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We propose a method based on the equal-time correlation matrix as a sensitive detector for phase-shape
correlations in multivariate data sets. The key point of the method is that changes of the degree of synchroni-
zation between time series provoke level repulsions between eigenstates at both edges of the spectrum of the
correlation matrix. Consequently, detailed information about the correlation structure of the multivariate data
set is imprinted into the dynamics of the eigenvalues and into the structure of the corresponding eigenvectors.
The performance of the technique is demonstrated by application toNf-tori, autoregressive models, and
coupled chaotic systems. The high sensitivity, the comparatively small computational effort, and the excellent
time resolution of the method recommend it for application to the analysis of complex, spatially extended,
nonstationary systems.
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I. INTRODUCTION

For spatially extended dynamical systems it is typical that
numerous constituents are involved in the procreation of
various possibly independent transient processes, which
might occur simultaneously, such that the dynamics of the
system is characterized by a complex spatiotemporal corre-
lation pattern. An important example is electric brain activity
as measured by conventional electroencephalographic re-
cordings where information processing is realized by an
ever-changing degree of synchronization between neural as-
sembliesf1g. This complicated dynamics, characterized by
the permanently changing extent of collectivity of the system
sor of dynamically formed subsystemsd, is reflected in the
continuously varying degree of synchronization between
subsets of the corresponding time series within multivariate
data sets. Hence, suitable tools for the detection and quanti-
tative description of such situations are needed.

Among the established tools of time series analysis many
have been designed predominantly for the scalar casese.g.,
Fourier based techniquesf2g, wavelet analysisf3g, or time-
delay embeddingf4gd, and even in cases where this limita-
tion is not strictly imposed, there is still a widespread ten-
dency to condense the complexity of the system into just one
single descriptive parameter, such as the correlation dimen-
sion f5g. Another example, which recently has attracted con-
siderable attention, is phase synchronization in coupled dy-
namical systemsf6g. The power spectrum itself is not
suitable for the detection of phase synchronization; therefore
the Hilbert transformf7g is usually employed for this pur-

pose. However, in the case of time series with a broad power
spectrum the extracted intantaneous phases have no physical
meaningf6g. A method particularly designed for the analysis
of multivariate time series is independent component analy-
sis f8g. This approach provides a decomposition of data into
independent source signals, and in situations where the as-
sumption of independence is appropriate, it is a suitable
methodf9g.

Recently techniques known from random matrix theory
sRMTd have been applied to the analysis of the equal-time
correlation matrixC constructed from empirically obtained
multivariate data setsf10–19g. This approach offers the pos-
sibility to compare the fluctuation properties of the spectrum
of C with the analytical results obtained for random matrix
ensemblesf20g. It is assumed that the part of the spectrum
which can be described by random matrices should be
governed by random correlations or noise; only those
eigenvaluessand corresponding eigenvectorsd which show
significant deviations from the RMT predictions, contain
genuine information about the “true” correlation structure of
the system. It was found that in particular the upper part of
the spectrum ofC lies far outside the analytical RMT results.
Consequently, the authors concluded that the entire rest of
the spectrum does not reflect any relevant information
f10,12,13,15,16,19g.

In this paper we present an approach for the analysis of
multivariate data sets based on the temporal evolution of
eigenvalues and eigenvectors ofC. The main objectives of
the present study are as follows.

s1d We present a conceptually simple and yet powerful
framework for detecting and characterizing time dependent
phase-shape correlations.

s2d Inspired by previous work in the field of open quan-
tum systemsf24,25g, we explain the mechanism by which*Email address: muellerm@servm.fc.uaem.mx
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information about the correlation structure of multivariate
time series is induced in the spectrum ofC.

s3d We show that in general the lower part of the spectrum
of eigenvalues and eigenvectors isnot dominated by noise
and/or random correlations, but also contains essential infor-
mation about the correlation dynamics of the system. We
present evidence supporting the concept that there exist situ-
ations for which the lower part of the spectrum contains sta-
tistically more relevant information than the largest eigenval-
ues and their corresponding eigenvectors.

s4d We show how the analysis of the largest and smallest
eigenvalues and their corresponding eigenvectors can be
combined to extract details of changes in the correlation pat-
tern.

The paper is organized as follows. After discussing the
method itself and the relevant quantities in the next section,
we demonstrate its performance by applying it to three
classes of artificially generated multivariate time series in
Secs. III, IV, and V. In particular we show results for the
analysis of systems given by sums of sine waves with incom-
mensurable frequencies, for stochastic oscillations generated
by linear multivariate autoregressive models, and for coupled
chaotic systems. In Sec. VI we present a comparison with
other approaches. While most results presented in this paper
have been obtained from artificially generated time series, in
Sec. VII we briefly also discuss an application to a clinical
electroencephalogramsEEGd; we expect that EEG record-
ings may form an important field of application for the
method to be discussed in this paper. In Sec. VIII we exam-
ine the relation between the results obtained by the applica-
tion of random matrix theory to correlation matrices and
those obtained in this paper.

II. BASIC METHODOLOGY

In order to analyze two-point correlations in multivariate
time series with unknown stationarity properties we evaluate
the correlation matrix over a moving window of lengthDt
containingN data points where each data pointXistkd is nor-
malized according to

X̃istkd =
Xistkd − X̄i

si
, s1d

whereX̄i andsi denote the mean value and standard devia-
tion, respectively, of the original time seriesXistkd within the
window Dt, andk labels all data points within the window.
Individual time seriesXistkd of the multivariate data set are
labeled byi, wherei =1, . . . ,M. Based on this time window,
which is shifted over a given set of time series with the
maximally possible overlap ofN−1 data points, the equal-
time correlation matrixC is computed byf21,22g

Cijstld =
1

N
o
k

X̃istkdX̃jstkd, s2d

where tl is the center value of the current time windowDt.
Provided the window sizeDt is chosen sufficiently small, the
normalization Eq.s1d has the effect of removing amplitude

information from each time series within the window, such
that the measured cross correlations reflect exclusively rela-
tionships between the shapes and phases of the signals. Fur-
thermore, the normalization provides a well defined scale,
such that the matrix elements ofC vary between +1scom-
pletely correlated stated and −1 scompletely anticorrelated
stated. For the particular case of sinusoidal signals these
states correspond to the interval of possible phase differences
between two signals. A special case is given for a phase
difference ofp /2, which according to this definition leads to
zero correlation; we shall call this anoncorrelatedstate.

The window sizeDt defines the time scale on which the
correlations are measured. If the window size is increased,
statistical fluctuations of the calculated quantities will de-
crease, but at the same time the temporal resolution of the
results will also decrease. Hence, in any practical application
one has to find a compromise between averaging out the
noise components via the sum in Eq.s2d and the required
time resolution. For all cases presented in this paper we
checked various sizes ofDt, obtaining qualitatively the same
results. If not mentioned explicitly, we fix the window size to
N=2048 sampling points throughout this paper; defining an
arbitrary time unit of 256 sampling points length, this win-
dow size corresponds toDt=8 time units.

As a central concept we employ the eigenvaluesli and
eigenvectorsvW i of the correlation matrixC: CvW i =livW i; the
eigenvaluesli will be ordered according to size, such that
l1øl2ø ¯ ølM. The distribution of the eigenvalues is di-
rectly related to the amount of correlations of the multivari-
ate data set. This can be easily understood by considering
some general properties of the equal-time correlation matrix,
Eq. s2d.

sid Each diagonal element ofC is equal to 1, because each
time seriesXistd is perfectly correlated with itself. Hence, the
sum of the eigenvalues is time independent and equal toM,
the dimension of the multivariate data set. As a consequence,
the change of any of the eigenvalues has to be compensated
by a corresponding change of at least one of the others.

sii d For noncorrelatedXistd the values of the nondiagonal
elements ofC tend to zero if the time windowDt tends to
infinity slimDt→` Cij =0 ∀ i Þ jd. In that case the spectrum of
C is completely degenerate andli =1 ∀ i. For any finite
value of Dt, however, the values ofCij , i Þ j , remain finite,
which leads to a lifting of the degeneracy. In this case the
eigenvalues are distributed around 1, reflecting the presence
of random correlations within the finite windowDt.

siii d In the case when allM time series are perfectly cor-
relatedsi.e., they are identicald, Cij =1 ∀ i , j . This matrix has
only one nonzero eigenvalue,l20=M.

These extremessfor noncorrelated and perfectly corre-
lated time seriesd allow a quantitative description of the cor-
relation pattern of a given data set. For the time dependent
case of nonstationary time series the evaluation of the corre-
lation matrix over a moving window with finiteDt is re-
quired fEqs.s1d and s2dg.

