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I. INTRODUCTION

Modeling is the description of system in terms of less
complex degrees of freedom while retaining information
deemed relevantf1g. Approaches to complexity reduction for
networks include characterizing the network in terms of
simple statisticsssuch as degree distributionsf2g or cluster-
ing coefficientsf3gd, subgraphs over-represented relative to
an assumed null modelssee, for example,f4–6gd, and com-
munitiesssee, for example,f7gd.

In the case of communities, networks are coarse-grained
into clusters of nodes, or modules, where nodes belonging to
one cluster are highly interconnected, yet have relatively few
connections to nodes in other clusters. This type of network
complexity reduction may be particularly promising as an
approach to network analysis, since many naturally occur-
ring networks, including biologicalf8g and sociologicalf7,9g
networks, are thought to be modular. Clearer, quantitative
understanding of these ideas would be valuable in finding
reduced complexity descriptions of networks, in visualizing
networks, and in revealing global design principles. Two cur-
rent challenges facing the community regarding network
modularity includesid the ability to quantify to what extent a
given network is “modular” andsii d the ability to identify the
modules of a given network.

With regard to quantifying modularity, to our knowledge
no mathematical definition has yet been proposed for a mea-
sure of modularity that could compare networks regardless
of size, origin, or choice of partitioning. In their recent book,
Schlosser and Wagnerf10g write, “a generally accepted defi-
nition of a module does not exist and different authors use
the concept in quite different ways.” They proceed to warn of
the “danger that modularity will degenerate into a fashion-
able but empty phrase unless its precise meaning is speci-
fied.” Some positive first steps in this direction have been
suggested by Newman’s “assortativity coefficient”f11g,
which quantifies the level of assortative mixing in a network,

and its unnormalized form, called “modularity”f7g. How-
ever, these measures quantify the quality of a particular par-
titioning of the network for a given number of modules, but
are not a property of the network itself that could serve to
compare networks of different origins.

As for module discovery, a range of techniques for iden-
tifying the modules in a network have been utilized with
various success. In his review article, Newmanf12g summa-
rizes these efforts under the broad category of hierarchical
clustering in which one poses a similarity metric between
pairs of vertices. Hierarchical clustering can be agglomera-
tive, where the most similar nodes are iteratively merged
se.g.,f13gd or divisive, where edges between the least similar
nodes are iteratively removedse.g., f7gd. By modifying tra-
ditional divisive approaches to focus on most “between”
edges rather than least similar vertices, Newman and Girvan
f7g recently proposed a new class of divisive algorithms for
finding modules. Various measures of “edge-betweenness”
are defined to identify edges that lie between communities
rather than within communities. By iteratively removing
edges with the highest betweenness, one can break down the
network into disconnected components which define the
modules.

In this paper, we take a markedly different approach. The
problem of finding reduced descriptions of systems while
retaining information deemed relevant has been well-studied
in the learning theory community. In particular, the informa-
tion bottleneck f1,14g provides a unified and principled
framework for complexity reduction. By applying the infor-
mation bottleneck on probability distributions defined by
graph diffusion, we propose a new, principled, information-
theoretic algorithm to identify modules in networks. We
demonstrate that the resulting network information bottle-
neck sNIBd algorithm outperforms the currently used tech-
nique of edge-betweennesssid in correctly assigning nodes to
modules andsii d in determining the optimal number of exist-
ing modules. Moreover, the new method naturally defines a
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network modularity measure that quantifies the extent to
which any undirected network can be summarized by mod-
ules over all scales. Information-theoretic bounds constrain
this measure to be between 0 and 1. Finally, we apply our
method to a collaboration network derived from the 2004
APS March Meeting and theE. coli transcriptional regula-
tory network.

II. THE INFORMATION BOTTLENECK: A REVIEW

Brief f1g and detailedf14g discussions of the information
bottleneck can be found elsewhere; here we review only the
most salient features. The fundamental quantity in informa-
tion theory is Shannon entropyHfpsxdg;−oxpsxdlog psxd
measuring lack of informationsor disorderd in a random vari-
able X, and uniquelysup to a constantd defined by three
axiomsf15g. Knowledge of a second random variableY de-
creases the entropy inX on average by an amount

IsX,Yd ; HsXd − kHsXuYdl ; Hfpsxdg − o
y

psydHfpsxuydg

s1d

called themutual informationf16g, the average information
gained aboutX by the knowledge ofY. Equation s1d is
equivalent to

IsX,Yd = o
x

o
y

psx,ydlog
psx,yd

psxdpsyd
=Klog

psx,yd
psxdpsydL

s2d

revealing its symmetry inX andY. The mutual information
thus measures how much information one random variable
tells about the other, and is the basis of the information
bottleneck.

