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Detection and characterization of changes of the correlation structure in multivariate time series
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We propose a method based on the equal-time correlation matrix as a sensitive detector for phase-shape
correlations in multivariate data sets. The key point of the method is that changes of the degree of synchroni-
zation between time series provoke level repulsions between eigenstates at both edges of the spectrum of the
correlation matrix. Consequently, detailed information about the correlation structure of the multivariate data
set is imprinted into the dynamics of the eigenvalues and into the structure of the corresponding eigenvectors.
The performance of the technique is demonstrated by applicatidd;-tori, autoregressive models, and
coupled chaotic systems. The high sensitivity, the comparatively small computational effort, and the excellent
time resolution of the method recommend it for application to the analysis of complex, spatially extended,
nonstationary systems.
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[. INTRODUCTION pose. However, in the case of time series with a broad power
spectrum the extracted intantaneous phases have no physical
For spatially extended dynamical systems it is typical thaimeaning[6]. A method particularly designed for the analysis
numerous constituents are involved in the procreation obf multivariate time series is independent component analy-
various possibly independent transient processes, whickis[8]. This approach provides a decomposition of data into
might occur simultaneously, such that the dynamics of thendependent source signals, and in situations where the as-
system is characterized by a complex spatiotemporal corresumption of independence is appropriate, it is a suitable
lation pattern. An important example is electric brain activity method[9].
as measured by conventional electroencephalographic re- Recently techniques known from random matrix theory
cordings where information processing is realized by arfRMT) have been applied to the analysis of the equal-time
ever-changing degree of synchronization between neural a§orrelation matrixC constructed from empirically obtained
semblies[1]. This complicated dynamics, characterized byMultivariate data sefsl0-19. This approach offers the pos-
the permanently changing extent of collectivity of the systenSiPility to compare the fluctuation properties of the spectrum
(or of dynamically formed subsysteinss reflected in the of C with the ana]ytlcal results obtained for random matrix
continuously varying degree of synchronization betweerpnsemble@O]. It is assumed that the part of the spectrum

subsets of the corresponding time series within multivariatd’Hich can be described by random matrices should be
overned by random correlations or noise; only those

data sets. Hence, suitable tools for the detection and quantf- . . '
tative description of such situations are needed. igenvaluesiand corresponding eigenvectprshich show

A th tablished 100ls of fi . vsi significant deviations from the RMT predictions, contain
mong he established 1oolS of ime Series analysis man{‘;enuine information about the “true” correlation structure of

have_ been de5|gned_ predominantly for the_ scalar (Ja;gs the system. It was found that in particular the upper part of
Fourier based _technlquéz], wav_elet analysig3], or ime-  yhe spectrum o€ lies far outside the analytical RMT results.
Qelay embed(_jlnd4j), and even in cases whgre this limita- Consequently, the authors concluded that the entire rest of
tion is not strictly imposed, the_re is still a W|des_pre§1d eN-the spectrum does not reflect any relevant information
dency to condense the complexity of the system into just on 0,12,13,15,16,19

single descriptive parameter, such as the correlation dimen- In this paper we present an approach for the analysis of

s!on[5]. A”Othef exa_mple, which recenfcly has attracted COMNYnultivariate data sets based on the temporal evolution of
siderable attention, is phase synchronization in coupled d

) . X yéigenvalues and eigenvectors ©f The main objectives of
namical systemg6]. The power spectrum itself is not

suitable for the detection of phase synchronization; thereforttehe present study are as follows.
: . ' 1) We present a conceptually simple and yet powerful
the Hilbert transforn{7] is usually employed for this pur- () P e b ye: p

framework for detecting and characterizing time dependent
phase-shape correlations.

(2) Inspired by previous work in the field of open quan-
*Email address: muellerm@servm.fc.uaem.mx tum systemdg 24,25, we explain the mechanism by which
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information about the correlation structure of multivariate information from each time series within the window, such
time series is induced in the spectrum@f that the measured cross correlations reflect exclusively rela-
(3) We show that in general the lower part of the spectrumtionships between the shapes and phases of the signals. Fur-
of eigenvalues and eigenvectorsrist dominated by noise thermore, the normalization provides a well defined scale,
and/or random correlations, but also contains essential infosuch that the matrix elements f vary between +Icom-
mation about the correlation dynamics of the system. Weletely correlated stateand -1 (completely anticorrelated
present evidence supporting the concept that there exist sit§tate. For the particular case of sinusoidal signals these
ations for which the lower part of the spectrum contains staStates correspond to the interval of possible phase differences
tistically more relevant information than the largest eigenval-PIWeen two signals. A special case is given for a phase
ues and their corresponding eigenvectors. difference ofv_-r/2, which accordm.g to this definition leads to
(4) We show how the analysis of the largest and smallesf€ correlation; we shall call thisrsoncorrelatedstate.

. . . - The window sizeAt defines the time scale on which the
eigenvalues and their corresponding eigenvectors can béaorrelations are measured. If the window size is increased,

combined to extract details of changes in the correlation Palsiatistical fluctuations of the calculated guantities will de-
tern. . . . . crease, but at the same time the temporal resolution of the
The paper is organized as follows. After discussing th&gg it will also decrease. Hence, in any practical application
method itself and the relevant quantities in the next sectionyne has to find a compromise between averaging out the
we demonstrate its performance by applying it to threeygise components via the sum in E®) and the required
Classes Of art|f|C|a"y generated mUItiVariate t|me SerieS |r1|me reso'ution_ For a” cases presented in th|s paper we
Secs. I, IV, and V. In particular we show results for the checked various sizes aft, obtaining qualitatively the same
analysis of systems given by sums of sine waves with incomresuilts. If not mentioned explicitly, we fix the window size to
mensurable frequencies, for stochastic oscillations generatagi=2048 sampling points throughout this paper; defining an
by linear multivariate autoregressive models, and for couplegyrbitrary time unit of 256 sampling points length, this win-
chaotic systems. In Sec. VI we present a comparison withjow size corresponds tht=8 time units.
other approaches. While most results presented in this paper As a central concept we employ the eigenvalaesind
have been obtained from artificially generated time series, iRigenvectors; of the correlation matrixC: Co;=\v;; the
Sec. VII we briefly also discuss an application to a clinicaleigenvalues\; will be ordered according to size, such that
electroencephalografEEG); we expect that EEG record- ), <\,<---<\,. The distribution of the eigenvalues is di-
ings may form an important field of application for the rectly related to the amount of correlations of the multivari-
method to be discussed in this paper. In Sec. VIIl we examate data set. This can be easily understood by considering
ine the relation between the results obtained by the applicasome general properties of the equal-time correlation matrix,
tion of random matrix theory to correlation matrices andgq. (2).
those obtained in this paper. (i) Each diagonal element @ is equal to 1, because each
time seriesX(t) is perfectly correlated with itself. Hence, the
sum of the eigenvalues is time independent and equisl,to
IIl. BASIC METHODOLOGY the dimension of the multivariate data set. As a consequence,
In order to analyze two-point correlations in multivariate the change of any of the eigenvalues has to be compensated
time series with unknown stationarity properties we evaluatdy & corresponding change of at least one of the others.
the correlation matrix over a moving window of lengtti (i) For noncorrelateck;(t) the values of the nondiagonal

containingN data points where each data paitt,) is nor- ~ €léments ofC tend to zero if the time windowht tends to
malized according to infinity (lim,;_.. C;=0 O i#]). In that case the spectrum of

o C is completely degenerate and=1 O i. For any finite
Xi(t) = X; value of At, however, the values d;;, i #j, remain finite,
Xi(to) = e (1) which leads to a lifting of the degeneracy. In this case the
: eigenvalues are distributed around 1, reflecting the presence

whereX; and g; denote the mean value and standard devia©f random correlations within the finite windo.
tion, respectively, of the original time seri¥g(t,) within the (iii) In the case when aM time series are perfectly cor-
window At, andk labels all data points within the window. elated(i.e., they are identicalCj=1 [ i,]. This matrix has