When analyzing recordings from spatially extended com-
plex systems it is desirable to measure how strongly and in
what manner the different components of the systems coop-
erate, i.e., to detect and characterize collective dynamics.
The classification of collective phenomena in complex sys-
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tems is well elaborated in many fields of physics, in particu-
lar in many-body theory. As an example we mention the
interpretation of giant resonances as the collective motion of
nucleonsf23g. These collective modes involving many par-
ticles are interpreted as constructive interferences of numer-
ous single-particle states causing a large spreading width
f23,26g. Hence, the resulting multiparticle eigenstate describ-
ing the collective dynamics of the nucleus contains consid-
erable contributions from each of the single-particle states
involved. On the other hand it is known that the collectivity
of a particular eigenstate increases via level repulsions with
other eigenstatesf24–26g. Two repelling states interfere such
that the resulting eigenvectors are a symmetric and an anti-
symmetric mixture of the original states. By this mechanism
a separation of one or several eigenvalues occurs resulting in
well pronounced collective properties of the corresponding
eigenstates involvedf24,25g.

The degree of collectivity of such states with respect to a
well defined basis can be quantified by the participation ratio
or the number of principal components. Let aij denote the
expansion coefficients of eigenvectorvW i; then the number of
principal components is defined asf14,25g

Ni
p =

1

Mo j
uaij u4

. s3d

This quantity measures the percentage of basis states needed
to construct the eigenstatevW i. If the aij are uniformly distrib-
utedsall basis statesj contribute equally to the expansion of
eigenstateid Nj

p is equal to 1. IfvW i contains only a few com-
ponentsNj

p takes values close to 1/M, whereM is the di-
mension of the configuration space.

Because each rowsor, equivalently, each columnd of C
represents the two-point correlations between a particular

signal X̃istd and all others, each basis vector represents the
cross correlations measured in one time series or data chan-
nel i. For this reason we might call this basis the “channel
basis.” Hence, the number of principal componentsNi

p re-
flects the amount of cross correlations contributing to theith
eigenstate, and in this sense it is a measure of the degree of
collectivity. Intuitively one might understand collectivity as
the cooperative behavior of many components of a system,
as for example when they synchronize their dynamics. We
will see that the abstract concept of the number of principal
components exactly fits this intuitive picture.

The definition ofNi
p does not permit one to discriminate

between correlation and anticorrelation. Therefore a second
quantity is needed which takes into account the sign of the
aij and hence the approximate orientation of the eigenvector
in the configuration space. We call it thesymmetry parameter
and introduce a definition such that it becomes unity for
completely symmetrical and zero for completely antisym-
metrical states:

Si = Uo
j

sgnsaijduaij u2U . s4d

This quantity enables us to measure to what extent an eigen-
vector is generated by constructive or destructive interfer-
ence of basis states.

III. MULTIVARIATE NF-TORI

To demonstrate the performance of the method we con-
sider a standard class of dynamical systems, a sum ofNf sine
waves with mutually incommensurate frequencies. Time se-
ries of such systems sampleNf-tori f27g, i.e., geometrical
objects with topological dimension equal toNf. Because of
the flexibility of this system class and the fact that its dynam-
ics and hence the correlation structure can be perfectly con-
trolled, it serves as an ideal test system for the method dis-
cussed in this paper.

A. Definition and design of the system

Nf-tori are generated by sums ofNf harmonic oscillations;
here we choose equal amplitudes for all oscillations:

Xistd = o
j=1

Nf

sins2pf jt + di jd, i = 1, . . . ,M , s5d

where the set of frequenciesf j is sampled randomly from a
uniform distribution on the intervalf0, fmaxg with fmax=20
frequency units. In this paper one time unit is arbitrarily
defined as 256 data points. The same set of frequencies is
chosen for alli, whereas the set of random partial phasesdi j
is assigned from the intervalf0,2pg to each time seriesi
independently. In all examples ofNf-tori we have chosen
Nf =1000 frequencies andM =20 time series.

The correlation structure of this multivariate data set is
controlled by the partial phasesdi j . If the di j are uniformly
distributed between zero and 2p the Xistd are mutually un-
correlated. Any deviation from the uniform distribution will
result in phase-shape correlations between the time series.
We generate phase-shape correlations via Gaussian distribu-
tions modulo 2p with prespecified meanmd and variancesd

2.
In general, phase correlations may affect all frequencies,

or they may be limited to a certain frequency band, while
oscillations outside of this band retain uncorrelated partial
phases. In order to simulate such a situation we can choose
the di j as Gaussian distributed only for a subset of theNf
frequencies corresponding to a certain frequency band.

Nonstationary time series with time dependent correlation
structure will now be generated in the following manner. The
time series are composed of three consecutive segments,
each of 5120 sampling points lengthscorresponding to 20
time unitsd. For the first segment a set of partial phasesdi j is
randomly chosen from a uniform distribution independently
for each channeli and kept constant during this period. Then
a new set of random partial phasesdi j8 is chosen from a
Gaussian distributionsmodulo 2pd with a given meanmd and
variancesd

2. These partial phases are arbitrarily assigned to
the oscillationsf j of each channeli. Then, during the second
segment each of the uniformly distributed partial phasesdi j
is linearly shifted toward the corresponding new set ofdi j8 .
This step may be limited to those oscillations belonging to a
certain frequency band or to partial phases belonging to a
certain subset of channels. Finally, at the end of the second
time segment, the partial phases have reached their
Gaussian-distributed values. During the third time segment
all partial phases are kept constant.
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Hence, the resulting data set is stationary during the first
and last segments, i.e., between time units 0 and 20, and
between time units 40 and 60. From time units 20 to 40sthe
central segmentd a linear transition between the two dynami-
cal stationary “states” takes place. A set of different systems
is defined by different choices of the properties of this tran-
sition occurring during the central segment. Table I lists the
systems that will be employed as exemplary testing systems
in this section.

B. Correlations extending over all time series

First we will focus on the analysis of systemsA, B, andC,
where phase correlations are induced simultaneously in all
M =20 time series. In Fig. 1sad we compare the temporal
evolution of the largest eigenvaluel20 for systemA sdotted
lined, systemB sdashed lined, and systemC ssolid lined. It
can be seen that for all three systemsl20 keeps a small av-
erage value slightly above 1 during the first 20 time units,
i.e., the noncorrelated segment. Slight deviations from unity
during this segment are caused by random correlations which
influence the analysis for any finite size ofDt. Between 20
and 25 time unitsl20 increases abruptly. For the cases of
systemsB andC l20 encounters a local maximum at ca. 30
time units, and in the last segment it fluctuates around a
value of 5 for systemC, around 3 for systemB, and slightly
above 2 in the case of systemA. The relative change ofl20
from the first to the third segment is on the average 230% for
systemC, 100% for systemB, and still 47% for systemA.
l20 starts to increase almost immediately after the partial
phases have started to shift from their uniformly distributed
initial values to the Gaussian-distributed final values. At the
same time asl20 increases, all other eigenvaluesli, i
=1, . . . ,19, decreasesnot shown in the figured. Furthermore,
it is remarkable that the tiny changes of the phase distribu-
tion in the case of systemA are clearly visible in the changes
of l20. This behavior can be qualitatively understood by the
general argumentssid–siii d discussed in the previous section.
The deformation of the phase distribution toward a Gaussian
causes an increase of the degree of synchronization between
all M time series. Hence, the largest eigenvalue tends to
separate from the rest and assumes larger values, as de-
scribed bysiii d. It can be concluded that the system performs

a global transition to a more synchronized dynamics, if si-
multaneously all smallerli decrease.

So far the local maximum ofl20 between time units 30
and 40, which is visible at least for the cases of systemsB
andC, has not been explained. Since the order of the partial
phases within the intervalf0,2pg is not maintained during
the transition from the uniform to the Gaussian distribution
during the second time segment, there occur numerous cross-
ings between pairs ofdi j during this segment. Consequently
the distribution of partial phases will transiently become nar-

TABLE I. Listing of different Nf-tori analyzed in this paper.