Clustering can generally be described as the problem of
extracting a compressed description of some data that cap-
tures information deemed relevant or meaningful. For ex-
ample, we might want to cluster protein sequences, expect-
ing that the cluster assignments contain information about
the fold of the proteins; or we might want to cluster words in
documents, expecting that the clusters capture information
about the topic in which the words appear. Tishbyet al.’s f1g
key insight into this problem is the inclusion in the clustering
algorithm of another random variable, called therelevance
variable, which describes the information to be preserved. In
the case of protein sequences, the relevance variable might
be the protein fold; in the case of clustering words over
documents, the relevance variable might be the topic.

Let xPX be the input random variablese.g., protein se-
quences in the set of all observed sequences; or words in a
given dictionary, in the two examples aboved, yPY the rel-
evance variable, andzPZ the cluster assignment random
variablef31g. The information bottleneck outputs a probabi-
listic cluster assignment functionpszuxd equal to the prob-
ability to be in clusterz for a given inputx. The clustering
minimizes the mutual information betweenX andZ s“maxi-
mally compressing the data set”d, while constraining the pos-
sible loss in mutual information betweenZ andY s“preserv-

ing relevant information”d. In other words, one seeks to pass
or squeeze the information thatX provides aboutY through
the “bottleneck” formed by the compressedZ.

The simplicity of the modelZ relative to that of the world
X is quantified by the entropy reductionSfpszuxdg;HsXd
− IsX,Zd=HsX,Zd−HsZd.0. The gain in simplicity, how-
ever, comes with a loss of fidelity in our description of the
world, quantified by the errorE; IsX,Zd− IsY,Zd.0, the
loss in information about the world when described by a
modelZ instead of the primitive descriptionX. The trade-off
between the error and the simplicity can be expressed in
terms of the functional

Ffpszuxdg = E − TS = F0 − IsY,Zd + TIsX,Zd s3d

in which the temperatureT parametrizes the relative impor-
tance of simplicity over fidelity. The termF0 is independent
of the cluster assignmentpszuxd. Sincepsy ux,zd=psy uxd, this
is the only degree of freedom over which the free energyF is
to be minimized. In the annealed ground statesT→0d, each
possible state of the worldxPX is assigned with unit prob-
ability to one and only one state of the modelzPZ fi.e.,
pszuxdP h0,1j, a limit called “hard clustering”g. If the cardi-
nalities uZu and uXu are equal, we arrive at the fully detailed,
trivial solution where the clustersZ simply copy the original
X. A formal solution to the information bottleneck problem is
given in f1g and yields the following three self-consistent
equationsswith b=1/Td:

pszuxd =
pszd

Zsb,xd
e−bDKLfpsyuxdipsyuzdg,

pszd = ox
pszuxdpsxd, s4d

psyuzd =
1

pszdox
psyuxdpszuxdpsxd,

where Zsb ,xd is a normalizationspartitiond function and
DKLfpiqg;oxpsxdlogfpsxd /qsxdg is the Kullback-Leibler di-
vergencesalso called the relative entropyd. The first of these
equations makes clear that as one anneals to the ground state,
whereT→0 andb→`, the only solution is the hard clus-
tering fpsxuzdP h0,1jg limit. These three equations naturally
lend themselves to an iterative algorithm proposed inf1g
which is provably convergent and finds a locally optimal
solution.

While in many applications a “soft” clustering might be
of interest, for clarity we only consider the hard case in this
paper: each node is associated with one and only one mod-
ule. We use two different algorithms to find approximate
solutions to the information bottleneck problem. Both of
them take a fixeduZusuZu, uXud as input and output hard clus-
tering assignments for every node.

The first algorithmsself-consistentNIBd usesb as an an-
nealing parameter that starts at low values and increases step
by step. At every givenb, the locally optimal solution is
computed by iterating over Eq.s4d. The solution for givenb
is then taken as a starting point for the iterations with the
next b. The second algorithmsagglomerativeNIBd uses an
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agglomerative approachf17g. At every step, a pair of nodes
is merged into a single node, where the pair is chosen so as
to maximize the relevant informationIsY,Zd. It thus reduces
uZu by one at every step, and stops when the desireduZu is
reached.

