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We apply a recently developed measure of multiscale complexity to the Gaussian model consisting of
continuous spins with bilinear interactions for a variety of interaction matrix structures. We find two universal
behaviors of the complexity profile. For systems with variables that are not frustrated, an exponential decay of
multiscale complexity in the disordered regime shows the presence of small-scale fluctuations and a logarith-
mically diverging profile of fixed shape near the critical point describes the spectrum of collective modes. For
frustrated variables, oscillations in complexity indicate the presence of global or local constraints. These
observations show that the multiscale complexity may be a useful tool for interpreting the underlying structure
of systems for which pair correlations can be measured.
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I. INTRODUCTION

With the rising interest in complex systems comes a de-
sire to quantify how complex a given system is. Tools that
may be used come from information theoryf1–3g and statis-
tical physicsf4,5g. They address questions about how long a
complete microscopic description of a system must be, given
its constituents and constraints. However, the microscopic
information sthe entropyd of a system does not correspond
well with intuitive concepts of complexity—a system with
maximal entropy is merely random, whereas a system with
minimal entropy is strongly ordered; systems commonly
considered complex, on the other hand, have rich internal
structure: i.e., constraints and correlations.

This problem may be resolved by the recent approach of
considering the complexity on different scalesf6–10g: ran-
dom systems have high information content on small scales;
however, microscopic degrees of freedom average out over
larger scales, leading to a satisfying description in terms of a
small number of variables such as volume, pressure, and
temperature. Highly constrained systems, on the other hand,
have roughly the same information content on all length
scales. E.g., one can describe a system of many strongly
bound particles by the location, orientation, and movement
of the center of gravity; given thesconstantd positions of the
particles relative to each other, these few variables then de-
termine everything there is to know down to microscopic
scales. In contrast, truly complex systems have intermediate
levels of organization. For example, a human being has in-
teresting behaviors on a macroscopic levelsthe length scale
of metersd, which arises from the level of organsscentime-
tersd, which are composed of cellssmicrometersd, which con-
sist of biomoleculessnanometersd.

A recently developed formalismf7g allows us to calculate
the complexity on different levels of observation from the
underlying probability distribution of the degrees of freedom
of the system, which implicitly contains the interactions and
constraints of the system. The purpose of this paper is to

apply this formalism to Gaussian probability distributions
with various structures of the covariance matrix, yielding
insight into the workings of the formalism, as well as order-
disorder transitions in systems with bilinear potentials. We
have previously calculated the application of this formalism
to a variety of systems composed of discrete variables, in-
cluding coupled spins, subdivided systems, Markov chains,
self-similar structures, Ising models undergoing phase tran-
sitions, and structures relevant to biological and social orga-
nizations f7–10g. Distinct approaches introduced by other
groups have focused on discrete-variable time seriesf11,12g.

The Gaussian distribution is also used in the statistical
analysis of biological and social systemsf13,14g. The entries
of the correlation matrix are often extracted from experimen-
tal data. The beauty of Gaussians is that their probability
distribution is completely specified by two-point correla-
tions; however, higher correlations exist. As the paper will
show, the multiscale formalism offers an opportunity of de-
tecting subsets of variables that form coupled functional
units, of testing for global or local constraints that manifest
themselves in the correlation matrix, and for characterizing
collective behaviors of systems.

The paper is organized as follows: Section II reviews
properties of correlated Gaussian variables. Section III re-
views the mathematical representation of physical degrees of
freedom in the form of Gaussians. Section IV gives an over-
view of the multiscale complexity formalism and previous
results. Section V then shows how the formalism applies to a
variety of different interaction matrices. Section VI summa-
rizes and interprets the results.

II. GAUSSIAN VARIABLES

Due to the pervasive power of the central limit theorem
that gives rise to Gaussian distributions and due to their
mathematical convenience, Gaussians are the default as-
sumption for probability distributions under many circum-
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stances. This paper discusses sets ofn Gaussian variables,
labeledxi, with i P h1,nj. Each has a mean of 0 and a vari-
ance ofsi

2: kxil=0, kxi
2l=si

2. The cross correlations are given
by the elements of the covariance matrixR: kxixjl=Rij . The
joint probability distribution is then given by

Psxd =
1

Îs2pdn Det R
expS−

1

2
xT ·R−1 ·xD . s1d

To calculate how much information is contained in a Gauss-
ian variable, we use Shannon’s information theoryf1g; how-
ever, for convenience, we use natural unitssbaseed rather
than bits; i.e., for on 1 degree of freedom, the definition is

Ix = −E lnfpsxdgpsxddx. s2d

For a single Gaussian of variances2 this results in Ix
G

=flns2pd+1g /2+ lnssd. For the joint distribution in Eq.s1d,
one can obtain

Ix = hnflns2pd + 1g + lnsDet Rdj/2. s3d

For the trivial case ofn uncorrelated Gaussians of variance
s2, one has lnsDet Rd=2n ln s, so that the information is
just n times that of a single variable.

