j ,tdPC. We let k denote the degree of a
vertex sthe number adjacent edgesd. Since the edges are di-
rected, it is sensible to distinguish between in and out de-
grees. We letl denote the number of contacts along a par-
ticular edge. Following Ref.f13g we call a list of contacts of

FIG. 1. sColor online.d An illustration of optimal spreading pro-
cesses through a contact sequence. The information transfersthe
contactsd occurs in the direction of the arrows at the times marked
on the edges. The vertices that can have the information and the
time respecting paths are shown in darker color.
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increasing times atime respecting path. Just “path” will refer
to a path, in general, in the contact network. We note that no
other sets of contacts, other than time respecting paths, can
transfer information, disease, or commodity from one vertex
to another in a contact sequence. We lettsi , j ,td denote the
shortest time to reachj starting fromi at time t and tsi , jd
denote the corresponding time-averaged quantity. One prob-
lem is that there is not always a time-respecting path from
one vertex to another. We deal with this by both looking at
the reachability timet̂—t averaged over all pairs such that
there exist a time-respecting path connecting them—and
reachability ratio f—the fraction of the vertex pairs that does
have a time-respecting path between them. A way to charac-
terize the network reachability with only one number would
be to consider the harmonic mean oft swhich is well defined
even if there are unreachable vertex pairsd. We do not do that
since it is not a very intuitive quantity in that it is not the
time average of some actual process in the system.

B. Data sets

We use four real-world contact sequences all derived from
communication over the Internet. One of the data sets is
based on contacts within the Swedish Internet community,
pussokram.com, primarily intended for romantic interactions
f4g. In this data set the edges can represent messages of
e-mail type, but they can also represent writing in guest
books that are visible to the rest of the community. The other
three contact sequences are complied from e-mail exchange.
The data set of Ebelet al. f6g and Eckmannet al. f9g are
constructed from log files of e-mail servers at two universi-
ties. In the data set of Ebelet al. at least one vertex of each
contact is a student or employee of the university. The net-
work of the outer verticessthe ones not corresponding to a
e-mail account hosted by the universityd is not mapped. For
the data of Eckmannet al. no outer vertices are present. The
fourth data set is constructed from the e-mail directories of
150 top executives of the Enron corporation. This data set
was released to public during the legal investigation concern-
ing the Enron corporationsavailable at http://www-
2.cs.cmu.edu/˜enron/d. The contact sequence was constructed
by parsing the e-mail headers and adding contacts fromi to j
if the addressi appears in the “From” field of the same
e-mail where the addressj is present in the “To” fieldswe do
not include addresses in the “Cc” and “Bcc” fieldsd. As a
result this data set contains contacts between outer nodes; if
the e-mail is from an outer vertexi and some other recipient
j is also an outer vertex, then there will be a contact fromi to

j in the contact sequence. The disadvantage of the Enron data
set, compared with the other e-mail data sets, is that some of
the e-mails that really were sent to, or received by, the per-
sons has been deleted, either by the individuals themselves
or during the preparation of the data set for the sake of pro-
tecting privacy. The sizes of the data sets can be found in
Table I. The time resolution is one second for all data sets.

To get a feeling for the data, we plot the average number
of directed edges per vertex and the average number of con-
tacts per directed edge in Fig. 2. We note that the four data
sets differ much, both in the actual values ofM /N andL /M
and the shape of the curves. We note that the Enron curves in
Fig. 2sdd are very flat for early and late sampling times; this
is because quite few mails are dated to these intervals. It
would be reasonable to preprocess the data by discarding the
early and late Enron e-mails or removing the spam mails
causing the jagged appearance of the curves in Fig. 2sbd, but
this would require a more detailed knowledge of the data.

TABLE I. The number of vertices,N, edges,M, and contacts,L, as well as the total sampling timettot for
our four data sets.

