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Exploiting recent developments in information theory, we propose, illustrate, and validate a principled
information-theoretic algorithm for module discovery and the resulting measure of network modularity. This
measure is an order parametardimensionless number between 0 andQomparison is made with other
approaches to module discovery and to quantifying network modukaisipg Monte Carlo generated Erdds-
like modular networks Finally, the network information bottlenec¢klIB) algorithm is applied to a number of
real world networks, including the “social” network of coauthors at the 2004 APS March Meeting.
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I. INTRODUCTION and its unnormalized form, called “modularity7]. How-
ever, these measures quantify the quality of a particular par-
titioning of the network for a given number of modules, but
are not a property of the network itself that could serve to
scompare networks of different origins.

As for module discovery, a range of techniques for iden-
ing coefficients[3]), subgraphs over-represented relative togglig%stgicrggsdsmﬁ? hlg ?e\?ig\t/\\//vg%c?ea\ﬁeaenﬂ]ugllljzn?r(:]erylth
?nnur?i‘:‘ise L;Tseede nfl:)”r g];;r??:;’?{;) r example[4—€)), and com- rizes these efforts under the broad category of hierarchical

' P ) ‘Etjstering in which one poses a similarity metric between

Modeling is the description of system in terms of less
complex degrees of freedom while retaining information
deemed relevaritl]. Approaches to complexity reduction for
networks include characterizing the network in terms o
simple statistic§such as degree distributioh] or cluster-

: In the case of communities, networks are coarse-grain€fairs of vertices. Hierarchical clustering can be agglomera-
into clusters of nodes, or modules, where nodes belonging e ~\yhere the most similar nodes are iteratively merged
one cluster are highly interconnected, yet have relatively feV\(e_g”[lg,]) or divisive, where edges between the least similar
connections to nodes in other clusters. This type of networlyodes are iteratively remove@.g.,[7]). By modifying tra-
complexity reduction may be particularly promising as angitional divisive approaches to focus on most “between”
approach to network analysis, since many naturally occuredges rather than least similar vertices, Newman and Girvan
ring networks, including biologicdB] and sociological7,9]  [7] recently proposed a new class of divisive algorithms for
networks, are thought to be modular. Clearer, quantitativéinding modules. Various measures of “edge-betweenness”
understanding of these ideas would be valuable in findingire defined to identify edges that lie between communities
reduced complexity descriptions of networks, in visualizingrather than within communities. By iteratively removing
networks, and in revealing global design principles. Two cur-edges with the highest betweenness, one can break down the
rent challenges facing the community regarding networknetwork into disconnected components which define the
modularity include(i) the ability to quantify to what extent a modules.
given network is “modular” andi) the ability to identify the In this paper, we take a markedly different approach. The
modules of a given network. problem of finding reduced descriptions of systems while
With regard to quantifying modularity, to our knowledge retaining information deemed relevant has been well-studied
no mathematical definition has yet been proposed for a mean the learning theory community. In particular, the informa-
sure of modularity that could compare networks regardlession bottleneck[1,14] provides a unified and principled
of size, origin, or choice of partitioning. In their recent book, framework for complexity reduction. By applying the infor-
Schlosser and Wagngt0] write, “a generally accepted defi- mation bottleneck on probability distributions defined by
nition of a module does not exist and different authors useyraph diffusion, we propose a new, principled, information-
the concept in quite different ways.” They proceed to warn oftheoretic algorithm to identify modules in networks. We
the “danger that modularity will degenerate into a fashion-demonstrate that the resulting network information bottle-
able but empty phrase unless its precise meaning is speaieck (NIB) algorithm outperforms the currently used tech-
fied.” Some positive first steps in this direction have beemique of edge-betweenne@gin correctly assigning nodes to
suggested by Newman’'s “assortativity coefficiertl1], modules andii) in determining the optimal number of exist-
which quantifies the level of assortative mixing in a network,ing modules. Moreover, the new method naturally defines a
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network modularity measure that quantifies the extent tang relevant informatior). In other words, one seeks to pass
which any undirected network can be summarized by moder squeeze the information th&tprovides aboutly through
ules over all scales. Information-theoretic bounds constraithe “bottleneck” formed by the compressgéd
this measure to be between 0 and 1. Finally, we apply our The simplicity of the modeZ relative to that of the world
method to a collaboration network derived from the 2004X is quantified by the entropy reductiaf p(z|x)]=H(X)
APS March Meeting and thg. coli transcriptional regula- -1(X,Z)=H(X,Z)-H(Z)>0. The gain in simplicity, how-
tory network. ever, comes with a loss of fidelity in our description of the
world, quantified by the erro€E=1(X,2)-1(Y,Z2)>0, the
loss in information about the world when described by a
Il. THE INFORMATION BOTTLENECK: A REVIEW modelZ instead of the primitive descriptiod. The trade-off
between the error and the simplicity can be expressed in