To summarize, we wish to find a representation of a net-
work in which a group of nodes has been represented by
effective nodes; we argue that a modular description of the
network is most successful when relevant information about
the network is preserved. Posed in this language, it is clear
that the act of finding modules in a network is a type of
clustering, and the appropriate cluestering framework is one
that preserves the information deemed relevant.

III. DIFFUSIVE DISTRIBUTIONS
DEFINED OVER GRAPHS

Formulation of graph clustering in terms of the informa-
tion bottleneck requires a joint distributionpsy,xd to be de-
fined on the graph, wherex designates nodes andy desig-
nates a relevance variable. An appropriate distribution that
captures structural information about the network without
introducing additional parameters is the distribution defined
by graph diffusion. The relevance random variabley then
ranges over the nodes, as doesx, and is defined by the node
at which a random walker stands at a given timet if the
random walker was standing at nodex at time 0. The condi-
tional probability distributionGij

t ;ptsyi uxjd is a Green’s
function describing propagation from nodej to nodei. For
discrete time diffusion, one can easily derivef18g

Gt = fWT−1gt st P Nd, s5d

whereW is a symmetric weighted affinity matrix of positive
entries andTij ;di jolWil ;di j ki. For a graph, with identically
weighted edges,ki is the conventional degreesthe number of
neighbors of nodeid, and W is the adjacency matrixsWij
=1 iff i is adjacent tojd. Note that here we only consider
connected graphs and, as defined, this approach treats di-
rected and undirected graphs identically.

In the continuous time limit,

Gt = esWT−1−1dt = e−LT−1t st . 0d, s6d

where we definedL;T−W, the graph Laplacianf19g. In the
machine learning literature, a “graph kernel”f20g has been
defined as

Gt = e−Lt s7d

to learn from structured data. It corresponds to a probability
distribution associated with a different diffusion rule assum-
ing a degree-dependent permeability at every node. For com-
parison, we consider both of these joint distributions as pos-
sible input to the information bottleneck algorithm.

The characteristic time scalet of the system is given by
the inverse of the smallest nonzero eigenvalue of the diffu-
sion operator exponentsLT−1 or Ld. This time reflects the
finite system size and characterizes large-scale behaviors.
For example, in one dimension on a bounded domain of size
,, the smallest nonzero eigenvalue of the Laplacian with dif-

fusion constantD is p2D /,2. For our algorithm we will thus
chooset=t.

To calculate the joint probability distributionpsy,xd
=psy uxdpsxd from the conditional probability distribution
Gt=psy uxd, we must specify a priorpsxd: the distribution of
random walkers at time 0. Natural definitions includesid a
flat prior psxd=1/N, N being the total number of nodes, and
sii d a prior corresponding to the steady-state distribution as-
sociated with the diffusion operator:psxd=1/N or psxd
=kx/oxkx for Gt=e−Lt or Gt=e−LT−1t, respectively, wherekx
is the degree of nodex.

IV. QUANTIFYING MODULARITY

A. Partition modularity—Quality of a partitioning

Newman and Girvanf7g propose a modularity, a “measure
of a particular division of a network,” asQ=oifeii

−so jeijdsokeikdg, whereeij is the fraction of all edges con-
necting modulei and modulej . It can be interpreted as the
difference between the fraction of within-module edges and
the expected fraction of within-module edges in an ensemble
of networks created by randomizing all connections while
holding constant the number of edges emanating from each
module.Q should therefore go to 0 for randomly connected
networks, and tend to1−1/uZu for a perfectly modular net-
work with uZu equally sized modules. Herein we refer to the
measureQ aspartition modularityto distinguish it fromnet-
work modularity, which we define below based on
information-theoretic quantities. Newmanet al. also study
the number of modulesuZumax which maximizesQ given a
particular module discovery algorithm.

B. Network modularity—Summarizability of network
structure

Here we propose a new modularity measureM, a property
of a given network rather than of a given partitioning, which
quantifies the extent to which a network can be summarized
in terms of modules.

