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We apply a recently developed measure of multiscale complexity to the Gaussian model consisting of
continuous spins with bilinear interactions for a variety of interaction matrix structures. We find two universal
behaviors of the complexity profile. For systems with variables that are not frustrated, an exponential decay of
multiscale complexity in the disordered regime shows the presence of small-scale fluctuations and a logarith-
mically diverging profile of fixed shape near the critical point describes the spectrum of collective modes. For
frustrated variables, oscillations in complexity indicate the presence of global or local constraints. These
observations show that the multiscale complexity may be a useful tool for interpreting the underlying structure
of systems for which pair correlations can be measured.
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[. INTRODUCTION apply this formalism to Gaussian probability distributions

With the rising interest in complex systems comes a deyvith va_rious structures of the covari_ance matrix, yielding
sire to quantify how complex a given system is. Tools thatiNSight into the workings of the formalism, as well as order-
may be used come from information thegy-3] and statis-  disorder transitions in systems with bilinear potentials. We
tical physics4,5]. They address questions about how long ahave previously calculated the application of this formalism
complete microscopic description of a system must be, giveip a variety of systems composed of discrete variables, in-
its constituents and constraints. However, the microscopi€luding coupled spins, subdivided systems, Markov chains,
information (the entropy of a system does not correspond self-similar structures, Ising models undergoing phase tran-
well with intuitive concepts of complexity—a system with sitions, and structures relevant to biological and social orga-
maximal entropy is merely random, whereas a system wittizations[7-10]. Distinct approaches introduced by other
minimal entropy is strongly ordered; systems commonlygroups have focused on discrete-variable time s¢tied2.
considered complex, on the other hand, have rich internal The Gaussian distribution is also used in the statistical
structure: i.e., constraints and correlations. analysis of biological and social systefds$,14]. The entries

This problem may be resolved by the recent approach off the correlation matrix are often extracted from experimen-
considering the complexity on different scalés-10: ran-  tal data. The beauty of Gaussians is that their probability
dom systems have high information content on small scaledlistribution is completely specified by two-point correla-
however, microscopic degrees of freedom average out ovdions; however, higher correlations exist. As the paper will
larger scales, leading to a satisfying description in terms of ghow, the multiscale formalism offers an opportunity of de-
small number of variables such as volume, pressure, ani@cting subsets of variables that form coupled functional
temperature. Highly constrained systems, on the other handits, of testing for global or local constraints that manifest
have roughly the same information content on all lengththemselves in the correlation matrix, and for characterizing
scales. E.g., one can describe a system of many strongfpllective behaviors of systems.
bound particles by the location, orientation, and movement The paper is organized as follows: Section Il reviews
of the center of gravity; given th@onstank positions of the  properties of correlated Gaussian variables. Section Il re-
particles relative to each other, these few variables then dadews the mathematical representation of physical degrees of
termine everything there is to know down to microscopicfl’eedom in the form of Gaussians. Section IV gives an over-
scales. In contrast, truly complex systems have intermediatéew of the multiscale complexity formalism and previous
levels of organization. For example, a human being has intesults. Section V then shows how the formalism applies to a
teresting behaviors on a macroscopic leftk length scale variety of different interaction matrices. Section VI summa-
of meters, which arises from the level of orgarisentime-  rizes and interprets the results.
ters, which are composed of cel{fmicrometer$, which con-
sist of biomoleculeinanometerjs Il GAUSSIAN VARIABLES

A recently developed formalisiiY] allows us to calculate
the complexity on different levels of observation from the Due to the pervasive power of the central limit theorem
underlying probability distribution of the degrees of freedomthat gives rise to Gaussian distributions and due to their
of the system, which implicitly contains the interactions andmathematical convenience, Gaussians are the default as-
constraints of the system. The purpose of this paper is tsumption for probability distributions under many circum-
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stances. This paper discusses sets @aussian variables, variables:3ZxJ;x;=2x{J;x/ with xi’:\s"f%xi. This is a reflec-
labeledx;, with i € {1,n}. Each has a mean of 0 and a vari- tion of the equipartition theorem, which states that each de-
ance ofo?: (x)=0, (x®)=0?. The cross correlations are given gree of freedom corresponding to a quadratic term in the
by the elements of the covariance matRx (xx;)=R;. The ~ €nergy carries a mean energylgfl/2. As we show in Sec.
joint probability distribution is then given by I1l, such a rescaling only adds an additive term to the micro-
scopic entropy and does not change the terms in the multi-
exp(— }XT _ R‘l-x) (1) scale complexity for sqales Iarger than 1. We can the_refore
V(2m)" DetR 2 ' set B=1 and the self-interactiod; =—1 unless otherwise
stated, whereas the interaction with neighbors is proportional
To calculate how much information is contained in a Gaussto a parametea which we vary to control the system’s be-
ian variable, we use Shannon'’s information theldrly how-  havior.
ever, for convenience, we use natural urfhasee) rather In contrast to the Ising model, the Gaussian model does
than bits; i.e., for on 1 degree of freedom, the definition is not have a well-defined ordered phase. Interpreting the sys-
tem as a particle in a harmonic potential, we find thé) is
I = —f In[ p(x)]p(x)dx. (2) finite (i.e., the system is in the disordered phasall eigen-
values ofJ are positive—otherwise, there is at least 1 degree
For a single Gaussian of variana€ this results inI® of freedom with infinite negati\ée energy—i.e., a harmonic
=[In(2m)+1]/2+In(c). For the joint distribution in Eq(1), ~ Potential of the formE(x)=-Ax%, A>0. To model phase

P(x) =

one can obtain transitions more realistically in this framework, one would
have to introduce quartic terni46]; however, in this paper
ly={n[In(27) + 1] + In(Det R)}/2. (8)  we will restrict ourselves to the pure Gaussian model. Inter-

estingly, the transition to unbounded spins can happen in
systems of any size and be due to the interaction of just two
spins.