N M L ttot sdaysd

pussokram.com 29341 174662 536276 512.0

Ebel et al. 57194 103083 447543 112.0

Eckmannet al. 3188 39256 309125 81.7

Enron 78592 308147 1119874 2551.0

FIG. 2. sColor online.d The average number of edges per vertex
sor the average in or out degreed and the average number of contacts
per edge for our four data sets:sad the Swedish Internet dating
community, pussokram.com,sbd the e-mail data of Ebelet al., scd
the e-mail data of Eckmannet al., andsdd the e-mail data of Enron
executives.
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Instead we simulate the data sets as they are and assume that
the conclusions will be qualitatively correct due to the much
larger amounts of good data.sSome effects of strange com-
munication will be discussed explicitly below.d From Fig. 2
we can also conclude that all properties of contact sequences
from computer mediated communication are not general—
different settings of the data collection can record different
contact patterns. This is nothing special for this kind of data,
but it indicates that generalizations must be made with cau-
tion.

C. Numerical procedures

The size of the data sets has consequences for how, e.g.,t̂
is to be calculated in practice. If the data set is small, one can
computetsi , j ,td for each vertex pair an every time occurring
in C—for any t that is not inC we have

tsi, j ,td = tsi, j ,t8d + t − t8, s1d

where t8 is the largest time inC that is smaller thant. Our
data sets are too large for such a proceduresat the time of
writingd. Instead we sample 100 times randomly over a in-
terval f0,nttotg and calculatetsi , j ,td for each vertex pair. To
use an less than 1 will give longer time-respecting pathssas
time-respecting paths originating from individuals only
present in the end of the data set are omittedd. Since the
fraction ofOsNd paths will decrease with the sampling time,
the choice ofn matters less the larger the contact sequence is
and the choice ofn does not alter any qualitative conclu-
sions. We usen=0.3 throughout the study. The actual calcu-
lation of tsi , j ,td can be done inOsLd time by initially mark-
ing i by t and every other vertex “unvisited,” then running
through C in the order of increasing times, and for every
triple si , j ,t8d marking j with t8 if and only if j is marked
“unvisited” andi is marked with a time tag.

D. Conditional uniform graph tests

To put the observedt̂ into perspective and understand
how it results from the temporal contact pattern and the net-
work topology, we compare the measured values with values
averaged over ensembles of randomized contact sequences in
“conditional uniform tests”f14g. By systematically integrat-
ing sor, rather, averagingd out different types of structure one
can see how these types of structure are contributing to the
measured result. For example, if we want to assess the im-
pact of the order of the contacts, we comparet of C with t

averaged over contact sequences with the times ofC ran-
domly permuted. The five conditional uniform test en-
sembles we use, all having the same number of vertices and
edges, and number of contacts asC, are the following.

Permuted times (PT). The set of contact sequences with
the times randomly permuted—i.e., the edges—and the num-
ber of occurrences of a particular edge inC is unchanged, as
is the set of times; only the times of the communication
along a particular edge are randomized.

Random times (RT). The ensemble with the same edges
and the same number of them asC, but the times are chosen
uniformly randomly in the same interval as the times ofC.

Random contacts (RC). With the same set of edges asC,
but the numbers of contacts per edges are chosen at random
sso it can be zerod. The times are chosen at random inC’s
time span.

Randomized edges (RE). The ensemble of contact se-
quences with the same set of degrees as the network gener-
ated byC. The time list is the same asC, so that thenth
contact of the randomized sequence represents a contact be-
tween vertices of the same degrees as inC and occurs at the
same time as thenth contact ofC.

All random (AR). The contacts are completely random, as
are the times; only the sizesL, M, N, andttot are common to
the original network. Thus the corresponding graph is a Pois-
son random graphf15g.

We note that the principles behind conditional uniform
test are rather similar to those behind exponential random
graph modelsf16g. Such models, as usual in statistical phys-
ics, are based on the assumption that when the constraints of
a model are much fewer than the degrees of freedom, the
best choice of model is the one that maximizes the entropy
f17g. The difference is that conditional uniform graph tests
usually haveOsNd constraints, whereas exponential random
graphs typically haveOs1d constraints.