System Characteristics of the transition in second time series segment

A For all channels the partial phases of the 25% lowest frequencies are shifted linearly to a Gaussian distribution with
sd=p /2 andmd=p /2, the remaining partial phases remaining uniformly distributed values

B As in systemA, but here the partial phases of 50% of the lowest frequencies are shifted

C As in systemA but here the partial phases of 100% of the lowest frequencies are shifted

D All partial phases of two channels are shifted linearly to a Gaussian distribution withsd=p /4 andmd=p /2, the
partial phases of all other channels remaining uniformly distributed values

E All partial phases of four channels are shifted linearly to a Gaussian distribution withsd=p /12; the four channels are
divided in two groups of two channels each, such that between the meansmd of these groups a phase differenceDd
=p exists; the partial phases of the remaining channels remain uniformly distributed values

F As systemE, but with Dd=p /2

FIG. 1. Time evolution ofsad the largest eigenvaluel20, sbd the
standard deviation of the phase distributionsd, scd number of prin-
cipal componentsN20

p , and sdd the symmetry parameterS20 of the
largest eigenvectorvW20. The figure displays the results for systemsA
sdotted lined, B sdashed lined, andC ssolid lined of Table I. The time
scale is given in arbitrary units as explained in the text.
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rower than the final Gaussian distribution, whence a mini-
mum of the width of the phase distribution is caused. This
phenomenon is visualized in Fig. 1sbd, where the standard
deviation of the phase distribution is shown for systemsA, B,
andC as a function of time. If, as in the case of systemsB
andC, the minimum of the phase distribution is sufficiently
pronounced, it is reflected by a local maximum ofl20. This
example demonstrates that changes of the correlation struc-
ture of these multivariate time series cause changes in the
dynamics of the eigenvalue spectrum of the correlation ma-
trix.

In the present case, where all time series are being corre-
lated simultaneously, a repulsion between the largest eigen-
value and the entire rest of the spectrum is observed. It is
well known that level repulsions cause a mixing of the eigen-
states with well defined symmetry propertiesf24,25g. There-
fore, the observed transition should also be reflected in the
properties of the eigenvectors. Figures 1scd and 1sdd show
the results for the number of principal componentsN20

p and
the symmetry parameterS20 of the eigenvector correspond-
ing to the largest eigenvalue for the case of systemsA, B, and
C. Both quantitiesN20

p andS20 show a sharp increase almost
immediately after the partial phases begin to shift to the
Gaussian distribution, and they react even more strongly than
l20 to the transient changes of the partial phases. In the case
of systemsB andC the symmetry parameterS20 approaches
its maximum possible valuescomplete symmetryd already at
t<23 time units. In the case of systemA, where the amount
of induced correlations is considerably lower, the maximum
value is reached at time unit 26. The evolution ofN20

P allows
a better discrimination between the three cases, and as in the
case ofS20, again the transition is characterized by a drastic
increase ofN20

p . At the same time the other eigenvectors as-
sume predominantly antisymmetric configurations, as con-
firmed by a decrease ofSi, i =1, . . . ,19snot shownd.

The symmetry properties of the repelling eigenstates can
be understood qualitatively by considering a simple matrix
model. Let

C = S1 c

c 1
D; s6d

then the eigenvalues ofC arel±=1±c, and the correspond-
ing eigenvectors are symmetrical and antisymmetrical super-
positions of the canonical basis vectorsvW±=s1/Î2d
3fs 1

0
d ± s 0

1
dg, i.e., if ucu→1, one of the eigenvalues tends to

zero while the other one approaches 2 such that the trace of
the matrixC stays constant. Whetherl+.l− or vice versa
follows from the sign of the correlation coefficientc. If c
.0 scorrelationd l+.l−, and the eigenstate corresponding
to the larger eigenvalue is a symmetric configuration of the
basis states. If anticorrelations are present,c,0, the situa-
tion is reversed, i.e., the eigenstate corresponding to the
larger eigenvalue has an antisymmetric characteristic. The
level repulsion produces a symmetrical and an antisymmetri-
cal mixing of the eigenstates.

At this moment it is worthwhile to make a remark about
the proposed interpretation for the number of principal com-
ponents. OriginallyNi

p was introduced as a measure of con-

structive interference of quantum states, which in a semiclas-
sical picture describe the collective motion of the
constituents of a many-particle quantum systemsas in the
example of giant resonancesf23gd. In the present case it re-
flects the increase of the degree of synchronization between
different time series. If we understand theXistd as the result
of a multivariate measurement of a spatially extended com-
plex system,N20

p measures to what extent the dynamics of
the multiple degrees of freedom are synchronized.N20

p is
determined by an interference process of the highest eigen-
state with others, or, equivalently, by level repulsions of the
highest eigenstate with othersf24,25g. The mixing between
the eigenvectors involved in this process increases gradually
during the repulsion processf24g. If all states participate, the
distribution of the expansion coefficientsaij becomes uni-
form, which leads to a maximum value ofN20

p f25g. As in
many-body quantum systems the number of principal com-
ponents is a valuable measure for collectivity. It is remark-
able that in the present case, where the repulsion betweenl20
and all other eigenvalues occurs simultaneously, the maxi-
mum possible symmetry ofvW20 is reached long before all
basis states contribute equally to the expansion ofvW20. This
example implies that the dynamics of the largest eigenvalue
reflects the overall dynamics of the system, i.e., the degree of
collectivity between allXistd.

C. Correlations within a subset of time series

All cases discussed so far illustrate how the spectrum of
eigenvalues and eigenvectors reacts if phase correlations are
induced in all time series simultaneously. For multivariate
data sets it is possible that correlations occur only within a
subset of time series. Obviously, the detection of such corre-
lations and the identification of the correlated subsystems is
of great practical interest. Therefore, in this section we turn
to the analysis of time series generated by systemD of Table
I where correlations are induced between the first two of
M =20 Xistd.

Figure 2 gives an overview of the results for the analysis.
In the first columnfFigs. 2sad, 2sdd, and 2sgdg the largest,
second smallest, and smallest eigenvalues are shown as func-
tions of time, the second columnfFigs. 2sbd, 2sed, and 2shdg
displays the results for the number of principal components
Ni

p, and the third columnfFigs. 2scd, 2sfd, and 2sidg displays
the symmetry parameterSi of the corresponding eigenvectors
vW20, vW2, andvW1, respectively.

The increase ofl20 starting at about 30 time unitsfFig.
2sadg can still be discriminated clearly from the statistical
fluctuations. But its increase is much less pronounced than in
the cases discussed in Sec. III B. On the averagel20 in-
creases by about 12%, from about 1.504±0.025 to
1.68±0.035. On the other hand, in this case the decrease of
the smallest eigenvalue is more pronounced.l1 decreases by
about 25%, from an average value of about 0.588±0.007
during the first 20 time unitssfirst segmentd to an average
value of about 0.437±0.005 during the last segment. Here,
the change ofl20 is almost completely compensated by a
corresponding change ofl1. All other eigenvalues, as well as
their corresponding eigenvectors, do not show significant
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changes during the transition from the first to the last seg-
ment. We found that they remain insensitive to the increase
of synchronization within a subsystem of two time series and
show only fluctuations around some constant average value,
which is determined by the amount of random correlations or
equivalently by the finite size ofDt. Exemplary for this part
of the spectrum, we show the results forl2 andvW2 in Figs.
2sdd–2sfd.

The transient change of the correlation structure is also
reflected in the symmetry properties of the eigenvectors. The
eigenvectorvW20 tends to be more symmetric during the last
segment, whilevW1 has a well pronounced antisymmetric
characteristic during the same time interval, resulting in a
small value ofS1 with tiny fluctuations. On the other hand,
the number of principal components of both the smallest as
well as the largest eigenvector decreases significantly during
the transient central time segmentfFigs. 2sbd and 2shdg, in-
dicating that these eigenstates are almost perfectly oriented
into a two-dimensional subspace of the 20-dimensional con-
figuration space. In other words, during the last segment the
mutual correlations induced in only a small subset of the
channelsswhich define the correlated subspaced provoke
substantial changes of the properties of the eigenvectors cor-
responding to the largest and some of the smallest eigenval-
ues. The symmetry parameters of the remaining statesvW i, i
=2, . . . ,19, as well as their numbers of principal compo-
nents, do not show any significant changesfFigs. 2sed and
2sfdg. In general, if a subset ofK,M =20 time series is cor-
related, we observe thatK eigenvaluessand hence their cor-
responding eigenvectorsd react. The largest eigenvalue in-
creases, while theK−1 lowest eigenvalues decrease. The
strength of the induced correlations and the dimension of the
correlated subsystem determine the amount by which the ei-
genvalues at the edges of the spectrum change.

This behavior can be perfectly explained by the simple
matrix model mentioned in Sec. III B. In the present case a
level repulsion occurs only between the largest and the

smallest eigenvaluessor more generally, in the case ofK
correlated time series, between the largest eigenvalue and the
K−1 smallest eigenvaluesd. Essentially only the eigenstates
corresponding to those eigenvalues interfere with each other.
This leads to almost purely symmetric and antisymmetric
mixing of the components corresponding to the
K-dimensional subspace defined by the subset of correlated
time series, i.e., only the mutual correlations measured in this
subspace give dominant contributions. The remaining states
contribute only slightly via the random correlations caused
by the finite size of the time window. For this reason, the
number of principal components of the largest state de-
creases, provided that the dimensionK of the correlated sub-
system is sufficiently smallsK!Md. The question which of
the time seriesXistd do synchronizesi.e., do belong to this
subspaced can be answered by inspecting the eigenvectors
directly.