The harmonic potential interpretation also offers a geo-
metric argument why the entropy is related to the determi-
nant of the covariance matrpEqg. (3)]: the coordinate sys-

l. PHYSICAL INTERPRETATION tem can be chosen such that the main axes of the

There is a close formal analogy between EL).and the ~ €quipotential ellipsoid coincide with the coordinate axes
canonical distribution for continuous degrees of freedonfi-€., the interaction matrix is diagonalizedhis is always

For the trivial case oh uncorrelated Gaussians of variance
o, one has IfDetR)=2nIn o, so that the information is
just n times that of a single variable.

with bilinear interactiondd=—-23: J. x:x:* possible because the interaction matrix is symmetric. The
20T quadratic degrees of freedom then decouple; the mean-
B square amplitude along each axis depends on the correspond-
ex —E Jii XiX : : . . . ; )
2 < T ing eigenvalue of the interaction matrix, and the information
P(x) = Z : (4)  (which is a measure of the size of state spasehe sum of

the information for the individual degrees of freedom. Spe-
where the partition functiod is the integral of the numerator cifically, it is related to the sum of the logarithms of the
over state space. We will consider two quite distinct interpre-€igenvalues or, equivalently, the logarithm of the determi-
tations of such a system: the first is an individual particle innant. Some of the axes of the new coordinate system can be

a harmonic potential witm degrees of freedom, with;; interpreted as aggregate variables such as the magnetization
giving the potential along the coordinate axes dpdieter-  (the sum of all spins
mining the shape of the potential along the diagonals. In diagonalized form, the susceptibility to external fields

The second interpretation considers each degree of fre@t the transition is easy to calculate. In the generic case, the
dom as a spin that interacts with other spins. In the context asmallest eigenvalug; can be linearly expanded around 0:
models for magnetic systems, this is called the “Gaussiah;=K(a—a.). Applying a fieldh along the eigenvector of;
model”’[15] and has been used as an approximation to binarthen shifts the minimum of the enerdy (i.e., induces an
Ising spins. In the Gaussian model, it is usually assumed thahagnetizatiohto h/[2K(a-a.)] along this axis. The suscep-
spins in the absence of interactions follow a Gaussian distritibility is therefore proportional t¢a—a.)~” with y=1, inde-
bution of variance lindependent of temperatyrevhile off-  pendent of the underlying dimensionality of the system. Dif-
diagonal interactions are weighted with a factor @fand  ferent exponents can arise only if the linear expansion;of
there is no explicit self-interaction. around 0 has a vanishing first derivative, which is not the

In this paper, for convenience, we consider the selfcase for any of the cases we study in the following.
interaction, which serves to keep spins bounded, as a part of The link between the entropfor, equivalently, informa-
the interaction matrix. The relevant control parameter thenion) and In DetR has one mathematical difficulty: since
becomes the ratio of the self-interaction to the interactiorDet R can go to 0, the entropy can diverge to negative infin-
with other spins, rather than the temperature. We can theiy. The determinant vanishes if the rankRfis smaller than
write the covariance matrix a8=(-pJ)"%. ChangingB or  n; i.e., one or more columns can be expressed as linear com-
changing the magnitude of both the self-interactfhnand  binations of others. In our context, this corresponds to a vari-
off-diagonal interactiorJj;; only results in a rescaling of the able that is completely specified by a combination of others.
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Generally, the determinant is a polynomial of ordein the
coefficients of the matrix and the order of the zero in ques-
tion determines how many redundant variables there are. The
diverging entropy is not a problem for physical systems,
since no physical quantity can be perfectly specified.

IV. MULTISCALE COMPLEXITY FORMALISM 5@ A
A suitable measure of multiscale complex@y(k) should o- T
fulfill several conditions. For the smallest scale, it should GO 1
correspond to the microscopic entropy, which is the informa- 2f . . | | . . ]
tion contained in the joint probability distribution of all de- 1 08 06 04 02 0 02 04
a

grees of freedom. If the system is composed of distinct sub-

sets ofl variables that are coupled within the subset, but not £ 1 multiscale complexities for the three-spin chain. While
coupled to other subset§, (k) should be 0 fok>1 and take | complexities are positive fa>0, C4(3) is negative fora<0.
nonvanishing values corresponding to the number of degrees

of freedom otherwise. Furthermore, the multiscale complex;sums over the logarithm of determinants of submatrices of

ity of a composite of i”depef?de”t subsystems should be thﬁ, dropping combinations df rows and corresponding col-
Surth] ﬁgzugzgitesmho(\:/errp?rllj(;)](lttlﬁ; the followina definition  “MnS: Rescaling the covariance matrix by a factgields an
uniauelv fulfills these conditions: 9 additive term ofl In f to the logarithm of the determinant of
quely ' a submatrix of sizd X1. Since there aré}‘) such contribu-
k1 n-j-1 _ tions for Q(n,j), the difference between the rescaled multi-
(k _1 )Q(n,j),