Brief [1] and detailed 14] discussions of the information X
ferms of the functional

bottleneck can be found elsewhere; here we review only th
most salient features. The fundamental quantity in informa- Flpx)]=E-TS=Fy- I(Y,Z) + TI(X,Z) (3)
tion theory is Shannon entropf[p(x)]=-2,p(x)log p(x) _ _ . o
measuring lack of informatiofor disordey in a random vari-  in which the temperatur& parametrizes the relative impor-
able X, and uniquely(up to a constaptdefined by three tance of S|mpI|C|ty over fidelity. The ternky is mdependgnt
axioms[15]. Knowledge of a second random variaMede-  ©f the cluster assignmeptz|x). Sincep(y|x,2)=p(y|x), this

creases the entropy X on average by an amount is the only degree of freedom over which the free ené‘ng
to be minimized. In the annealed ground st@fe-0), each

1(X,Y) = H(X) = (H(X|Y)) = H[p(x)] = >, p(y)H[p(x|y)] possible state of the worlgde X is assigned with unit prob-
y ability to one and only one state of the modet Z [i.e.,
(1) p(z|x) €{0,1}, a limit called “hard clustering’ If the cardi-
nalities|Z| and|X| are equal, we arrive at the fully detailed,
trivial solution where the clusteis simply copy the original
X. A formal solution to the information bottleneck problem is
given in [1] and yields the following three self-consistent

p(x,y) < p(X,y) > equationgwith B=1/T):
~— =\ lo ’

called themutual information16], the average information
gained aboutX by the knowledge ofY. Equation(1) is
equivalent to

1(X,Y) =2 > p(x,y)log
Xy

PCIP(Y) POIP(Y) o(zlx) = P2 emoalpuixipsi]
2 Z(B,x) ’
revealing its symmetry irX andY. The mutual information _
thus measures how much information one random variable p(2) = 2x P(ZXp(x), (4)
tells about the other, and is the basis of the information
bottleneck. 1
Clustering can generally be described as the problem of pyl2) = @Ex P(YXP(Zp(x),