III. PHYSICAL INTERPRETATION

There is a close formal analogy between Eq.s1d and the
canonical distribution for continuous degrees of freedom
with bilinear interactionsH=−1

2oi j Jijxixj:

Psxd =

expSb

2oi,j
JijxixjD

Z
, s4d

where the partition functionZ is the integral of the numerator
over state space. We will consider two quite distinct interpre-
tations of such a system: the first is an individual particle in
a harmonic potential withn degrees of freedom, withJii
giving the potential along the coordinate axes andJij deter-
mining the shape of the potential along the diagonals.

The second interpretation considers each degree of free-
dom as a spin that interacts with other spins. In the context of
models for magnetic systems, this is called the “Gaussian
model” f15g and has been used as an approximation to binary
Ising spins. In the Gaussian model, it is usually assumed that
spins in the absence of interactions follow a Gaussian distri-
bution of variance 1sindependent of temperatured, while off-
diagonal interactions are weighted with a factor ofb and
there is no explicit self-interaction.

In this paper, for convenience, we consider the self-
interaction, which serves to keep spins bounded, as a part of
the interaction matrix. The relevant control parameter then
becomes the ratio of the self-interaction to the interaction
with other spins, rather than the temperature. We can then
write the covariance matrix asR=s−bJd−1. Changingb or
changing the magnitude of both the self-interactionJii and
off-diagonal interactionJij only results in a rescaling of the

variables:boxiJijxj =oxi8Jijxj8 with xi8=Îbxi. This is a reflec-
tion of the equipartition theorem, which states that each de-
gree of freedom corresponding to a quadratic term in the
energy carries a mean energy ofkBT/2. As we show in Sec.
III, such a rescaling only adds an additive term to the micro-
scopic entropy and does not change the terms in the multi-
scale complexity for scales larger than 1. We can therefore
set b=1 and the self-interactionJii =−1 unless otherwise
stated, whereas the interaction with neighbors is proportional
to a parametera which we vary to control the system’s be-
havior.

In contrast to the Ising model, the Gaussian model does
not have a well-defined ordered phase. Interpreting the sys-
tem as a particle in a harmonic potential, we find thatkxi

2l is
finite si.e., the system is in the disordered phased if all eigen-
values ofJ are positive—otherwise, there is at least 1 degree
of freedom with infinite negative energy—i.e., a harmonic
potential of the formEsxd=−lx2, l.0. To model phase
transitions more realistically in this framework, one would
have to introduce quartic termsf16g; however, in this paper
we will restrict ourselves to the pure Gaussian model. Inter-
estingly, the transition to unbounded spins can happen in
systems of any size and be due to the interaction of just two
spins.

The harmonic potential interpretation also offers a geo-
metric argument why the entropy is related to the determi-
nant of the covariance matrixfEq. s3dg: the coordinate sys-
tem can be chosen such that the main axes of the
equipotential ellipsoid coincide with the coordinate axes
si.e., the interaction matrix is diagonalizedd. This is always
possible because the interaction matrix is symmetric. The
quadratic degrees of freedom then decouple; the mean-
square amplitude along each axis depends on the correspond-
ing eigenvalue of the interaction matrix, and the information
swhich is a measure of the size of state spaced is the sum of
the information for the individual degrees of freedom. Spe-
cifically, it is related to the sum of the logarithms of the
eigenvalues or, equivalently, the logarithm of the determi-
nant. Some of the axes of the new coordinate system can be
interpreted as aggregate variables such as the magnetization
sthe sum of all spinsd.

In diagonalized form, the susceptibility to external fields
at the transition is easy to calculate. In the generic case, the
smallest eigenvaluel1 can be linearly expanded around 0:
l1=Ksa−acd. Applying a fieldh along the eigenvector ofl1

then shifts the minimum of the energyH si.e., induces an
magnetizationd to h/f2Ksa−acdg along this axis. The suscep-
tibility is therefore proportional tosa−acd−g with g=1, inde-
pendent of the underlying dimensionality of the system. Dif-
ferent exponents can arise only if the linear expansion ofl1
around 0 has a vanishing first derivative, which is not the
case for any of the cases we study in the following.

The link between the entropysor, equivalently, informa-
tiond and ln DetR has one mathematical difficulty: since
Det R can go to 0, the entropy can diverge to negative infin-
ity. The determinant vanishes if the rank ofR is smaller than
n; i.e., one or more columns can be expressed as linear com-
binations of others. In our context, this corresponds to a vari-
able that is completely specified by a combination of others.
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Generally, the determinant is a polynomial of ordern in the
coefficients of the matrix and the order of the zero in ques-
tion determines how many redundant variables there are. The
diverging entropy is not a problem for physical systems,
since no physical quantity can be perfectly specified.