Cn(k) = 120 (- Dkt (5)  scale complexityC,(k) and the original is

k-1 .
i &0 -C =3 (- 1)“‘1(” ) 1)(?>(n-j)m f
in j=0 k=j=1/\]
Qnk=- > [T dxP(x - {xHin P(x - {x;}). k-1 (h=i-1)
figeid J ik ] o e S L R
Equation(6) is a sum over all subsets &fvariables of the ni(n-j) f
entropy of the system after the subset has been removed. "(n=j)!
Thus, Q(n,0) is the microscopic entropy an@(n,n-1) is ket
the sum of entropies for individual degrees of freedom. The - <n>k InfS (- 1)k—j—1(k_ 1)
formalism can be applied to any system that can be described k i i
by a probability measure, equilibrium or nonequilibrium sys-
tems, or a time series described by a stochgstig., Mar- _1)0 fork>1, 7
kov) procesqd7-10]. ninf fork=1.

It is sometimes convenient to discuss the incremental dif- . o . . .
ference in complexity between scalbgk)=C(k+1) - C(k). Tlhf ldle”kt_'ﬁy n thebilast'llrpe C?P .betderlved by expanding
While C(k) represents the effective number of degrees o{ (=1)J*" using binomial coefficients.
freedom of sizek or larger, D(k) represents the effective
number of degrees of freedom at schle

The quantity defined by Eq(5) has some additional,
rather surprising, properties. In particular, it can have oscil- A. Three interacting spins
lations and take negative values even for discrete variables.
These seemingly anomalous properties have been shown ltﬁr
reflect the structure of the system and specifically have beege
linked to the effect of global constraints on local variables or,, .o 1o complexity profile can be solved analytically, giv-
more generally the concept of strong emergence in [R6f. ing
We will explore the relevance of such behavior to the Gauss-

V. APPLICATION TO SPECIFIC MODELS

We start by applying the formalism to a minimal case of
ee interacting spins. The three-spin case captures a hum-
r of features that will be characteristic of larger spin sys-

ian model. Cs(1) ={3[In2m) +1]-2In(1 +a) - In(1 - 2a)}/2,
To simplify the discussion further, we will show first that
rescaling the variable@.g., by choosing a different inverse Cs(2) =-In(1 +a) - In(1 - 2a)/2

temperatureB, as described in Sec.)lladds a term to the
microscopic entropyC,(1) that only depends on and the _r _ _
scaling ratio, and does not affect higher-order complexities Cal3) =[~In(1 ~28) +In(1 +2) + 3 In(1 ~a)}j2. (8)
(k>1). When applied to Gaussians, the ter@&,k) are As Fig. 1 shows, complexities diverge at1/2 anda=
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-1. These are the ferromagnetic and antiferromagnetic trarelso has a first-order zero pt=-1/(n-1), where geometri-
sitions to unbounded variables. As this case illustrates, unlikeal constraints can be used to eliminate one variable.
conventional binary spin systems, transitions occur even for We can now calculate the scale-dependent complexity
finite numbers of spins. This result can be understood by, (k) following Eq. (5). For our example, we can calculate
recognizing that conventional Gaussian variables themselvahis analytically fork=1,2,3 andnumerically for other val-

can be thought of as arising as aggregates of many micrases ofk. Since the matrix does not change its structure if one
scopic bounded variables through the central limit theoremor more variables are removed, the determinant has the same
Negative values ofC3(3) occur fora<0. This is expected form as Eq.(14) with a modified number of variables.

for systems with frustrated spins, due to the existence of a We then have

constraint on the three spins that does not affect any pair of

spins. Q(n,j) = (?){%j[ln(%f) +1]+ %{(n =j=DIn-p)

B. Infinite-range magnet
For larger numbers of spins we consider first an infinite- +In[1+(n-j- 1)P]}] (15
range Gaussian model, with an interaction matrix
which yields
-1 n n-1
_| @ a Cy(1) ==[In(2m) + 1 +In(r)] + In(1 - p)
J= , 9 2 2
a LY .o a
- 1
a a -1 +2In[1+(n-1)p], (16)

wherea, the interaction between spins, is negative for anti-
ferromagnets and positive for ferromagnets. Inverting the

negative of this matrix does not alter its structure; one ob- Cn(2)={=In(1 -p) = (n=D)In[1 +(n—-1)p]