Figure 3 shows the squared modulus of the eigenvector
components ofvW1 fFigs. 3sad and 3sbdg and vW20 fFigs. 3scd
and 3sddg. The results in Fig. 3 represent averages over 500
realizations of systemD ssolid linesd. Figures 3sad and 3scd
show the results for uniformly distributed partial phases;
Figs. 3sbd and 3sdd are calculated for anNf-torus with the
characteristics of the third segment of systemD. Dashed
lines denote 95% confidence profiles of the distribution of
results. While in the case of uncorrelated dynamics an almost
uniform distribution of theuaij u2 with large statistical fluctua-
tions is found, in the case of systemD for both vW1 and vW20
dominant components are generated only from the first two
Xistd, i.e., the correlated signals. The statistical fluctuations in
the correlated segment are tiny, thereby confirming the sig-
nificance of this result. As a remarkable detail, the statistical
fluctuations of the smallest eigenvectorvW1 fFig. 3sbdg are
even smaller than those ofvW20. Statistically, the results ob-
tained forvW1 have a higher degree of significance, as com-
pared to those obtained forvW20. This might be relevant for
highly nonstationary systems, where time averaging is only

FIG. 2. Results for systemD of Table I. sad Largest eigenvaluel20, sbd number of principal componentsN20
p , and scd the symmetry

parameterS20 of the largest eigenvectorvW20. sdd, sed, andsfd show the corresponding quantities for the second smallest state andsgd, shd, and
sid for the smallest state. The time scale is given in arbitrary units as explained in the text.
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justified within short periods. All other basis states, repre-
senting the remaining time series, participate only weakly in
this interference process. During the last segment, theuaij u2
of the eigenvectorsvW i, i =2, . . . ,19, show an almost uniform
distributionsresulting from random correlationsd with a mar-
ginal contribution of the components corresponding to the
correlated subspace. Furthermore, they show large statistical
fluctuations indicating that these eigenvectors rotate rapidly
in the sM −2d-dimensional uncorrelated subspace. Thus, the
inspection of the eigenvectors yields detailed information
about which time seriesXistd belong to the correlated group.

D. Phase relations between groups of correlated signals

We now turn to the case where groups of time series
possess correlations. Here the question arises to what extent
it is possible to extract such information from measured mul-
tivariate data.Nf-tori easily permit one to simulate situations
where certain groups of correlatedXistd have different mu-
tual phase relations. In principle, there are two situation of
major interest: the dynamics of two groups may be uncorre-
lated or anticorrelated. For the case ofNf-tori it seems to be
inappropriate to interpreteCij =0 as evidence for uncorre-
lated time seriesXistd andXjstd, because in the case of har-
monic oscillationsCij =0 implies a constant and well defined
phase difference ofDd=p /2 between the time series. In the
next section we will justify this interpretation by studying
time series produced by autoregressive models.

Figure 4 presents the results for systemE of Table I,
namely, the case of two mutually anticorrelated groups, each
of which consists of two correlated time seriesXistd. Figures
4sad and 4scd show the time evolution of the largest eigen-
value fFig. 4sadg and of the three smallest eigenvaluesfFig.
4scdg. It can be seen that all eigenvalues shown in the figure
react during the transient second segment, where the transi-
tion from the uncorrelated to the correlated state takes place:

l20 increases while theli, i =1,2,3,decrease. The remaining
eigenvalues do not show any conspicuous behavior during
the whole time course. Comparing these results with the re-
sults of the preceding section it appears that by only looking
at the eigenvalues one cannot distinguish between the case of
four correlated time series and the present case of two mu-
tually anticorrelated groups of correlated time series. Also
the number of principal componentsNi

p of the largest and the
three smallest eigenvectors behaves as in a system of four
correlated signals, i.e., similarly as shown in Fig. 2. In Figs.
4sbd and 4sdd, the symmetry parameters of the largest eigen-
value fFig. 4sbdg and of the three smallest eigenvaluesfFig.
4sddg are shown; here the results are qualitatively different
from the previously discussed situations.S20 displays on av-
erage a considerable decrease with only tiny statistical fluc-
tuations in the correlated third segment. On the other end,Si,
i =1,2,3,reveal a trend toward a more symmetric structure,
while the remaining eigenvectorsvW i, i =2, . . . ,19, again do
not show any conspicuous behavior. By investigating the
componentsaij of the four eigenvectorsvW i, i =1,2,3,20, it is
possible to directly identify the correlation structure of this
multivariate data set. Thea20j corresponding to the correlated
times series are significantly larger than the others, similar to
the case discussed in Fig. 3. They assume values of about
±0.45, while the remaining coeficients fluctuate between
±0.1. Furthermore, thosea20j corresponding to the two anti-
correlated groups have opposite signs. Hence, the sign of the
expansion coefficients reveals which pairs among theXistd
are mutually correlated or anticorrelated. Thus, detailed in-
formation about the transient correlation structure can be re-
trieved from these quantities.

Again, as in the case discussed in Figs. 2 and 3, there
occurs a level repulsion between the highest eigenvalue and
only a few smallest eigenvalues. The number of small eigen-
states participating in this interference process is given by
the total number of correlated time series. Eigenvalues do

FIG. 3. Distribution of the eigenvector componentsuaij u2 for the smallest eigenvectorsad andsbd and for the largest eigenvectorscd and
sdd. The results insad and scd were calculated for the first segment of systemD of Table I, whilesbd and sdd show the results of the last,
correlated segment of systemD. The solid line is obtained by averaging over 500 different realizations of systemD. Dashed lines denote
95% confidence profiles.
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not differentiate between correlated and anticorrelated situa-
tions; this aspect has to be extracted from the corresponding
eigenvectors. The correlation matrix assumes a block-
diagonal form with positive correlation coefficients inside
each block on the diagonal, while the nondiagonal matrix
elements connecting the two blocks have mostly negative
signs. In terms of the simple matrix model Eq.s6d this cor-
responds to the casec,0. The sharp local maximum that
can be seen at about 30 time units in Fig. 4sbd, is caused by
the crossing of the partial phases during the shift from the
uniform to the Gaussian distribution. During this transition
the distribution of the partial phases becomes narrower,
while it is not yet showing two maxima displaced by a phase
differenceDd=p. Therefore, transiently the four time series
become highly correlated, resulting in a symmetric structure
of vW20, in accordance with model Eq.s6d.

SystemF of Table I is a realization for two uncorrelated
groups ofXistd, i.e., the maxima of the Gaussian distributions
of random partial phases are displaced by a phase difference
Dd=p /2. Figure 5 shows the results of the analysis of time
series corresponding to systemF. Figures 5sad and 5scd show
the two largest and the two smallest eigenvalues, respec-
tively. In Figs. 5sbd and 5sdd the corresponding results for the
symmetry parameter are shown. The largest eigenvaluel20
shows a clear increase with a well pronounced maximum at
about 30 time units during the transient segment, where due
to the crossings of the partial phases the width of the phase
distribution assumes a minimum, thereby causing strong cor-
relations, while the two groups are not yet distinguishable.
Also l19 starts to increase, such that in the final segment the
two largest eigenvalues fluctuate at values slightly above 2.
Correspondingly, the two smallest eigenvalues decrease, in

FIG. 4. Results obtained for systemE, i.e., when two mutually anticorrelated groups of correlated time series are generated each of which
contains two time series.sad shows the time evolution of the largest eigenvaluel20 andsbd the symmetry parameterS20 of the largest state.
In scd the results for the three smallest eigenvalues are shown:l1 ssolid lined, l2 sdashed lined, andl3 sdotted lined. In sdd the results for the
symmetry parameterSi for the three smallest states are shown, using the same line coding as inscd. The time scale is given in arbitrary units
as explained in the text.

FIG. 5. Results obtained for systemF, two mutually noncorrelated groups of correlated time series are generated.sad shows the time
evolution of the largest eigenvaluel20 ssolid lined and the second largest eigenvaluesdashed lined. In sbd the symmetry parametersS20 of the
largest statessolid lined andS19 of the second largest eigenvectorsdashed lined are shown. Inscd the results for the two smallest eigenvalues
are shown:l1 ssolid lined, l2 sdashed lined. In sdd the results for the symmetry parameterSi for the two smallest states are shown, using the
same line coding as inscd. The time scale is given in arbitrary units as explained in the text.