extracting a compressed description of some data that cap-
tures information deemed relevant or meaningful. For exWhere Z(3,x) is a normalization(partition) function and
ample, we might want to cluster protein sequences, expecBy.[pllg]=Zp(x)log[p(x)/q(x)] is the Kullback-Leibler di-
ing that the cluster assignments contain information aboutergence(also called the relative entropyThe first of these
the fold of the proteins; or we might want to cluster words inequations makes clear that as one anneals to the ground state,
documents, expecting that the clusters capture informatiowhereT— 0 and 8— o, the only solution is the hard clus-
about the topic in which the words appear. Tistayal’s [1]  tering[p(x|2) € {0,1}] limit. These three equations naturally
key insight into this problem is the inclusion in the clusteringlend themselves to an iterative algorithm proposed lih
algorithm of another random variable, called tieéevance which is provably convergent and finds a locally optimal
variable, which describes the information to be preserved. Insolution.
the case of protein sequences, the relevance variable might While in many applications a “soft” clustering might be
be the protein fold; in the case of clustering words overof interest, for clarity we only consider the hard case in this
documents, the relevance variable might be the topic. paper: each node is associated with one and only one mod-
Let x e X be the input random variable.g., protein se- ule. We use two different algorithms to find approximate
guences in the set of all observed sequences; or words insmlutions to the information bottleneck problem. Both of
given dictionary, in the two examples abgyg e Y the rel-  them take a fixedZ|(|Z| <|X|) as input and output hard clus-
evance variable, ande Z the cluster assignment random tering assignments for every node.
variable[31]. The information bottleneck outputs a probabi-  The first algorithm(self-consistenNIB) usesg as an an-
listic cluster assignment functiop(z|x) equal to the prob- nealing parameter that starts at low values and increases step
ability to be in clusterz for a given inputx. The clustering by step. At every givens, the locally optimal solution is
minimizes the mutual information betweéhandZ (“maxi-  computed by iterating over E4). The solution for givers
mally compressing the data sgtivhile constraining the pos- is then taken as a starting point for the iterations with the
sible loss in mutual information betwe@handY (“preserv-  next 8. The second algorithnfagglomerativeNIB) uses an
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agglomerative approadi 7]. At every step, a pair of nodes fusion constanD is 72D/ €2. For our algorithm we will thus
is merged into a single node, where the pair is chosen so ahooset=r.

to maximize the relevant informatidiiY,Z). It thus reduces To calculate the joint probability distributiorp(y,x)
|Z| by one at every step, and stops when the degifeds  =p(y|x)p(x) from the conditional probability distribution
reached. G"=p(y|x), we must specify a priop(x): the distribution of

To summarize, we wish to find a representation of a netrandom walkers at time 0. Natural definitions includea
work in which a group of nodes has been represented bﬂat prior p(x):_‘]_/N, N being the total number of nodes, and
effective nodes; we argue that a modular description of thgji) a prior corresponding to the steady-state distribution as-
network is most successful when relevant information abougociated with the diffusion operatop(x)=1/N or p(x)
the network is preserved. Posed in this language, it is cleat, /s | for G7=eL" or G7=
that the act of finding modules in a network is a type of ¢ o Xdégree of node
clustering, and the appropriate cluestering framework is one
that preserves the information deemed relevant.

71 .
€T 7 respectively, wheré,

IV. QUANTIFYING MODULARITY

11l. DIFFUSIVE DISTRIBUTIONS A. Partition modularity—Quality of a partitioning
DEFINED OVER GRAPHS Newman and Girvafi7] propose a modularity, a “measure
Formulation of graph clustering in terms of the informa-©f @ particular division of a network,” asQ=Xi[e;
tion bottleneck requires a joint distributigaty, x) to be de- (&) (2], wheree; is the fraction of all edges con-

fined on the graph, where designates nodes aryddesig-  necting modulé and modulej. It can be interpreted as the
nates a relevance variable. An appropriate distribution thaflifference between the fraction of within-module edges and
captures structural information about the network withoutth® expected fraction of within-module edges in an ensemble
introducing additional parameters is the distribution defined?’ nétworks created by randomizing all connections while
by graph diffusion. The relevance random variagl¢hen holding constant the number of edges emanating from each
ranges over the nodes, as daesnd is defined by the node module.Q should therefore go to 0 for randomly connected
at which a random walker stands at a given timé the ~ Networks, and tend ta-1/|Z for a perfectly modular net-
random walker was standing at nodet time 0. The condi- Work with [Z| equally sized modules. Herein we refer to the
tional probability distributionGi‘jEpt(yi|xj) is a Green’s Measure aspartition modularityto distinguish it fromnet-

function describing propagation from nogléo nodei. For ~ WOrk modularity which we define below based on
discrete time diffusion, one can easily der{is] information-theoretic quantities. Newmaat al. also study

the number of modulefZ|,., which maximizesQ given a

Gl=[WT1 (teN), (5)  particular module discovery algorithm.
whereW is a symmetric weighted affinity matrix of positive
entries andl; = §;2|W, = k. For a graph, with identically B. Network modularity—Summarizability of network
weighted edges; is the conventional degrdéhe number of structure

neighbors of node), and W is the adjacency matrixW;
=1 iff i is adjacent toj). Note that here we only consider
connected graphs and, as defined, this approach treats
rected and undirected graphs identically.