tains the covariance matrix +nin[1+(n-2)pl}2, (17)
e ¢ C.(3)=—In(L-p)/2 +(n-1)(n-2)In[1 +(n— 1)p]/4
cr c
R= . . ¢ | (10 -n(n-2)In[1+(n-2)p)/2+n(n-1)
c - c r XIn[1+(n-3)pl/4, (18
with r andc given by as shown in Fig. 2. In terms &, these complexities can be
written as
1-(n-2a
= , 11 n n-1
" ralt-(-Dal v Col1) = 2{In(2m) + 1+ (1 - (n- D} +
a 12 XIn[1-(n-1)a] + }In(l +a) (19
°A+ali-(-Dal’ 12 2
We define the correlation ratip=c/r, in order to separate C2) =[-In(1 - (n-1a) - (n- DIn(L+a)]/2, (20)
the amplitude of the spins from the correlations between . '
them: C.(3)={- 2In[1 - (n-1)a] + (n- 1)(n-2)In(1 +a)
a
. — 1 +n(n-1)In(1-a)}/4. (21)
P 1-(n-2a (13

For n=3 this reduces to the case of three interacting spins,
Since ferromagnetic ordering is easier to achieve withEq. (8). All complexities fork>1 include a singular term
infinite-range interactions than antiferromagnetic ordering-In(1-p)/2=-In[1-(n-1)a]/2 but are independent df,
the transition where all spins collapse into dpegoes to 1 which is a consequence of the invariance to multiplying all
and the amplitude diverges occurs at a small valueaof spins by the same factor, as described ab@él), on the
=1/(n-1). Antiferromagnetic ordering occurs a=-1, other hand, includes a term(Rwr)+1 (see Fig. 2

wherep takes the asymptotic value «(tv~1) and all vari- We find two characteristic behaviors for ferromagnetic

ables are maximally anticorrelated, taking values correand antiferromagnetic interactions. In the ferromagnetic case

sponding to ar(n-1)-dimensional hypertetrahedron. (a>0,p>0) the multiscale complexity is positive and de-
The determinant oR is creases monotonically with increasikgThe curves ofZ, (k)

— N1 _ -1 _ plotted as a function ok/n approximately collapse to one
DetR,=r"(1-p)" {1 +(n-1p]. (14) curve for each value gf>0, so that the complexity can be
The determinant has a zero of order1 atp=1, where all  written as a scaling functio@(k/n, p). Nearp=1, this func-
variables are the same, and-1 of them are redundant. It tion takes a universal shape, so thHatk/n,p)=C,(k/n)
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k
L U R B
p. 0 02 04 0.6 038 1 FIG. 4. ComplexitiesC,(k) for the infinite-range antiferromag-

net withn=15, for different values op <0, expressed as fractions
FIG. 2. ComplexitiesC,(1)—C(4) for infinite-range interac- ©f Pc=—1/(n—1). This is close to the point where one variable
tions (for n=15 and amplitude=1) following Egs.(16)18). The becomes redundant; the multiscale complexity shows oscillations of

inset showsC,(1) for a different scaling of thy axis. increasing amplitude.

+E(p). The singular term in all complexities pointed out gtifacts, as can be seen by increasing the accuracy of calcu-
above, -I1-p)/2, can be identified withE(p). As seen in  |ations. The oscillations in the antiferromagnetic regime are
Fig. 3, reducing 1 p=p.—p [or equivalentlya.—a, as seen npot artifacts.

in Egs. (199—21)] by a factor of 10 increase§,(k/n) by

In(10)/2. . . . C. One-dimensional spin chain
The universal shape dE(k/n,p) implies thatD(k), the _ _ _ . _ _
spectrum of excitations, is independentgohear the transi- We consider a chain af spins with nearest-neighbor in-

tion. With increasing coherence of the variables, the collecteractionsa and self-interactions —1. The interaction matrix
tive behavior atC(n) increases at the expense of the inde-IS given by
pendence of the variable€(1) without affecting the

spectrum of intermediate scale excitations. -1 a 0 - a
In the antiferromagnetic caga<0,p<0) oscillations in a -1 a o0
C(n) are found, as seen in Fig. 4. The amplitude of oscilla- J= : (22)

tions increases asf4[1+(n-1)p]—g, wheref and g in-
crease rapidly witm and are of order T0for n=20. Oscil-
latory behavior in the multiscale complexity has been linked L . .

For evenn, it is not relevant whether interactions are ferro-

to global constraint§10Q]; in this case, it is the constraint maanetic or antiferromaanetic. since both cases can be
2x;=0 which is enforced by the interactions near the transi-mag ed onto each otherbg fl ’in every other spin. For odd
tion point and which can be used to eliminate one of the bp , y Tlipping y pin.
variables. n, the asymmetry with respect sobecomes less pronounced

It should be pointed out that ES) is susceptible to 257\ 1NCTeases: negative complexities are only observed for
numerical inaccuracies, and with insufficient precision one, >’ gely sy '

o . efollowin observations assume evan
observes oscillations fg¥>0; however, these are numerical g obs ; . .
For weak interactions, one finds correlations that decrease

T 11— exponentially with distance; specifically, the leading-order

6'_Xg ] term of R;; is al-il. Due to the short-ranged, one-dimensional

- Py ] interactions, Ising spins with this interaction structure do not

Py PeEagg, camg 920,999 . show an order-disorder phase transition. However, the
L Hag i ln(lo)/zwnmmnmgwwgm ] continuous-spin system displays a transition from finite to
S oo PEuagapEg P=09% "oy infinite variances fora=+1/2, atwhich point the nearest-
©sl ﬁmww“ In(10)/2 "““‘“Waawm%— neighbor interactions override the self-interaction.

| e, Bl T g k We find numerically thaiC,(k) is proportional ton for

>, Peag, 1";0:2 009 B LT small k>1: each additional spin takes a finite amount of

1+ EEEEEHE mu;g;mmngwmgmw . information to describésee Fig. 5. This is consistent with

R s LT the short-range interactions of the model.