Individual time seriesXi(t,) of the multivariate data set are Only one nonzero eigenvalugy,=M.
labeled byi, wherei=1, ... M. Based on this time window, These extremesfor noncorrelated and perfectly corre-

which is shifted over a given set of time series with the'@ted time serigsallow a quantitative description of the cor-
maximally possible overlap dfi-1 data points, the equal- relation pattern_of a given dat_a set. For the time dependent
time correlation matrixC is computed by21,27] case of nonstatlonary tlme_z series the ev_alua_tlt_)n of_the corre-
lation matrix over a moving window with finitéit is re-
Ry quired[Egs.(1) and(2)].
Gj(t) = Nik‘f Xi(tX; (k). ) When analyzing recordings from spatially extended com-
plex systems it is desirable to measure how strongly and in
wheret, is the center value of the current time windadw.  what manner the different components of the systems coop-
Provided the window sizat is chosen sufficiently small, the erate, i.e., to detect and characterize collective dynamics.
normalization Eq(1) has the effect of removing amplitude The classification of collective phenomena in complex sys-
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tems is well elaborated in many fields of physics, in particu- [ll. MULTIVARIATE  Ng-TORI
lar in many-body theory. As an example we mention the
interpretation of giant resonances as the collective motion OI:i d-g? ;:gr?g:\%aﬁatsieo?zrfﬁ;nr;?gzﬁes o;tgr]’r?smaetsm ;i\r/r?econ_
nucleons{23]. These collective modes involving many par- waves with mutuall incorr)wlmensurat()e/ fre uéncies Time se-
ticles are interpreted as constructive interferences of numer-: y q :

ous single-particle states causing a large spreading widte> of such systems samphé-tori [27], i.e., geometrical

; 2 . -+ Objects with topological dimension equal k. Because of
[23,28. Hence, the resulting multiparticle eigenstate descrlbthe flexibility of this system class and the fact that its dynam-

ing the collective dynamics of the nucleus contains consid:cs and hence the correlation structure can be perfectly con-
erable contributions from each of the single-particle state . . P y €O
rolled, it serves as an ideal test system for the method dis-

involved. On the other hand it is known that the collectivity C o

of a particular eigenstate increases via level repulsions WitﬁUSSEd in this paper.

other eigenstatg24-26. Two repelling states interfere such

that the resulting eigenvectors are a symmetric and an anti- A. Definition and design of the system

symmetric mixture of the original states. By this mechanism N;-tori are generated by sums Nf harmonic oscillations;

a separation of one or several eigenvalues occurs resulting fiere we choose equal amplitudes for all oscillations:
well pronounced collective properties of the corresponding

eigenstates involvef24,25. ) )
The degree of collectivity of such states with respect to a Xi(t) = 2 sin@2wfit+gy), i=1,...M, (5)

well defined basis can be quantified by the participation ratio =t

or the number of principal componenttet &; denote the where the set of frequencidgis sampled randomly from a

expansion coefficients of eigenvectgr then the number of uniform distribution on the interval0, f,,,] with f,.,=20

N

principal components is defined E4,25 frequency units. In this paper one time unit is arbitrarily
1 defined as 256 data points. The same set of frequencies is
NP=——. (3) chosen for ali, whereas the set of random partial phaggs
sz |<’:11'j|4 is assigned from the intervdD,27] to each time series

) ) ) independently. In all examples d;-tori we have chosen
This quantity measures trje percentage of basis states neeqqg__ 1000 frequencies andl =20 time series.
to construct the eigenstate If the a; are uniformly distrib- The correlation structure of this multivariate data set is
uFed (all bgsis ;tatej; contributeﬁequally to the expansion of cqntrolled by the partial phase. If the &; are uniformly
eigenstatd) NJ is equal to 1. Ify; contains only a few com- gistributed between zero andrhe Xi(t) are mutually un-
ponentsN; takes values close to W, whereM is the di-  correlated. Any deviation from the uniform distribution will
mension of the configuration space. result in phase-shape correlations between the time series.
Because each rovor, equivalently, each columrof C  \ye generate phase-shape correlations via Gaussian distribu-
represgnts the two-point correlations between a particulaions modulo 2r with prespecified meap ; and variance;%.
signal X;(t) and all others, each basis vector represents the In general, phase correlations may affect all frequencies,
cross correlations measured in one time series or data chaor they may be limited to a certain frequency band, while
nel i. For this reason we might call this basis the “channeloscillations outside of this band retain uncorrelated partial
basis.” Hence, the number of principal componeNfsre-  phases. In order to simulate such a situation we can choose
flects the amount of cross correlations contributing toithe  the §; as Gaussian distributed only for a subset of e
eigenstate, and in this sense it is a measure of the degree foéquencies corresponding to a certain frequency band.
collectivity. Intuitively one might understand collectivity as ~ Nonstationary time series with time dependent correlation
the cooperative behavior of many components of a systenstructure will now be generated in the following manner. The
as for example when they synchronize their dynamics. Wéime series are composed of three consecutive segments,
will see that the abstract concept of the number of principakach of 5120 sampling points lengtborresponding to 20
components exactly fits this intuitive picture. time unitg. For the first segment a set of partial phaggss
The definition ofNP does not permit one to discriminate randomly chosen from a uniform distribution independently
between correlation and anticorrelation. Therefore a seconfibr each channdland kept constant during this period. Then
quantity is needed which takes into account the sign of the@ new set of random partial phasé$ is chosen from a
a; and hence the approximate orientation of the eigenvectoGaussian distributiofmodulo 27) with a given mean; and
in the configuration space. We call it tegmmetry parameter variancea*fs. These partial phases are arbitrarily assigned to
and introduce a definition such that it becomes unity forthe oscillationsf; of each channel Then, during the second
completely symmetrical and zero for completely antisym-segment each of the uniformly distributed partial phagges
metrical states: is linearly shifted toward the corresponding new setﬁgxf
_ ) This step may be limited to those oscillations belonging to a
S= E sgr(ay)|a;| ’ (4)  certain frequency band or to partial phases belonging to a
: certain subset of channels. Finally, at the end of the second
This quantity enables us to measure to what extent an eigetime segment, the partial phases have reached their
vector is generated by constructive or destructive interferGaussian-distributed values. During the third time segment
ence of basis states. all partial phases are kept constant.
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TABLE |. Listing of different N¢-tori analyzed in this paper.

System Characteristics of the transition in second time series segment

A For all channels the partial phases of the 25% lowest frequencies are shifted linearly to a Gaussian distribution with
os=m/2 andus=/2, the remaining partial phases remaining uniformly distributed values

B As in systemA, but here the partial phases of 50% of the lowest frequencies are shifted

C As in systemA but here the partial phases of 100% of the lowest frequencies are shifted

D All partial phases of two channels are shifted linearly to a Gaussian distributionowthr/4 andus=m/2, the
partial phases of all other channels remaining uniformly distributed values

E All partial phases of four channels are shifted linearly to a Gaussian distributionowsthr/12; the four channels are

divided in two groups of two channels each, such that between the mgarfsthese groups a phase differenté
=1 exists; the partial phases of the remaining channels remain uniformly distributed values

F As systemE, but with AS=7/2

Hence, the resulting data set is stationary during the firsa global transition to a more synchronized dynamics, if si-
and last segments, i.e., between time units 0 and 20, amiultaneously all smallex; decrease.
between time units 40 and 60. From time units 20 tq#e So far the local maximum ok, between time units 30
central segment linear transition between the two dynami- and 40, which is visible at least for the cases of systBms
cal stationary “states” takes place. A set of different system&ndC, has not been explained. Since the order of the partial
is defined by different choices of the properties of this tran-phases within the intervdl0, 2] is not maintained during
sition occurring during the central segment. Table | lists thethe transition from the uniform to the Gaussian distribution
systems that will be employed as exemplary testing systemduring the second time segment, there occur numerous cross-
in this section. ings between pairs of;; during this segment. Consequently

the distribution of partial phases will transiently become nar-

B. Correlations extending over all time series | (a) ‘

. . . }\.20 6
First we will focus on the analysis of systeisB, andC,
where phase correlations are induced simultaneously in all 4l
M=20 time series. In Fig. (B we compare the temporal I
evolution of the largest eigenvalug, for systemA (dotted 21
line), systemB (dashed ling and systentC (solid line). It
can be seen that for all three systenyg keeps a small av- L8}
erage value slightly above 1 during the first 20 time units, O r
i.e., the noncorrelated segment. Slight deviations from unity 16|
during this segment are caused by random correlations which Lal

influence the analysis for any finite size &f. Between 20
and 25 time units\,q increases abruptly. For the cases of
systemsB and C \,q encounters a local maximum at ca. 30
time units, and in the last segment it fluctuates around a
value of 5 for systentC, around 3 for syster®, and slightly
above 2 in the case of systefn The relative change of,,
from the first to the third segment is on the average 230% for
systemC, 100% for systenB, and still 47% for systeni\.