IV. MULTISCALE COMPLEXITY FORMALISM

A suitable measure of multiscale complexityCnskd should
fulfill several conditions. For the smallest scale, it should
correspond to the microscopic entropy, which is the informa-
tion contained in the joint probability distribution of all de-
grees of freedom. If the system is composed of distinct sub-
sets ofl variables that are coupled within the subset, but not
coupled to other subsets,Cnskd should be 0 fork. l and take
nonvanishing values corresponding to the number of degrees
of freedom otherwise. Furthermore, the multiscale complex-
ity of a composite of independent subsystems should be the
sum of subsystem complexities.

It has been shown inf7g that the following definition
uniquely fulfills these conditions:

Cnskd = o
j=0

k−1

s− 1dk−j−1Sn − j − 1

k − j − 1
DQsn, jd, s5d

with

Qsn,kd = − o
h j1,. . .,jkj

E p
ik+1

in

dxiPsx − hxjjdln Psx − hx jjd.

s6d

Equations6d is a sum over all subsets ofk variables of the
entropy of the system after the subset has been removed.
Thus, Qsn,0d is the microscopic entropy andQsn,n−1d is
the sum of entropies for individual degrees of freedom. The
formalism can be applied to any system that can be described
by a probability measure, equilibrium or nonequilibrium sys-
tems, or a time series described by a stochasticse.g., Mar-
kovd processf7–10g.

It is sometimes convenient to discuss the incremental dif-
ference in complexity between scalesDskd=Csk+1d−Cskd.
While Cskd represents the effective number of degrees of
freedom of sizek or larger, Dskd represents the effective
number of degrees of freedom at scalek.

The quantity defined by Eq.s5d has some additional,
rather surprising, properties. In particular, it can have oscil-
lations and take negative values even for discrete variables.
These seemingly anomalous properties have been shown to
reflect the structure of the system and specifically have been
linked to the effect of global constraints on local variables or
more generally the concept of strong emergence in Ref.f10g.
We will explore the relevance of such behavior to the Gauss-
ian model.

To simplify the discussion further, we will show first that
rescaling the variablesse.g., by choosing a different inverse
temperatureb, as described in Sec. IId adds a term to the
microscopic entropyCns1d that only depends onn and the
scaling ratio, and does not affect higher-order complexities
sk.1d. When applied to Gaussians, the termsQsn,kd are

sums over the logarithm of determinants of submatrices of
R, dropping combinations ofk rows and corresponding col-
umns. Rescaling the covariance matrix by a factorf yields an
additive term ofl ln f to the logarithm of the determinant of
a submatrix of sizel 3 l. Since there ares n

j
d such contribu-

tions for Qsn, jd, the difference between the rescaled multi-

scale complexityĈnskd and the original is

Ĉnskd − Cnskd = o
j=0

k−1

s− 1dk−j−1Sn − j − 1

k − j − 1
DSn

j
Dsn − jdln f

= o
j=0

k−1

s− 1dk−j−1 sn − j − 1d!
sk − j − 1d!sn − kd!

3
n!sn − jd
j !sn − jd!

ln f

= Sn

k
Dk ln fo

j=0

k−1

s− 1dk−j−1Sk − 1

j
D

= H0 for k . 1,

n ln f for k = 1.
J s7d

The identity in the last line can be derived by expanding
f1+s−1dgk−1 using binomial coefficients.

V. APPLICATION TO SPECIFIC MODELS

A. Three interacting spins

We start by applying the formalism to a minimal case of
three interacting spins. The three-spin case captures a num-
ber of features that will be characteristic of larger spin sys-
tems. The complexity profile can be solved analytically, giv-
ing

C3s1d = h3flns2pd + 1g − 2 lns1 + ad − lns1 − 2adj/2,

C3s2d = − lns1 + ad − lns1 − 2ad/2,

C3s3d = f− lns1 − 2ad + lns1 + ad + 3 lns1 − adg/2. s8d

As Fig. 1 shows, complexities diverge ata=1/2 anda=

FIG. 1. Multiscale complexities for the three-spin chain. While
all complexities are positive fora.0, C3s3d is negative fora,0.
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−1. These are the ferromagnetic and antiferromagnetic tran-
sitions to unbounded variables. As this case illustrates, unlike
conventional binary spin systems, transitions occur even for
finite numbers of spins. This result can be understood by
recognizing that conventional Gaussian variables themselves
can be thought of as arising as aggregates of many micro-
scopic bounded variables through the central limit theorem.
Negative values ofC3s3d occur for a,0. This is expected
for systems with frustrated spins, due to the existence of a
constraint on the three spins that does not affect any pair of
spins.