0 0.2 04 kin The complexity profile for all scale$Fig. 6) behaves

similarly to the infinite-range ferromagnéfig. 3): asa ap-

FIG. 3. ComplexitiesC,(k) for n=40 (squares and n=80 pBoachesa?, the Complexny profile _has a universal shape
(crossegfor the infinite-range ferromagnet, displayed as a functionCn(K) that is monotonically dgcreasmg and spans all scales.
of k/n, for various values op. Arrows indicate the shift predicted The divergence as a function af-a; follows C(k,a)
by Eq. (18). =CY(k) - In(a.-a).
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FIG. 5. Multiscale complexities for the multispin chain, normal-
ized by the number of sping, for n=16 (lines), n=25 (squarey
andn=32 (crosses

FIG. 7. Multiscale complexities for the square lattice with
nearest-neighbor interactions, normalized by the number of spins,
n=L XL, for L=5 (lines), L=6 (squarel andL=7 (crosses

D. Square lattice

For a two-dimensional example, we arrange spins on a
L XL square lattice with periodic boundary conditions and We generalize the infinite-range Gaussian model by divid-
nearest-neighbor interactions of strengthThe transition ing the spins into groups that interact strongly within the
point to unbounded spins is at £ 1/4. Intuitively, four in-  group, but weakly with members of other groups, yielding
teractions of strength 1/4 are sufficient to balance the selfthe following interaction matrixwe explicitly label the self-
interaction of strength 1. interaction as d in this casg

As with the spin chain we find that the multiscale com-
plexities are roughly proportional to the number of spins in d a
the system and are almost symmetric with respect to switch- d a b b
ing the sign ofa. (see Fig. 7 For evenL the symmetry is
exact since a ferromagnetic square lattice can be transformed a - d
into an antiferromagnetic one by flipping spins in a checker- d -~ a
board pattern. The symmetry is not exact for addnd the J=- b a d a b (23)
deviation is largest for small values bf For differentL the '
values ofC(k)/N do not collapse as well, indicating a more a - d
significant deviation from extensivity than in the one- d --- a
dimensional case. b b a d a

The complexity profile shows a similar behavior to the
infinite-range ferromagnet: asapproaches,., a complexity
profile with universal shape emerges that spans all scales,
and is monotonica”y decreasing' as seen in F|g 8. A |OgaWith m blocks ofn spins each. This model is important in the
rithmic divergence as a function af-a, is found as before. study of complex systems since it has a multilevel
The shape of the complexity profile in the limit is different Structure—i.e., modularity—considered to be a universal

from the previous scenarios; the cases will be compared béroperty of complex systen{$,17].
low. The determinant of this matrix is

E. Block matrix

FIG. 6. Multiscale complexity for the one-dimensional spin  FIG. 8. Multiscale complexity for the square lattice with
chain with nearest-neighbor interactions, for different interactionnearest-neighbor interactions, for different interaction strengths at
strengths ah=16. L=4.
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Det(~J) = (d-a)™"V[d+(n-1)a-nb]™{d+(n-1a bld ald=1
if
+n(m- 1)b], (24) antiferro 1
which enables us to find the permissible rangesd,d, and B<0
b: for bounded spins to existl, which is the negative self- — A<0
interaction, has to be positive. Positive valuesaoénd b 1/n =
imply antiferromagnetic interactions, negative ferromag- 1/n—1
netic. The boundaries of the allowed region are given by the /d
zeros of Eq.(24): ferro agtiferro
ad=1, 25 L
(25) B50 “1/m=1)
b/d<[1+(n-21)a/d]/n, (26) ~1n(m=1) lferro
b/d=-[1+(n- Da/d]/[n(m-1)]. (27) FIG. 9. Phase diagram for a block matrix with groups ofn

] ) ) spins each. Relevant variables are the ratios between near- and far-
The inverse of this matrix has the same structure as Etheighbor interactions and self-interaction. Shading indicates the

(23); if we label the coefficients of ¥ as A, B, and D, sign of covariance# andB.
respectively, we obtain

D =K{d?+ (m-2)(n-2)nab— (m-1)(n— 1)nk? DetC_;=(D-A)™ YD +(n-1)A-nB]™?
+(n-1)(n-2)a%+[(m-2)nb+ (2n- 3)a]d}, x{D?+ (2n-3)AD+ (n-1)(n—- 2)A%+ n(m-2)