Ny Starts to increase almost immediately after the partial
phases have started to shift from their uniformly distributed
initial values to the Gaussian-distributed final values. At the
same time ash,q increases, all other eigenvalues, i
=1,...,19, decreas@mot shown in the figune Furthermore,

it is remarkable that the tiny changes of the phase distribu-
tion in the case of systei are clearly visible in the changes
of A\yo. This behavior can be qualitatively understood by the
general argument$)—(iii) discussed in the previous section.  FG. 1. Time evolution ofa) the largest eigenvaluky, (b) the
The deformation of the phase distribution toward a GaussiaBtandard deviation of the phase distributieg (c) number of prin-
causes an increase of the degree of synchronization betwegjpal componentdb, and(d) the symmetry paramete,, of the
all M time series. Hence, the largest eigenvalue tends t@rgest eigenvectar,, The figure displays the results for systefns
separate from the rest and assumes larger values, as deetted ling, B (dashed ling andC (solid line) of Table I. The time
scribed by(iii ). It can be concluded that the system performsscale is given in arbitrary units as explained in the text.

0 10 20 30 40 50 60

time
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rower than the final Gaussian distribution, whence a mini-structive interference of quantum states, which in a semiclas-
mum of the width of the phase distribution is caused. Thissical picture describe the collective motion of the
phenomenon is visualized in Fig(k), where the standard constituents of a many-particle quantum systes in the
deviation of the phase distribution is shown for syst&mBs, example of giant resonancg23]). In the present case it re-
andC as a function of time. If, as in the case of systens flects the increase of the degree of synchronization between
and C, the minimum of the phase distribution is sufficiently different time series. If we understand tigt) as the result
pronounced, it is reflected by a local maximumigf. This  of a multivariate measurement of a spatially extended com-
example demonstrates that changes of the correlation struptex system,NS, measures to what extent the dynamics of
ture of these multivariate time series cause changes in thde multiple degrees of freedom are synchronizif, is
dynamics of the eigenvalue spectrum of the correlation maedetermined by an interference process of the highest eigen-
trix. state with others, or, equivalently, by level repulsions of the
In the present case, where all time series are being corrdrighest eigenstate with othel24,25. The mixing between
lated simultaneously, a repulsion between the largest eigenhe eigenvectors involved in this process increases gradually
value and the entire rest of the spectrum is observed. It igluring the repulsion proce$24]. If all states participate, the
well known that level repulsions cause a mixing of the eigen-distribution of the expansion coefficients; becomes uni-
states with well defined symmetry propert[@4,25. There-  form, which leads to a maximum value of, [25]. As in
fore, the observed transition should also be reflected in thenany-body quantum systems the number of principal com-
properties of the eigenvectors. Figure®)land Xd) show ponents is a valuable measure for collectivity. It is remark-
the results for the number of principal componelfy and  able that in the present case, where the repulsion betwgen
the symmetry parametes,, of the eigenvector correspond- and all other eigenvalues occurs simultaneously, the maxi-
ing to the largest eigenvalue for the case of systant and  mum possible symmetry of,, is reached long before all
C. Both quantitiesN5, and S,; show a sharp increase almost basis states contribute equally to the expansion,gf This
immediately after the partial phases begin to shift to theexample implies that the dynamics of the largest eigenvalue
Gaussian distribution, and they react even more strongly thareflects the overall dynamics of the system, i.e., the degree of
Ay t0 the transient changes of the partial phases. In the casmllectivity between allX;(t).
of systemsB and C the symmetry paramet&,, approaches
its maximum possible valugomplete symmetpyalready at _ o ) )
t~23 time units. In the case of systely where the amount C. Correlations within a subset of time series
of induced correlations is considerably lower, the maximum  All cases discussed so far illustrate how the spectrum of
value is reached at time unit 26. The evolution\f allows  eigenvalues and eigenvectors reacts if phase correlations are
a better discrimination between the three cases, and as in tiieduced in all time series simultaneously. For multivariate
case 0fSy, again the transition is characterized by a drasticdata sets it is possible that correlations occur only within a
increase olNb,,. At the same time the other eigenvectors as-subset of time series. Obviously, the detection of such corre-
sume predominantly antisymmetric configurations, as contations and the identification of the correlated subsystems is
firmed by a decrease &, i=1, ...,19(not shown. of great practical interest. Therefore, in this section we turn
The symmetry properties of the repelling eigenstates cago the analysis of time series generated by sydieaf Table
be understood qualitatively by considering a simple matrix where correlations are induced between the first two of

model. Let M =20 X(t).
Figure 2 gives an overview of the results for the analysis.
o (1 C). ©6) In the first column[Figs. 4a), 2(d), and 2g)] the largest,
c 1/’ second smallest, and smallest eigenvalues are shown as func-

tions of time, the second colunjkigs. 2b), 2(e), and Zh)]

then the eigenvalues @& are\,=1=c, and the correspond- displays the results for the number of principal components
ing eigenvectors are symmetrical and antisymmetrica]_supeNiFJ, and the third columiiFigs. Zc), 2(f), and 2i)] displays
positions of the canonical basis vectors,=(1/v2)  the symmetry paramet& of the corresponding eigenvectors
x[(5)+(9)], i.e., if |c|—1, one of the eigenvalues tends to v, 0, ando;, respectively.
zero while the other one approaches 2 such that the trace of The increase of,, starting at about 30 time unif§ig.
the matrixC stays constant. Whethér,>\_ or vice versa 2(a)] can still be discriminated clearly from the statistical
follows from the sign of the correlation coefficient If ¢ fluctuations. But its increase is much less pronounced than in
>0 (correlation A,>\_, and the eigenstate correspondingthe cases discussed in Sec. lll B. On the averaggin-
to the larger eigenvalue is a symmetric configuration of thecreases by about 12%, from about 1.504+0.025 to
basis states. If anticorrelations are present,0, the situa- 1.68+0.035. On the other hand, in this case the decrease of
tion is reversed, i.e., the eigenstate corresponding to thtéhe smallest eigenvalue is more pronounceddecreases by
larger eigenvalue has an antisymmetric characteristic. Thabout 25%, from an average value of about 0.588+0.007
level repulsion produces a symmetrical and an antisymmetriduring the first 20 time unitgfirst segmentto an average
cal mixing of the eigenstates. value of about 0.437+0.005 during the last segment. Here,

At this moment it is worthwhile to make a remark about the change o ,q is almost completely compensated by a
the proposed interpretation for the number of principal com-corresponding change af. All other eigenvalues, as well as
ponents. OriginallyNP was introduced as a measure of con-their corresponding eigenvectors, do not show significant
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FIG. 2. Results for syster® of Table I.(a) Largest eigenvalu@.q, (b) number of principal componentsb;, and (c) the symmetry
parameteS,, of the largest eigenvectaiy. (d), (e), and(f) show the corresponding quantities for the second smallest stafg)ari), and
(i) for the smallest state. The time scale is given in arbitrary units as explained in the text.