We sample 100 randomized contact sequences for each
conditional uniform graph test.

III. RESULTS

In this section we give, using conditional uniform tests, a
thorough discussion about what structures of the data that
govern the reachability. After that follows two short sections
on the how the reachability is influenced by the traits of the
start and finish vertex of a time-respecting path and extrapo-
lation of the results to the limit of large times.

TABLE II. The reachability timet̂ in days and the reachability ratiof for the different networks. The one-standard-deviation errors are
of the order of the fourth nonzero digits.t̂ is plotted againstf in Fig. 3.

Reachability timet̂ Reachability ratiof

Real PT RT RC RE AR real PT RT RC RE AR

pussokram.com 219 173 213 192 233 316 0.289 0.471 0.512 0.597 0.236 0.878

Ebel et al. 74.7 71.7 70.1 61.6 70.4 83.1 0.0199 0.0380 0.0381 0.123 0.0162 0.00504

Eckmannet al. 22.8 21.0 20.5 10.1 23.9 7.61 0.538 0.593 0.592 0.657 0.545 1.00

Enron 1274 1196 1103 926 1290 1932 0.0544 0.0839 0.0724 0.0973 0.0596 0.338
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A. Reachability times and reachability ratio

The values fort̂ and f are given in Table II and plotted
against each other in Fig. 3. Good network reachability
means low values oft̂ and high values off. Thus points in
the the upper left corner of the plots in Fig. 3 represent high
reachability, while the lower right corner mean low reach-
ability. Which of t̂ and f is the more important may vary: If
one is interested in how soon information can reach a certain
small number of people, thent̂ is the more relevant. If one is
interested in how many eventually will receive the informa-
tion, then f is the more relevant.

The actual values oft̂ and f for the real-world data
present few surprises. The largestf is observed for the dens-
est e-mail data of Eckmannet al., which is natural since the
size of the largest connected component is known to increase
with average degree. We also note that the sparsest datasof
Ebel et al.d has the smallestf. That the largest data set, the
Enron data, has the largestt̂ and that the smallest data setsof
Eckmannet al.d has the smallestt̂ is of course no surprise
either.

For the conditional uniform tests we begin comparing the
original networks with the one randomized according to the
PT constraints. PT, only involving permuting the times of the
contacts, is the test giving the smallest change to the original
contact sequences. The reachability ratio of the rewired net-
works are consistently larger and the reachability time
smaller. A natural explanation for this is that people tend to
engage in dialog with each otherf9–11g for a while; thus, the
contacts along one edge tend to be clustered in time. For the
reachability this means that the first contact of such a dialog
will carry most of the time respecting paths. If the contacts

are more evenly spread out in timesthe effect of the PT
randomizationd, the waiting time between the contacts will
decrease and so will the reachability time. If the message
exchange along particular edges were not clustered in time,
the spread of information would thus probably be much
faster. One may think of real-world processes that increases
the reachability—there may exist waves of large-scale mes-
sage relaying, but apparently the dialog effect overshadows
the impact of such events. Already from this comparison we
see that one loses much information from the contact se-
quence if one only consider the network it defines, no matter
if the network is weightedf18g or not.

The RT test generates slightly more randomized contact
sequences than PT. In this case the times do not follow the
daily routines of people—the probability of response after a
certain time has peaks at multiples of dayssfor, e.g., the data
in Ref. f6g there is even a larger peak after one weakd reflect-
ing peoples’ dailysand weeklyd routines f10,11,19,20g. As
seen in Table II the differences between the PT and RT ran-
domizations are not very big. This is maybe not very surpris-
ing since the sampling time is much larger than the men-
tioned daily and weekly routinesswhich gives a structure
that is removed by RT and could make a difference to PTd. A
structural bias that would favor reachability in the RT ran-
domized sequences is that, in real data, some edges and ver-
tices are created or ceasedscf. Ref.f10gd during the sampling
procedure which makes them inaccessible, in a time-
respecting sense, for early or late times, respectively. Evi-
dently, this has no major impact on the reachability.