MÜLLER et al. PHYSICAL REVIEW E 71, 046116s2005d

046116-8



order to satisfy the condition of trace invariance ofC. All
other eigenvaluesli, i =3, . . . ,18, essentially do not partici-
pate in this process. The structure of the correlation matrix
during the correlated time segment shows two blockssone
for each of the correlated groupsd which are essentially dis-
connected, i.e., on the average theCij connecting both blocks
are zero. Geometrically this means that the repelling eigen-
statessthe states affected by the correlationsd assume an al-
most orthogonal orientation with respect to the basis vectors
of the uncorrelated subspace. Furthermore, each of the two
largest eigenstates tends to an almost orthogonal position
with respect to the correlated subspace defined by one of the
two groups. In the limiting case of two completely uncorre-
lated groups, each containing ten perfectly correlatedsiden-
ticald time series,C assumes a block-diagonal form with two
10310 blocks withCij =1 inside each block, while the re-
maining nondiagonal matrix elements are equal to zero.
Hence, this system splits up into two independent ten-
dimensional subsystems. Consequently, there arise two large
eigenvalues, one for each subsystem, each with a value of
10, while all other eigenvalues tend to zero.

In Figs. 5sbd and 5sdd, the symmetry parameters of the
two largest eigenvaluesfFig. 5sbdg and those of the two
smallest eigenvaluesfFig. 5sddg are shown. It can be seen
that the two largest eigenvalues tend toward symmetric com-
positions of the basis states. As a result of the phase cross-
ings during the second segment transiently onlyl20 shows a
well pronounced symmetric structure. The nondiagonal ma-
trix elements ofC connecting the two blocks are not zero.
Therefore, the two groups are not perfectly independent. This
leads to a weak mixing of the two largest eigenstates even
during the correlated last segment, and consequently fluctua-
tions of Si, i =19,20, appear starting from time unit 40. On
the other hand, the structure of the states of the two smallest
eigenvectors shows clearly antisymmetric characteristics.

In f28g a group model was proposed in order to explain
the appearance of several large eigenvalues deviating from
the RMT predictions. The authors proposed that the empiri-
cal correlation matrix off10,11g had block-diagonal form,
each block representing a set of companies belonging to the
same kind of industry or market sector. A similar conclusion
was drawn inf14g, where it was proposed that certain subsets
of stocks were formed, corresponding to companies from the
same “conventionally identified” business sectors. Eguiliz
and Zimmermann have presented a model for opinion cluster
formation and information dispersal by agents in a network
f29g. The transmission of information within the network of
all traders follows a random process, such that groups of
agents are formed in a self-organized mannersherdingd. In
this context “herding” means that agents are not making de-
cisions individually, but instead agents belonging to the same
group perform collective actions, i.e., strong correlations are
present between the agents of each group. We suggest that
this type of collective behavior of certain subsystems can be
well described by the mechanisms discussed in Figs. 4 and 5.

Concluding this section, we can state that the time-
resolved spectrum of eigenvalues and eigenvectors ofC pro-
vides detailed information about the changes of the correla-
tion structure of multivariate time series data, in terms of
level repulsions between a certain number of states. Groups

of correlated time seriesXistd are detected, as well as details
of the relationship between correlated subsystems. If in total
K time series become correlated,K eigenvalues at the edges
of the spectrum increase or decrease, respectively. The struc-
ture of the correspondingK eigenvectors provides detailed
information about whichXistd gets correlated. Furthermore,
the symmetry parameterSistd tells whether synchronization
or antisynchronization is present.

IV. MULTIVARIATE AUTOREGRESSIVE PROCESSES

The class ofNf-tori discussed so far represents a deter-
ministic testing system for which phase correlations can be
induced in a precisely controllable way. In order to put the
obtained results onto more general grounds, we will now
investigate time series generated by autoregressive models,
i.e., a class of stochastic dynamical system.

A. Definition and design of the system

Linear autoregressive processes have been among the
most popular and useful dynamic models for time series
analysis for a long timef30g. The multivariate generalization
of autoregressive processessMARd is given by

yistnd = o
s=1

p

o
j=1

Ny

Aijssdyjstn − sTd + histnd, i = 1, . . . ,Ny,

s7d

wherep denotes the model order,Ny the state dimension, and
T the unit of discrete time. TheAijssd are a set ofNy3Ny

parameter matrices, andhistnd is anNy-dimensional time se-
ries of Gaussian white noise. By defining an augmented new
state vector consisting of the actual state vectors at time
points tn,stn−Td , . . . ,ftn−sp−1dTg, it is always possible to
transform a MAR model of orderp into a first-order MAR
model; this is known as a state-space approach and corre-
sponds to time-delay embedding. In this case only one pa-
rameter matrix of sizepNy3pNy is required. The noise terms
histnd for these additional time-delayed state variables are set
to zero. Here we employ a special class of first-order MAR
models, defined by the 2Ny32Ny parameter matrix

Aij =5
2 Reslnd if i = j and i = 2n − 1,

− ulnu2 if i = j − 1 andi = 2n − 1,

1 if i = j + 1 andi = 2n,

0 otherwise.
6 s8d

Here ln, n=1, . . . ,Ny, denotes a set of complex numbers
which are generated by choosing their partial phases from a
uniform distribution withinf0,p /2g and their moduli from
the asymmetrical distributionpsulud~ ulu4s1−ulu4d within f0,
1g. The set of theln and their complex conjugates represent
the characteristic roots of the MAR models, i.e., they de-
scribe its frequency response. Moduli should not exceed
unity, otherwise the model would become unstable. Theln
were chosen from the first quadrant with a probability distri-
bution that peaks close to unity but becomes zero at unity.
The resulting model is equivalent to a set ofNy uncoupled
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univariate second-order AR modelssp=2d which are accom-
modated into a 2Ny-dimensional state-space model; each
ARs2d model performs a stochastic oscillation with an indi-
vidual frequency and an individual width of its spectral peak.
Note that only thosehistnd with odd indicesi =2n−1 will be
nonzero, since the other positions correspond to time-
delayed variables.

Now we assume a set ofM of these MAR processes with
state vectorsyikstnd, i =1, . . . ,Ny, k=1, . . .M, all simulta-
neously active, each driven by a noise processhikstnd. We
can introduce couplings into these processes by choosing
these noise processes as

hikstnd = csrdfrjistnd + s1 − rdx̃ikstndg, s9d

wherejistnd is a smultivariated noise process common to all
MAR processes, whereasx̃ikstnd is a set of smultivariated
noise processes that is uncorrelated with respect to the index
k; both processes are chosen as zero-mean unit-variance
Gaussian white noise. The parameterr determines the degree
of correlation between the individual MAR processes;r=0
corresponds to completely uncorrelated processes, while for
r=1.0 all processes are driven by the same noise process and
therefore produce identical time series.csrd denotes a nor-
malization function which ensures that the variance of the
sum of the two independent noise processesjistnd andx̃ikstnd
remains unity.

Finally theNy-dimensional state vector of each MAR pro-
cess is mapped to a univariate observation by summation
over all second-order AR models, i.e.,

Xkstnd = o
n=1

Ny

y2n−1,kstnd. s10d

This summation corresponds to the summation in Eq.s5d.
However, instead of generating time series with a broad
power spectrum by summing up a set of sine waves, we sum
up a set of stochasticsi.e., intrinsically broadbandedd oscil-
lations. Correlations are not induced by correlated partial
phases, but by driving the stochastic oscillations with corre-
lated noise.

Again we create multivariate time series with time depen-
dent change of the correlation structure by sampling 20 time
units sfirst segmentd from an uncorrelated systemswhere
Ny=100 andM =20d, after allowing for an initial transient to
die out; thenr is linearly increased from 0.0 to 0.5 over
another 20 time units, while continuing the sampling of the
system ssecond segmentd. Finally r is kept constant at a
value of 0.5, while another 20 time units are sampledslast
segmentd. This correlation may be imposed to all MAR pro-
cesses, or only to subsets chosen from the set of all MAR
processes. It is also possible to generate several subsets of
correlated processes, such that the dynamics of each subset
remain uncorrelated to the dynamics of other subsets, similar
to the situation of systemF for the case ofNf-tori. For this
class of systems we explicitly discuss only cases where the
correlations are confined to such subsets.

B. Correlations within a subset of time series

Because the case when allM time series get correlated is
the most trivial one we focus in the following only on those
systems where the correlation structure of certain groups of
channels is changed. As a first example we present the result
for the case where only two fromM =20 time series were
correlated withr=0.5. The results for the largest and small-
est eigenvalues are displayed in Fig. 6. As in the case of
Nf-tori, only the largest and the smallest eigenvalues react
noticeably to the transient change of correlation structure.
Again, l20 increases already in the second segment, whilel1
tends toward lower values; all other eigenvalues do not show
any conspicuous behavior. The change of correlation struc-
ture results in a level repulsion of the corresponding eigen-
values. The number of eigenstates involved is given by the
number of correlated time series. Similar to the case of
Nf-tori presented above, detailed information on the question
of which of the time series become correlated can be ob-
tained from investigating the structure of the eigenvectors
directly.