In the continuous time limit,

Here we propose a new modularity measMrea property
f a given network rather than of a given partitioning, which
%Damifies the extent to which a network can be summarized
in terms of modules.
Every clustering solutiom(z|x) determines a normalized
Gtz eWI-1t = o LT % t>0), (6) “input information” 0< 1(Z,X)/H(X) <1 between input vari-
ableX and cluster assignmemt and an “output information”
where we definedl =T-W, the graph Laplaciafl9]. Inthe  0<I(Z,Y)/1(X,Y)<1 between cluster assignment and rel-
machine learning literature, a “graph kerngP0] has been evance variabléf. Theinformation curveis then plotted as
defined as 1(Z,Y)/1(X,Y) versusl(Z,X)/H(X) for every solution of Eq.
Gl=glt ) (4) for every possible number of cluste[_ris]. An example is
shown in Fig. 3. The curve traced by minimizers of the func-
to learn from structured data. It corresponds to a probabilityional Eqg. (3), which will not necessarily be computed by
distribution associated with a different diffusion rule assum-such approximating schemes as the AIB, is provably con-
ing a degree-dependent permeability at every node. For concave. For perfectly random data, which cannot be summa-
parison, we consider both of these joint distributions as posrized, this curve lies along the diagonatx. Consistent with
sible input to the information bottleneck algorithm. these observations, we find that synthetic graphs with high
The characteristic time scaleof the system is given by connectivity within defined modules and low connectivity
the inverse of the smallest nonzero eigenvalue of the diffubetween different modules exhibit a larger area under the
sion operator exponert T or L). This time reflects the information curve(data not shown We thus define a new
finite system size and characterizes large-scale behaviomneasure ohetwork modularitythe area under the informa-
For example, in one dimension on a bounded domain of sizéon curve (data not shown That is, we measure the area
¢, the smallest nonzero eigenvalue of the Laplacian with dif-enclosed by expanding the volume frd#{ =1 to |Z|=X at
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FIG. 1. (&) (Color onling Accuracy for different algorithms. Measured is the accuracy of recovering modular structure in synthetic
networks under varying noise levels. Every point represents an average over 100 networks, each with 128 nodes and an average degree of
8. Both NIB algorithms outperform the betweenness algorittn(Color online Accuracy for different diffusion operators. Accuracy is
measured in the same way as(&, now using the self-consistent NIB algorithm with various diffusion operators to define probability
distributions p(y,x) over nodes. For comparison, the betweenness results are also shown. The operator for physical eitflision
outperforms the “graph kernel” diffusion operator proposed in the machine learning liteja€lre

fixed T=0, followed by heading fromm=0 to T=1 [the high-  connected by rejecting generated graphs that have discon-
est temperature allowed by the data-processing inequalitpected components. We impose a structure of four modules
1(Z,Y)<min(I(X,Y),l(Y,2))] and fixed volume, compress- with 32 nodes each by introducing two different probabili-
ing from |Z| =|X| to |Z| =1 at fixed temperature, and finally ties:p;, for edges inside modules apg,, for edges between
cooling fromT=1 to T=0 at fixed volume. In the soft clus- different modules. The level of noise in the graph is thus

tering case, the information curve is continuous since solycontrolled bypy,. The higherp,,, the harder it will be to
tions vary with every choice o8 € [0,%). In the hard clus- €COVer the different modules. We first generate networks