Every clustering solutionpszuxd determines a normalized
“input information” 0, IsZ,Xd /HsXd,1 between input vari-
ableX and cluster assignmentZ, and an “output information”
0, IsZ,Yd / IsX,Yd,1 between cluster assignment and rel-
evance variableY. The information curveis then plotted as
IsZ,Yd / IsX,Yd versusIsZ,Xd /HsXd for every solution of Eq.
s4d for every possible number of clustersf1g. An example is
shown in Fig. 3. The curve traced by minimizers of the func-
tional Eq. s3d, which will not necessarily be computed by
such approximating schemes as the AIB, is provably con-
cave. For perfectly random data, which cannot be summa-
rized, this curve lies along the diagonaly=x. Consistent with
these observations, we find that synthetic graphs with high
connectivity within defined modules and low connectivity
between different modules exhibit a larger area under the
information curvesdata not shownd. We thus define a new
measure ofnetwork modularity: the area under the informa-
tion curve sdata not shownd. That is, we measure the area
enclosed by expanding the volume fromuZu =1 to uZu =X at
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fixed T=0, followed by heading fromT=0 toT=1 fthe high-
est temperature allowed by the data-processing inequality
IsZ,Yd,min(IsX,Yd ,IsY,Zd)g and fixed volume, compress-
ing from uZu = uXu to uZu =1 at fixed temperature, and finally
cooling fromT=1 to T=0 at fixed volume. In the soft clus-
tering case, the information curve is continuous since solu-
tions vary with every choice ofbP f0,`d. In the hard clus-
tering case, which we study here, the information curve is
only defined at discrete points corresponding to solutions for
every possible number of clustersuZu. The area can then be
calculated by linear interpolation. Information-theoretic
bounds constrain the range ofm allowing comparison of net-
works of varying number of nodes and edges, and are a
property of the network itself, rather than a given partition-
ing.

V. TESTS ON SYNTHETIC NETWORKS

A. Accuracy of the partitioning

Here we test how well various NIB implementations with
different diffusion operators can reconstruct modules in a
network generated with a known modular structure. We also
compare our method to the “edge-betweenness” algorithm
recently proposed inf7g for the same purpose of finding
modules or “communities.” Inf7g, the network is broken
down into isolated components by iteratively removing
edges with highest “betweenness”sseveral definitions of
edge-betweenness are tested inf7g; here we use the “shortest
path” betweenness, which was shown inf7g to perform op-
timallyd.

As in f7g, we generate synthetic Erdös-like graphs via
Monte Carlo with 128 nodes each and average degree 8sav-
erage total of 512 edgesd. We also demand that the graphs be

connected by rejecting generated graphs that have discon-
nected components. We impose a structure of four modules
with 32 nodes each by introducing two different probabili-
ties: pin for edges inside modules andpout for edges between
different modules. The level of noise in the graph is thus
controlled bypout. The higherpout, the harder it will be to
recover the different modules. We first generate networks
with pout=0 and then increasepout while adjustingpin such
that the average degree remains fixed. Whenpin=pout, all
modular structure is lost and we obtain a usual Erdös graph.
We measure the accuracy of a proposed partitioning using
the following computation. In principle, any module pro-
posed by the algorithm could match any “true” module with
an associated error. We therefore try every possible permu-
tation of the four proposed modules matching the four “true”
modules, and consider the one permutation with the smallest
total number of incorrectly assigned nodes. We defineaccu-
racy as the total fraction of correctly assigned nodes.

Figure 1sad shows the accuracy of the recovered modules
as a function ofpout/pin for three different algorithms: self-
consistent NIB, agglomerative NIB, and betweenness. Both
NIB algorithms use the physical diffusion operatore−LT−1t

and a flat prior 1/N to define a joint probability distribution.
We observe that both NIB algorithms are much more suc-
cessful in recovering the modular structure than the between-
ness algorithm. A threshold noise level is achieved at around
pout/pin<1/3 for the NIB algorithms, and aroundpout/pin
<1/6 for the betweenness algorithm. The figure also shows
that the self-consistent NIB in general finds a better partition-
ing than the agglomerative NIB.