changes during the transition from the first to the last segsmallest eigenvaluetr more generally, in the case &f
ment. We found that they remain insensitive to the increaseorrelated time series, between the largest eigenvalue and the
of synchronization within a subsystem of two time series andK—1 smallest eigenvalugsEssentially only the eigenstates
show only fluctuations around some constant average valueprresponding to those eigenvalues interfere with each other.
which is determined by the amount of random correlations oiThis leads to almost purely symmetric and antisymmetric
equivalently by the finite size akt. Exemplary for this part mixing of the components corresponding to the
of the spectrum, we show the results for anduv, in Figs.  K-dimensional subspace defined by the subset of correlated
2(d)—2(f). time series, i.e., only the mutual correlations measured in this
The transient change of the correlation structure is alsgubspace give dominant contributions. The remaining states
reflected in the symmetry properties of the eigenvectors. Theontribute only slightly via the random correlations caused
eigenvector,, tends to be more symmetric during the last by the finite size of the time window. For this reason, the
segment, whilev; has a well pronounced antisymmetric number of principal components of the largest state de-
characteristic during the same time interval, resulting in ecreases, provided that the dimenskowf the correlated sub-
small value ofS; with tiny fluctuations. On the other hand, system is sufficiently smallk <M). The question which of
the number of principal components of both the smallest aghe time series(t) do synchronizgi.e., do belong to this
well as the largest eigenvector decreases significantly duringubspacecan be answered by inspecting the eigenvectors
the transient central time segmdfigs. 2b) and Zh)], in-  directly.
dicating that these eigenstates are almost perfectly oriented Figure 3 shows the squared modulus of the eigenvector
into a two-dimensional subspace of the 20-dimensional coneomponents of; [Figs. 3a) and 3b)] and v, [Figs. 3c)
figuration space. In other words, during the last segment thand 3d)]. The results in Fig. 3 represent averages over 500
mutual correlations induced in only a small subset of therealizations of systen®d (solid lineg. Figures 8a) and 3c)
channels(which define the correlated subsppgeovoke show the results for uniformly distributed partial phases;
substantial changes of the properties of the eigenvectors colrigs. 3b) and 3d) are calculated for ams-torus with the
responding to the largest and some of the smallest eigenvatharacteristics of the third segment of syst@m Dashed
ues. The symmetry parameters of the remaining statds lines denote 95% confidence profiles of the distribution of
=2,...,19, as well as their numbers of principal compo-results. While in the case of uncorrelated dynamics an almost
nents, do not show any significant changEgys. Ze) and  uniform distribution of thea;|? with large statistical fluctua-
2(f)]. In general, if a subset o€ <M =20 time series is cor- tions is found, in the case of systenfor both v, and v,
related, we observe th#t eigenvaluegand hence their cor- dominant components are generated only from the first two
responding eigenvectgrseact. The largest eigenvalue in- X(t), i.e., the correlated signals. The statistical fluctuations in
creases, while th&K-1 lowest eigenvalues decrease. Thethe correlated segment are tiny, thereby confirming the sig-
strength of the induced correlations and the dimension of thaificance of this result. As a remarkable detall, the statistical
correlated subsystem determine the amount by which the efluctuations of the smallest eigenvectay [Fig. 3(b)] are
genvalues at the edges of the spectrum change. even smaller than those 0%, Statistically, the results ob-
This behavior can be perfectly explained by the simpletained forv; have a higher degree of significance, as com-
matrix model mentioned in Sec. Il B. In the present case gared to those obtained fak, This might be relevant for
level repulsion occurs only between the largest and théiighly nonstationary systems, where time averaging is only
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FIG. 3. Distribution of the eigenvector componet‘a§|2 for the smallest eigenvectda) and (b) and for the largest eigenvect@r) and
(d). The results in[@ and (c) were calculated for the first segment of systBnof Table I, while(b) and(d) show the results of the last,
correlated segment of systen The solid line is obtained by averaging over 500 different realizations of syBtebashed lines denote
95% confidence profiles.

justified within short periods. All other basis states, repre-\,qincreases while thi;, i=1,2,3,decrease. The remaining
senting the remaining time series, participate only weakly ireigenvalues do not show any conspicuous behavior during
this interference process. During the last segment,|aij1|é the whole time course. Comparing these results with the re-
of the eigenvectors;, i=2,...,19, show an almost uniform sults of the preceding section it appears that by only looking
distribution(resulting from random correlationwith a mar-  at the eigenvalues one cannot distinguish between the case of
ginal contribution of the components corresponding to theour correlated time series and the present case of two mu-
correlated subspace. Furthermore, they show large statisticalally anticorrelated groups of correlated time series. Also
fluctuations indicating that these eigenvectors rotate rapidlyhe number of principal componerit$ of the largest and the

in the (M -2)-dimensional uncorrelated subspace. Thus, thehree smallest eigenvectors behaves as in a system of four
inspection of the eigenvectors yields detailed informationcorrelated signals, i.e., similarly as shown in Fig. 2. In Figs.
about which time serieX;(t) belong to the correlated group. 4(b) and 4d), the symmetry parameters of the largest eigen-
value[Fig. 4(b)] and of the three smallest eigenvallé&s.

4(d)] are shown; here the results are qualitatively different
from the previously discussed situatioiSsg displays on av-

We now turn to the case where groups of time seriesrage a considerable decrease with only tiny statistical fluc-
possess correlations. Here the question arises to what exteations in the correlated third segment. On the other 8nd,
itis possible to extract such information from measured muli=1,2, 3, reveal a trend toward a more symmetric structure,
tivariate dataN¢-tori easily permit one to simulate situations while the remaining eigenvectors, i=2,...,19, again do
where certain groups of correlateq(t) have different mu-  not show any conspicuous behavior. By investigating the
tual phase relations. In principle, there are two situation oktomponentsy; of the four eigenvectors;, i=1,2,3,20, itis
major interest: the dynamics of two groups may be uncorrepossible to directly identify the correlation structure of this
lated or anticorrelated. For the caseNyftori it seems to be  multivariate data set. Thes,; corresponding to the correlated
inappropriate to interpret€;=0 as evidence for uncorre- times series are significantly larger than the others, similar to
lated time serie(t) and X;(t), because in the case of har- the case discussed in Fig. 3. They assume values of about
monic oscillationsC;; =0 implies a constant and well defined +0.45, while the remaining coeficients fluctuate between
phase difference ok 6=7/2 between the time series. In the +0.1. Furthermore, thosa, corresponding to the two anti-
next section we will justify this interpretation by studying correlated groups have opposite signs. Hence, the sign of the
time series produced by autoregressive models. expansion coefficients reveals which pairs amongX{©

Figure 4 presents the results for syst&mof Table I,  are mutually correlated or anticorrelated. Thus, detailed in-
namely, the case of two mutually anticorrelated groups, eacformation about the transient correlation structure can be re-
of which consists of two correlated time serd$ét). Figures  trieved from these quantities.

4(a) and 4c) show the time evolution of the largest eigen-  Again, as in the case discussed in Figs. 2 and 3, there
value[Fig. 4@)] and of the three smallest eigenvall&sg. occurs a level repulsion between the highest eigenvalue and
4(c)]. It can be seen that all eigenvalues shown in the figur@nly a few smallest eigenvalues. The number of small eigen-
react during the transient second segment, where the transtates participating in this interference process is given by
tion from the uncorrelated to the correlated state takes placehe total number of correlated time series. Eigenvalues do

D. Phase relations between groups of correlated signals
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FIG. 4. Results obtained for systdmi.e., when two mutually anticorrelated groups of correlated time series are generated each of which
contains two time seriega) shows the time evolution of the largest eigenvalygand(b) the symmetry paramet& of the largest state.
In (c) the results for the three smallest eigenvalues are shayfsolid ling), A, (dashed ling and\5 (dotted ling. In (d) the results for the
symmetry paramete§ for the three smallest states are shown, using the same line codingcasTihe time scale is given in arbitrary units
as explained in the text.

not differentiate between correlated and anticorrelated situa- SystemF of Table | is a realization for two uncorrelated
tions; this aspect has to be extracted from the correspondingroups ofX(t), i.e., the maxima of the Gaussian distributions
eigenvectors. The correlation matrix assumes a blockef random partial phases are displaced by a phase difference
diagonal form with positive correlation coefficients inside A5=/2. Figure 5 shows the results of the analysis of time
each block on the diagonal, while the nondiagonal matrixseries corresponding to systémFigures %a) and 5c) show
elements connecting the two blocks have mostly negativéhe two largest and the two smallest eigenvalues, respec-
signs. In terms of the simple matrix model E@) this cor- tively. In Figs. §b) and §d) the corresponding results for the
responds to the case<0. The sharp local maximum that symmetry parameter are shown. The largest eigenvgjye
can be seen at about 30 time units in Figb)4is caused by shows a clear increase with a well pronounced maximum at
the crossing of the partial phases during the shift from theabout 30 time units during the transient segment, where due
uniform to the Gaussian distribution. During this transitionto the crossings of the partial phases the width of the phase
the distribution of the partial phases becomes narrowerlistribution assumes a minimum, thereby causing strong cor-
while it is not yet showing two maxima displaced by a phaserelations, while the two groups are not yet distinguishable.
differenceA 6=m. Therefore, transiently the four time series Also \q Starts to increase, such that in the final segment the
become highly correlated, resulting in a symmetric structurewo largest eigenvalues fluctuate at values slightly above 2.
of U, in accordance with model E¢6). Correspondingly, the two smallest eigenvalues decrease, in