With po,=0 and then increasg,, while adjustingp;, such
Fhat the average degree remains fixed. Wipgrpoy, all
modular structure is lost and we obtain a usual Erd6s graph.
We measure the accuracy of a proposed partitioning using

tering case, which we study here, the information curve i
only defined at discrete points corresponding to solutions fo
every possible number of cluste®. The area can then be

calculated by linear interpolation. Information-theoretic

bounds constrain the range mfallowing comparison of net- the following computation. In principle, fmy ”module pro-
works of varying number of nodes and edges, and are Qosed by the algorithm could match any “true” module with

property of the network itself, rather than a given partition—an.assoc'ate‘j error. We therefore try every possible ;‘)‘ermy—
ing. tation of the four proposed modules matching the four “true

modules, and consider the one permutation with the smallest
total number of incorrectly assigned nodes. We deéioeu-

V. TESTS ON SYNTHETIC NETWORKS racy as the total fraction of correctly assigned nodes.
o Figure Xa) shows the accuracy of the recovered modules
A. Accuracy of the partitioning as a function ofp.,/p;, for three different algorithms: self-

Here we test how well various NIB implementations with consistent NIB, agglomerative NIB, and betweenness. Both
different diffusion operators can reconstruct modules in aNIB algorithms use the physical diffusion operati' K
network generated with a known modular structure. We als@nd a flat prior 1N to define a joint probability distribution.
compare our method to the “edge-betweenness” algorithriVe observe that both NIB algorithms are much more suc-
recently proposed 7] for the same purpose of finding cessful in recovering the modular structure than the between-
modules or “communities.” 1{7], the network is broken ness algorithm. A threshold noise level is achieved at around
down into isolated components by iteratively removingp,,/pi,=1/3 for the NIB algorithms, and aroungy/ pi,
edges with highest “betweennes&Several definitions of =1/6 for the betweenness algorithm. The figure also shows
edge-betweenness are teste@i7ih here we use the “shortest that the self-consistent NIB in general finds a better partition-
path” betweenness, which was shown[T to perform op- ing than the agglomerative NIB.

timally). Figure 1b) shows the same measurements for self-
As in [7], we generate synthetic Erdds-like graphs viaconsistent NIB algorithms using different diffusion operators
Monte Carlo with 128 nodes each and average degi@e@-8 as explained in Sec. Ill. For comparison, the betweenness

erage total of 512 edgedNe also demand that the graphs beresults are also plotted. Physical diffusion, defined by the

046117-4



INFORMATION-THEORETIC APPROACH TO NETWORK. PHYSICAL REVIEW E 71, 046117(2005

03" T T T I —— I 90— . . T I :
- — self-consistent NIB [ self-consistent NIB
‘- - betweenness sl Bl betweenness
0.25| :
\ 70} g
1
] L]
02H! < 6o} p
! £
! 15}
' < sof 1
X -
T o151 °
1 g a0} 4
! c
I (1]
[ S
o1l & 30F 4
\ o
1
| 20 -
o0sf |
| 10 B
|
' bbb baldowa
0 Lo 1 1 1 - 1 0 L h nl m_a Y A L
4 20 40 46 60 80 100 120 0 4 20 40 60 80 100
(a) number of modules (b) number of modules at maximum Q

FIG. 2. (a) Q vs|Z|. The quality of the partitionin® is computed for the partitionings output by the self-consistent NIB algorithith
physical diffusion operatgr and the betweenness algorithm, for every given number of modZilegvhile the NIB algorithm correctly
determines|Z|=4 as the best number of moduléat maximumQ), Q calculated by the betweenness algorithm peak&Za46. (b)
Histogram of|Z|,ax for 100 different networks. For 82% of the networks, the NIB algorithm is able to find the correct number of modules
|Z|max=4, and comes close to (iiZ| =5 or 6 in all other cases. The betweenness algorithm giZgs,, between 18 and 89, far from the
correct value for all networks.

continuous time limit, with an initial statp(x) given by the rally occurring networks. In the first example, we construct a
equilibrium distribution p(x) <k,, gives the best perfor- collaboration network from the 2004 APS March Meeting,

mance. where this algorithm was first presented, and in the second
example we construct a symmetric version of e coli
B. Finding the optimal number of modules genetic regulatory network.