The RC randomization outputs contact sequences with yet
less structural constraints than the RT scheme. As it turns
out—see Fig. 4—the distribution of contacts along a particu-
lar edgel is skewed for all the data sets with broad tails. This
behavior was observed for scientific collaboration and airline
networks in Ref.f18g; models of this behavior are given in
Refs. f21,22g. These broad tails are replaced by a Poissonl
distribution for the RC randomized networks. The more fre-
quent contacts along the edges having few contacts in reality
increases the network reachability, in terms both of the
reachability ratio and reachability timesall RC points in Fig.

FIG. 3. sColor online.d The fraction of reachable vertex pairs
svertex pairs between which a time-respecting path existsd plotted
against the average reachability time for reachable vertex pairs.sad
shows results for the pussokram.com data,sbd represents the e-mail
data of Ebelet al., scd is the results of the e-mail data of Eckmann
et al., andsdd the e-mail data of Enron executives. The actual values
are tablelized in Table II.

FIG. 4. The cumulative distribution of the number of contacts
over a directed edgel si.e., the probability that an observedl is
equal to or larger than the value on the abscissad. All data sets show
right-skewed and broad distributions ofl.
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3 lie above and to the left of the corresponding RT pointsd. A
closer look at Fig. 4 shows that the largestl values for some
of the data sets are probably unrealistically big for a commu-
nication in the normal sense. Some identical contacts are
present in the data sets of Ebelet al. si.e., e-mails with the
same sender and recipient sent the same secondd. These pos-
sibly come from the same e-mail being addressed to the
same receiver multiple times. If such multiple contacts were
filtered away, the reachability would be unaltered for the real
networks, but larger for the randomized networksssince they
would be denser in contactsd. One can also argue that such
events should be retained in some cases as spamsand other
one-to-many messagesd, in theory, can be read and spread
information. We conclude that one needs to keep the pres-
ence of such abnormal edges in mind in the evaluation of
contacts sequences.

Another way to extend RT to a more random ensemble,
other than to choose random times for the contacts along the
edges such as in RC, is to randomize the edges, but keep the
set of degrees and the set of contacts per edge fixed. This
approach, common for static networksf23g, results in unani-
mously longer reachability times and smaller reachability ra-
tios than for RT. The structure lost by ER randomization
swith respect to RTd is the degree-degree correlations and
clusteringsa heightened probability for short circuitsd. These
networks have close to neutral degree-degree correlations
f10g and a slightly increased clustering compared to ER ran-

domized networks. One possible explanation for the lower
ER reachability is that the ER randomization removes a posi-
tive l correlation between adjacent edges. Supposing the
broadl distribution of Fig. 4 to some extent is due to some
persons being more active communicators than others; it is
likely that a large number of edges with many contacts lead
to and from such an individual, thus creating such an corre-
lation. That there really is a positivel-l correlation for adja-
cent edges is shown in Table III. This positive correlation
means that the passage—i.e., a paths of length 2sa consid-
erable distance since these are all small-world networks with
very short average distancesd—through such a highly active

TABLE III. The correlation coefficientr ll for the number of
contacts for adjacent edges—edges forming a directed path of
length two.r ll

RE gives the reference value for ensembles of networks
with the same degree sequence as the original.r ll is consistently
bigger thanr ll

RE for all networks. The digit in parentheses gives the
one-standard-deviation error of the last digit. Here 50 RE random-
izations are used.