Figure 1sbd shows the same measurements for self-
consistent NIB algorithms using different diffusion operators
as explained in Sec. III. For comparison, the betweenness
results are also plotted. Physical diffusion, defined by the

FIG. 1. sad sColor onlined Accuracy for different algorithms. Measured is the accuracy of recovering modular structure in synthetic
networks under varying noise levels. Every point represents an average over 100 networks, each with 128 nodes and an average degree of
8. Both NIB algorithms outperform the betweenness algorithm.sbd sColor onlined Accuracy for different diffusion operators. Accuracy is
measured in the same way as insad, now using the self-consistent NIB algorithm with various diffusion operators to define probability
distributions psy,xd over nodes. For comparison, the betweenness results are also shown. The operator for physical diffusione−LT−1t

outperforms the “graph kernel” diffusion operator proposed in the machine learning literaturef20g.
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continuous time limit, with an initial statepsxd given by the
equilibrium distribution psxd~kx, gives the best perfor-
mance.

B. Finding the optimal number of modules

In most real world problems, the correct number of mod-
ules uZu present in the network is unknowna priori. It is
therefore important to have an algorithm which not only
computes a good partitioning for a givenuZu but also gives a
good estimate foruZu itself. To this end, here we make use of
the partition modularityQ as described in Sec. IV A.

We again consider synthetic connected networks of 128
nodes and average degree 8 as in the previous section. How-
ever, we fix the noise level to a value ofpout/pin=0.3, which
was shown to be a critical level for these networks. We run
the self-consistent NIB and the betweenness algorithms for
every possible number of modulesuZu=1,2, . . . ,128 and
computeQ for the proposed partitionings. Figure 2sad shows
Q as a function ofuZu for a typical run. While for the NIB
algorithmQ sharply peaks at the correct value ofuZumax=4,
Q calculated by the betweenness algorithm attains its maxi-
mum at uZumax=46 and does not show a particular signal at
uZu=4. Figure 2sbd shows a histogram ofuZumax for 100 gen-
erated networks. The NIB algorithm successfully identifies
uZumax=4 for 82% of the networks, while the betweenness
algorithm calculatesuZumax lying between 18 and 89, notably
far from the correct value for any network. These experi-
ments suggest that the NIB algorithm performs well both in
accurately assigning nodes to modules and in revealing the
optimal scale for partitioning.

VI. APPLICATIONS

A. Collaboration network

Having validated NIB on a toy model of modular net-
works, we next apply our algorithm to two examples of natu-

rally occurring networks. In the first example, we construct a
collaboration network from the 2004 APS March Meeting,
where this algorithm was first presented, and in the second
example we construct a symmetric version of theE. coli
genetic regulatory network.

Vertices of the collaboration network represent authors
from all talks at the March Meeting; edges represent coau-
thorship. The largest component of the resulting graph con-
sists of 5603 vertices with 19 761 edges. Network informa-
tion bottleneck using the agglomerative algorithm and the
physical diffusion operatorsas defined in Sec. III with its
corresponding equilibrium distributiond reveals that this large
network is highly modularfm=0.9775, see Fig. 3sadg. For
comparison, we also show the information curve for a typical
Erdös network, which is clearly less modular. Such a high
value of modularity implies that the authors of this compo-
nent of the network are “easily” compressed or combined
into larger clusters of authors. In light of this fact, we study
what the clusters of authors reveal about the collaboration
network. For example, authors may group themselves ac-
cording to topics or subject matters of the talks; alternatively,
author modules may be more indicative of the authors’ affili-
ations or even geographical location.

To begin to approach these types of questions, we may
choose to look at the author groupings given by NIB at a
particular number of clusters. While we emphasize that net-
work modularity is a measure over all scales or all numbers
of clusters, it is illustrative in this case also to examine the
clustering at a particular scale. For the APS network, such an
analysis yields the optimal number of modules,uZumax=115,
for this networkfsee Fig. 3sadg.

In Fig. 4, we plot the 115 modules and their connections
where each ellipse represents one module and edges between
ellipses represent intermodular connections. The sizes of the
ellipses and the thickness of the edges are proportional to the
log of the number of authors in a module and the log of the

FIG. 2. sad Q vs uZu. The quality of the partitioningQ is computed for the partitionings output by the self-consistent NIB algorithmswith
physical diffusion operatord, and the betweenness algorithm, for every given number of modulesuZu. While the NIB algorithm correctly
determinesuZu=4 as the best number of modulessat maximumQd, Q calculated by the betweenness algorithm peaks atuZu=46. sbd
Histogram ofuZumax for 100 different networks. For 82% of the networks, the NIB algorithm is able to find the correct number of modules
uZumax=4, and comes close to itsuZumax=5 or 6d in all other cases. The betweenness algorithm givesuZumax between 18 and 89, far from the
correct value for all networks.
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number of intermodular connections between modules, re-
spectively. We note the provocative structure revealed in the
figure with a large center of highly connected modulessin-
cluding two of the largest modulesd, three more or less
branching, linear chains of modules, and one large 18-node
cycle of modules.