B. Infinite-range magnet

For larger numbers of spins we consider first an infinite-
range Gaussian model, with an interaction matrix

J =1
− 1 a ¯ a

a − 1 a ¯

a ¯ ¯ a

a ¯ a − 1
2 , s9d

wherea, the interaction between spins, is negative for anti-
ferromagnets and positive for ferromagnets. Inverting the
negative of this matrix does not alter its structure; one ob-
tains the covariance matrix

R =1
r c ¯ c

c r c ¯

c ¯ ¯ c

c ¯ c r
2 , s10d

with r andc given by

r =
1 − sn − 2da

s1 + adf1 − sn − 1dag
, s11d

c =
a

s1 + adf1 − sn − 1dag
. s12d

We define the correlation ratior=c/ r, in order to separate
the amplitude of the spins from the correlations between
them:

r =
a

1 − sn − 2da
. s13d

Since ferromagnetic ordering is easier to achieve with
infinite-range interactions than antiferromagnetic ordering,
the transition where all spins collapse into onesr goes to 1d
and the amplitude diverges occurs at a small value ofa
=1/sn−1d. Antiferromagnetic ordering occurs ata=−1,
wherer takes the asymptotic value −1/sn−1d and all vari-
ables are maximally anticorrelated, taking values corre-
sponding to ansn−1d-dimensional hypertetrahedron.

The determinant ofR is

Det Rn = rns1 − rdn−1f1 + sn − 1drg. s14d

The determinant has a zero of ordern−1 at r=1, where all
variables are the same, andn−1 of them are redundant. It

also has a first-order zero atrc=−1/sn−1d, where geometri-
cal constraints can be used to eliminate one variable.

We can now calculate the scale-dependent complexity
Cnskd following Eq. s5d. For our example, we can calculate
this analytically fork=1,2,3 andnumerically for other val-
ues ofk. Since the matrix does not change its structure if one
or more variables are removed, the determinant has the same
form as Eq.s14d with a modified number of variables.

We then have

Qsn, jd = Sn

j
DFn − j

2
flns2prd + 1g +

1

2
hsn − j − 1dlns1 − rd

+ lnf1 + sn − j − 1drgjG , s15d

which yields

Cns1d =
n

2
flns2pd + 1 + lnsrdg +

n − 1

2
lns1 − rd

+
1

2
lnf1 + sn − 1drg, s16d

Cns2d = h− lns1 − rd − sn − 1dlnf1 + sn − 1drg

+ n lnf1 + sn − 2drgj/2, s17d

Cns3d = − lns1 − rd/2 + sn − 1dsn − 2dlnf1 + sn − 1drg/4

− nsn − 2dlnf1 + sn − 2drg/2 + nsn − 1d

3lnf1 + sn − 3drg/4, s18d

as shown in Fig. 2. In terms ofa, these complexities can be
written as

Cns1d =
n

2
hlns2pd + 1 + lnf1 − sn − 1dagj +

n − 1

2

3lnf1 − sn − 1dag +
1

2
lns1 + ad, s19d

Cns2d = f− ln„1 − sn − 1da… − sn − 1dlns1 + adg/2, s20d

Cns3d = h− 2 lnf1 − sn − 1dag + sn − 1dsn − 2dlns1 + ad

+ nsn − 1dlns1 − adj/4. s21d

For n=3 this reduces to the case of three interacting spins,
Eq. s8d. All complexities for k.1 include a singular term
−lns1−rd /2=−lnf1−sn−1dag /2 but are independent ofr,
which is a consequence of the invariance to multiplying all
spins by the same factor, as described above.Cns1d, on the
other hand, includes a term lns2prd+1 ssee Fig. 2d.

We find two characteristic behaviors for ferromagnetic
and antiferromagnetic interactions. In the ferromagnetic case
sa.0,r.0d the multiscale complexity is positive and de-
creases monotonically with increasingk. The curves ofCnskd
plotted as a function ofk/n approximately collapse to one
curve for each value ofr.0, so that the complexity can be
written as a scaling functionCsk/n,rd. Nearr=1, this func-
tion takes a universal shape, so thatCsk/n,rd<Clsk/nd
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+Esrd. The singular term in all complexities pointed out
above, −lns1−rd /2, can be identified withEsrd. As seen in
Fig. 3, reducing 1−r=rc−r for equivalentlyac−a, as seen
in Eqs. s19d–s21dg by a factor of 10 increasesCnsk/nd by
lns10d /2.

The universal shape ofCsk/n,rd implies thatDskd, the
spectrum of excitations, is independent ofr near the transi-
tion. With increasing coherence of the variables, the collec-
tive behavior atCsnd increases at the expense of the inde-
pendence of the variablesCs1d without affecting the
spectrum of intermediate scale excitations.

In the antiferromagnetic casesa,0,r,0d oscillations in
Cksnd are found, as seen in Fig. 4. The amplitude of oscilla-
tions increases as −f lnf1+sn−1drg−g, where f and g in-
crease rapidly withn and are of order 105 for n=20. Oscil-
latory behavior in the multiscale complexity has been linked
to global constraintsf10g; in this case, it is the constraint
oxi =0 which is enforced by the interactions near the transi-
tion point and which can be used to eliminate one of the
variables.