r ll r ll
RE

pussokram.com 0.0656 0.0003s3d
Ebel et al. 0.00188 0.0001s3d

Eckmannet al. 0.00626 −0.0003s7d
Enron 0.0251 −0.0007s2d

FIG. 5. The number of con-
tacts per edgel plotted against the
out degree of the from vertexsi.e.,
the first argument of the directed
edged kfrom and the in degree of
the to vertexkfrom. The plots are
for the data ofsad pussokram.com,
sbd Ebelet al., scd Eckmannet al.,
and sdd Enron, respectively. The
abscissae are logarithmically
binned.
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communicator is very rapid. A perhaps even more significant
correlation removed by RE is the increased communication
rates for edges connecting vertices of high degree. This is
described for airline networks and networks of scientific col-
laborations in Ref.f18g but holds for our networks too, as
shown in Fig. 5. Since our networks are directed, we plotl as
a function of the out degree of the from vertexsthe edge’s
first argumentd and in degree of the to vertexsthe out degree
is related to the outward contact activity of the from vertex
and is therefore be the relevant degreed. We see very high
communication along edges connecting the vertices with
highest degree for all our networks.fFor the data of Ebelet
al. in Fig. 5sbd the highestl value is so high,,1000, that we
truncate the plot to be able to see the rest of the structure and
to be able to compare with the other networks. This is prob-
ably related to the edges with unrealistically high communi-
cation rates discussed above.g Edges between vertices of
high degree are known to carry many shortest pathsf24g; this
correlation means that the shortest paths, in the real data sets,
are possible to utilize in time-respecting paths. Clearly the
removal of this structure by RE randomization will decrease
the reachability.

The AR randomized networks are Poisson random graphs
with the sameN and M as the original networks, and theL
contacts spread out with uniform probability over the same

interval as the original contact sequences. For the three
densersin k and ld data sets—the data of pussokram.com,
Eckmannet al., and the Enron—the AR scheme gives the
highest reachability ratio. For the very sparse data of Ebelet
al. AR lower f considerably. The effect must partly have a
dynamic explanation as this data set is above the threshold
for a giant strongly connected componentsM =Nd f25g.

B. Reachability and the characteristics of individual vertices
and edges

So far we have dealt with average reachability properties.
In this section we will take a brief look on how the reach-
ability depends on the characteristics of the individuals. In
Fig. 6 we plot f as a function of the out degreekstart of the
first vertex of a time-respecting path and the in degreektarget
of the last vertex of the path. The reason to look at the out
degree of the start vertex and the in degree of the target
vertex is similar as for the to and from vertices in the context
of Fig. 5—these are the relevant degrees for the number of
paths leading to and from the vertices. We see that for all
data sets thef for medium-degree vertices is almost as high
as for the vertices of highest degree; only the low-degree
vertices have significantly lower reachability ratios—on the
other hand, the low-degree vertices are, by far, the most fre-

FIG. 6. sColor online.d The
reachability ratiof as a function
of the out degree of the start ver-
tex of the time respecting path
kstart and the in degree of the final
vertex of the path vertexktarget.
The horizontal axes are logarith-
mically binned.sad shows the re-
sult for the Internet community,
pussokram.com;sbd, scd, and sdd
show the e-mail exchange se-
quences of the data of Ebelet al.,
Eckmann et al., and the Enron,
respectively.
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quent in the data sets. Plots oft̂ againstkstart andktarget give
the same picture—reachability in this sense is also strictly
increasing with the degree of the start and target vertices.
The picture emerging is that the contact sequences have a
core f26,27g of not only a very small diameter but alsoscf.
Fig. 5d very fast dynamics.