24f
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FIG. 5. Results obtained for systef two mutually noncorrelated groups of correlated time series are genefajtesthows the time
evolution of the largest eigenvalug, (solid line) and the second largest eigenvaldashed ling In (b) the symmetry paramete8 of the
largest statésolid line) andS;q of the second largest eigenvectdashed lingare shown. Ir(c) the results for the two smallest eigenvalues
are shown\ (solid line), \, (dashed ling In (d) the results for the symmetry paramegfor the two smallest states are shown, using the
same line coding as ift). The time scale is given in arbitrary units as explained in the text.
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order to satisfy the condition of trace invariance @f All of correlated time serie¥;(t) are detected, as well as details
other eigenvalues;, i=3,...,18, essentially do not partici- of the relationship between correlated subsystems. If in total
pate in this process. The structure of the correlation matrix time series become correlatdt eigenvalues at the edges
during the correlated time segment shows two blo@®e  of the spectrum increase or decrease, respectively. The struc-
for each of the correlated groupshich are essentially dis- tyre of the corresponding eigenvectors provides detailed
connected, i.e., on the average @econnecting both blocks  jnformation about whichX(t) gets correlated. Furthermore,

are zero. Geometrically this means that _the repelling eigeng, symmetry paramete(t) tells whether synchronization
states(the states affected by the correlatipassume an al- gr antisynchronization is present,

most orthogonal orientation with respect to the basis vector

of the uncorrelated subspace. Furthermore, each of the two

largest eigenstates tends to an almost orthogonal position V- MULTIVARIATE AUTOREGRESSIVE PROCESSES

mt: rfsﬁe;:t Itr? EEZ I?%rirtier:atigsseuz??@gec%i?nIZ?etI)y lj)r?go(r)rfet-he The class ofNs-tori discussed so far represents a deter-
groups. g« pletely ministic testing system for which phase correlations can be

lated groups, each containing ten perfectly correldtéen- induced in a precisely controllable way. In order to put the

tical) time seriesC assumes a block-diagonal form with two . P y Y. P

obtained results onto more general grounds, we will now

10X 10 blocks withCj;=1 inside each block, while the re- . ) . ) .
maining nondiagonal matrix elements are equal to zerginvestigate time series generated by autoregressive models,

Hence, this system splits up into two independent ten!-€: @ class of stochastic dynamical system.
dimensional subsystems. Consequently, there arise two large o _
eigenvalues, one for each subsystem, each with a value of A. Definition and design of the system

10, while all other eigenvalues tend to zero. Linear autoregressive processes have been among the
In Figs. §b) and Jd), the symmetry parameters of the most popular and useful dynamic models for time series
two largest eigenvaluefFig. Sb)] and those of the two analysis for a long tim@30]. The multivariate generalization

smallest eigenvaluelig. 5(d)] are shown. It can be seen f g toregressive process@dAR) is given by
that the two largest eigenvalues tend toward symmetric com-

positions of the basis states. As a result of the phase cross- PNy

ings during the second segment transiently onlyshows a Yilty) = > E Aj(S)Yj(ty=sT) + 7i(ty), 1=1,... Ny,
well pronounced symmetric structure. The nondiagonal ma- s1i=1

trix elements ofC connecting the two blocks are not zero. (7)

Therefore, the two groups are not perfectly independent. Th'\?Vherep denotes the model orde, the state dimension, and

leads to a weak mixing of the two largest eigenstates evell . Lnit of discrete time The, (s) are a set oN, X N
X 1] y y

during the correlated last segment, and consequently fluctua- ) : ) . .
tions of §, i=19,20, appear starting from time unit 40. On parameter matrices, angl(ty) is anN,-dimensional time se-

the other hand, the structure of the states of the two smalleSES Of Gaussian white noifseh By defir:ing an augmented new
eigenvectors shows clearly antisymmetric characteristics. state vector__lc_on5|st|ng O_t1$ actua sltate vector_zl at time
In [28] a group model was proposed in order to explainpomts t, (ta=T), ... [ta=(p=D)T], it is always possible to

the appearance of several large eigenvalues deviating frofi@nSform a MAR model of ordep into a first-order MAR

the RMT predictions. The authors proposed that the empiriM0del; this is known as a state-space approach and corre-

cal correlation matrix 0f10,11 had block-diagonal form, SPONds to time-delay embedding. In this case only one pa-

each block representing a set of companies belonging to tH&Meter matrix of sizeN, X pN, is required. The noise terms
same kind of industry or market sector. A similar conclusion”(tn) for these additional time-delayed state variables are set

was drawn i 14], where it was proposed that certain subsetd© zero. Here we employ a special class of first-order MAR
of stocks were formed, corresponding to companies from th&'0dels, defined by theNg X 2N, parameter matrix

same “conventionally identified” business sectors. Eguiliz 2ReN,) ifi=jandi=2n-1,

and Zimmermann have presented a model for opinion cluster P -

formation and information dispersal by agents in a network P \o[* ifi=j-1andi=2n-1, )
[29]. The transmission of information within the network of ! 1 if i=j+1 andi=2n,

all traders follows a random process, such that groups of 0 otherwise.

agents are formed in a self-organized mangnarding. In
this context “herding” means that agents are not making deklere N, n=1,... Ny, denotes a set of complex numbers
cisions individually, but instead agents belonging to the sam#&hich are generated by choosing their partial phases from a
group perform collective actions, i.e., strong correlations arainiform distribution within[0,7/2] and their moduli from
present between the agents of each group. We suggest tHhe asymmetrical distributiop(|\[) &< [\|*(1~[x[*) within [O,
this type of collective behavior of certain subsystems can bé]. The set of the\,, and their complex conjugates represent
well described by the mechanisms discussed in Figs. 4 and the characteristic roots of the MAR models, i.e., they de-
Concluding this section, we can state that the time-scribe its frequency response. Moduli should not exceed
resolved spectrum of eigenvalues and eigenvecto@ mfo-  unity, otherwise the model would become unstable. Xhe
vides detailed information about the changes of the correlawere chosen from the first quadrant with a probability distri-
tion structure of multivariate time series data, in terms ofbution that peaks close to unity but becomes zero at unity.
level repulsions between a certain number of states. Groupghe resulting model is equivalent to a setNf uncoupled
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univariate second-order AR modé€|s=2) which are accom- 171 (@) '

modated into a B -dimensional state-space model; each Mo L ]

AR(2) model performs a stochastic oscillation with an indi- 1.6} 1

vidual frequency and an individual width of its spectral peak. - .

Note that only thosey(t,) with odd indices =2n-1 will be L5¢

nonzero, since the other positions correspond to time- Lal 1

delayed variables. ol |

Now we assume a set M of these MAR processes with

state vectorsy(t,), i=1,... Ny, k=1,...M, all simulta- 0.7 (b) _

neously active, each driven by a noise procegst,). We A 5 1

can introduce couplings into these processes by choosing 0.6}

these noise processes as - 1

0.5+ 1

7k(tn) = c(p)[p&i(tn) + (1 = pxi(tn) ], 9 04l ]

where§(t,) is a (multivariate noise process common to all 0 10 20 30 40 50 60

MAR processes, wheredg,(t,) is a set of(multivariate time

noise processes that is uncorrelated with respect to the index £, ¢ Time development d8) the largest eigenvalugy, and
k; both processes are chosen as zero-mean unit-variangg§ the smallest eigenvalug, for the MAR model Eq.(7), when
Gaussian white noise. The paramgietetermines the degree o1y two fromM =20 time series are correlated via the noise mixing

of correlation between the individual MAR processes;0  described by Eq(9) with p=0.5. The time scale is given in arbitrary
corresponds to completely uncorrelated processes, while fQiits as explained in the text.

p=1.0 all processes are driven by the same noise process and

therefore produce identical time seriesp) denotes a nor- B. Correlations within a subset of time series

malization function which ensures that the variance of the peacayse the case when Ml time series get correlated is

sum of the two independent noise process) andi(t)  the most trivial one we focus in the following only on those

remains unity. _ systems where the correlation structure of certain groups of
Finally theN,-dimensional state vector of each MAR pro- channels is changed. As a first example we present the result

cess is mapped to a univariate observation by summatiofy the case where only two frof =20 time series were

over all second-order AR models, i.e., correlated withp=0.5. The results for the largest and small-
est eigenvalues are displayed in Fig. 6. As in the case of
Ny N¢-tori, only the largest and the smallest eigenvalues react
Xitn) = 2 Yon-1x(th) - (100  noticeably to the transient change of correlation structure.
n=1 Again, \,g increases already in the second segment, while

tends toward lower values; all other eigenvalues do not show
This summation corresponds to the summation in &. any conspicuous behavior. The change of correlation struc-
However, instead of generating time series with a broadure results in a level repulsion of the corresponding eigen-
power spectrum by summing up a set of sine waves, we suwvalues. The number of eigenstates involved is given by the
up a set of stochasti@.e., intrinsically broadbandedscil- number of correlated time series. Similar to the case of
lations. Correlations are not induced by correlated partiaN;-tori presented above, detailed information on the question
phases, but by driving the stochastic oscillations with correof which of the time series become correlated can be ob-
lated noise. tained from investigating the structure of the eigenvectors

Again we create multivariate time series with time depen-directly.