In most real world problems, the correct number of mod- Vertices of the collaboration network represent authors
ules |Z| present in the network is unknowa priori. It is ~ from all talks at the March Meeting; edges represent coau-
therefore important to have an algorithm which not onlythorship. The largest component of the resulting graph con-
computes a good partitioning for a givéf| but also gives a  sists of 5603 vertices with 19 761 edges. Network informa-
good estimate fojZ| itself. To this end, here we make use of tion bottleneck using the agglomerative algorithm and the
the partition modularityQ as described in Sec. IV A. physical diffusion operatofas defined in Sec. Il with its

We again consider synthetic connected networks of 12gorresponding equilibrium distributiomeveals that this large
nodes and average degree 8 as in the previous section. Hoetwork is highly modulafm=0.9775, see Fig. (8)]. For
ever, we fix the noise level to a value pf,/p;,;=0.3, which ~ comparison, we also show the information curve for a typical
was shown to be a critical level for these networks. We rurErdos network, which is clearly less modular. Such a high
the self-consistent NIB and the betweenness algorithms foyalue of modularity |mpI|e“s that "the authors of this compo-
every possible number of modulég|=1,2,...,128 and nent of the network are “easily” compressed or combined

P . into larger clusters of authors. In light of this fact, we study
CQOZ]Spgtigngggeoﬁ)é??grsidtygg:Orr&'r?g\sl\'/:]:illguffraﬁﬁgom; what the clusters of authors reveal about the collaboration
algorithm Q sharply peaks at the correct value &, .= 4, network. For example, authors may group themselves ac-

O calculated by the betweenness algorithm attains its maXi(_:ording to topics or subject matters of the talks; alternatively,
_y 9 ) . author modules may be more indicative of the authors’ affili-
mum at|Z|,.x=46 and does not show a particular signal at

12 :4d Figure ﬁb) ST]OWS a hilstogr:ﬁm A2l max fo; }lOOdgen-f atl(')I'r(ljsboerg’iar\1/ Eig gf)?)?(r)aalzuliahﬂel:; ?382.5 of questions, we may
erated networks. The NIB algorithm successfully identifies : ' .
|Z|max=4 for 82% of the networks, while the betweennessChoose to look at the author groupings given by NIB at a

¢ : particular number of clusters. While we emphasize that net-
algorithm calculatesZ|ay lying between 18 and 89, notably_ work modularity is a measure over all scales or all numbers
far from the correct value for any network. These experi-

ments sugaest that the NIB alaorithm performs well both inof clusters, it is illustrative in this case also to examine the

ggest the Y P . . clustering at a particular scale. For the APS network, such an
accurately assigning nodes to modules and in revealing thgnalysis yields the optimal number of modult&,, =115
optimal scale for partitioning. max '

for this network[see Fig. 8)].

VI. APPLICATIONS In Fig. 4, we plot the 115 modules and their connections
_ where each ellipse represents one module and edges between
A. Collaboration network ellipses represent intermodular connections. The sizes of the

Having validated NIB on a toy model of modular net- ellipses and the thickness of the edges are proportional to the
works, we next apply our algorithm to two examples of natu-log of the number of authors in a module and the log of the
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FIG. 3. (a) APS network modularity. Information plane for the collaboration network obtained from the 2004 APS March Méwting
largest component consists of 5603 authors and 19 761 eddfesuse the agglomerative algorithm with the diffusion opererbirlt.
Network modularity for this graph, defined as the area under the curve, is 0.9775. Comparison is made with a typical information curve
obtained from an Erdos graph. The optimal number of modules as defined by the the Newman and Girvan med&|rd 164b) E. coli
network modularity. Information plane for tHe coli genetic regulatory networkhe largest component has 328 nodes and 456 gdgfes
use the agglomerative algorithm with the diffusion operm’bF_l‘. Network modularity for this graph, defined as the area under the curve,
is 0.9709. Comparison is made with a typical information curve obtained from an Erdds graph. The optimal number of modules as defined
by the Newman and Girvan measure igzjt=23.