It should be pointed out that Eq.s5d is susceptible to
numerical inaccuracies, and with insufficient precision one
observes oscillations forr.0; however, these are numerical

artifacts, as can be seen by increasing the accuracy of calcu-
lations. The oscillations in the antiferromagnetic regime are
not artifacts.

C. One-dimensional spin chain

We consider a chain ofn spins with nearest-neighbor in-
teractionsa and self-interactions −1. The interaction matrix
is given by

J =1
− 1 a 0 ¯ a

a − 1 a 0 ¯

¯

a 0 ¯ a − 1
2 . s22d

For evenn, it is not relevant whether interactions are ferro-
magnetic or antiferromagnetic, since both cases can be
mapped onto each other by flipping every other spin. For odd
n, the asymmetry with respect toa becomes less pronounced
as n increases: negative complexities are only observed for
nø5, and forn.15 the curves look largely symmetric. The
following observations assume evenn.

For weak interactions, one finds correlations that decrease
exponentially with distance; specifically, the leading-order
term ofRij is aui−j u. Due to the short-ranged, one-dimensional
interactions, Ising spins with this interaction structure do not
show an order-disorder phase transition. However, the
continuous-spin system displays a transition from finite to
infinite variances fora= ±1/2, at which point the nearest-
neighbor interactions override the self-interaction.

We find numerically thatCnskd is proportional ton for
small k.1: each additional spin takes a finite amount of
information to describessee Fig. 5d. This is consistent with
the short-range interactions of the model.

The complexity profile for all scalessFig. 6d behaves
similarly to the infinite-range ferromagnetsFig. 3d: asa ap-
proachesac, the complexity profile has a universal shape
Cn

0skd that is monotonically decreasing and spans all scales.
The divergence as a function ofa−ac follows Cnsk,ad
=Cn

0skd−lnsac−ad.

FIG. 2. ComplexitiesCns1d–Cns4d for infinite-range interac-
tions sfor n=15 and amplituder =1d following Eqs.s16d–s18d. The
inset showsCns1d for a different scaling of they axis.

FIG. 3. ComplexitiesCnskd for n=40 ssquaresd and n=80
scrossesd for the infinite-range ferromagnet, displayed as a function
of k/n, for various values ofr. Arrows indicate the shift predicted
by Eq. s18d.

FIG. 4. ComplexitiesCnskd for the infinite-range antiferromag-
net with n=15, for different values ofr,0, expressed as fractions
of rc=−1/sn−1d. This is close to the point where one variable
becomes redundant; the multiscale complexity shows oscillations of
increasing amplitude.
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D. Square lattice

For a two-dimensional example, we arrange spins on a
L3L square lattice with periodic boundary conditions and
nearest-neighbor interactions of strengtha. The transition
point to unbounded spins is ata= ±1/4. Intuitively, four in-
teractions of strength 1/4 are sufficient to balance the self-
interaction of strength 1.

As with the spin chain we find that the multiscale com-
plexities are roughly proportional to the number of spins in
the system and are almost symmetric with respect to switch-
ing the sign ofa. ssee Fig. 7d For evenL the symmetry is
exact since a ferromagnetic square lattice can be transformed
into an antiferromagnetic one by flipping spins in a checker-
board pattern. The symmetry is not exact for oddL and the
deviation is largest for small values ofL. For differentL the
values ofCskd /N do not collapse as well, indicating a more
significant deviation from extensivity than in the one-
dimensional case.

The complexity profile shows a similar behavior to the
infinite-range ferromagnet: asa approachesac, a complexity
profile with universal shape emerges that spans all scales,
and is monotonically decreasing, as seen in Fig. 8. A loga-
rithmic divergence as a function ofa−ac is found as before.
The shape of the complexity profile in the limit is different
from the previous scenarios; the cases will be compared be-
low.

E. Block matrix

We generalize the infinite-range Gaussian model by divid-
ing the spins into groups that interact strongly within the
group, but weakly with members of other groups, yielding
the following interaction matrixswe explicitly label the self-
interaction as −d in this cased:

J = −1
d ¯ a

a d a b b

a ¯ d

d ¯ a

b a d a b

a ¯ d

d ¯ a

b b a d a

a ¯ d

2 , s23d

with m blocks ofn spins each. This model is important in the
study of complex systems since it has a multilevel
structure—i.e., modularity—considered to be a universal
property of complex systemsf6,17g.

The determinant of this matrix is

FIG. 5. Multiscale complexities for the multispin chain, normal-
ized by the number of spins,n, for n=16 slinesd, n=25 ssquaresd,
andn=32 scrossesd.

FIG. 6. Multiscale complexity for the one-dimensional spin
chain with nearest-neighbor interactions, for different interaction
strengths atn=16.