C. Extrapolations to the large-time limit

Statistical physics traditionally deals with the limit of
large size. In this section we discuss the relevance of this
limit and how it can be studied through finite-size scaling.
An intuitive method is to average truncated intervals
ftstart8 ,tstop8 g# ftstart,tstopg of increasing length. In Fig. 7 we
plot t̂ for our four data sets as a function of the sampling
time averaged over 100 intervals of every length. The curves
are increasing with a convex shape, suggesting either a con-
vergence to a nonzero value or a divergence towards infinity.
We note that thet→` limits of both t̂ and f are nontrivial—
there can of course be time-respecting paths of the order of
the sampling time, but the fraction of such long paths will
decrease. Thus the concavity of thet̂std curves is quite ex-
pected. There are many time scales present in the data:
Above we mention days and weeks that separate recurring
routines. The average duration of an edge was studied in Ref.
f10g. Furthermore, the average time between contacts per
vertex and the lifetime of vertices both define time scales.
The finite-size scaling method discussed above is useful for
processes affected by time scales similar to, or shorter than,
the sampling time. It is hard to use it to deduce thet→`
limits of t̂ and f. So in the absence of data sets with consid-
erably longer sampling times, we have to focus on questions

such as how the contact patterns affect the network reach-
ability sdiscussed in the previous two sectionsd and short-
time dynamic processes. That thet̂ curve of Enron data is
smooth and of the same shape as the other curves indicates
that the artificially low communication rates for early and
late sampling timesssee Sec. II Bd do not affect our conclu-
sions qualitatively.sIndeed, moderate truncations of the sam-
pling interval do not change, e.g., the surfaces of Figs. 5 and
6 much either.d

IV. SUMMARY AND DISCUSSION

We have studied how fast information can spread among
people involved in electronic communication. Four data
sets—one from communication within an Internet commu-
nity and three e-mail data sets—are used. We find that these
data sets can be characterized by a core with short path
lengths and frequent contacts and a periphery to which infor-
mation is relatively unlikely to reach. We note that the dis-
tribution of contacts per edge is highly skewed, and if this
were not the case, the dynamics would be much faster. The
fact that people engage in dialogs with others tends to slow
down the dynamicsscompared to if the sending times were
independent of earlier communicationd. This implies that the
order of the contacts matters much and one loses the full
picture by converting contact sequences to weighted net-
works. We discuss finite-size scaling by truncating the sam-
pling interval and conclude that it is very useful method, but
only for processes of the same time scale, or faster, as the
sampling time.

In the discussion of the data sets, we mention the e-mail
data sets are incomplete with respect to outer verticessverti-
ces not belonging to the sampled e-mail server for the data of
Ebel et al. and Eckmannet al.d or not belonging to the
sampled e-mail directoriessthe Enron datad. E-mails between
outer vertices are not recorded in the data of Ebelet al. and
only partially present in the Enron data whereas the data of
Eckmannet al.do not include messages to outer vertices. We
note that, while these different sampling procedures certainly
affects many quantitiesssee Fig. 2d, the conclusions above
about how different structures affect the reachability remain
intact.

Not all messages contain information of the kind that
people would relay to others. Technically, considering also
the finite size of the sampling intervals, we obtain lower
bounds on the reachability time and upper bounds on the
reachability fraction. On the other hand, we believe that our
qualitative conclusions would be unaltered for the averages
of f and t̂ in real information spreading.

So far, the spreading processes we have mentioned has
been the diffusion of rumors and similar information. Our
results may also apply to computer virus epidemiology.
There is, presumably, a big difference between the contact
sequences of viral and regular emails as the former often are
sent to many recipients in a short time period, but only once
per recipientf8g. The methods we use, however, are be per-
fectly applicable to a sequence of computer virus transmis-
sions.

There are many ways to extend this work. For example

FIG. 7. sColor online.d The convergence oft̂ as a function of the
number sampling time of subsets of the contact sequences. The
panes correspond to the different data setswith the same labeling as
Fig. 2d. The error bars are smaller than the symbol size except for in
sdd where they are of about the same size as the symbols.
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not only are the shortest time-respecting paths relevant for
spreading the dynamics of different kinds—information
might spread by a longer time-respecting path. A sensible
extension of this study would therefore to include these
longer paths in the picturescf. Ref. f28gd. Much work re-
mains to get a full statistical characterization of contact se-
quences, not to mention the understanding of how dynamical

systems of, e.g., epidemiology are affected by by dynamical
properties of the contact patterns.
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