dent change of the correlation structure by sampling 20 time In order to check the sensitivity of the method in the case
units (first segment from an uncorrelated systerfwhere of MAR systems and to verify the statistical significance of
N, =100 andM =20), after allowing for an initial transient to the results, we performed the following numerical experi-
die out; thenp is linearly increased from 0.0 to 0.5 over ment. We increaseg successively from zero to 1 in steps of
another 20 time units, while continuing the sampling of the0.04. For each value gf we performed 100 runs, each time
system (second segmentFinally p is kept constant at a creatingM =20 time series each of length 8 time units, which
value of 0.5, while another 20 time units are sampledt  we then analyzed by forming the correlation matrix of the
segment This correlation may be imposed to all MAR pro- whole time seriegAt=8). The results are shown as a func-
cesses, or only to subsets chosen from the set of all MARion of p in Fig. 7 for the case when only two out of 20 time
processes. It is also possible to generate several subsetssgfries are correlatddrig. 7(a)], and for the case when two
correlated processes, such that the dynamics of each subsggbups of two time series each are correlated, but no corre-
remain uncorrelated to the dynamics of other subsets, simildations exist between these two groUpsy. 7(b)]. Two mu-
to the situation of systerf for the case oN-tori. For this  tually uncorrelated groups of correlated time series can
class of systems we explicitly discuss only cases where thesadily be generated by employing two statistically indepen-
correlations are confined to such subsets. dent noise termg'(t,) and éX(t,), one for each groupcom-
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FIG. 8. 5 dependence of the eigenvalues of the correlation ma-
(7), for the case wherfa) only two from M=20 time series are trix calculated from time seri_es of the coupled Rds:sler_system Eq.
correlated via noise mixing described by E€), and(b) two mu- (13- An average over 100 trials for each valuepfvith different
tually uncorrelated groups are generated, each group containing twitial conditions is showr(solid line). Dashed lines denote 95%

time series. The figure displays the average value taken over 1ggPnfidence profiles(a) the two eigenvalues foM=2 coupled
trials for eachp (solid line9 and 95% confidence profilgglashed ~ ROssler systemspb) the two smallest eigenvalues when only two

lines). In (a) the two largest and the two smallest eigenvalues ard"om @ total ofM=20 system3Eq. (11)] are coupled.

shown as functions of the mixing paramejefsee Eq.(9)]. (b)

shows the same for the three largest and three smallest eigenvaluémrdly be detected. The authors proposed a method employ-

ing auxiliary oscillators which are driven by the system.

pare Eq.(9)]. Figure 7 also shows the magnitude of statisti- From the responses qf these auxiliary. oscillators the degree

cal fluctuations by displaying 95% confidence profilesOf phase synchronization could be retrieved. Now we would

(dashed |ine)s Note that in the case of MAR processes as“ke to consider this SyStem na generallzed version, In order

defined above, it is justified to speak of “uncorrelatedto demonstrate that for this system the methodology pre-

groups,” since there is no longer an average phase shift gfented in this paper provides an improved sensitivity for the

/2 between groups. detection of phase correlations while requiring less compu-
In Fig. 7, we find qualitatively similar behavior as in the tational effort. o

corresponding case fd¥-tori. If only two time series are ~ The system discussed [81] is defined as follows:

correlated, the largest eigenvalue increases and the smallest

FIG. 7. Eigenvalues as a function pffor the MAR model Eq.

eigenvalue decreases. The values\pfi=2,...,19, remain X12=—w12Y12=Z1 o+ 7(Xo,1 = X1,9),
unchanged. The stronger the correlation of ¥ét), the
more pronounced is the separation\gf, and \; from the Y12 01 X1 0+ BY1 o+ (Yo 1= Y1),

bulk. If two mutually uncorrelated groups are formed, the
two largest eigenvalues tend to values close to 2, while the .
two smallest eigenvalues decrease to Zdfig. 7(b)]. The Z15=0.14Z; 5(X1 - 8.9), (11

behavior of the corresponding eigenvectors is similar to tha\gv- _ _ _
L ) . ith @;=0.98, w,=1.03, andB=0.28. » denotes the cou-
shown in Fig. 5. When increasing C tends to have block- pling strength between the two Rossler systems.

g:igﬁg‘ﬂr@m;n‘.’;ﬂege ”;%Snecgletmﬁmﬁ d(ieonenne dcélr?tg':tfrfemgnc Using Eq.(11) as a basic unit describing a pair of coupled
vanishing. » WO Indep ! stems, we performed two numerical experiments. First we

processes are present, each of which generates a large eig%ﬁhsiden\/l =2 coupled oscillatorf.e., one pair, as described
value. By this mechanism the occurrence of more than OnBy Eq. (11) with nonzeros] then-a”set oM :'20 systems
large eigenvalue well separatec_i from the bulk, as observed i\r/\‘/here.only the first two are, coupled as described by(Ed). '
[10-14, can be perfectly explained. with a nonzero value of;, while the M -2 remaining sys-
tems stay uncouple;=0). We generate a multivariate time
V. COUPLED CHAOTIC SYSTEMS WITH FUNNEL seri_es by sampling th& components of each system. Then
ATTRACTOR we increasey from 0.0 to 0.1 in steps of 2.43910°4, cre-
ating for each value ofy 100 time series of lengtht=8 time
In [31] a system of two coupled Rdssler oscillators wasunits with different initial conditions. The results of the
discussed as an example of a system for which phase corranalysis of this system are displayed in Fig. 8. Figuf@ 8
lations, resulting from increasing coupling strength, canshows the eigenvalues; and \, as functions ofy for the
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case ofM=2 coupled oscillators. The solid lines denote av-having a broad power spectrum without any dominant fre-
erages over the 100 trials; the dashed lines denote 95% coguency component, as is the case forkheori or the MAR
fidence profiles. We find a smooth transition from the uncormodel, the resulting instantaneous phases have no physical
related case;=0 to an almost perfect phase synchronizationmeaning 6]. And the coupled Réssler systems display attrac-
at »=0.1. tors with funnel characteristics for the chosen value of the
Figure 8b) displays the corresponding results for the two parametes in Eq. (11), thereby inhibiting the application of
smallest eigenvalues; and\, for the case of two out of a the Hilbert transforni31]. For these reasons we state that the
total of 20 Rdssler systems being coupled. A clear separatioHilbert transform is not applicable to the examples discussed
between these two lowest states can be seen, increasingthis paper.
monotonically with increasing;. Due to a larger amount of More promising seems the application of methods that
random correlations within the 20-dimensional data set, théhave been developed particularly for the analysis of multi-
point of separation is found at a somewhat larger valug,of variate time series: principal component analy2®2| and its
as compared to the case of only two coupled oscillatorgeneralization, independent component analyk#\) [8].
[shown in Fig. 8)]. Nevertheless, the method succeeds inThe aim of the ICA approach is to find a new representation
sorting out the essential features of the correlation structuref the dataX;(t), such that a set dl (or fewep new time
of this multivariate time series. All other eigenvalues, includ-series is estimated from the data, each of them displaying the
ing the largest one, do not display any significant changeactivity of an independent source process. For this purpose,
while 7 is increased. The essential information about thethe M-dimensional phase space which is formed by the mul-
phase synchronization of these time series can be extracteitfariate time seriesX(t), i=1,... M, is considered. One
only from the dynamics of the lowest eigenvalues. Theseries to find a set ofnot necessarily orthogondinear inde-
eigenvalues react much more sensitively than the largest ependent vectors, such that the projection of the data onto the
genvalue, which is governed mainly by global changes of thelirection given by each of these vectors is least Gaussianly
spatiotemporal correlations. Again detailed informationdistributed, or, in other words, one tries to find directions that
about which of the oscillators are communicating via theprovide maximal information. In order to investigate the per-
coupling term in Eq(11) can be obtained directly from the formance of ICA for the detection of time-varying correla-
structure of the corresponding eigenvectors, as already deon structure, we employed thsTICA algorithm. For this

scribed above. purpose we use theASTICA MATLAB package provided by
the Neural Network Research Center of the Helsinki Univer-
VI. COMPARISON WITH OTHER METHODS sity of Technology[32]. We analyzed time series generated