FIG. 7. Multiscale complexities for the square lattice with
nearest-neighbor interactions, normalized by the number of spins,
n=L3L, for L=5 slinesd, L=6 ssquaresd, andL=7 scrossesd.

FIG. 8. Multiscale complexity for the square lattice with
nearest-neighbor interactions, for different interaction strengths at
L=4.
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Dets− Jd = sd − admsn−1dfd + sn − 1da − nbgm−1fd + sn − 1da

+ nsm− 1dbg, s24d

which enables us to find the permissible ranges ofd, a, and
b: for bounded spins to exist,d, which is the negative self-
interaction, has to be positive. Positive values ofa and b
imply antiferromagnetic interactions, negative ferromag-
netic. The boundaries of the allowed region are given by the
zeros of Eq.s24d:

a/d ø 1, s25d

b/d ø f1 + sn − 1da/dg/n, s26d

b/d ù − f1 + sn − 1da/dg/fnsm− 1dg. s27d

The inverse of this matrix has the same structure as Eq.
s23d; if we label the coefficients of −J−1 as A, B, and D,
respectively, we obtain

D = Khd2 + sm− 2dsn − 2dnab− sm− 1dsn − 1dnb2

+ sn − 1dsn − 2da2 + fsm− 2dnb+ s2n − 3dagdj,

A = Kf− ad− sn − 1da2 + sm− 2dnab+ sm− 1dnb2g,

B = − Ksd − adb, s28d

where

K = hsd − adfd + sn − 1da − nbgf1 + sn − 1da + sm− 1dnbgj−1.

s29d

Since the inverse of the negative interaction matrix is the
covariance matrix, this allows us to determine under what
circumstances correlations to near and far neighbors are posi-
tive or negative.A has a zero for

b1,2=
1

2sm− 1dn
fsm− 2dna± Îm2n2a2 + 4sm− 1dnsd − adag;

s30d

it is negative between the branches of the root and positive
outside.B is negative forb,0 and positive forb.0. Com-
bining the results from Eqs.s25d, s26d, and s30d, the phase
diagram shown in Fig. 9 emerges. Interestingly, long-range
interactions do not stabilize the system: at anybÞ0, the
system has a smaller range of stability with respect toa than
for b=0.

We now calculate the multiscale complexities.Cnms1d can
be calculated from the determinant, Eq.s24d, with entriesD,
A, andB from Eq. s28d:

Cnms1d =
1

2
hnmflns2pd + 1g + nsm− 1dlnsD − Ad

+ sm− 1dlnfD + sn − 1dA − nBg

+ lnfD + sn − 1dA + nsm− 1dBgj. s31d

Unfortunately, removing spins does not leave the structure of
the covariance matrix unchanged. The determinant of the
matrix with one spin removed is

Det C−1 = sD − Admsn−1d−1fD + sn − 1dA − nBgm−2

3hD2 + s2n − 3dAD + sn − 1dsn − 2dA2 + nsm− 2d

3fD + sn − 2dAgB − nsn − 1dsm− 1dB2j. s32d

From this expression, the corresponding complexity for scale
2 can be found:

Cnms2d = s1/2d„− m lnsD − Ad + sm− mn− 1dlnfD + sn − 1dA

− nBg − smn− 1dlnfD + sn − 1dA + nsm− 1dBg

+ mn lnhD2 + s2n − 3dAD + sn − 1dsn − 2dA2 + nsm

− 2dfD + sn − 2dAgB − nsn − 1dsm− 1dB2j…. s33d

The first term in Eq.s33d indicates that the divergence near
A=D is logarithmic inm lnsD−Ad /2; the additional factor of
m, compared to previous scenarios, indicates that there arem
distinct units.

Expressions for higherk do not give additional insight.
We therefore turn to numerical results, which are shown in
Fig. 10. Along theb=0 axis, the system consists ofm blocks
of n coupled spins each. ComplexitiesCnmskd are different
from zero forkøn spositive for ferromagnetic interactions,
oscillating for antiferromagneticd and equal to zero fork
.n. This reflects the built-in property of the multiscale for-
malism to identify noninteracting subsets of variables.

For bÞ0, complexities at scales up tok=nmbecome non-
zero. In the quadranta,0,b,0 where all interactions are
ferromagnetic, all complexities are larger than zero. In the
other quadrants, one observes either negative complexities
for higher scales or oscillations similar to those found for the
infinite-range antiferromagnet. We expect a similar picture to
hold for more than two levels of hierarchy: a monotonically
decreasing curve with kinks at the scales corresponding to
block sizes if all interactions are ferromagneticsas in the
lower left panel of Fig. 10d and combinations of decreasing
curves and oscillations on different scales if both ferromag-
netic and antiferromagnetic interactions are present.