_ o _\R2
A=K[-ad- (n-1)a?+ (m- 2)nab+ (m- 1)nb?], x[D+(n-2AB-n(n-1)(m-1)87. 32

B=-K(d-a)b, (28) From this expre.ssion, the corresponding complexity for scale
2 can be found:
where
K={(d-a)[d+(n-1a-nb][1+(n-1a+(m-1)nb]}L. Com(2 =(1/2(-mIn(D -A) + (m-mn-1)In[D +(n- 1A
(29 -nB] - (mn-1)In[D + (n— 1)A+ n(m- 1)B]
Since the inverse of the negative interaction matrix is the +mnin{D?+ (2n - 3)AD + (n—1)(n - 2)A? + n(m

covariance matrix, this allows us to determine under what
circumstances correlations to near and far neighbors are posi-
tive or negativeA has a zero for

-2)[D+(n-2AB-n(n-1)(m-1)B?%). (33

1 The first term in Eq(33) indicates that the divergence near

b, ,= ————[(m~- 2)na+ \nPn?a®+ 4m- 1)n(d - a)a]; A=D is logarithmic inmIn(D-A)/2; the additional factor of

“ 2(m=-1n m, compared to previous scenarios, indicates that thermare

(30)  distinct units.

o . . Expressions for highek do not give additional insight.
it is negative between the branches of the root and positivgye therefore turn to numerical results, which are shown in
outside.B is negative folb<<0 and positive fob>0. Com- Fig. 10. Along theb=0 axis, the system consists fblocks
bining the results from Eq425), (26), and(30), the phase ' coupled spins each. Complexiti€s, (k) are different
fj'agra”? shown in Fig. 9. emerges. Interestingly, Iong—rangqrom zero fork=n (positive for ferromagnetic interactions,
interactions do not stabilize the system: at amy 0, the oscillating for antiferromagneticand equal to zero fok
system has a smaller range of stability with respe@ an  — , ‘This reflects the built-in property of the multiscale for-
for b=0. . . malism to identify noninteracting subsets of variables.

We now calculate the multiscale complexiti€,(1) can Forb+0, complexities at scales up ks=nmbecome non-
be calculated from the determinant, Eg4), with entriesD, ;o5 |n the quadrara<0,b<0 where all interactions are

A, andB from Eq. (28): ferromagnetic, all complexities are larger than zero. In the
1 other quadrants, one observes either negative complexities

Com(D) = E{nn{In(Zw) +1]+n(m-1)In(D - A) for higher scales or oscillations similar to those found for the

infinite-range antiferromagnet. We expect a similar picture to

+(m=-21)In[D+ (n-1)A-nB] hold for more than two levels of hierarchy: a monotonically

_ _ decreasing curve with kinks at the scales corresponding to

+In[D +(n=1A+n(m-1)BJ}. (31) block sizes if all interactions are ferromagnet&s in the
Unfortunately, removing spins does not leave the structure dbwer left panel of Fig. 1pand combinations of decreasing
the covariance matrix unchanged. The determinant of theurves and oscillations on different scales if both ferromag-
matrix with one spin removed is netic and antiferromagnetic interactions are present.
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F. Infinite-range spin glass o) {(27702n)'1\402n— \2 for |)\| < 20\@‘;,
P\ =
Spin glassegsmagnetic systems with random ferromag- 0 else,
netic or antiferromagnetic interactionsre a well-studied (39
model of systems with frustrated interactions, multiple de-
generate ground states, and other interesting featli®20.  i.e., a semicircle of a width proportional &o/n. For smalln,

The multiscale complexity of spin glasses is therefore ofthe cutoff of this semicircle becomes blurred.
considerable interest. We consider interaction matrices with Calculations show that replacing the random diagonal
diagonal elements;=—1 and off-diagonal elements;=J;; elements with nonrandom elements of magnitutihas
=ar;;, wherer;; is a Gaussian random variable of variance 1.two effects:n is replaced byn-1 in Eq. (34), and the
To determine transition points for any one realization of themean of the distribution is shifted b¢ (as can be shown
quenched random interactions, we keep the sej ebnstant ~ analytically. Thus, the distribution ofk follows P())
and adjust the interaction strengih =\4c*(n-1)-(\—d)?/[270?(n-1)].

The first quantity of interest is the criticalat which the The critical interaction values; is that for which the
transition from bounded to unbounded variances occurs. Thismallest eigenvalue becomes 0 fd=1. Neglecting the

is related to the eigenvectors of -which are necessarily all plurring of boundaries, we thus expefz |/=d/\4(n-1),
positive for bounded spins. The spectrum of eigenvalues  \hich is in good agreement with calculations for laryet

Gaussian matrices has been studidl]; if all entries (in-  should be pointed out thai, has significant fluctuations for
cluding the diagonalare Gaussians of mean 0 and variancesmall n—the exact transition point differs for each realiza-

o?, the matrix is symmetric and is large; it takes the form tjon of {r;j}. These result indicate a significant difference in

05— ——T T T T T T T T

0.1

CJn

0.05

FIG. 12. Multiscale complexities for the mean-field spin glass,
FIG. 11. Complexity profile for a long-range spin glass with normalized by the number of sping, for n=40 (lines), n=30
=186, for different values oé/a., averaged over 100 realizations of (squares andn=20 (crossey averaged over multiple realizations
randomness. of randomness.
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lattice. al ]
7
the behavior of the transition in the case of the spin glass and sp ,  reox4a099%%a, | ]
infinite-range magnet with uniform interactions. The scaling 0 5 0. 20 2
of a,=n"2 lies between that of the infinite-range ferromag-
net (a;=n™Y) and the antiferromagndi,=1) described in FIG. 14. Complexity profile for the triangular lattice near the
Sec. IV B. antiferromagnetic transition, for different system sizes. One sees