from each of the systems based Nptori, as listed in Table

In this section we would like to compare the performancel. Similarly we studied the Réssler system when the coupling
of the approach based on the equal-time correlation matrigetween two of 20 oscillators was changed from
with other methods designed for related tasks of time series( to 0.05. For none of these cases do the independent com-
analysis. All nonstationary time series employed in this paponents reflect appropriately the transient changes of the
per, generated either by the systems listed in Table |, by theynchronization level. Although the ICA method is known to
MAR model, or by coupled Rossler systems, display no nobe successful in other applications, it fails for the systems
ticeable changes of their spectral composition. In principlediscussed in this paper, because the joint distribution of the
the gradual changes of the partial phases that occur in theata pointsx;(t,), generated from the systems listed in Table
second segment of thé-tori time series are equivalent to |, resembles very much the joint distribution of Gaussianly
adding a time dependent frequency component to the rantistributed random variables, whence it does not contain suf-

domly chosen, but otherwise constant, frequenéiés Eq. ficient information to be exploited by ICA.
(5). This should be reflected in the power spectrum of the

corresponding time series, such that some hints about the
nonstationary character of thé€(t) could possibly be ex-
tracted. However, a careful Fourier analysis of all the corre-

sponding nonstationary time series, using different sizes of As an example for a globally changing correlation struc-
the sliding window, did not reveal conclusive evidence fortyre in an experimental data set, we now discuss the analysis
the presence of transient changes. Methods based on t@¢ an electroencephalographic recording of an epileptic cri-
Fourier transform are not sensitive to changes in the phasgs. It is known that during epileptic seizures of petit mal
relations between time series. type the activity of a large fraction of the cortical neurons is
A method designed particularly for the purpose of detectsynchronized33], and the multivariate EEG time series dis-
ing phase relationships between time series is the Hilbegbjays oscillations of comparatively large amplitude and well
transform[7]. It is based on extracting the instantaneousdefined frequency close to 3 Hz. Figuré@Ppresents a seg-
phasesb;(t) of the time seriex(t), i=1,... M, via convo-  ment of 110 s length chosen from a standard EEG recording
lution with the functionf(t)=1/t. In order to detect any pos- from a 10-year-old male patient with absence seizures. The
sible increase of phase locking between ¥&), the M(M  time series represents the electrical potential at electrode Pz
—1)/2 different pairs of phaseb;(t), ®;(t)), which can be versus the average of the electrodes F3 andré#rring to
extracted from arM-dimensional multivariate time series, the standard 10-20 system of clinical EEG electrode termi-
need to be compared. However, in the case of time seriesology). The data were sampled by 12-bit analog-to-digital

VIl. EPILEPTIC SEIZURES AS AN EXAMPLE
OF GLOBAL COLLECTIVE DYNAMICS
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value\g are shown in Fig. @). In the preseizure periog; g
fluctuates around a comparatively small value, indicating the
irregular, almost uncorrelated normal brain dynamics. As
soon as the epileptic seizure initiategg rises to signifi-

30

cantly larger values, thereby repelling almost the entire rest
of the spectrum, which provokes simultaneously a pro-
27 nounced decrease of the eigenvalngs=1,...,16. The ei-
@ ; ‘, .- ‘, genvalues\,; and\ g do not show any conspicuous behavior

before or during the seizure. As an example for the evolution
of the smaller eigenvalueig is shown in Fig. €c).

It can be seen that within the seizure approximately at
515 shig assumes a local minimum, its value dropping from
almost 8 to about 5.5, and that there is a corresponding local
maximum of\q close to this time point; this effect results
from an eye movement artifa¢see also the inset of Fig.
9(a)], which disturbs the periodic characteristics of the sei-
zure EEG at some of the 19 electrodes. Consequently, a tran-
sient loss of correlation is detected.

In [25] this particular type of evolution of the eigenvalue
spectrum, i.e., the transition to a repulsion of one eigenstate
by all others, was identified as a second-order phase transi-
tion. This indicates that the sudden change from the largely
irregular dynamics of the normal brain activity to a highly

‘ - - ‘ \ ordered behavior during the seizure state might be explained
420 440 460 480 500 520 by the abrupt characteristics of a phase transition. The results
time [seconds] in [25] were obtained for the more general case of complex

FIG. 9. (a) A segment of 130 s from an EEG recording at elec- non-Hermitiar_l matrices, .bUt can be dire(_:tly applied to _the
trode Pz. From about 510 to 522 s the large amplitude activity of a{eal Sy.mmemc case. This agrees well .V\.”th the Conqlu3|0ns
generalized epileptic seizure can be seen. The inset magnifies tﬁéawn in[34] that the spontaneous transition from the irregu-

seizure activity. The time development (@) the largest eigenvalue lar normal behawlor to the hlghly correlated dynamlcal'§ta.te
Mo and (c) the smallest eigenvalue of the correlation matrix are®f an absence seizure can be interpreted as a nonequilibrium

shown. phase transition.

Mg

W ok L N0
T — T

conversion at a sampling rate of 256 Hz; no further prepro- ;1 CORRELATION MATRICES AND RANDOM
cessing of the data from 19 electrodes was performed. MATRIX THEORY

The first 420 s of the complete recording are not shown,
but the time units on the horizontal axis refer to the complete Random matrix theory was originally developed by
recording. This data set can be regarded as typical of eledVigner, Dyson, Mehta, and others for the purpose of describ-
troencephalographic measurement obtained in clinical pradng the statistical properties of neutron resonances of com-
tice. From 420 to 510 s the recording shows seizure-free aglex nuclei with a large number of degrees of freedom
tivity which is characterized by irregular fluctuations of the [20,35-317. The main idea was to replace the exact quantum-
electrical potential. Within the time interval 510—522 s mechanical Hamiltonian by a matrix composed of indepen-
[magnified in the inset of Fig.(8)] a pronounced seizure dent random elements, drawn according to a prespecified
[33] can be seen. The time series recorded at the 18 othé@robability distribution. This implies an average over all pos-
electrodes(not shown in the figuredisplay similar wave sible interactions between the members of a many-particle
shapes during the seizure. system. This approach turned out to be very successful for

At the onset of the seizure a sudden change of the braithe statistical description of nuclear specf@b,36,38,39
dynamics occurs from a nearly uncorrelated to a highly corand provided the theoretical basis for a new research field,
related state covering almost the whole cortex, such that 4he physics of quantum chag40]. Using the mathematical
each electrode almost periodic spike-wave complexes wit@pparatus of RMT, universal statistical properties of a variety
high amplitude and a frequency close to 3 Hz can be obof physical systems could be compared and classified.
served. Hence, strong correlations are induced globally in the Properties of interest in RMT are correlations within the
whole multivariate time series, similar to the examples ofspectrum of eigenvalues of a given Hamiltonian matrix. The
systemsA, B, andC of Table |. We analyzed this recording two most prominent measures are the nearest-neighbor dis-
using the correlation matrix which was constructed over dribution P(s) and the number variancE%(1) [20,39-41.
moving window of lengtlAt=2 s(corresponding to 512 data The application of these measures requires the transforma-
points. This window was shifted with maximum overlap tion of the level densityp to a uniform distribution; this
over the whole EEG recording, and the time evolution of theprocedure is known as “unfolding39,41]. To this end, one
eigenvalues was computed. The results for the largest eigegalculates the so called accumulated level density
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A better reference point is the so called Wishart distribution
N()\)=f p(N")dN". (120 [14,21,42, i.e., an ensemble of correlation matrices con-
w structed over a time intervalt from M independent time
N(\) counts the number of states in the interfrade,\]. It ~ Series of normally distributed random values. The statistical

can be split into a smooth and a fluctuating part, properties of the latter differ slightly from those of the GOE,
in particular for the part of the spectrum of eigenvalues that
N(\) = NgmootfN) + Niyer(N) - (13)  Jies close to zero. But because these differences decay rap-

idly with increasing distance from zero, and the upper part of

the spectrum is described well by the universal properties of
_ ANgyer(N) the GOE[14], the comparison seems to be justified.