Closer inspection of a single module demonstrates that for
many of the modules, institutional affiliation, and even ge-
ography, play a large role in determining collaborations. In
Fig. 5, a single 17-node module is plotted where each node
now represents an author and edges represent author collabo-
rations. We see that 15 of the 17 authors are affiliated with
Columbia University; the remaining two authors are affili-
ated with Stony Brook, and notably, are adjacentsindicating
coauthorshipd to each other. The finding that the modules in
this collaboration network are somewhat related to institu-

FIG. 3. sad APS network modularity. Information plane for the collaboration network obtained from the 2004 APS March Meetingsthe
largest component consists of 5603 authors and 19 761 edgesd. We use the agglomerative algorithm with the diffusion operatore−LT−1t.
Network modularity for this graph, defined as the area under the curve, is 0.9775. Comparison is made with a typical information curve
obtained from an Erdös graph. The optimal number of modules as defined by the the Newman and Girvan measure is atuZu=115.sbd E. coli
network modularity. Information plane for theE. coli genetic regulatory networksthe largest component has 328 nodes and 456 edgesd. We
use the agglomerative algorithm with the diffusion operatore−LT−1t. Network modularity for this graph, defined as the area under the curve,
is 0.9709. Comparison is made with a typical information curve obtained from an Erdös graph. The optimal number of modules as defined
by the Newman and Girvan measure is atuZu=23.

FIG. 4. Adjacency network of the 115 modules of the APS
network. Nodes represent modules where the size of the drawn
ellipse is proportional to the number of authors in the module.
Edges between modules represent collaborations between authors in
different modules, where the thickness of the drawn lines is propor-
tional to the number of these intermodule collaborations. The mod-
ule network reveals a structure with a highly dense center of mod-
ules, three branching linear chains of modules, and one cycle of
modules.

FIG. 5. One of the 115 modules of the APS network. Nodes
represent authors and edges represent collaborations. Of the 17 au-
thors in the module, 15 are Columbia University affiliated and two
are affiliated with Stony Brook University.
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tional affiliations and geography is supported by similar re-
sults found in other physics collaboration networks previ-
ously studied using different techniquesf7g.

Another possible annotation for this module to consider is
that of the APS divisions and topical groups, since each au-
thor is associated with at least one talk and each talk is listed

under one or more of these APS categories. However, the 14
APS divisions and 10 topical groups appear to be too broad
and have too much overlap to clearly define a module. For
example, the Columbia University module includes talks un-
der the categories of Polymer, Condensed Matter, Material,
and Chemical Physics. On the other hand, the module is

FIG. 6. sColord Six modules
corresponding to the uppermost
branched linear chain of modules
depicted in Fig. 4. Colors denote
modules as defined by the net-
work information bottleneck algo-
rithm. Again the modules roughly
correspond to institutional affilia-
tions. Over 50% of the blue nodes
have one or more affiliations with
the institutions based in and
around Chicago sArgonne Na-
tional Laboratory, University of
Illinois at Chicago, and University
of Notre Damed. 70% of the red
nodes are in England, and 75% of
the green nodes are in China,
mostly at the Institute of Chemis-
try, Chinese Academy of Sciences,
and all of the cyan nodes are at the
Center of Complex Systems Re-
search in Illinois. Both the yellow
and magenta modules are mostly
affiliated with the University of
Nebraska.

FIG. 7. sColord E. coli gene
regulatory network. Largest com-
ponent of the symmetric version
of the E. coli genetic regulatory
network. Colors denote modules
identified by NIB.
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essentially representative of researchers at the Columbia
University Materials Research Science and Engineering Cen-
ter sMRSECd and in particular those interested in the synthe-
sis of complex metal oxide nanocrystals. There is thus both
topical and institutional information retained in the modules.