In order to check the sensitivity of the method in the case
of MAR systems and to verify the statistical significance of
the results, we performed the following numerical experi-
ment. We increasedr successively from zero to 1 in steps of
0.04. For each value ofr we performed 100 runs, each time
creatingM =20 time series each of length 8 time units, which
we then analyzed by forming the correlation matrix of the
whole time seriessDt=8d. The results are shown as a func-
tion of r in Fig. 7 for the case when only two out of 20 time
series are correlatedfFig. 7sadg, and for the case when two
groups of two time series each are correlated, but no corre-
lations exist between these two groupsfFig. 7sbdg. Two mu-
tually uncorrelated groups of correlated time series can
readily be generated by employing two statistically indepen-
dent noise termsji

1stnd andji
2stnd, one for each groupfcom-

FIG. 6. Time development ofsad the largest eigenvaluel20 and
sbd the smallest eigenvaluel1 for the MAR model Eq.s7d, when
only two fromM =20 time series are correlated via the noise mixing
described by Eq.s9d with r=0.5. The time scale is given in arbitrary
units as explained in the text.

MÜLLER et al. PHYSICAL REVIEW E 71, 046116s2005d

046116-10



pare Eq.s9dg. Figure 7 also shows the magnitude of statisti-
cal fluctuations by displaying 95% confidence profiles
sdashed linesd. Note that in the case of MAR processes as
defined above, it is justified to speak of “uncorrelated
groups,” since there is no longer an average phase shift of
p /2 between groups.

In Fig. 7, we find qualitatively similar behavior as in the
corresponding case forNf-tori. If only two time series are
correlated, the largest eigenvalue increases and the smallest
eigenvalue decreases. The values ofli, i =2, . . . ,19, remain
unchanged. The stronger the correlation of theXistd, the
more pronounced is the separation ofl20 and l1 from the
bulk. If two mutually uncorrelated groups are formed, the
two largest eigenvalues tend to values close to 2, while the
two smallest eigenvalues decrease to zerofFig. 7sbdg. The
behavior of the corresponding eigenvectors is similar to that
shown in Fig. 5. When increasingr, C tends to have block-
diagonal form, where those elementsCij connecting the two
blocks are vanishing. Hence, two independent interference
processes are present, each of which generates a large eigen-
value. By this mechanism the occurrence of more than one
large eigenvalue well separated from the bulk, as observed in
f10–14g, can be perfectly explained.

V. COUPLED CHAOTIC SYSTEMS WITH FUNNEL
ATTRACTOR

In f31g a system of two coupled Rössler oscillators was
discussed as an example of a system for which phase corre-
lations, resulting from increasing coupling strength, can

hardly be detected. The authors proposed a method employ-
ing auxiliary oscillators which are driven by the system.
From the responses of these auxiliary oscillators the degree
of phase synchronization could be retrieved. Now we would
like to consider this system in a generalized version, in order
to demonstrate that for this system the methodology pre-
sented in this paper provides an improved sensitivity for the
detection of phase correlations while requiring less compu-
tational effort.

The system discussed inf31g is defined as follows:

Ẋ1,2= − v1,2Y1,2− Z1,2+ hsX2,1− X1,2d,

Ẏ1,2= v1,2X1,2+ bY1,2+ hsY2,1− Y1,2d,

Ż1,2= 0.1 +Z1,2sX1,2− 8.5d, s11d

with v1=0.98, v2=1.03, andb=0.28. h denotes the cou-
pling strength between the two Rössler systems.

Using Eq.s11d as a basic unit describing a pair of coupled
systems, we performed two numerical experiments. First we
considerM =2 coupled oscillatorsfi.e., one pair, as described
by Eq. s11d with nonzerohg, then a set ofM =20 systems,
where only the first two are coupled as described by Eq.s11d
with a nonzero value ofh, while the M −2 remaining sys-
tems stay uncoupledsh=0d. We generate a multivariate time
series by sampling theX components of each system. Then
we increaseh from 0.0 to 0.1 in steps of 2.439310−4, cre-
ating for each value ofh 100 time series of lengthDt=8 time
units with different initial conditions. The results of the
analysis of this system are displayed in Fig. 8. Figure 8sad
shows the eigenvaluesl1 and l2 as functions ofh for the

FIG. 7. Eigenvalues as a function ofr for the MAR model Eq.
s7d, for the case whensad only two from M =20 time series are
correlated via noise mixing described by Eq.s9d, andsbd two mu-
tually uncorrelated groups are generated, each group containing two
time series. The figure displays the average value taken over 100
trials for eachr ssolid linesd and 95% confidence profilessdashed
linesd. In sad the two largest and the two smallest eigenvalues are
shown as functions of the mixing parameterr fsee Eq.s9dg. sbd
shows the same for the three largest and three smallest eigenvalues.

FIG. 8. h dependence of the eigenvalues of the correlation ma-
trix calculated from time series of the coupled Rössler system Eq.
s11d. An average over 100 trials for each value ofh with different
initial conditions is shownssolid lined. Dashed lines denote 95%
confidence profiles;sad the two eigenvalues forM =2 coupled
Rössler systems;sbd the two smallest eigenvalues when only two
from a total ofM =20 systemsfEq. s11dg are coupled.
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case ofM =2 coupled oscillators. The solid lines denote av-
erages over the 100 trials; the dashed lines denote 95% con-
fidence profiles. We find a smooth transition from the uncor-
related caseh=0 to an almost perfect phase synchronization
at h=0.1.

Figure 8sbd displays the corresponding results for the two
smallest eigenvaluesl1 and l2 for the case of two out of a
total of 20 Rössler systems being coupled. A clear separation
between these two lowest states can be seen, increasing
monotonically with increasingh. Due to a larger amount of
random correlations within the 20-dimensional data set, the
point of separation is found at a somewhat larger value ofh,
as compared to the case of only two coupled oscillators
fshown in Fig. 8sadg. Nevertheless, the method succeeds in
sorting out the essential features of the correlation structure
of this multivariate time series. All other eigenvalues, includ-
ing the largest one, do not display any significant changes
while h is increased. The essential information about the
phase synchronization of these time series can be extracted
only from the dynamics of the lowest eigenvalues. These
eigenvalues react much more sensitively than the largest ei-
genvalue, which is governed mainly by global changes of the
spatiotemporal correlations. Again detailed information
about which of the oscillators are communicating via the
coupling term in Eq.s11d can be obtained directly from the
structure of the corresponding eigenvectors, as already de-
scribed above.

VI. COMPARISON WITH OTHER METHODS

In this section we would like to compare the performance
of the approach based on the equal-time correlation matrix
with other methods designed for related tasks of time series
analysis. All nonstationary time series employed in this pa-
per, generated either by the systems listed in Table I, by the
MAR model, or by coupled Rössler systems, display no no-
ticeable changes of their spectral composition. In principle,
the gradual changes of the partial phases that occur in the
second segment of theNf-tori time series are equivalent to
adding a time dependent frequency component to the ran-
domly chosen, but otherwise constant, frequenciesf i in Eq.
s5d. This should be reflected in the power spectrum of the
corresponding time series, such that some hints about the
nonstationary character of theXistd could possibly be ex-
tracted. However, a careful Fourier analysis of all the corre-
sponding nonstationary time series, using different sizes of
the sliding window, did not reveal conclusive evidence for
the presence of transient changes. Methods based on the
Fourier transform are not sensitive to changes in the phase
relations between time series.

A method designed particularly for the purpose of detect-
ing phase relationships between time series is the Hilbert
transform f7g. It is based on extracting the instantaneous
phasesFistd of the time seriesXistd, i =1, . . . ,M, via convo-
lution with the functionfstd=1/t. In order to detect any pos-
sible increase of phase locking between theXistd, the MsM
−1d /2 different pairs of phases(Fistd ,F jstd), which can be
extracted from anM-dimensional multivariate time series,
need to be compared. However, in the case of time series

having a broad power spectrum without any dominant fre-
quency component, as is the case for theNf-tori or the MAR
model, the resulting instantaneous phases have no physical
meaningf6g. And the coupled Rössler systems display attrac-
tors with funnel characteristics for the chosen value of the
parameterb in Eq. s11d, thereby inhibiting the application of
the Hilbert transformf31g. For these reasons we state that the
Hilbert transform is not applicable to the examples discussed
in this paper.