FIG. 9. Phase diagram for a block matrix withm groups ofn
spins each. Relevant variables are the ratios between near- and far-
neighbor interactions and self-interaction. Shading indicates the
sign of covariancesA andB.
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F. Infinite-range spin glass

Spin glassessmagnetic systems with random ferromag-
netic or antiferromagnetic interactionsd are a well-studied
model of systems with frustrated interactions, multiple de-
generate ground states, and other interesting featuresf19,20g.
The multiscale complexity of spin glasses is therefore of
considerable interest. We consider interaction matrices with
diagonal elementsJii =−1 and off-diagonal elementsJij =Jji

=arij , wherer ij is a Gaussian random variable of variance 1.
To determine transition points for any one realization of the
quenched random interactions, we keep the set ofr ij constant
and adjust the interaction strengtha.

The first quantity of interest is the criticala at which the
transition from bounded to unbounded variances occurs. This
is related to the eigenvectors of −J, which are necessarily all
positive for bounded spins. The spectrum of eigenvaluesl of
Gaussian matrices has been studiedf18g; if all entries sin-
cluding the diagonald are Gaussians of mean 0 and variance
s2, the matrix is symmetric andn is large; it takes the form

Psld = Hs2ps2nd−1Î4s2n − l2 for ulu , 2sÎn,

0 else,
J

s34d

i.e., a semicircle of a width proportional toaÎn. For smalln,
the cutoff of this semicircle becomes blurred.

Calculations show that replacing the random diagonal
elements with nonrandom elements of magnituded has
two effects: n is replaced byn−1 in Eq. s34d, and the
mean of the distribution is shifted byd sas can be shown
analyticallyd. Thus, the distribution ofl follows Psld
=Î4s2sn−1d−sl−dd2/ f2ps2sn−1dg.

The critical interaction valueac is that for which the
smallest eigenvalue becomes 0 ford=1. Neglecting the
blurring of boundaries, we thus expectuacu=d/Î4sn−1d,
which is in good agreement with calculations for largen. It
should be pointed out thatac has significant fluctuations for
small n—the exact transition point differs for each realiza-
tion of hr ijj. These result indicate a significant difference in

FIG. 10. Multiscale complexities for block
structure interactions withn=5, m=3, for differ-
ent values ofa andb.

FIG. 11. Complexity profile for a long-range spin glass withn
=16, for different values ofa/ac, averaged over 100 realizations of
randomness.

FIG. 12. Multiscale complexities for the mean-field spin glass,
normalized by the number of spins,n, for n=40 slinesd, n=30
ssquaresd, andn=20 scrossesd, averaged over multiple realizations
of randomness.
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the behavior of the transition in the case of the spin glass and
infinite-range magnet with uniform interactions. The scaling
of ac~n−1/2 lies between that of the infinite-range ferromag-
net sac~n−1d and the antiferromagnetsac=1d described in
Sec. IV B.

Using these results, we explore the behavior of the mul-
tiscale complexitiesCns jd. Near ac, we obtain a monotoni-
cally decaying positive curve, similar to that for the ferro-
magnetic mean-field magnet. For smaller values ofa, the
curve is shifted to lower values ofCns jd, but does not be-
come negativessee Fig. 11d.

Interestingly, the curves ofCnskd for small k follow simi-
lar scaling behavior as those for ferromagnetic nearest-
neighbor spin chains and lattices: when plotted as a function
of a/ac, Cnskd /n roughly collapses onto one curve for differ-
ent n, as shown in Fig. 12. The exact values of the curves
depend on the quenched variables, so that averaging over
different realizations becomes necessary; however, the finite-
size effects decrease with increasingn.

It is significant that the random and partly frustrated in-
teractions do not lead to oscillations in the multiscale com-
plexity. Ferromagnetic modes become dominant and trigger
the transition before frustration has an impact. The study of
spin glasses using replica symmetry breaking has previously
found that the spin-glass order parameter has a degeneracy of
ordern in the ground state with spins having a macroscopic
ordering in the direction of one of these low-energy states.
Such macroscopic ordering is indeed similar to the ordering
found in an infinite-range model and is qualitatively different
from a frustrated infinite-range model which constrains the
macroscopic state to a macroscopically degenerate subspace.
Still, we note the different scaling between frustrated and
unfrustrated interactions described above.

G. Triangular lattice

Our final example is a two-dimensionals2Dd lattice with
frustration in the antiferromagnetic state, the 2D triangular
lattice. Again, we find two transitions points. In the ferro-
magnetic regime, the transition isa=1/6 asexpected for a
lattice of coordination number 6. The complexity profile at
the ferromagnetic transition is qualitatively similar to that of
the square-lattice ferromagnet, and the multiscale complexity
for smallk is extensive. In the antiferromagnetic regime, the
exact point of transition depends somewhat on the extent of
the lattice in thex directionlx ssee Fig. 13d: for example, it is
ac=−1/3 for lx=3, −0.353 553 forlx=4, and −0.350 373 for
lx=5. For lx that are compound numbers, the lowest absolute
value of the transition for any of the divisors is the relevant
one. The complexity profile near the transitionsFig. 14d now
shows slight signs of frustrationssmall oscillations withk
and negative values fork<nd, but no large-amplitude oscil-
lations as found for the infinite-range antiferromagnet. We
interpret this as a sign of localized frustrations, consistent
with a large ensemble of degenerate ground states, but with
only local, rather than global, constraints.