number of intermodular connections between modules, re- Closer inspection of a single module demonstrates that for
spectively. We note the provocative structure revealed in thenany of the modules, institutional affiliation, and even ge-
figure with a large center of highly connected modules ography, play a large role in determining collaborations. In
cluding two of the largest modulgsthree more or less Fig. 5, a single 17-node module is plotted where each node
branching, linear chains of modules, and one large 18-nodeow represents an author and edges represent author collabo-
cycle of modules. rations. We see that 15 of the 17 authors are affiliated with
Columbia University; the remaining two authors are affili-
ated with Stony Brook, and notably, are adjacéntlicating
coauthorshipto each other. The finding that the modules in
this collaboration network are somewhat related to institu-

Il Columbia
[ Stonybrook

FIG. 4. Adjacency network of the 115 modules of the APS
network. Nodes represent modules where the size of the drawr
ellipse is proportional to the number of authors in the module.
Edges between modules represent collaborations between authors
different modules, where the thickness of the drawn lines is propor-
tional to the number of these intermodule collaborations. The mod- FIG. 5. One of the 115 modules of the APS network. Nodes
ule network reveals a structure with a highly dense center of modrepresent authors and edges represent collaborations. Of the 17 au-
ules, three branching linear chains of modules, and one cycle dahors in the module, 15 are Columbia University affiliated and two
modules. are affiliated with Stony Brook University.
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FIG. 6. (Color Six modules
corresponding to the uppermost
branched linear chain of modules
depicted in Fig. 4. Colors denote
modules as defined by the net-
work information bottleneck algo-
rithm. Again the modules roughly

.o Q correspond to institutional affilia-

- c?p tions. Over 50% of the blue nodes

o » have one or more affiliations with

- o the institutions based in and
\. around Chicago (Argonne Na-
O tional Laboratory, University of

lllinois at Chicago, and University
of Notre Dameé. 70% of the red

‘\ nodes are in England, and 75% of
.“0 the green nodes are in China,
/ o) mostly at the Institute of Chemis-
X ‘”‘\ try, Chinese Academy of Sciences,
N e,;.E;\ ) and all of the cyan nodes are at the
1/‘% \g‘;aw‘/‘,,’q Center of Complex Systems Re-
4 \(.ﬂ Y search in lllinois. Both the yellow
=2 and magenta modules are mostly
Nebraska affiliated with the University of

Nebraska.

tional affiliations and geography is supported by similar re-under one or more of these APS categories. However, the 14
sults found in other physics collaboration networks previ-APS divisions and 10 topical groups appear to be too broad
ously studied using different techniquied. and have too much overlap to clearly define a module. For
Another possible annotation for this module to consider isexample, the Columbia University module includes talks un-
that of the APS divisions and topical groups, since each auder the categories of Polymer, Condensed Matter, Material,
thor is associated with at least one talk and each talk is listednd Chemical Physics. On the other hand, the module is

M iy o L
LS\ ““‘."}”-’?»'i’-.

FIG. 7. (Color) E. coli gene
regulatory network. Largest com-
ponent of the symmetric version
of the E. coli genetic regulatory
network. Colors denote modules
identified by NIB.
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essentially representative of researchers at the Columbii 70 ' ' ' ' "B Fariomized
University Materials Research Science and Engineering Cen - - E. coli
ter (MRSEQ and in particular those interested in the synthe- 60}
sis of complex metal oxide nanocrystals. There is thus both
topical and institutional information retained in the modules. 5o
It is also revealing to examine the affiliations of multiple
connected modules. For example, Fig. 6 plots the Uppermos ol
branching linear chain of Fig. 4. Here, color denotes modulez
assignment as given by NIB. Most of these modules also8
have clear institutional affiliations. For example, everyone in
the cyan module is at the Center of Complex Systems Re-
search(CCSR in lllinois; close to 80% of the large green 2]
module is in China, mostly at the Institute of Chemistry,
Chinese Academy of Scienc8€CAS); and 70% of the red 10
module is in England. The blue module is slightly more dif-
fuse, though an institutional affiliation is also apparent here; ¢
over 50% of the authors are affiliated with one of three in-
stitutions near ChicagArgonne National Labs, University
of lllinois at Chicago, and University of Notre DaméeThe FIG. 8. A histogram of network modularity, defined by the area
yellow and magenta modules are also overwhelmingly assasnderneath the curve in the information plane resulting from net-
ciated with the University of Nebraska, though interestinglywork compression, for 1000 realizations of the variation of the con-
our algorithm separates these two modules at this partitiorﬁguration model. Note that the trie coli network is more modular
ing. In generaj’ one does not anticipate that the 0pt|ma| numtha..n the typical network resulting from the variation of the COﬂfigU-
ber of clusters in a given network will give the most natural ation model.
partitioning at all scales and over all resulting modules.