More promising seems the application of methods that
have been developed particularly for the analysis of multi-
variate time series: principal component analysisf22g and its
generalization, independent component analysissICAd f8g.
The aim of the ICA approach is to find a new representation
of the dataXistd, such that a set ofM sor fewerd new time
series is estimated from the data, each of them displaying the
activity of an independent source process. For this purpose,
the M-dimensional phase space which is formed by the mul-
tivariate time seriesXistd, i =1, . . . ,M, is considered. One
tries to find a set ofsnot necessarily orthogonald linear inde-
pendent vectors, such that the projection of the data onto the
direction given by each of these vectors is least Gaussianly
distributed, or, in other words, one tries to find directions that
provide maximal information. In order to investigate the per-
formance of ICA for the detection of time-varying correla-
tion structure, we employed theFASTICA algorithm. For this
purpose we use theFASTICA MATLAB package provided by
the Neural Network Research Center of the Helsinki Univer-
sity of Technologyf32g. We analyzed time series generated
from each of the systems based onNf-tori, as listed in Table
I. Similarly we studied the Rössler system when the coupling
between two of 20 oscillators was changed fromh
=0 to 0.05. For none of these cases do the independent com-
ponents reflect appropriately the transient changes of the
synchronization level. Although the ICA method is known to
be successful in other applications, it fails for the systems
discussed in this paper, because the joint distribution of the
data pointsXistkd, generated from the systems listed in Table
I, resembles very much the joint distribution of Gaussianly
distributed random variables, whence it does not contain suf-
ficient information to be exploited by ICA.

VII. EPILEPTIC SEIZURES AS AN EXAMPLE
OF GLOBAL COLLECTIVE DYNAMICS

As an example for a globally changing correlation struc-
ture in an experimental data set, we now discuss the analysis
of an electroencephalographic recording of an epileptic cri-
sis. It is known that during epileptic seizures of petit mal
type the activity of a large fraction of the cortical neurons is
synchronizedf33g, and the multivariate EEG time series dis-
plays oscillations of comparatively large amplitude and well
defined frequency close to 3 Hz. Figure 9sad presents a seg-
ment of 110 s length chosen from a standard EEG recording
from a 10-year-old male patient with absence seizures. The
time series represents the electrical potential at electrode Pz
versus the average of the electrodes F3 and F4sreferring to
the standard 10–20 system of clinical EEG electrode termi-
nologyd. The data were sampled by 12-bit analog-to-digital
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conversion at a sampling rate of 256 Hz; no further prepro-
cessing of the data from 19 electrodes was performed.

The first 420 s of the complete recording are not shown,
but the time units on the horizontal axis refer to the complete
recording. This data set can be regarded as typical of elec-
troencephalographic measurement obtained in clinical prac-
tice. From 420 to 510 s the recording shows seizure-free ac-
tivity which is characterized by irregular fluctuations of the
electrical potential. Within the time interval 510–522 s
fmagnified in the inset of Fig. 9sadg a pronounced seizure
f33g can be seen. The time series recorded at the 18 other
electrodessnot shown in the figured display similar wave
shapes during the seizure.

At the onset of the seizure a sudden change of the brain
dynamics occurs from a nearly uncorrelated to a highly cor-
related state covering almost the whole cortex, such that at
each electrode almost periodic spike-wave complexes with
high amplitude and a frequency close to 3 Hz can be ob-
served. Hence, strong correlations are induced globally in the
whole multivariate time series, similar to the examples of
systemsA, B, andC of Table I. We analyzed this recording
using the correlation matrix which was constructed over a
moving window of lengthDt=2 sscorresponding to 512 data
pointsd. This window was shifted with maximum overlap
over the whole EEG recording, and the time evolution of the
eigenvalues was computed. The results for the largest eigen-

valuel19 are shown in Fig. 9sbd. In the preseizure periodl19
fluctuates around a comparatively small value, indicating the
irregular, almost uncorrelated normal brain dynamics. As
soon as the epileptic seizure initiates,l19 rises to signifi-
cantly larger values, thereby repelling almost the entire rest
of the spectrum, which provokes simultaneously a pro-
nounced decrease of the eigenvaluesli, i =1, . . . ,16. The ei-
genvaluesl17 andl18 do not show any conspicuous behavior
before or during the seizure. As an example for the evolution
of the smaller eigenvalues,l9 is shown in Fig. 9scd.

It can be seen that within the seizure approximately at
515 sl19 assumes a local minimum, its value dropping from
almost 8 to about 5.5, and that there is a corresponding local
maximum ofl9 close to this time point; this effect results
from an eye movement artifactfsee also the inset of Fig.
9sadg, which disturbs the periodic characteristics of the sei-
zure EEG at some of the 19 electrodes. Consequently, a tran-
sient loss of correlation is detected.

In f25g this particular type of evolution of the eigenvalue
spectrum, i.e., the transition to a repulsion of one eigenstate
by all others, was identified as a second-order phase transi-
tion. This indicates that the sudden change from the largely
irregular dynamics of the normal brain activity to a highly
ordered behavior during the seizure state might be explained
by the abrupt characteristics of a phase transition. The results
in f25g were obtained for the more general case of complex
non-Hermitian matrices, but can be directly applied to the
real symmetric case. This agrees well with the conclusions
drawn inf34g that the spontaneous transition from the irregu-
lar normal behavior to the highly correlated dynamical state
of an absence seizure can be interpreted as a nonequilibrium
phase transition.

VIII. CORRELATION MATRICES AND RANDOM
MATRIX THEORY

Random matrix theory was originally developed by
Wigner, Dyson, Mehta, and others for the purpose of describ-
ing the statistical properties of neutron resonances of com-
plex nuclei with a large number of degrees of freedom
f20,35–37g. The main idea was to replace the exact quantum-
mechanical Hamiltonian by a matrix composed of indepen-
dent random elements, drawn according to a prespecified
probability distribution. This implies an average over all pos-
sible interactions between the members of a many-particle
system. This approach turned out to be very successful for
the statistical description of nuclear spectraf35,36,38,39g
and provided the theoretical basis for a new research field,
the physics of quantum chaosf40g. Using the mathematical
apparatus of RMT, universal statistical properties of a variety
of physical systems could be compared and classified.

Properties of interest in RMT are correlations within the
spectrum of eigenvalues of a given Hamiltonian matrix. The
two most prominent measures are the nearest-neighbor dis-
tribution Pssd and the number varianceS2sld f20,39–41g.
The application of these measures requires the transforma-
tion of the level densityr to a uniform distribution; this
procedure is known as “unfolding”f39,41g. To this end, one
calculates the so called accumulated level density

FIG. 9. sad A segment of 130 s from an EEG recording at elec-
trode Pz. From about 510 to 522 s the large amplitude activity of a
generalized epileptic seizure can be seen. The inset magnifies the
seizure activity. The time development ofsbd the largest eigenvalue
l19 and scd the smallest eigenvalue of the correlation matrix are
shown.
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Nsld =E
−`

l

rsl8ddl8. s12d

Nsld counts the number of states in the intervalf−` ,lg. It
can be split into a smooth and a fluctuating part,

Nsld = Nsmoothsld + Nfluctsld. s13d

Because the fluctuating part

rfluctsld =
dNfluctsld

dl
s14d

vanishes on the average, the average level density is solely
given by

rsmoothsld =
dNsmoothsld

dl
. s15d

If the smooth part of the accumulated level density
Nsmoothsld is known, the eigenvaluesLi of the unfolded spec-
trum are obtained by

Li = Nsmoothslid. s16d

Hence, the crucial problem of unfolding a spectrum is to find
the correct form ofrsmoothsld. Especially if the analytical
formula for the smooth part of the level density is unknown,
one has to perform a fit of the numerical probability distri-
bution of the eigenvalues. A common procedure is a polyno-
mial fit to the numerically obtained accumulated level den-
sity Nsld. This fit function is then used to perform the
unfolding transformationf41g. Then correlation functions
like Pssd or S2sld are extracted numerically from the un-
folded spectrum and are used for comparison with the ana-
lytical results derived from random matrix ensembles.

The general problem of extracting and interpreting corre-
lations from data is not limited to the case of spectra of
complex quantum systemsf38–41g, but is of great interest
for the analysis of time series arising in various other fields,
such as finance dataf10–15g, magnetoencephalographic and
electroencephalographic recordingsf17,16,19g, or climate
dataf18g. In these fields the basic laws governing the dynam-
ics are not knownsas in the case of the exact Hamiltonian in
nuclear physicsd. Nevertheless it is possible to start from the
very general assumption that the dynamics of such systems is
composed of a multitude of source processes forming sub-
systems of different size which may or may not be correlated
among each other. It results that in the above-mentioned
studies a surprisingly good agreement between the statistical
properties of the eigenvalue spectrum of the empirical corre-
lation matrices and those of random Hamiltonians repre-
sented by real symmetric matrices was found. The set of
random matrices is known as the Gaussian orthogonal en-
semblesGOEd, i.e., the ensemble of matrices which is invari-
ant under orthogonal transformations.