Using these results, we explore the behavior of the mulsigns of both frustration and coherent behavior.
tiscale complexitiesC,(j). Neara., we obtain a monotoni-
cally decaying positive curve, similar to that for the ferro- G. Triangular lattice
magnetic mean-field magnet. For smaller valuesapthe

curve is shifted to lower values . (j), but does not be- Our final example is a two-dimensiongD) lattice with

. . frustration in the antiferromagnetic state, the 2D triangular
come neg{;\tlvésee Fig. 11 L lattice. Again, we find two transitions points. In the ferro-
Interestingly, the curves d,(k) for smallk follow simi- 000 evic” regime, the transition &=1/6 asexpected for a
lar scaling behavior as those for ferromagnetic nearest,yice of coordination number 6. The complexity profile at
neighbor spin chains and lattices: when plotted as a functiogye ferromagnetic transition is qualitatively similar to that of
of a/a, Cy(k)/n roughly collapses onto one curve for differ- yhe square-lattice ferromagnet, and the multiscale complexity
entn, as shown in Fig. 12. The exact values of the curvegqr smallk is extensive. In the antiferromagnetic regime, the
depend on the quenched variables, so that averaging ovekact point of transition depends somewhat on the extent of
different realizations becomes necessary; however, the finitgy e |attice in thex directionl, (see Fig. 13 for example, it is
size effects decrease with increasmg _ a,=-1/3 forl,=3, -0.353 553 fot,=4, and —0.350 373 for
It is significant that the random and partly frustrated in-| —5_For|, that are compound numbers, the lowest absolute
teractions do not lead to oscillations in the multiscale comy 5jye of the transition for any of the divisors is the relevant
plexity. Ferromagnetic modes become dominant and triggegne The complexity profile near the transitigfig. 14 now
the transition before frustration has an impact. The study ofpqgws slight signs of frustratiotsmall oscillations withk
spin glasses usir)g replica symmetry breaking has previously,,q negative values fde=n), but no large-amplitude oscil-
found that the spin-glass order parameter has a degeneracy gfions as found for the infinite-range antiferromagnet. We
ordern in the ground state with spins having a macroscopiGnterpret this as a sign of localized frustrations, consistent

ordering in the direction of one of these low-energy statesyith 5 |arge ensemble of degenerate ground states, but with
Such macroscopic ordering is indeed similar to the ordermg)my local, rather than global, constraints.

found in an infinite-range model and is qualitatively different

from a frustrated infinite-range model which constrains the VI. SUMMARY

macroscopic state to a macroscopically degenerate subspace. '

Still, we note the different scaling between frustrated and Comparing the multiscale complexity profiles that were
unfrustrated interactions described above. found in the preceding section, some intuitive and some

TABLE |. Comparison of qualitative features from from Secs. V A-V G.

Structure Transitiora, Ch(k) extensive Oscillations
Three-spin ferromagnet 1/2 N/A no
Three-spin antiferromagnet -1 N/A yes
Infinite-range ferromagnet 1i-1) no no
Infinite-range antiferromagnet -1 no yes
Spin chain,n even 1/2 yes no
Square latticel. even 1/4 yes no
Block matrices varies varies varies
Infinite-range spin glass x1/yn yes no
Triangular ferromagnet 1/6 yes no
Triangular antiferromagnet ~-1/3 no weak
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T T T sponds to fluctuations on small length scales, as one expects
from systems in the disordered phase. In systems that have
local interactions or disordered interactidessentially, in all
ininite. range ferromagnet. the cases we st'udied ex_cept for the me_qn—field ferromagnet
triangular ferromagnet 1 and block matrices multiscale complexities are approxi-
square lattice mately extensive—i.e., proportional to system size—for
| smallk away from the transition. In the language of magnetic
systems, this means that one observes a finite-size correlation
length indicating small patches of correlated spins, each of
] which give a contribution to complexity. Finite-size effects
o e (deviations from extensivijyare more pronounced for two-
0 5 10 15 dimensional and infinite-range models as compared to the
k 1D spin chain, as is to be expected in higher-dimensional

FIG. 15. Complexity profiles for different interactions that show SyStems.

infinite-range spin glass .

monotonically decreasinG,(k), at the same ratia/a,=0.999, for The complexitiesC,(k) for k of order 1 thus represent
n=16. The infinite-range ferromagnet, the square lattice, and théocalized fluctuations, whereas nonvanishi@gk) for k/n
triangular lattice, yield remarkably similar curves. of order 1 represent the emergence of collective behaviors on

the scale of the system as a whole and whose complexity is

rather surprising features emerge. The results are summéherefore not extensive. Since the multiscale complexity is a
rized in Table | and Fig. 15. All systems we considered showvery general formalism, requiring only the joint probability
a transition from well-behavedfinite magnitudg spins to  distribution for input, it can thus be used to describe fluctua-
diverging-amplitude spins when the interaction between diffions and to identify phase transitions without explicitly
ferent spins overrides the self-interaction. choosing order parameters. -