It is also revealing to examine the affiliations of multiple
connected modules. For example, Fig. 6 plots the uppermost
branching linear chain of Fig. 4. Here, color denotes module
assignment as given by NIB. Most of these modules also
have clear institutional affiliations. For example, everyone in
the cyan module is at the Center of Complex Systems Re-
searchsCCSRd in Illinois; close to 80% of the large green
module is in China, mostly at the Institute of Chemistry,
Chinese Academy of SciencessICCASd; and 70% of the red
module is in England. The blue module is slightly more dif-
fuse, though an institutional affiliation is also apparent here;
over 50% of the authors are affiliated with one of three in-
stitutions near ChicagosArgonne National Labs, University
of Illinois at Chicago, and University of Notre Damed. The
yellow and magenta modules are also overwhelmingly asso-
ciated with the University of Nebraska, though interestingly
our algorithm separates these two modules at this partition-
ing. In general, one does not anticipate that the optimal num-
ber of clusters in a given network will give the most natural
partitioning at all scales and over all resulting modules.

B. Biological network

The notion of modularity has been central in the study of
a variety of biological networks including metabolicf13g,
protein f21,22g, and geneticf4,8g networks. Certainly most
biologists agree that the various networks operating within
and between cells have a modular structure, though what
they mean by “modular” can vary greatlyf10g.

NIB allows us to investigate quantitatively and in detail to
what extent naturally occurring biological networks are
modular. For example, Fig. 7 depicts the undirected form of
the largest component of theE. coli genetic regulatory net-
work described previously inf4,23g. The network consists of
328 vertices and 456 edges and its modularity is depicted by
the curve one traces in the information plane as the network
is clustered using the network information bottleneckfsee
Fig. 3sbdg.

To establish whether the modularity of the network should
be considered low, high, or moderate, we employ an ansatz
popular in several reserach communities in which a distribu-
tion of networks is created by holding the in-, out-, and self-
degree of each node constant but randomizing the connectiv-
ity of the graph, changing which nodes are connected to
which neighborsf4,5,21,24–26g. The randomization, a vari-
ant of the configuration modelf12g, produces a distribution
of networks from which we sample and then measure the
network modularity. The histogram in Fig. 8 shows thatE.
coli’s modularity is higher relative to this ensemble.

VII. CONCLUSIONS AND EXTENSIONS

We have presented a principled, quantitative, parameter-
free, information-theoretic definition of network modularity,

as well as an algorithm for discovering modules of a net-
work. Network modularity is a dimensionless number be-
tween 0 and 1 and is a property of a given network over all
scales, rather than of a given partitioning with a given num-
ber of modules. The measure is applicable to any network,
including those with weighted edges. We validate the effec-
tiveness of our algorithm in identifying the correct modules
and in finding the true number of modules on synthetic,
Monte Carlo generated, Erdös-like, modular networks. Fi-
nally, application to two real-world networks, a “social” net-
work of physics collaborations and a biological network of
gene interactions, is demonstrated.

Network modularity, the area under the curve in the infor-
mation plane, is but one relevant statistic that we may re-
trieve from the information curve. Certainly other useful sta-
tistics may be culled. For example, the optimal information
curve will always be concavef14g and its slope will decrease
monotonically. The point at which the slope equals 1 is
uniquely determined for each network and can be described
as the point after which clustering further results in a greater
loss in relative relevant information than gain in relative
compressionfthat is, d(IsZ,Yd / IsX,Yd)=d(IsZ,Xd /HsXd)g.
This break-even pointis the point at which one can gain
further snormalizedd simplicity only by losing an equivalent
snormalizedd fidelity. Numerical experiments and investigat-
ing the utility of this measure are currently in progress.

Diffusive distributions are but one general class of distri-
butions on a network. A natural generalization of these ideas
is to describe other distributions on a network for which a
particular function, energy, or origin is known, and on which
some particular degree of freedomssuch as chemical concen-
tration or genetic expression as a function of timed may be
defined.

Finally, we note that while the information bottleneck is a
prescription for finding the highest-fidelity summary of a

FIG. 8. A histogram of network modularity, defined by the area
underneath the curve in the information plane resulting from net-
work compression, for 1000 realizations of the variation of the con-
figuration model. Note that the trueE. coli network is more modular
than the typical network resulting from the variation of the configu-
ration model.
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system at a given simplicity, algorithms for determining net-
work community structure are usually motivated by various
definitions of normalized min-cutsf27–30g. Our results, par-
ticularly for the synthetic graphs with prescribed modular
structure, demonstrate thatinformation modularity implies
edgemodularity, an unexpected finding which motivates fur-
ther numerical and analytic investigations in progress regard-
ing this relationship.
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