Strictly speaking, the empirical correlation matrixC nei-
ther describes the dynamics of a complex quantum system
sas Hamiltonian matrices dod nor belongs to the Gaussian
orthogonal ensemble. From this point of view, it seems in-
consistent to compare the statistical properties of the spectra
of C with the analytical results obtained for the GOE. A

better reference point is the so called Wishart distribution
f14,21,42g, i.e., an ensemble of correlation matrices con-
structed over a time intervalDt from M independent time
series of normally distributed random values. The statistical
properties of the latter differ slightly from those of the GOE,
in particular for the part of the spectrum of eigenvalues that
lies close to zero. But because these differences decay rap-
idly with increasing distance from zero, and the upper part of
the spectrum is described well by the universal properties of
the GOEf14g, the comparison seems to be justified.

In f14g it was assumed that the theoretically known ex-
pression for the level density of the Wishart ensemble can be
used for the unfolding procedures16d. In the limit M→`
andDt→`, such thatQ=Dt /M stays constant, the probabil-
ity distribution of the eigenvalues of the Wishart ensemble is
given by f42g

PW =
Q

2p

Îsl+ − ldsl − l−d
l

. s17d

In Eq. s17d l± are the largest and smallest eigenvalue of the
Wishart matrix given by

l± = 1 +
1

Q
± 2Î 1

Q
. s18d

For finite values ofM andDt deviations occur at both edges
of the spectrumf43g. Usingl± and the number of time series
of the multivariate data setM as fit parameters the smooth
part of the accumulated level density is obtained which has
been used for the unfolding procedure inf14g. In principle,
neitherl± nor the number of time seriesM of the multivari-
ate data set are free parameters; however, the resulting fit
might describe satisfactorily the level density of the empiri-
cal correlation matrix.

Applying the concepts of RMT to the analysis of empiri-
cal correlation matrices, it was observed that some of the
largest eigenvalues showed clear deviations from the RMT
predictions. In a number of studies it was concluded that
only these largest eigenvalues “contain real information”
which cannot be described by random matrices, whereas all
other eigenvaluessthe “bulk”d were essentially dominated by
noise, i.e., represented “random correlations”
f10,12,13,15,16,19g. Recently this view was questioned by
Malevergne and Sornettef44g who demonstrated by explicit
statistical testing that also the level density of the “bulk” of
eigenvalues deviates slightly from the predictions of the
Wishart ensemble Eq.s17d; in contrast to the earlier claims
they concluded that “there is relevant information also in the
bulk of the eigenvalue spectrum.”

However, the correlation measures applied in
f11–16,18,19g do not depend on the particular form of the
level density. On the contrary, systems with quite different
level densities might have identical correlation structures in
their eigenvalues and different systems with the same eigen-
value distribution might show drastically different correla-
tion properties. Moreover, in order to deduce such correla-
tions from given spectra, one has to remove any particular
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properties from the level densities by the unfolding transfor-
mation s16d in order to put different spectra on the same
footing.

Therefore, an essential step for the extraction of the cor-
relations within a spectrum of eigenvalues is the unfolding
procedures16d. Regardless of which strategy is used to ad-
just some fitting function to the empirical data, in any case
major discrepancies between the fit function and the data will
occur at both edges of the spectrum. For this reason a thor-
ough analysis takes only the central part of the level density
into account for the calculation of correlation measures like
Pssd or S2sld f20,39–41g. Among the previous studies which
have applied the concepts of the random matrix theory to the
analysis of empirical correlation matricesf12,13,15,16,19g
none has stated explicitly how many states were omitted at
the edges of the level density, before calculating the correla-
tion measures. Nevertheless, the conclusion thatall eigenval-
ues belonging to the bulk follow the RMT prediction and
hence do not contain any relevant information has not yet
been seriously challenged.

The examples discussed in this paper prove the contrary.
The key argument of the method is that the increase of syn-
chronization between a number of time series leads to a level
repulsion of states at both borders of the spectrum. Because
of the invariance of the trace under orthogonal transforma-
tion the relative change of the eigenvalues is much larger at
the lower edge of the spectrum than at the upper edgescom-
pare the discussion of Fig. 2d. Moreover, as in the case pre-
sented in Fig. 8sbd, there exist situations where the essential
information can be extracted only from the states belonging
to the smallest eigenvalues. Hence, from a statistical point of
view the information drawn from the smaller eigenvalues is
more relevant. This conclusion is also confirmed by the re-
sults shown in Figs. 3sbd and 3sdd, where the structure of the
eigenstates corresponding to the largest and the smallest ei-
genvalues are compared for the case where only two from a
total of 20 time series being correlated.vW1 as well asvW20
assume an orientation almost to the subspace defined by the
two correlated time series while the magnitude of all remain-
ing components is of negligible size. The essential informa-
tion about the correlation structure of the multivariate time
series is imprinted in both eigenstates. However, the statisti-
cal fluctuations ofvW20 are considerably larger than those of
vW1. Hence, the lower part of the spectrum ofC does contain
relevant information about the correlation structure of a mul-
tivariate data set.

IX. SUMMARY AND CONCLUSIONS

The numerical examples presented in this paper demon-
strate the utility of using the spectrum of eigenvalues and
eigenvectors of the equal-time correlation matrix for the
analysis of nonstationary multivariate time series. The most
important features of the presented approach can be summa-
rized as follows.

s1d Each vector of the basis in which the equal-time cor-
relation matrix is written can be assigned to a certain time
seriesXistd of the multivariate data setschannel basisd.

s2d The increase of synchronization ofK time series
within an M-dimensional multivariate time series causes a

repulsion of eigenstates of the correlation matrix, whereK
levels participate. This repulsion occurs between states at the
edges of the spectrum. The number of increasing states at the
upper edge and decreasing states at the lower edge is deter-
mined by the specific correlation structure of the data set.

s3d The eigenvectors involved in this repulsion process
collect significant contributions of those components which
belong to the correlated subspace. Hence, by investigating
the structure of the eigenvectors it is possible to determine
which of the time series are correlated. Additionally, the dif-
ferent types of correlations between subsystemssi.e., corre-
lated, noncorrelated, anticorrelated dynamicsd are directly re-
flected in the symmetry properties of the eigenvectors.

s4d There exist situations where the results extracted from
the lower edge of the spectrum are more significant than the
analysis of the largest states. Occasionally, as in the example
given in Fig. 8sbd, only the smallest eigenvaluessand eigen-
statesd deliver any significant information about changes of
the correlation structure.

s5d The time-resolved estimation of the equal-time corre-
lation matrixC, i.e., the shifting of a finite-length windowDt
with a large overlap, provides dynamical information about
which parts of the system are correlated at a certain time.
The method extracts those subsystems which show collective
behavior, and provides an ordering according to their degree
of collectivity. Segments of the time series that are “interest-
ing” in terms of increasing or decreasing collectivity of the
dynamics of either the whole system or of transiently formed
subsystems are detected automatically.

s6d In contrast to the case of, e.g., the Fourier transform,
the finite size of the time windowDt does not present an
approximation. While a Fourier transform performed over a
finite sliding segment of the data always requires a compro-
mise between a satisfactory time resolution and the desired
spectral resolution, in the case of the equal-time correlation
matrix Dt simply defines the time scale on which correlations
are measured. Nevertheless, also in the case of the correla-
tion matrix a compromise has to be made between the time
scale given byDt and the influence of noise and random
correlations. Hence, the choice of the length ofDt strongly
depends on the specific properties of the system under con-
sideration, i.e., its typical time scales, the magnitude of noise
contamination, and the sampling rate of the measurement.

The properties listed above have been demonstrated for
different systems likeNf-tori, multivariate autoregressive
processes, and coupled chaotic oscillators with a funnel at-
tractor. By employing these systems we intended to define
flexible testing systems for investigating whether phase cor-
relations could be detected by analysis of the eigenvalues of
correlation matrices. Furthermore, the situations simulated
by the systems listed in Table I can be regarded as typical
examples of principal correlation changes in spatially ex-
tended systems where multiple processes occur simulta-
neously, like for example human brain activity.

We believe that the techniques based on time resolved
analysis of the equal-time correlation matrix provide prom-
ising tools for the detection and characterization of phase-
shape correlations in multivariate data sets, independent of
the particular system under consideration.
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