We find two different universal behaviors of the complex- ~ The second universal behavior, oscillations, is observed
ity profile: monotonic decrease with scale and oscillatorywhen a global constraint leads to redundancy: in the simplest
behavior. The former is a signature of systems with variable§ase, for the long-range antiferromagnet, mutual repulsion
that are not frustrated. At the transition, spins become inenforces the constrainix=0, implying that any one spin is
creasingly redundant because they are completely correlatétgtermined if all others are known. We find that such con-
(anticorrelated, in the case of an antiferromaymeth each ~ Straints do not result from random interactions found in spin
other. Near the critical point, complexities diverge logarith-glasses; i.e., frustrated interactions do not necessarily result
mically. Figure 15 shows a comparison between the curves frustrated variables. There exist enough interactions that
near divergencéat 0.99%,, for n=16) for the interaction are not frustrated to ensure collective behaviors of the ferro-
structures that show this behavior. The complexity profilemagnetic type. Oscillations do arise, however, for symmetric
can be interpreted as the cumulative spectrum of collectiv@ntiferromagnetic interactions, both between individual spins
behaviors of the system. The independence&C(¥,p) with ~ and between blocks of spins. o
changes inp in all these cases implies that(k)=C(k+1) Finally, we note that the characterization that we have
—C(K) is independent op near the transition. Thus, the the provided using the multiscale complexity is distinct from the

collective behavior a€(n) increases near the transition with- usual characterization of the correlations in spatial systems

out changing the spectrum of excitations at all scales beL_Jsing a correlation length. The multiscale complexity does

tween 1 anch. One can see that the infinite-range ferromag-nOt require a spatial structure. It identifies the aggregate size
net, the square lattice, and the triangular lattice, yield ver)f’f flugcluatlonfstlrr: tt?[rmsl of thefnumtt_)elr of part|C|p?t|?g :;;pms
similar curves, whereas the infinite-range spin glass and thgrgardiess ot the topology ot spatial or nonspatial interac-
1D chain show a quantitatively different decay. For theloNs- Thus I prowdes.a more g_en(_erglly applllcable charac-
simple ferromagnetic systentall except the spin glasshe terization of the collective behavior in interacting systems.
value of C,(k) for largek appears to increase monotonically
with spin connectivity.

Away from the transition, in the weak-coupling regime, We thank Mehran Kardar for important suggestions and
one finds thatC,(k) decays exponentially witk. This corre-  fruitful discussion.

ACKNOWLEDGMENT

[1] C. E. Shannon, Bell Syst. Tech. 27, 79 (1948. Published [3] C. M. Goldie and R. G. E. PinchCommunication Theory

also in C. E. Shannon and W. Weavé@ihe Mathematical (Cambridge University Press, Cambridge, U.K., 1991
Theory of Communication(University of Illinois Press, [4] F. Reif, Fundamentals of Statistical and Thermal Physics
Champaign, IL, 1968 (McGraw-Hill, New York, 1965.

[2] T. S. Han and K. KobayashMathematics of Information and  [5] R. Balian,From Microphysics to Macrophysi¢Springer, Ber-
Coding (AMS, Providence, RI, 2002 lin 1982).

046114-10



MULTISCALE COMPLEXITY OF CORRELATED GAUSSIANS

[6] Y. Bar-Yam, Dynamics of Complex Systeifwestwood Press,
Boulder, CO, 199) also for download at http:/
www.hecsi.org/publications/dcs

[7] Y. Bar-Yam, Adv. Complex Syst7, 47 (2004).

[8] S. Gheorghiu-Svirschevski and Y. Bar-Yam, Phys. Rew/ (&
066115(2004).

[9] Y. Bar-Yam, Complexity9(4), 37 (2004).

[10] Y. Bar-Yam, Complexity9(6), 15 (2004).

[11] P.-M. Binder and J. A. Plazas, Phys. Rev. @3, 065203
(2002.

[12] J. P. Crutchfield and D. P. Feldman, Chab&(1), 25 (2003.

[13] D. H. Hartnett, Introduction to Statistical Method<2nd ed.
(Addison-Wesley, Reading, MA, 19Y5

PHYSICAL REVIEW E1, 046114(2005

[14] I. Guttman Linear Models: An Introductioriwiley, New York,
1982.

[15] G. Parisi,Statistical Field TheorfAddison-Wesley, Redwood
City, CA, 1988.

[16] L. D. Landau and E. M. LifshitzStatistical Physics3rd ed.
(Pergamon, Oxford, 1980Vol. 1.

[17] H. Simon, Proc. Am. Philos. Sod06, 467 (1962.

[18] E. P. Wigner, Ann. Math67, 325(1958.

[19] K. H. Fischer and J. A. HertSpin Glasse$Cambridge Uni-
versity Press, Cambridge, U.K., 1991

[20] D. Chowdhury,Spin Glasses and Other Frustrated Systems
(Princeton University Press, Princeton, NJ, 1996

046114-11