[o23
a

0.7 0.75

0.8 0.85 0.9 0.95 1
Network Modularity

as well as an algorithm for discovering modules of a net-
work. Network modularity is a dimensionless number be-
B. Biological network tween O and 1 and is a p_roperty o_f_a given _netwo_rk over all
) . ) scales, rather than of a given partitioning with a given num-
The notion of modularity has been central in the study ofyer of modules. The measure is applicable to any network,
a variety of biological networks including metabolit3],  ihcluding those with weighted edges. We validate the effec-
protein[21,22, and genetid4,8] networks. Certainly most tyeness of our algorithm in identifying the correct modules
biologists agree that the various networks operating withingnq in finding the true number of modules on synthetic,
and between cells have a modular structure, though whafionte Carlo generated, Erdds-like, modular networks. Fi-
they mean by “modular” can vary greaf§0]. . _nally, application to two real-world networks, a “social” net-
NIB allows us to investigate quantitatively and in detail to \york of physics collaborations and a biological network of
what extent naturally occurring biological networks areyene interactions. is demonstrated.
modular. For example, Fig. 7 depicts the undirected form of  Network modularity, the area under the curve in the infor-
the largest component of tie. coli genetic regulatory net-  mation plane, is but one relevant statistic that we may re-
work described previously if4,23]. The network consists of jeve from the information curve. Certainly other useful sta-
328 vertices and 456 edges and its modularity is depicted bystics may be culled. For example, the optimal information
Fhe curve one traces in the mformatlon p_Iane as the network,rve will always be concavi4] and its slope will decrease
is clustered using the network information bottlendske monotonically. The point at which the slope equals 1 is
Fig. 3(b)]. ) ) uniquely determined for each network and can be described
To establish whether the modularity of the network should,s the point after which clustering further results in a greater
be considered low, high, or moderate, we employ an ansafgss in relative relevant information than gain in relative
popular in several reserach communities in which a d'smbu'compression[that is, 8(1(Z,Y)/1(X,Y))=8(1(Z,X)/H(X))].
tion of networks is created by holding the in-, out-, and self_--l—hiS break-even poinis the point at which one can gain
degree of each node constant but randomizing the connectiyy ther (normalized simplicity only by losing an equivalent

ity of the graph, changing which nodes are connected Qnormalized fidelity. Numerical experiments and investigat-
which neighborg4,5,21,24-26 The randomization, a vari- jnq the utility of this measure are currently in progress.

ant of the configuration mod¢lL2], produces a distribution Diffusive distributions are but one general class of distri-

of networks from which we sample and then measure the, ions on a network. A natural generalization of these ideas
network modularity. The histogram in Fig. 8 shows that s 15 gescribe other distributions on a network for which a
col's modularity is higher relative to this ensemble. particular function, energy, or origin is known, and on which
some particular degree of freeddsuch as chemical concen-
VIl. CONCLUSIONS AND EXTENSIONS ga:_iondor genetic expression as a function of timeay be
efined.
We have presented a principled, quantitative, parameter- Finally, we note that while the information bottleneck is a
free, information-theoretic definition of network modularity, prescription for finding the highest-fidelity summary of a
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