Pruci(N) = d\ (14 In [14] it was assumed that the theoretically known ex-

) o ression for the level density of the Wishart ensemble can be
vanishes on the average, the average level density is solel\seq for the unfolding procedurd@6). In the limit M — o

Because the fluctuating part

given by andAt— o, such thaQ=At/M stays constant, the probabil-
dNgmoott{\) ity distribution of the eigenvalues of the Wishart ensemble is
Psmootf\) = o (15  given by[42]
If the smooth part of the accumulated level density Q VA, =N =\)
Nsmoot{\) is known, the eigenvalues; of the unfolded spec- Pw= o % (17)
trum are obtained by m
Ai = Ngmootd Ni) - (16) In Eq. (17) A, are the largest and smallest eigenvalue of the
Hence, the crucial problem of unfolding a spectrum is to findWIShart matrix given by
the correct form ofpgmooif\). Especially if the analytical
formula for the smooth part of the level density is unknown, =1 +l + 2\/1. (18)
one has to perform a fit of the numerical probability distri- B Q Q

bution of the eigenvalues. A common procedure is a polyno-
mial fit to the numerically obtained accumulated level den-For finite values oM andAt deviations occur at both edges
sity N(\). This fit function is then used to perform the of the spectruni43]. Using\, and the number of time series
unfolding transformation41]. Then correlation functions of the multivariate data sé¥l as fit parameters the smooth
like P(s) or 22(I) are extracted numerically from the un- part of the accumulated level density is obtained which has
folded spectrum and are used for comparison with the anabeen used for the unfolding procedure[I#]. In principle,
lytical results derived from random matrix ensembles. neitherk, nor the number of time seriéd of the multivari-
The general problem of extracting and interpreting corre-ate data set are free parameters; however, the resulting fit
lations from data is not limited to the case of spectra ofmight describe satisfactorily the level density of the empiri-
complex quantum systenm88—41], but is of great interest cal correlation matrix.
for the analysis of time series arising in various other fields, Applying the concepts of RMT to the analysis of empiri-
such as finance dafd0-15, magnetoencephalographic and cal correlation matrices, it was observed that some of the
electroencephalographic recording$7,16,19, or climate largest eigenvalues showed clear deviations from the RMT
data[18]. In these fields the basic laws governing the dynam{predictions. In a number of studies it was concluded that
ics are not knowras in the case of the exact Hamiltonian in only these largest eigenvalues “contain real information”
nuclear physigs Nevertheless it is possible to start from the which cannot be described by random matrices, whereas alll
very general assumption that the dynamics of such systems @her eigenvalueg@he “bulk”) were essentially dominated by
composed of a multitude of source processes forming subroise, ie., represented “random correlations”
systems of different size which may or may not be correlated10,12,13,15,16,19 Recently this view was questioned by
among each other. It results that in the above-mentionet¥alevergne and Sornetfd4] who demonstrated by explicit
studies a surprisingly good agreement between the statisticatatistical testing that also the level density of the “bulk” of
properties of the eigenvalue spectrum of the empirical correeigenvalues deviates slightly from the predictions of the
lation matrices and those of random Hamiltonians repreWishart ensemble Eq17); in contrast to the earlier claims
sented by real symmetric matrices was found. The set athey concluded that “there is relevant information also in the
random matrices is known as the Gaussian orthogonal erpulk of the eigenvalue spectrum.”
semble(GOE), i.e., the ensemble of matrices which is invari- However, the correlation measures applied in
ant under orthogonal transformations. [11-16,18,19 do not depend on the particular form of the
Strictly speaking, the empirical correlation matfixnei- level density. On the contrary, systems with quite different
ther describes the dynamics of a complex quantum systedevel densities might have identical correlation structures in
(as Hamiltonian matrices daor belongs to the Gaussian their eigenvalues and different systems with the same eigen-
orthogonal ensemble. From this point of view, it seems in-value distribution might show drastically different correla-
consistent to compare the statistical properties of the specttion properties. Moreover, in order to deduce such correla-
of C with the analytical results obtained for the GOE. A tions from given spectra, one has to remove any particular
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properties from the level densities by the unfolding transfor+epulsion of eigenstates of the correlation matrix, whi€re
mation (16) in order to put different spectra on the samelevels participate. This repulsion occurs between states at the
footing. edges of the spectrum. The number of increasing states at the
Therefore, an essential step for the extraction of the corupper edge and decreasing states at the lower edge is deter-
relations within a spectrum of eigenvalues is the unfoldingmined by the specific correlation structure of the data set.
procedure(16). Regardless of which strategy is used to ad-  (3) The eigenvectors involved in this repulsion process
just some fitting function to the empirical data, in any casecolect significant contributions of those components which
major discrepancies between the fit function and the data wilﬂ)ekmg to the correlated subspace. Hence, by investigating
occur at both edges of the spectrum. For this reason a thofhe structure of the eigenvectors it is possible to determine
ough analysis takes only the central part of the level densityynich of the time series are correlated. Additionally, the dif-
into account for the calculation of correlation measures lik&grent types of correlations between subsystéies, corre-
P(s) or 2%(1) [20,39-41. Among the previous studies which |ated, noncorrelated, anticorrelated dynamare directly re-
have applied the concepts of the random matrix theory to th@ected in the symmetry properties of the eigenvectors.
analysis of empirical correlation matric¢$2,13,15,16,1p (4) There exist situations where the results extracted from
none has stated explicitly how many states were omitted ahe |Jower edge of the spectrum are more significant than the
the edges of the level density, before calculating the correlagnalysis of the largest states. Occasionally, as in the example
tion measures. Nevertheless, the conclusiondhaigenval-  given in Fig. §b), only the smallest eigenvaluéand eigen-
ues belonging to the bulk follow the RMT prediction and states deliver any significant information about changes of
hence do not contain any relevant information has not yethe correlation structure.
been seriously challenged. (5) The time-resolved estimation of the equal-time corre-
The examples discussed in this paper prove the contraryation matrixC, i.e., the shifting of a finite-length windowt
The key argument of the method is that the increase of synjith a large overlap, provides dynamical information about
chronization between a number of time series leads to a IeVQJ/hich parts of the System are correlated at a certain time.
repulsion of states at both borders of the spectrum. Becausghe method extracts those subsystems which show collective
of the invariance of the trace under orthogonal transformapehavior, and provides an ordering according to their degree
tion the relative change of the eigenvalues is much larger aif collectivity. Segments of the time series that are “interest-
the lower edge of the spectrum than at the upper €dg®-  jng” in terms of increasing or decreasing collectivity of the
pare the discussion of Fig).2Vloreover, as in the case pre- dynamics of either the whole system or of transiently formed
sented in Fig. &), there exist situations where the essentialsubsystems are detected automatically.
information can be extracted only from the states belonging (6) In contrast to the case of, e.g., the Fourier transform,
to the smallest eigenvalues. Hence, from a statistical point ofe finite size of the time windowt does not present an
view the information drawn from the smaller eigenvalues iSapproxima’[ion_ While a Fourier transform performed over a
more relevant. This conclusion is also confirmed by the I'efinite S||d|ng Segment of the data a|WayS requires a compro-
sults shown in Figs.(®) and 3d), where the structure of the mjse between a satisfactory time resolution and the desired
eigenstates corresponding to the largest and the smallest @ipectral resolution, in the case of the equal-time correlation
genvalues are compared for the case where only two from atrix At simply defines the time scale on which correlations
total of 20 time series being correlategh as well asv,y  are measured. Nevertheless, also in the case of the correla-
assume an orientation almost to the subspace defined by tign matrix a compromise has to be made between the time
two correlated time series while the magnitude of all remain-sca|e given byAt and the influence of noise and random
ing components is of negligible size. The essential informacorrelations. Hence, the choice of the lengthAtdfstrongly
tion about the correlation structure of the multivariate timedepends on the Specific properties of the System under con-
series is imprinted in both eigenstates. However, the statistkjderation, i.e., its typical time scales, the magnitude of noise
cal fluctuations ofvy, are considerably larger than those of contamination, and the sampling rate of the measurement.

v1. Hence, the lower part of the spectrum@fdoes contain The properties listed above have been demonstrated for
relevant information about the correlation structure of a mulifferent systems likeN;-tori, multivariate autoregressive
tivariate data set. processes, and coupled chaotic oscillators with a funnel at-

tractor. By employing these systems we intended to define
flexible testing systems for investigating whether phase cor-

The numerical examples presented in this paper demorrelations could be detected by analysis of the eigenvalues of
strate the utility of using the spectrum of eigenvalues anctorrelation matrices. Furthermore, the situations simulated
eigenvectors of the equal-time correlation matrix for theby the systems listed in Table | can be regarded as typical
analysis of nonstationary multivariate time series. The moséxamples of principal correlation changes in spatially ex-
important features of the presented approach can be summignded systems where multiple processes occur simulta-
rized as follows. neously, like for example human brain activity.

(1) Each vector of the basis in which the equal-time cor- We believe that the techniques based on time resolved
relation matrix is written can be assigned to a certain timeanalysis of the equal-time correlation matrix provide prom-
seriesX;(t) of the multivariate data séthannel basjs ising tools for the detection and characterization of phase-

(2) The increase of synchronization ¢f time series shape correlations in multivariate data sets, independent of
within an M-dimensional multivariate time series causes athe particular system under consideration.

IX. SUMMARY AND CONCLUSIONS
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