VI. SUMMARY

Comparing the multiscale complexity profiles that were
found in the preceding section, some intuitive and some

TABLE I. Comparison of qualitative features from from Secs. V A–V G.

Structure Transitionac Cnskd extensive Oscillations

Three-spin ferromagnet 1/2 N/A no

Three-spin antiferromagnet −1 N/A yes

Infinite-range ferromagnet 1/sn−1d no no

Infinite-range antiferromagnet −1 no yes

Spin chain,n even 1/2 yes no

Square lattice,L even 1/4 yes no

Block matrices varies varies varies

Infinite-range spin glass ~1/În yes no

Triangular ferromagnet 1/6 yes no

Triangular antiferromagnet <−1/3 no weak

FIG. 13. Illustration of the orientation of the triangular
lattice.

FIG. 14. Complexity profile for the triangular lattice near the
antiferromagnetic transition, for different system sizes. One sees
signs of both frustration and coherent behavior.
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rather surprising features emerge. The results are summa-
rized in Table I and Fig. 15. All systems we considered show
a transition from well-behavedsfinite magnituded spins to
diverging-amplitude spins when the interaction between dif-
ferent spins overrides the self-interaction.

We find two different universal behaviors of the complex-
ity profile: monotonic decrease with scale and oscillatory
behavior. The former is a signature of systems with variables
that are not frustrated. At the transition, spins become in-
creasingly redundant because they are completely correlated
santicorrelated, in the case of an antiferromagnetd with each
other. Near the critical point, complexities diverge logarith-
mically. Figure 15 shows a comparison between the curves
near divergencesat 0.999ac, for n=16d for the interaction
structures that show this behavior. The complexity profile
can be interpreted as the cumulative spectrum of collective
behaviors of the system. The independence ofCsk,rd with
changes inr in all these cases implies thatDskd=Csk+1d
−Cskd is independent ofr near the transition. Thus, the the
collective behavior atCsnd increases near the transition with-
out changing the spectrum of excitations at all scales be-
tween 1 andn. One can see that the infinite-range ferromag-
net, the square lattice, and the triangular lattice, yield very
similar curves, whereas the infinite-range spin glass and the
1D chain show a quantitatively different decay. For the
simple ferromagnetic systemssall except the spin glassd the
value ofCnskd for largek appears to increase monotonically
with spin connectivity.

Away from the transition, in the weak-coupling regime,
one finds thatCnskd decays exponentially withk. This corre-

sponds to fluctuations on small length scales, as one expects
from systems in the disordered phase. In systems that have
local interactions or disordered interactionssessentially, in all
the cases we studied except for the mean-field ferromagnet
and block matricesd, multiscale complexities are approxi-
mately extensive—i.e., proportional to system size—for
smallk away from the transition. In the language of magnetic
systems, this means that one observes a finite-size correlation
length indicating small patches of correlated spins, each of
which give a contribution to complexity. Finite-size effects
sdeviations from extensivityd are more pronounced for two-
dimensional and infinite-range models as compared to the
1D spin chain, as is to be expected in higher-dimensional
systems.

The complexitiesCnskd for k of order 1 thus represent
localized fluctuations, whereas nonvanishingCnskd for k/n
of order 1 represent the emergence of collective behaviors on
the scale of the system as a whole and whose complexity is
therefore not extensive. Since the multiscale complexity is a
very general formalism, requiring only the joint probability
distribution for input, it can thus be used to describe fluctua-
tions and to identify phase transitions without explicitly
choosing order parameters.

The second universal behavior, oscillations, is observed
when a global constraint leads to redundancy: in the simplest
case, for the long-range antiferromagnet, mutual repulsion
enforces the constraintox=0, implying that any one spin is
determined if all others are known. We find that such con-
straints do not result from random interactions found in spin
glasses; i.e., frustrated interactions do not necessarily result
in frustrated variables. There exist enough interactions that
are not frustrated to ensure collective behaviors of the ferro-
magnetic type. Oscillations do arise, however, for symmetric
antiferromagnetic interactions, both between individual spins
and between blocks of spins.

Finally, we note that the characterization that we have
provided using the multiscale complexity is distinct from the
usual characterization of the correlations in spatial systems
using a correlation length. The multiscale complexity does
not require a spatial structure. It identifies the aggregate size
of fluctuations in terms of the number of participating spins
regardless of the topology of spatial or nonspatial interac-
tions. Thus it provides a more generally applicable charac-
terization of the collective behavior in interacting systems.
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